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1. Introduction

The present notes summarize the content of an advanced course on the algebraic foun-
dation of Hopf algebra theory given by the author at the University of Zurich in 2018.

The study of Hopf algebras lies at the interface of representation theory, combinatorial
algebra, and mathematical physics. We start with an introduction to the algebraic foun-
dations (coalgebras, bialgebras, Hopf algebras, Hopf modules and comodules, universal
enveloping algebras, ...). The highlight of the lecture will be a proof of the Cartier-Kostant
theorem for pointed cocommutative Hopf algebras, that describes how a large variety of
Hopf algebras are isomorphic to a smash product algebra composed out of the primitive
and grouplike elements.

2. Basics
2.1. Tensor products. — We let R denote a ring (with 1, not necessarily commuta-
tive).
DEFINITION 2.1 (UNIVERSAL MIDDLE-LINEAR MAPS). — Let X be a right R-module, Y

a left R-module, and T an abelian group.

1) Amap 7: X XY — T is termed middle linear, if for all x,2’ € X, y,y/ € Y, r € R
it holds that

_|_
L

&\
<
~

T(x+ 2 y) =7(z,y
T(z,y+y) =1(x,y) + (2, y),
T(zr,y) = 7(z,7Y).

2) A middle-linear map 7 : X XY — T is universal, if for any abelian group M and
any middle-linear map p : X XY — M there exists a unique group homomorphism
@ : T — M such that the diagram

XxY 2o M
IT/
T
commutes.
THEOREM 2.2 (TENSOR PRODUCTS). — Let X be a right R-module and Y a left R-

module.
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DIfr: XXxY —=>Tand 7 : X xY — T are both universal middle-linear maps, then

there is a unique isomorphism ¢ : T — T' such that the diagram

XxY T
17/
T

commutes.
2) There is an abelian group T with an universal middle-linear map 7 : X XY — T.
Notation: T=X QY and 7(x,y) =x Qry forallz € X,y €Y.

Proof — Let Z&X*Y) be the free Z-module with basis X x Y. Let N be the submodule
that is generated by all elements of the form

(z+2',y) = (z,9) — (', y)

(@, y+y) = (x,9) = (=.9)

(@r,y) — (2, 1Y)
with z,2' € X, 3,9/ € Y, and r € R. Let T = Z**Y) /N and define 7 by

Z(Xxy)@n oo

W

X xY
O

REMARK 2.3. — 1) (x ® Y)yexyey is a Z-span of X ®r Y. We often denote Z-linear
maps on the tensor product by stating how they act on this spanning family, but care

has to be taken whether such maps actually exist (or are "well-defined”).

2) Z/(n) ®zQ =0 foralln > 1.

DEFINITION 2.4 (BIMODULES). — Let R and S be rings. Suppose that the set X is

equipped both with a left R-module structure and an right S-module structure.

1) We say X is an (R, S)-bimodule, if for allx € X, r € R, and s € S it holds that
(rax)s =r(xs)

2) A map ¢ : X = Y between (R, S)-bimodules X and Y is (R, S)-linear if it is both
R-linear (from the left) and S-linear (from the right).

THEOREM 2.5 (MODULE STRUCTURES ON TENSOR PRODUCTS)
Let R,S,T,U be rings, X an (R, S)-bimodule, Y an (S, T)-bimodule, and Z an (T,U)-
bimodule.
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1) The tensor product X ®gY is an (R,T)-bimodule via r(z ® y) = rz @ y and
(r®y)s =xRys.

2) (X®@sY)@rZ ~ X®s(Y®rZ) is an (R, U)-linear isomorphism that is functorial
m X, Y, and Z.

3) X ®s S~ X with  ® s — xs is (R, S)-linear and functorial in X.
R®p X ~ X with r ® x — rx is (R, S)-linear and functorial in X .

4) If R is commutative and M, N are R-modules, then

M®r N~NzrgM with m®®n—n®m
is R-linear and functorial.

DEFINITION 2.6. — Let X, X' be right R-modules, Y,Y' be left R-modules, and f : X —
X', g:Y =Y’ be a R-linear maps. Then we let

J®g: X®rY - X' @rY', 20y~ flz)®gy).

THEOREM 2.7 (COPRODUCTS AND TENSORS). — Let (X;)ier be a family of right R-

modules, Y a left R-module. Then ¢ : [],.;(X; ®rY) — (Hie[ Xi) ®r Y defined via

X, Qg y ey (Hiel Xi) ®QgrY foralli € I is a functorial isomorphism.

COROLLARY 2.8 (BASES OF TENSOR PRODUCTS). — 1) Let X be a right R-module

with basis (z;)ier and let Y be a left R-module. Then each element t € X @g Y has

ie1Ti @y with y; € Y for alli € I and y; = 0 for
almost all (=all but finitely many) i € I.

2) k field, V,W k-vector spaces with bases (v;)icr, (w;j)jes. Then the family (v; ®
w;)ierjes 15 a basis of V&, W.

a unique representation t =

THEOREM 2.9 (® 1S RIGHT EXACT). — Let A, B,C be left R-modules and let

ALsB 20 5 0 be an exact sequence of R-linear maps. Then for all right R-
modules Y it holds that the sequence Y ®p Aely QR B9y ® C — 0 s exact
too.

Proof. — See exercises. O]

2.2. Algebras. — We let k denote a commutative ring (with 1).

DEFINITION 2.10. — 1) Let A be a ring (with 1) and a k-module. We say A is a
k-algebra if for all X € k and x,y € A it holds that \.(xy) = (A.x)y = z(\.y).
2) An algebra homomorphism from a k-algebra A to a k-algebra B is a k-linear ring
homomorphism.
3) The center of an algebra A is the subalgebra

Z(A)={z e A|xy=yx for ally € A}.



(] BENEDIKT STUFLER

REMARK 2.11. — 1) Let A be a k-algebra. The unique ring homomorphismn : k — A
satisfies im(n) C Z(A).
2) Conversely, if A is a ring andn : k — A is a ring homomorphism with im(n) C Z(A),
then A is a k-algebra via \.x = n(X\) for all X\ € k, v € A.

REMARK 2.12. — 1) Let A be a k-algebra. The linear map p : A @ A — A with
p(a @ b) = ab and the ring homomorphism n : k — A satisfy

ko A2 A, A2 Awk

can
I
can

A
and

Aop Aoy A) 2 A, Al A,

(A®kA)®k:Alﬂ>A®kA

2) Conversely, let A be a k-module. If p: A®x A — A andn: k — A are k-linear
maps such that these diagrams commute, then A is a k-algebra with xy = p(x @ y)
and 14 = n(1).

REMARK 2.13. — 1) M, (k) and Endy(V') (V' a k-module) are k-algebras.

2) If A is a k-algebra, then we define the algebra A°P by setting A°® := A as k-module
and defining naop := N4 and pLaor := paoT with the linear map 7 : AQr A — ARy A,
T(z®y) =y .

3) If A is a k-algebra then

0 :A — Endg(A),a— (z — ax)

8 :A — End,(A)®,a — (z — za)
are algebra homomorphisms.

REMARK 2.14. — 1) If A and B are k-algebras, then so is A ®y B.
2)If o : A — A" and ¢ : B — B’ are algebra homomorphisms then so is ¢ ® ¥ :
AR, B — A ®, B.

