Prof. Dr. Benedikt Stufler

Hopf Algebras


Summary

The study of Hopf algebras lies at the interface of representation theory, combinatorial algebra, and mathematical physics. We present an introduction to basic algebraic concepts (coalgebras, bialgebras, Hopf algebras, Hopf modules and comodules, universal enveloping algebras, ...). The highlight of the lecture will be a proof of the Cartier-Kostant theorem for pointed cocommutative Hopf algebras, that describes how a large variety of Hopf algebras are isomorphic to a smash product algebra composed out of the primitive and grouplike elements.

Time and place

We 15-17: Y27-H-26
Th 13-14:45: Y27-H-12

Exercise Sessions

Tu 10:15-12: Y27-H-46 with Raúl Penaguião

Lecture notes

The lecture notes summarize the material covered in class and will be updated throughout the semester.

Homework

Links and Information