DEFINITION 2.15. — Let G be a monoid. Then k[G] := k%) (also denoted by kG) is a
k-algebra with (g ® h) = gh (product in G). It satisfies the universal property, that for
any algebra A and any monoid homomorphism ¢ : G — (A,-) there is a unique algebra
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homomorphism ¢ : k|G] — A such that

G— A,

REMARK 2.16. — 1) Let G = Ny be the additive monoid. Then k|G| ~ k[Xq, ..., X,]
polynomial ring in n indeterminates.
2) Let X be a set, <X> the free monoid over X, then k<X> is called the free algebra

over X.

PROPOSITION 2.17. — Let A be a k-algebra and I C A a both-sided ideal. Then for any
algebra homomorphism ¢ : A — B with ¢(I) = 0 there is a unique algebra homomorphism
¢ : A/I — B such that

A—".B.

%

AJI

2.3. Category theory. — The language of category theory allows us to express com-
plex relationships in a concise and elegant way. Setting up a rigorous foundation for the
set-theoretic background does not lie within the scope of this lecture. We naively define
classes to be collections of sets which we can define and talk about. Hence we may form
the class of all sets, which is a proper class as it cannot be a set. We may also consider

maps between classes.

DEFINITION 2.18. — A category C consists of a class Ob(C), whose elements are called
the objects of the class, with the following additional structures:

— For any two objects X, Y € Ob(C) we are given a set C(X,Y) whose elements are
called the morphisms from X toY. We require that

C(X,Y)NC(X",Y)=10

for all X, X" YY" € Ob(C) with X # X' orY # Y'. Instead of f € C(X,Y) we
also write f : X —'Y or X L5y
— For any X,Y,Z € Ob(C) we are given a map

CY,Z) xC(X,Y) = C(X,2),(9. f) = gf =go [
We require that for all X i>Y, Y 27 and 715U

hgf) = (hg)f
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— For any X € Ob(C) there is a distinguished element idx € C(X, X). We require that
for all X Ly,

EXAMPLE 2.19. — 1) The category Set of all sets with maps as morphisms.

2) The category Gr of all groups with group homomorphisms as morphisms.

3) The categories pM and Mpg of left R-modules and right R-modules.
REMARK 2.20. — A category C is termed small, if Ob(C) is a set.

DEFINITION 2.21. — Let C be a category. A morphism X LY in € is termed an
isomorphism, if there exists a morphism Y - X with ¢f = idx and fg = idy. If this is
the case then g is uniquely determined and we may write g = f1.

DEFINITION 2.22. — Gliven a category C we may form the category C°? with Ob(CP) =
Ob(C) and C°P(X,Y) =C(Y, X) for all objects X,Y .

DEFINITION 2.23. — Let C and D be categories.

1) A (covariant) functor F: C — D consists of a map
Ob(C) — Ob(D), X — F(Y)
together with a family of maps
C(X,)Y)—=DX,)Y), f—= F(f),
for X, Y € Ob(C), such that
Fgf) = F(9)F(f)  and  F(idx) = idp(x)

forall X,Y,Z € Ob(C), f € C(X,Y), and g € C(Y, Z).
2) A contravariant functor C — D is a functor C° — D.

EXAMPLE 2.24. — 1) Let k be a commutative ring. x M — .M defined by
V= V* = Homy(V, k) and f=(f 9~ gf)

is a contravariant functor.
2) Let R, S be rings and X an (R, X)-bimodule. Then

X®s—:sM—>zM

is a covariant functor.
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3) Let R be a ring and X € rM. Then
Homg(X, —) : gpM — zM
s a covariant functor, and
Hompg(—, X) : pM — zM

s a contravariant functor.
4) Let C be a category and X € Ob(C). Then

C(X,—):C — Set
1s a covariant functor, and
C(—,X):C — Set

1 a contravariant functor.

REMARK 2.25. — Any category C admits the trivial functor ide : C — C. We may
concatenate a functor F' : C — D with a functor G : D — & to form a functor GF : C — £.
This operation is associative and the functors behave like neutral elements.

DEFINITION 2.26. — 1) Let C, D be categories and F,G : C — G be functors. A
natural transformation o : F' — G is a family o = (oe)ceoney of morphisms ac :
F(C) — G(C) such that for all C,C" € Ob(C) and f € C(C,C")

Fo) 22 peny

lac lac/
G(f)

ao) 2 ey

2) The natural transformation « is a natural isomorphism, if ac is an isomorphism for

each C' € Ob(C). We denote the existence of a natural isomorphism between F and
G by

F~(Q.

3) We may think of natural transformation as “morphisms between functors” Any
functor F' admits the trivial natural isomorphism idp : F' — F. We may concatenate
a natural transformation o : F — G with a natural transformation § : G — H to
form a natural transformation Ba : F — H. This operation is associative and the
trivial natural isomorphisms behave like neutral elements.

4) The natural transformation o : F — G is a natural isomorphism, if and only if there
exists a natural transformation 8 : G — F such that fa = idp and af = idg.



10 BENEDIKT STUFLER

EXAMPLE 2.27. — 1) Suppose that k is a field. For any k-vector space V let ayy : V —
Vv (f — f(v)). Then a = (ay)y is a natural transformation id — ()**. « is
a natural isomorphism when restricted to finite dimensional vector spaces.
2) Let k be commutative ring and let X and Y be k-modules. The map X ®; Y* —
Hom(Y, X) with x @ f +— (y — f(y)x is functorial in X and Y. That is,

— ®; Y — Homy (Y, —)

1s a natural transformation of covariant functors, and
X ®k ()" — Homg(—, X)

1 a natural transformation of contravariant functors.

DEFINITION 2.28. — A functor F' : C — D is an equivalence of categories if there is a
functor G : D — C such that GF ~id¢ and FG ~ idp.

DEFINITION 2.29. — A functor F : C — D is termed left adjoint to a functor G : D — C,
if there is a family of bijections oo p = D(F(C),D) — C(C,G(D)) (with C € Ob(C),
D € Ob(D)) that is functorial in C' and D. In this case there is a canonical natural
transformation 1 : ide = GF with ne = ¢c pc)(idr)) for all C € Ob(C).

Proof. — Diagram chasing. O]

PrRoPOSITION 2.30. — Let R, S, and T be rings.
1) Let gXs and gYr be bimodules. Then Hompg(rXs, rY7) is an (S, T)-bimodule with

(ft)(x) = f(x).t
(“Left Hom from (R,S) to (R,T) gives (S,T)” we may use the notation
sHompg(rXs, RY7)T)
2) Let RXs and rYs be bimodules. Then Homg(rXs,7Ys) is an (T, R)-bimodule with
(fr)(x) = f(re)
(t.f)(x) =tf(z)
(“Right Hom from (R,S) to (T,S) gives (T,R)”; we may use the notation
rHomg(rXs, 7Ys)r)
3) Let gXg be a bimodule. Then
Hompg(rXg, —) : RM — M
HOms(RXs, —) : MS — MR



HOPF ALGEBRAS 11

are covariant functors, and
Homg(—, g Xs) : Mg — rM
Hompg(—, rXs) : RM — Mg
are contravariant functors.
PROPOSITION 2.31. — 1) There is a canonical isomorphism of right T-modules:
Hompg(rXs ®s sY, rZr)r ~ Homg(sY, Homg(rXs, rZ7))r

2) The functor
rXs ®s —: sM = pM

is left adjoint to
Hompg(rXs, —) : RM — sM.

COROLLARY 2.32. — If S C R s a subring, then
rRs ®s — 1 sM — pM

18 left-adjoint to
Homg(grRs,—) : pM — sM.
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3. Coalgebras and Hopf algebras

Unless otherwise stated, k always denotes a field and all vector spaces are over k. We
let ® = ®; denote the tensor product over k.

3.1. Coalgebras. —

DEFINITION 3.1 (COALGEBRAS). — Let C' be a vector space over k, and let A : C' —
C®C ande: C — k be k-linear maps. The tupel (C, A, €) is a coalgebra, if the following

diagrams commute:

ko, C <2 00,02 ok

N

C
and
C & (C @ C) 22 0@, 02 O
| /
(O®k0)®kom0®kc
EXAMPLE 3.2. — 1) If G is a set, then k') is a coalgebra with A(g) = g®g, e(g) =1
forall g € G.

2) Let C be a vector space over k with basis (x; j)1<ij<n. C is a coalgebra with A(x; ;) =

Y ohei Tig @ Tp g, €(2ij) = 0.

Proof. — 1t suffices to verify the axioms on the basis of C.

n

Z A(x%k) Q XTg,; = Z Tiky O Thy ko @ Ty j = Z Tig @ A(@c,j)
k=1

k=1 1<ky,k2<n

and

3

e(Tig) @) =1 @785, § i @ €(Tpy) = 25 ® 1.
k=1 k=1
]

3) C a vector space over k with basis (z;);>0. C is a coalgebra with A(x,) =Y "1 x; ®
Tn—i and €(xy,) = dop-

Proof. —

=0 1=0

i1+i2+iz=n

The rest is clear. O
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4) Let C be a vector space over k with basis g, h,x. Then C is a coalgebra with A(g) =
g®g,e(g)=1, Ah)=h®@h, e(h) =1, Alzx) =g@z+z®h, e(zr) =0.

DEFINITION 3.3 (SWEEDLER NOTATION). — Let C be a coalgebra, x € C. We use the

notation
A<x> = le,i @ Xo; = x(1) & T(2) =: T1 @ Xa,

A'(z) = (A® id)(A”_l)(a:) =T ® ... QTny1) = T1 Q... @ Tpy1.
For f : C™ — X multilinear, f : ®1§i§n C — X the induced map, we set
FA™ (@) = F(zy . 2y) = f(ans. . 22)

DEFINITION 3.4. — A k-linear map [ : C' — C' between coalgebras is called a coalgebra
homomorphism if for all x € C it holds that ec/(f(x)) = ec(x) and f(x); ® f(x)s =

f(x1) ® f(z2).

DEFINITION 3.5. — A an algebra, C' a coalgebra, f,g € Homy(C, A). Then fxg €
Homy (C, A) with (f * g)(x) = f(x1)g(xs) is called the convolution of f and g. That is:
c2ceclagata
frg
THEOREM 3.6. — Let A be an algebra, C' a coalgebra.

1) Then Homy(C, A) is an algebra with product x and unit element ne.
Proof. —
Associativity:  ((f * g) « h)(@) = F(a1)g(z2)h(zs) = (f * (g % 1)) ()
Unit element: (f x(ne))(x) = f(z1)e(xe) = f(x1e(x2)) = f(x
((ne) = f)(x) = e(z1) f(22) = f(e(z1)z2) = f(2).

2) We have the following functors:
Homy(C, —) : Algebras,, — Algebras,,
Homy(—, A) : Coalgebras,” — Algebras;,

Proof. — Let ¢ : A — A’ be an algebra homomorphism. Then
Homy(id, ) : Homy(C, A) — Homy(C, A"), f — of
is an algebra homomorphism, because

(pnae)(x) = p(e(x)1a) = e(x)1ar = (nae)(x)
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and

(o(f * 9))(x) = o(f(z1)g(x2)) = @(f (21))p(f (22)) = (2 f) * (£9))(2).

This shows that Homy(C, —) is a functor Algebras, — Algebras,.
Let ¢ : C'— C' be a coalgebra homomorphism. Then

Homy, (1, id) : Homy,(C', A) — Homy,(C, A), f — f1
is an algebra homomorphism, because
(necrp)(z) = Laecr ((x)) = 1aec(x) = (nec)(x)

and

((f xg)¥)(x) = (f © 9)($(2))1 @ (¥(x))2)

= (f©g9)(W(x1) @ P(x2))
= ((f¥) * (g¥))(2).
]
COROLLARY 3.7. — If C is a coalgebra, then C* is an algebra.
EXAMPLE 3.8. — 1) If G is a finite set, then the coalgebra k¢ from Ezample 3.2, 1)
satisfies (K9)* ~ k% as algebras.
2) The coalgebra C' from Example 3.2, 2) satisfies C* ~ M, (k) as k-algebras.
3) The coalgebra C from Ezample 3.2, 3) satisfies C* ~ k[X] as k-algebras.
Proof. — See exercises. O]

PROPOSITION 3.9. — Let X and Y be vector spaces over k. Then
XY > (XY), fogm(fog:zy— f(z)9(y))
If X orY is finite dimensional, then this linear map is an isomorphism.
Proof. — As the functor X ® — is left-adjoint to the functor Hom(X, —), it holds that
Hom(X ® Y, k) ~ Hom(Y, Hom(X, k)) = Hom(Y, X™).
We have seen in the exercises that for all vector spaces V' and W it holds that
V@W*— Hom(W, V), v® f— (w— f(w)v)
is an isomorphism if V' or W is finite dimensional. In particular,
Hom(Y, X*) ~ X* @Y™

if X or Y is finite dimensional. O]
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THEOREM 3.10. — Let A be a finite dimensional algebra. Then A* is a coalgebra with
e(f) = f(1) and A(f) = f1® fo uniquely determined by f1(a)fo(b) = f(ab) for alla,b € A.
That 1is,

*

A Sk

%

A (A A 2 A A
W

Proof. — € is a counit because 7 is a unit, that is

(e(f1)f2)(x) = (1) fo(z) = f(lz) = f(z)

and

and
fie(fo)(x) = fi(z) f2(1) = f(x1) = f(x).

A is coassociative because p is associative, that is for all a,b,c € A

fi1(a) f12(b) f2(c) = fi(ab) fa(c) = f(abc)
fi(a) f21(b) f22(c) = fi(a) f2(bc) = f(abe)
and hence

Ju® fr2® fa=f1® far ® foa.
]

EXAMPLE 3.11. — Let G be a finite monoid and k[G] the corresponding monoid alge-
bra. Let (eg),ec be the dual basis of (¢)gec. Then e(ey) = ey(lg) = 941, and Ale,) =
Y abeCab=g €a ® € because for x,y € G:

Z ea(T)es(y) = Z Oa,z0by = Ogay = €4(TY).

ab=g ab=g

COROLLARY 3.12. — We have an equivalence of categories
{C'|C f d. k-coalgebra}® ~ {A| A f. d. k-algebra}
with C'— C* and A — A*.

Proof. — These functors are well-defined: We have already seen that Homy(—, k) :
Coalgebras;” — Algebras,, is a functor. It is also easy to check that if K : A — A’ is an
homomorphism between finite dimensional algebras, then x* : (A")* — A* is a coalgebra
homomorphism.

We already know that id ~ ()** for finite dimensional vector spaces. It remains to show
that this natural isomorphism restricts to isomorphisms of finite dimensional coalgebras

and algebras.
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That is, for A a finite dimensional algebra, consider the bijective map
p: A= A" a— (f— f(a)).
We have to check that ¢ is an algebra homomorphism. For F,G € A*, f € A* we have
(F-G)(f) = F(f1)G(f2) with fi(a)f2(b) = f(ab) for all a,b € A. This implies that
p(ab)(f) = flab) = fi(a)f2(b) = (p(a) - ©(b))(f)-
Also,
p(1)(f) = f(1) = La==(f)

This shows that A ~ A** as algebras.

Likewise, for C' a finite dimensional coalgebra, the linear bijection

v :C—=C™" o (f— f(z))

preserves the coalgebra structures: For F' € C** we have that A(F) = F; ® F} is uniquely
determined by Fi(f)Fy(g) = F(f *x g) for all f,g € C*. So

(1) (N)(x2)(g) = fl1)g(w2) = (f * g9)(x) = ¢ (2)(f * 9)
implies that
A(p(x)) = (1) @ P(x2).
Moreover, ecs«(F) = F(1g+) = F(ec) implies that

ecw(Y(x)) = () (ec) = ec(x).

This shows that C' ~ C** as coalgebras. The isomorphism is easily seen to be functorial.
]

PROPOSITION 3.13. — Let C and D be k-coalgebras. Then so is C'®@ D 1is a coalgebra
with a componentwise structure. That is, A(x @y) = (1 QY1) ® (22 @ ys) and e(x R y) =
ec(z)en(y)-

DEFINITION 3.14. — Let C' be a coalgebra.

1) An element g € C' is called grouplike, if A(g) = g® g and €(g) = 1.

2) We set G(C) :={g € C| g is grouplike}.

3) Let x € C, g,h € G(C). We say x is (g, h)-primitive or skew-primitive, if A(x) =
gRx+2x®h.

PROPOSITION 3.15. — Let C' be a coalgebra.

1) If g € C satisfies A(g) = g ® g and g # 0 then e(g) = 1.
2) If v € C is skew-primitive, then ¢(x) = 0.

PROPOSITION 3.16. — If A is a finite dimensional algebra, then G(A*) = Alg, (A, k).
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Proof. — Let f € A*. Then f € G(A*) if and only if 1 = €4+(f) = f(14) and f1 ® fo =
f ® f, which is equivalent to f(a)f(b) = f(ab) for all a,b € A. O

LEMMA 3.17 (DEDEKIND). — Let M be a set, y: M x M — M a map, k a field. Then
X ={f € " \0| f(u(a,b)) = f(a)f(b) for all a,b € M}

is a linear independent subset of kM.
Proof. — Suppose that X is not linear independent. Then there are distinct elements

fi,---, fn € X that linear dependent such that all proper subsets of {fi,..., f.} are

linear independent. Hence we may write

1= Z&fi-

i>2

Thus for all a,b € M:

<Z )\ifz'(a)> (Z )\jfj(b)> = fi(a) f2(b)

_ _ — fi(ula,))
- Z /\ifi(ﬂ(a’ b))

1>2

= Z)\ifi(a)fi(b)'

i>2
This implies that fs,..., f, are linear dependent, contradicting our minimality assump-
tion. L]

THEOREM 3.18. — If C is a coalgebra, then G(C) C C' is linear independent.
Proof. — The injective coalgebra homomorphism

$iC =%, aes (f - f()
restricts to an injective linear map

G(C) — G(C™) = Alg(C™, k).

Since Alg(C*, k) C C** is linear independent by Dedekind’s lemma, it follows that G(C') C
C' is linear independent. O

DEFINITION 3.19. — Let C be a coalgebra. A subspace I C C' is a coideal if A(I) C
CRI+1®C and e(I) = 0. In this case C'/I is a coalgebra as well.

Proof. — The conditions on [ are precisely what we require for € to factor over C'/I and
for A to factor over C/I @ C/I. The coalgebra axioms of C/I then follow from the
coalgebra axioms of C. O
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REMARK 3.20. — If XY are vector spaces and U C X, V C X are subspaces, then
URV C X®Y is a subspace. This needs not hold for tensor products over arbitrary

TiNgs.

PROPOSITION 3.21. — Let ¢ : C' — C" be a coalgebra homomorphism. Then ker(p) C C
is a coideal and im(p) C C" is a subcoalgebra. The map ¢ induces a coalgebra isomorphism

¢ : C/ker(p) = im(p), T @(x).

Proof. — The homomorphism theorem for modules gives us that ¢ is a well-defined k-
linear map. As ¢ is a coalgebra homomorphism it follows that ¢ is aslo a coalgebra
homomorphism. ]

3.2. Hopf algebras. —

DEFINITION 3.22. — Let H be a k-algebra and let A - H - H® H and e : H — k be

k-linear maps.

1) H is a bialgebra, with (H,A €) is a coalgebra and A and € are algebra homomor-
phisms.

2) H is a Hopf algebra if it is a bialgebra and id € Homyg(H, H) has an *x-inverse S.
That 1s, if there exists a linear map S : H — H such that

S(x1)xe = €(x)ly = 215(x2)

for all x € H. We way S the antipode of H. Note that any bialgebra may have at

most one antipode.
EXAMPLE 3.23. — 1) If G is a group then k[G] is a Hopf algebra.

Proof. — A and € are algebra homomorphisms by construction (via the universal
property of the monoid algebra). Let S : k[G] — k[G]°® be the algebra homomor-
phism with S(g) = g~!. Then S satisfies the antipode axioms. O

2) If H is a Hopf algebra and g € G(H) then S(g) = g~ .
Proof. — €(g) = 1 implies S(g9)g = 1y = ¢gS5(9). O
3) If H is a Hopf algebra, and x € H is (g, h)-primitive, then S(x) = —g~txh™1.
Proof. — A(z) =g® x4+ x ® h and €(z) = 0 implies
0=S(9)xr+ S(x)h =g 'z + S(x)h.
We know that h is invertible because it is grouplike, hence

S(z) = —g tah™h
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PROPOSITION 3.24. — Let H be an algebra and (H, A €) a coalgebra. Then
A(zy) = 111 ® TaYo A is an algebra hom.
W is a coalgebra hom. All)=1®1
n s a coalgebra hom. e(zry) = e(x)e(y) € is an algebra hom.
e(l)=1
DEFINITION 3.25. — 1) If C' is a coalgebra, we may form the coalgebra C°P with

ACcop(.ClZ) = To ® xq.
2) We say a coalgebra C' is cocommutative, if 11 ® x9 = x9 ® x1 for all x € C.

3) Let A, B be algebras. An anti-algebra homomorphism ¢ : A — B is an algebra

homomorphism ¢ : A® — B.

4) Let C, D be coalgebras. An anti-coalgebra homomorphism ¢ : C — D is a coalgebra

homomorphism 1 : C°P — D,

5) Let Hy and Hy be bialgebras. A linear map ¢ : Hy — Hy is a bialgebra homomor-

phism if @ 1s both an algebra homomorphism and a coalgebra homomorphism.

6) Hopfalgebra homomorphisms are bialgebra homomorphisms.

7) Subcoalgebras, subbialgebras and sub Hopf algebras are defined in a canonical way.

THEOREM 3.26. — 1) Let Hy and Hy be Hopf algebras and ¢ : Hy — Hy a bialgebra

homomorphism. Then Su,p = ©SH, -

2) Let Hy C Hy be a sub Hopf algebra. Then Sg,(Hy) C Hy and Sy, = (Su,) |u, -

Proof. — 1) The idea is to show that Sy, and pSp, are both *-inverse to ¢ in the

algebra Homy (Hy, Hs). To this end, note that for all x € H;

S, (p(71))p(r2) = Su, (p(2)1)p(7)2 = e(p(r))1 = e()1

and likewise ¢(z1)Sw,(p(z2)) = €(x)1. Thus Sg,¢ the *-inverse of .
It also holds that

(S, (11))@(x2) = ©(Sm, (11)72) = @(e(2)1) = €(2)1

and likewise ¢(x1)@(SH, (22)) = €(x)1. This shows that ¢Sy, is the x-inverse of ¢ and

hence must be identical to Sy, .

2) Let « : Hy C Hy be the inclusion map. By 1) we know that Sy,. = tSg,, so

SHQ(Hl) C H; and SHl = (SHQ) |H1'

PROPOSITION 3.27. — 1) If C is a coalgebra, then k(%) C C is a subcoalgebra.

]
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2) If B is a bialgebra, then G(B) is a monoid and k|G(B)| C B is a subbialgebra.
3) If H is a Hopf algebra, then G(H) is a group and k|G| C H is a sub Hopf algebra.

PROPOSITION 3.28. — Let H be a Hopf algebra with antipode S.
1) S is an anti-algebra homomorphism.
Proof. — Consider the map
p:H®H—H, z®y+— S(ry)

and the map
Y:H®H—-H, xz®y— S(y)S(x).
We are going to show ¢ = 1) by verifying that both maps are both left x-inverse to
the multiplication pu.
Indeed
pla1 @ y)p(re @ y2) = S(@1y1) (2y2) = S((ay)h)(2y)2 = e(vy) 1y = e(x)e(y)1n

implies that ¢ *x 4 = ngegey. Analogously we may check that u* ¢ = ngegen.

Furthermore
Y(x1 @ y1) (22 @ y2) = S(y1)S(x1)w2y2 = €(x)S(y1)y2 = €(x)e(y)1n.
Hence ¢ = ! = ¢ in Hom(H ® H, H). O

2) S is an anti-coalgebra homomorphism.
Proof. — Consider
o:H—-H®H, x— S(r3)®S5(z)
and
v:H—->H®QH®H, 1z~ S()®S5(x),.
We are going to show that ¢ = A™! = 1) in the algebra Hom(H, H @ H).
To this end, note that for all x € H:
A(z1)p(z2) = (21 @ 22)(S(24) ® S(3))
= 215(x4) ® 225 (3)
=1215(x3) ® e(x9) 1y
= x15(e(x2)r3) @ 1
=115(z) ® 1y
=e(x)lyg ® 1y.

This shows that A x ¢ = ngepey in Hom(H, H ® H). Analogously, we may check
that © * A= NaoHEH -
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Furthermore, it holds that
Ar)p(ws) = A1) A(S(22)) = A(215(22)) = () A1) = e(2)1 © H.
This show that ¢ = A™! in Hom(H, H ® H). O
3) The following three conditions are equivalent:
a) S* =

b) x2S(x1) = €(x)ly for allx € H
c) S(x9)xy = €(x)ly for allx € H

Proof. — a) = b): Suppose that a) holds. Then S is bijective and
S(x29S(w1)) = S*(21)S(w2) = 215 (22) = €(x)1 = S(e(w)1).
hence x9S5(x1) = €(z).
b) = a): Suppose that b) holds. Then
e(x)ly = S*(21)S(29).

Hence S? is left-x-inverse to S, yielding S? = id.
The equivalence a) < ¢) may be proven analogously. O

4) In particular, if H is commutative or cocommutative then S? = id.

COROLLARY 3.29. — Let H be an algebra and M C H an algebra generating system.
1) Suppose that A: H - H® H, and € : H — k are algebra homomorphisms. Then H

1s a bialgebra if the axioms are satisfied on M.
2) Suppose that H a bialgebra, S : H — H an anti-algebrahomomorphism. Then H is
a Hopf algebra if the axioms are satisfied on M.

COROLLARY 3.30. — 1) Let H be a bialgebra, A a commutative algebra. Then
Alg,(H, A) is a monoid. If H is a Hopf algebra, then it is a group.

Proof. — For ¢, € Alg,(H, A) the commutativity of A implies that

(p * V) (zy) = w(r191)Y(T2Y2)
= (1) (z2)e(y1)Y(y2)
= (px ) (@) (e * ) (y)
As (o x1)(1) = ¢(1)y(1) = 1 this implies that Alg,(H, A) is a monoid.
Suppose that H is a Hopf algebra. As A is commutative it follows that ¢S is an
algebra homomorphism. We are going to check that .S is the inverse of ¢. To this

end:

p(S(21))p(w2) = @(S(x1)22) = € ()1
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and

p(21)p(S(22)) = @(215(2)) = en(x)1.
[l

2) Let H be a bialgebra, C' a cocommutative coalgebra. Then Coalg,(C, H) is a monoid.
If H is a Hopf algebra, then it is a group.

Proof. — Let ¢,v € Coalg, (C, H). Then the cocommutativity of C' implies that

Au((p ) () = An(p(21))An((22))
= (p(z1) @ @(72))(V(23) ® ¥ (24))
= @(1)(x3) ® p(22)Y(74)
= p(z1)Y(22) @ o(23)Y(24)
= (e x ) (1) ® (@ * ) (22).

Moreover,

en((p*V)(x)) = en(p(z1))en(V(r2)) = ec(z1)ec(r2) = eclec(w1)r2) = ec(z).

This shows that Coalg,(C, H) is a monoid.
Suppose that H is a Hopf algebra. We are going to show that Sy is the *-inverse

of ¢. Indeed:
(Se)(@1)p(x2) = S(p(x1))p(r2) = S(p(x)1)e(x)2 = enlp(x))lg = ec(x)1n.
That is, S¢ * ¢ = nyec. Likewise, we may check that ¢ *x S = ngec. O
THEOREM 3.31. — We have an equivalence of categories

{B | B f. d. k-bialgebra}*® ~{B | B f. d. k-bialgebra}
with B — B*. It restricts to
{H | H f. d. Hopf algebra over k}°®* ~{H | H f. d. Hopf algebra over k}

Proof. — We know that if B if a finite dimensional k-bialgebra then B* is both an algebra
and a coalgebra. In order to check that it is a bialgebra, we have to verify that Ag. and
ep+ are algebra homomorphisms.

Recall that

B* — (B® B)* — B* ® B*.
Apx
The map

B2 (BoB), [ (@oy— f(ay)



HOPF ALGEBRAS 23

is an algebra homomorphism (since up : B® B — B is a coalgebra homomorphism), and

the isomorphism
B*®B* ~(BRB)", (fog)w— (ey~ f(x)9(y))

is an algebra homomorphism as well. This shows that Ap- is an algebra homomorphism.
Recall that

np ~
B 2k Sk
ER*

The map e~ is an algebra homomorphism: The map
B Bk fes (A Af(1))
preserves the algebra structure (as n : k — B is a coalgebra homomorphism) and the map
kK ~k, g~ g(1)

is an algebra isomorphism. Here k* becomes an algebra via the coalgebra structure
Ap(N) = A ® 1 and €x(A\) = A for A € k.
The functorial vector space isomorphism

p:B— B b~ (f— f(b)

preserves both the algebra and coalgebra structures, and is hence a bialgebra isomorphism.
This proves the first equivalence of categories.

In order to prove the second equivalence, it remains to show that if H is a finite
dimensional Hopf algebra, then H* is a Hopfalgebra with antipode Sy« = S}, that is
Sy«(f)= fS for all f e H*.

Indeed, it holds that

frx fo(S) = e+ (f)1m-

because for all z € H

Silz1) f2(S(x2)) = f(215(22)) = f(e(2)1n) = e(2)f(1n) = 1g-(x)en-(f).
Likewise we may verify that
J1(S) * fa = em+(f)1n-.
O

DEFINITION 3.32. — 1) H a bialgebra, I C H a subspace. We say I is a biideal, if it
is both an ideal an a coideal. In this case H/I is a bialgebra.
2) If ¢ : H— H' is a bialgebra homomorphism then ker ¢ C H is a biideal. The usual
homorphism theorems hold.

3) If H and H' are bialgebras then so is H @ H'.
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DEFINITION 3.33. — 1) H a Hopf algebra. A biideal I C H is a Hopfideal if S(I) C 1.
In this case S/1 is a Hopf algebra.
2) If ¢ : H— H' is a Hopf algebra homomorphism then ker ¢ C H is a Hopf ideal.
3) If H and H' are Hopf algebras, then so is H @ H'.

PROPOSITION 3.34. — Let H be a bialgebra, G C G(H) a subset. Then I =< g—1]g €
G > (the ideal generated by all elements g — 1) is a biideal of H. If H is Hopf algebra,
then it is a Hopf ideal.

Proof. — I is an ideal be definition. It is a coideal because for all ¢ € G it holds that
€(g—1)=0and

Alg—1)=gRg-1®1=9g(g-1)+(¢g-1)®1e HRI+I® H.

Moreover, if H is a Hopf algebra then [ is an Hopf ideal, since S(g — 1) = S(g) — 1 =
gl—1=—gYg—1)€HICI =

3.3. Examples. — In the previous section we saw that when H is a Hopf algebra, then
Alg(H,—) is a functor from the category of commutative algebras to the category of
groups. The following are few examples of Hopf algebras for which we may determine this
functor explicitly.

ExAMPLE 3.35. — 1) The polynomial algebra k[T] is a Hopf algebra with T primitive.
It holds that

n

AT =Y (T;) Ti @ T~

1=0

for allm > 0. If A is a commutative algebra then
Algy (K[T], A) = (A, +), ¢ = ¢(T)
1S a group isomorphism.
Proof. — For ¢, € Alg, (k[T], A) it holds that
(e x )(T) = @(T)P(1) + p()P(T) = p(T) + »(T).
O

2) If char(k) = p then (T?) C k[T)] is a Hopf-ideal and k[T]/(TP) is a quotient Hopf
algebra. For any commutative algebra A set ay,(A) = {a € A | a? =0}. Then

Algy (K[T1/(T7), A) = ap(A), ¢ = o(T)

is a group isomorphism that is functorial in A.
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EXAMPLE 3.36. — The polynomial ring B = k[T;; | 1 < i,j < n] is a bialgebra with
A(T; ;) = Zlgegn T, o @1y, and €(T; ;) = 6; ;. Consider the matric M = (1} ;):; € M,(B)
and set d = det(M). Then d is a group-like element, because

A(d) = det( Z Tio®To )i

1<t<n
= (det(T;; @ 1);;)(det(1 ® T 5)i 5)
— (d@1)(1®d)
=d®d.

Hence (d— 1) C B is a biideal and H = B/(d — 1) is a bialgebra.
By Cramer’s rule there is a matrix N = (t;;);; € M, (B) with

MN = NM =dl.

Note that this implies det(N) = d"' since B is an integral domain. Let S : B — H be
the algebra homomorphism with S(T; ;) = t; ;. Then

S(d—1) =det(t;;)i; —1=0.
Hence S induces an algebra homomorphism S : H — H with
S(Tiy) = tiy.
We may verify that S is an antipode of H, making H a Hopf algebra:
(A(T3j))ig = (Ti; ©1)ij (1R Ti )i

and hence

(TighS((Tig)2))ig = (SUTigh ) (Tig)2)iy = I = (&(Tij)1)iy-

If A is a commutative algebra, then

Alg(k[T;;]/(d — 1), A) = SLa(A), = (0(Ti;))i;
18 a group isomorphism that is functorial in A.

DEFINITION 3.37. — Let v be an indeterminate. In the field Q(v) we define for0 <i <n

(3.1) (n), = ”Un__ll )
(3'2) (n)v! - (1)11 Tt (n)v € Z[U]
(3.3) (?) - % e Z[u].

SN—
Il
e

Fori<00ri>nweset(?v
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LEMMA 3.38. — For 0 < i < n it holds that

(1), =G, (7).

Proof. —
n—1 n—1 (n—1),! vi(n —1),!
. +v . . ~— + = .
i—1/, i ), (E=1)ln =1, (@).l(n—1i-1),
_ (n = 1)N((@)y + 0" (n — 1))
B (1)) (n — 1),
Since
() +0'(n—1)y=14+...+0" + 0" (1+...0"") = (n),
it follows that this expression is equal to (’Z)v O
DEFINITION 3.39. — Given q € k there is a ring homomorphism Z[v] — k with v —

q. We let (n)q, (n),!, and (’Z)q denote the images of (n),, (n),!, and (’;‘)v under this
homomorphism.

COROLLARY 3.40. — Let A be an algebra, a,b € A, ba = qab for some q € k.
1) (@t by = Sy (7) 0
2) If q is a primitive nth root of unity then (?)q =0 for1 <i<n—1 and hence
(a+b)"=a™+0b".

Proof. — 1) By induction on n. If (a4 b)" = >, (’Z)qaibn_i then

n

((I + b)(a + b)n _ Z (7;) ai+1bn—i + qzz (?) aibn+1—i
q 1=0 q

=0

" n n
— " b+ + k( ) akpni—k
;((k—1>q k),

n+1
_ Z n+1 aFpnti—k
i .

k=0

2) Suppose that n > 2. Since

(q—1)(i)g=q"—1

q
it follows that (i), # 0 for 0 <4 < n and (n), = 0. Hence for 0 < ¢ < n it follows that

(i)gl(n — i),! (?)q = (n),! =0,

and hence (?)q = 0. O
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EXAMPLE 3.41. — 1) For q € k* the bialgebra
H=k<gux|gr=qrg>=k<g,x> /(92— qrg)
with g group-like and x (g, 1)-primitive is called the quantum plane.

Proof. — We may define a bialgebra structure on k < g,z > with g group-like and
x (g, 1)-primitive. The ideal (gx — gzg) is a biideal, since
Algr —qrg) = ¢* @ gr+gr @ g —q9° @ g —qrg @ g
= 9" ® (9x — qzg) + (92 — qzg) ® g
This makes H = k < g,x | gr = qrg > a bialgebra. [
2) For q € k* the Hopf algebra
H=<g,h,x|gh=1=hg,gr = qrg >
1

with g, h group-like, x (g, 1)-primitive has an antipode with S(x) = ¢ 'x.

Proof. — Tt is clear that H is a bialgebra. Let S : k[G, H, X] — H be the anti-
algebra homomorphism with S(G) = h, S(H) = g, and S(z) = —hz. Then S
factorizes over H, since

S(GH) = S(hg) =1

and

~

S(GX — ¢XG) = —hxh + gh*z = 0.
It is clear that the induced map S satisfies the antipode axioms. Moreover, S?(z) =
S(—hz) = hxg = ¢ 'hgr = ¢ 'z. O

3) Let q € k™ be a primitive nth root of unity. Then
H=k<g,x|g"=1,2"=0,9z = qrg >

with g group-like and x (g, 1)-primitive is called the Taft Hopf algebra. Its antipode
satisfies S*(x) = ¢ .

Proof. — Consider B = k < G, X > as a bialgebra with G-grouplike and X (G, 1)-
primitive. Then [ = (G" — 1, X" — 0,GX — ¢X@G) is a biideal: We know that

AG"—-1)el®B+B®I
because G is group-like. We already made the calculations to verify
A(GX —¢XG)el®B+B®I.
Since ¢ is a primitive nth root of unity it follows by the ¢g-binomial formula that

AX)'"=(gRr+z1)"=¢"®2"+2"®1=0.
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Hence H is a bialgebra. It is easy to check that H is a Hopfalgebra with antipode
S(g) =g ' and S(z) = g 'x. O

4. H-module algebras and smash products
REMARK 4.1. — 1) Let M be an abelian group, R a ring. Then

{p:Rx M — M| pu R-module structure} ~ Alg, (R, Endz(M))
= (A= (mo= p(A, m)))
((A,m) = 6(A)(m)) 6
1S a bijection.
2) Let V' be a k-vector space, A a k-algebra. Let us call an A-module structure on V
“extending”, if the k-module structure on V induced by n : k — A is identical to

the vector space structure that is already present on V. (That is, \.v = (Al4).v for
A€k, veV.) Then the above bijection induces a vector space isomorphism

{p: AxV =V | u estending A-module struct.} ~ Alg, (A, End,(V)).

DEFINITION 4.2. — Let A be an algebra and let S : A? — A, A A— ARA, e: A—k
be algebra homomorphisms. Then for all V,W € s M.:

k€ aM viae, thatis a. X = e(a)
Vg W e aM via A,  that is a.(v ® w) = a;v @ asw
Homy (V, W) € aM wia A, S,  that is (a.f)(v) = a1 f(S(az)v)
V*e M wvia S,  that is (a.f)(v) = f(S(a).v)
Note that the module structure on V* needs not be a special case of the module structure
on Homg (V) k) (with (a.f)(v) = f(S(e(a1)az).v)), but it is if € satisfies the counit axioms.
In this setting:
1) The k-linear isomorphism (U V)W ~U® (VW) is A-linear for all U, V,W €
AM, if and only if A is coassociative.
2) The k-linear isomorphism V @ k ~V ~ k@ V is A-linear for all V € 4 M, if and
only if A, € satisfy the counit axioms.
3) The evaluation map V*QV — k is A-linear for allV € o4 M, if and only if S(a1)ay =
€(a)la for all a € A.
4) The map k — Endg (V) is A-linear for all V € s M, if and only if a;S(as) = €(a)la
foralla € A.

Proof. — 1) It holds that

a.((u®v) @w) = aj1u ® a12v ® agw
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and
a.(u® (vRw)) =au® anv  axw.

If A is coassociative then these two expressions are identical. Conversely, taking
U=V =Aand u=v=w = 1, would yield coassociativity.
It holds that

a.(v® ) = a1v ® €(az) A = Ae(ag)ar)v ® 1.
and
a(Av) = Aav).

If € is a counit, then the first expression corresponds to the second under the canonical
isomorphism. Conversely, taking V = A, v = 14 and A = 1; would yield the counit

axiom.
It holds that

a.(f®v) =a1.f ®av = f(S(a1) - —) ® ag
gets mapped to
f(S(a1)azv).

If S(ay)ay = €(a) then this is equal to €(a) f(v) = a.f(v). Conversely, if the evaluation
map is always A-linear, then taking V = A, v = 1, yields f(S(a1)as) = f(e(a)la)
for all f € A* which implies S(ay)as = €(a)la.

The element a.A = €(a)\ gets mapped to

v = €(a)v.
This is equal to
a.(v—= Av) = (v a1S(az)v)

if .S satisfies the second antipode axiom. Conversely, taking V = A, v = 14 yields
the second antipode axiom if k — Endy(A) is A-linear.
]

DEFINITION 4.3. — Let H be a bialgebra, A an algebra.
1) Let H be an A-left-module such that H — Endy(A) is an algebra homomorphism.

We say A is an H left module algebra if for all a,b € A and x € H
z.(ab) = (x1.a)(x2.b) and r.lg =€(x)ly.

That is, we require that s and ny are H-linear. It suffices to verify these axioms

on an algebra generating set of H.
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2) Let 0,7 € Alg,(A, A), § € Homg(A, A). We say 0 is a (o, T)-derivation, if
d(ab) = a(a)o(b) + d(a)7(b).
This 1s equivalent to requiring that
Ao My(4), ams (710 00
0 7(a)
15 an algebra homomorphism.
PROPOSITION 4.4. — Let H be a bialgebra, A a H left module algebra, g,h € G(H), and
x € H (g, h)-primitive. Then the element g € B operates on A as an algebra homomor-

phism. That is, A — A,a > g.a is an algebra homomorphism. The element x operates
on A as a (g.—, h.—)-derivation.

Proof. — Tt holds that
g-(ab) = (91.0)(g2.b) = (g.a)(g.b)
and
g9-(1a) = €(g)1a = 14.
Moreover,
z.(ab) = (g.a)(x.b) + (z.a)(h.b).
[

DEFINITION 4.5. — Let H be a bialgebra, A an H left module algebra. The algebra
A#H = A® H as vector space, with a#h = a ® h and

(a#tg)(b#th) = ag,.b#ga.h

for all a,b € A, g,h € H is called the smash product algebra of A and H. We use the
notation

a=a#l € A#H, g=1#g¢€ A#H.
Thus a#g = (a#1)(1#9g) = ag and

ga = gi.a#g> = g1.ags.

DEFINITION 4.6. — Let A be a k-algebra, o € Alg, (A, A), § : A — A a(o,id)-derivation.
We define the algebra extension A C Alx,0,d] as follows. Let H = k < g,z > be the
bialgebra with g group-like and x (g, 1)-primitive. The algebra A becomes an H left module
algebra via g.a = o(a) and x.a = 0(a) for all a € A. We define the sub algebra

Alx,0,0] = A® k[x] C A#H.
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This is well-defined since A(k[z]) C H @ klz]. The extension A C Alz,0,9] is termed Ore
extension. Every element y € Alz,0,6] has a unique representation y = ., a;x’ (with

but finitely many coefficients equal to zero). For a € A it holds that
ra = g.a#x + rv.a#l = o(a)r + §(a).

EXAMPLE 4.7. — 1) Weyl algebra: k < x,t | at = to + 1 >~ k[T][X,id, 55]. Hence
(t'27); j>0 1s a k-basis of the Weyl algebra.
2) Quantum plane: k < g,z | gr = qrg >~ k[ X|#k[G], q¢ € k*, with G group-like and
G.X = ¢X. Hence (2'¢"); j>0 is a k-basis of the quantum plane.
3) k< g hx|gh=1=hg,gr = qrg >~ k[X|#k(G), q € k™ with G group-like and
G.X =qX. Hence (x'¢?)i>0 ez s a k-basis.
4) Taft Hopf algebra: For q € k* a primitive n-th root of unity

k<gxl|g"=12a"=0,9v=qrg >~ k[X]/(X")#k[G]/(G" - 1)
with G group-like, G.X = ¢X. Hence the Taft Hopf algebra has dimension n* and
(2°9”)o<i j<n 1 basis.
REMARK 4.8. — For the Taft Hopf algebra B we are in the situation
kgl B
|/
klg]

with the arrows denoting Hopf algebra homomorphisms. This is analogous to the semi-
direct product: If M and H are groups with

H s M
H
then M ~ G x H with G = kerm.
EXAMPLE 4.9 (QUANTUM ENVELOPING ALGEBRA OF sly). — Let g € k\{0,%+1}. Then

the algebra U,(sly) generated by indeterminates E, F, K, K~' subject to the relations

KK '=1=K'K

KEK™'=¢’E
KFK™' =¢%F

_ —1
EF_FE:&

q—qt
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is a Hopf algebra with K group-like, E (K,1)-primitive, F (1, K~)-primitive. It holds
that
Uq(ﬁ[g) ~ A[E, ag, 5]

with

A=k <FKK'|KK'=1=K'K,KF = q2FK >,
and o € Alg, (A, A) the algebra endomorphism with o(K) = ¢ 2K and o(F) = F, and ¢ :
A — A the (0,id)-derivation given by 6(K) = 0=6(K') and §(F) = (K—K ') (q—q™).
In particular, (F'KJE)en, jezien, 15 a k-basis of U,(sly).

Proof. — Checking that U,(sly) is a Hopf algebra will be an exercise. We are going to
verify that U,(sly) ~ A[E, 0,d].

To this end, let us first check that A[E, o, ] is well-defined. It is clear that o is a well-
defined algebra homomorphism. As for §, we need to show that the algebra homomorphism
0 : A— My(A) with

FOEEL
p(F) = 0 B )
p(K) = _QK O)
p(K™') = [0( KO>

is well-defined. Indeed,

and

and

2p E-K
— q—q~!
0 FK
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The relations of the U, (sly) hold in the Ore extension A[E, o, d]. It is clear that
KK '=1=K'K and KF =q*FK
holds in A[E, 0,0]. Moreover,
EK =0(K)E+(K)=q°KE

and
K— K2

EF =o(F)E+6(F) = FE+~ — 5.

This yields well-defined algebra homomorphism
Y Uy(sly) — A[E, 0,0].

By our previous examples we know that A has a k-basis (F*K7);>0 jez. Hence A[E, o, 0]
has a k-basis (F"K’E");>¢ jeze>0. The algebra homomorphism ¢ maps the vector space
generating family (F'KJE*);>0 jezes0 of Uy(sl) to the k-basis (F'KIE);>q jezs>0 of
AlE, 0,0]. Hence it is an isomorphism. ]

REMARK 4.10. — sly = {A € My(k) | tr(A) = 0} has a k-basis given by
62017]‘?:00’}@:10.
00 10 0 —1
sly is a Lie algebra with Lie bracket given by [A, B] = AB — BA. Thus
[h,e] =2e, [h,fl==2f, e, f]=nh.
Its universal enveloping algebra
U(sly) =k <e,f,h| he—eh=2e,hf — fh==2fef — fe=h>

18 a cocommutative Hopf algebra with e, f, h primitive.
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5. Comodules and comodule algebras

DEFINITION 5.1. — Let C' be a coalgebra.
1) Let V' be a vector space and § : V. — V @ C a k-linear map that we denote by
d(v) = vy ®@v1. We say (V,6) is a right C comodule if
d(vo) ® v1 =19 @ A(vy)
v = vge(vy)

for allv e V. That is:

V®k(0®k0)<@V®kC<LV.

| 7

<V®k0)®kC<6®TdV®kC

and

Vo, C 225 v o,k

(=
Vv
2) Let (V,0v) and (W, d8w) be C right comodules. A k-linear map f :'V — W is a

termed C'-colinear or C' comodule homomorphism if

ow(f(v)) = f(vo) @0

forallveV.
3) Left comodules are defined analogously. We let MC and © M denote the categories

of C' right comodules and C' left comodules.
4) A subspace V' C'V of a C right comodule V' is a subcomodule if §(V') C V' @ C.

REMARK 5.2. — 1) A coalgebra homomorphism ¢ : C' — D induces a functor M¢ —
MP with (V,6) — (V, (id ® ¢)d).
2) Let H be a bialgebra, V,W € M. Then V@, W € M via §(v@w) = vy@uwy@uv w .
Alsoke MT viak - ko H, 1 —-1®1.

Proof. — It holds that
vy ® Wy @ A(v1wy) = vy @ Wy @ V1w ® Vawe = 0(Vy ® wp) @ V1w

and
(vo ® wp)e(viwy) = v @ w.

]

LEMMA 5.3. — C a coalgebra, V' a finite dimensional vector space with basis vy, ..., v,.
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1) Let §: V - V&C be ak-linear with 6(v;) = > ¢ v; @¢; ;. The map § is a C right
comodule structure if and only if A(c; ;) =Y ,¢ie ® coj and €(c;;) = 0; ;.

Proof. — It holds that

n

Z (S(UZ) & Cij = Z Z’Uh (%9 Ch,i &® Cij-
i=1

h=1 i=1
0

2) Let (e;;)i; be the standard basis of M, (k) and (z;;);; the corresponding dual basis
of M,,(k)*. Then

{6:V =V &C|§ right comodule structure} ~ Coalg(M,(k)*,C)

(5|—><x”'—>cm with §(v;) ZUZ@)C”)
Proof. — It holds that A(x; ;) = Z?ﬂ Tie ® x4, because

Zxﬁ l‘g] Z ai,ebe,j = xz‘,j(AB)

¢
for all A= (a;;) € Mn(k;), B = (b;j)ij € M,(k). Also

e(zij) = 2 (1) = 04 ;.

THEOREM 5.4. — Let C be a coalgebra, V € MC.

1) V is the union of all its finite dimensional C' subcomodules.

2) C is the union of all its finite dimensional subcoalgebras.

Proof. — Tt suffices to verify 1). Let 0 #£ v € V. We need to show that v is contained in
some finite dimensional subcomodule. Let (¢;);e; be a basis of C. Let (v;); € V be the

unique elements with

d(v) = Zvi ® ¢;.

Here all but finitely many v; = 0. It clearly holds that
U—UQE 1)1 EV/ Zkvz

Moreover,
Zé(vl) ®Cz' = Z’Ui ®A<Cl) c V/ ®C® C.

As C =@, ke wehave VR C®C ~ @,V ® C ® kc;. Applying the projection to the
ith component to ), §(v;) @ ¢; yields

5(1)1) S V/ ® C
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for all . ]

DEFINITION 5.5. — Let H be a bialgebra, A an algebra, 6 : A — A® H an H right
comodule structure. We say (A,d) is a right comodule algebra if § is an algebra homo-
morphism.

This is equivalent to requiring that v and n are colinear.

Proof. — It holds that
(1 ®id)dagala ® b) = agby ® a1by
and
d(u(a @ b)) = (ab)o @ (ab)r-
That is, p is colinear if and only if §(ab) = §(a)d(b) for all a,b. Likewise (1) =14 ® 1y

if and only if n is colinear, since
(n ©1d)oR(A) = M4 @ 1p

and
o(n(A)) = Ad(La).
O

REMARK 5.6. — 1) Let A be an algebra, H a bialgebra. A is an H left module algebra,
if it is an algebra in g M with respect to ®y. (That is, if p and n are H-linear.) A
is an H right comodule algebra if it is in algebra in M* with respect to ®y. (That
is, if @ and n are H-colinear.)

2) Let A be an algebra, H a bialgebra, 6 : A — A® H an algebra homomorphism. Then
0 1s a right comodule algebra structure if the axioms are satisfied on some algebra
generating set of A.

3) A bialagebra homomorphism ¢ : H — H' induces a functor from the category of H

right comodule algebras to H' right comodule algebras.

EXAMPLE 5.7. — 1) If H is a bialgebra, A an H left module algebra. Then A#H is

an H right comodule algebra via id ® A.

2) G a group, N <1G a normal subgroup. Then k[G] is a k|G /N] right comodule algebra
via 0(9) = g ®g.

3) If ¢ : H— H' is a bialgebra homomorphism, then H is a H' right comodule algebra
via (id ® p)A.

4) k[ Xy, .., Xn] is a k[X;; | 1 <1,j <n] right comodule algebra via §(x,) =Y, ©,®
zg;. (Recall A(X; ;) =" Xio ® Xyj and (X, 5) = 6;;.)

LEMMA 5.8. — Let X,Y, Z be vector spaces such that Z is finite dimensional. Then
Hom(X,Y ® Z) ~Hom(Z* ® X,Y), 0 (f @z~ zof(x1)).
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Proof. — The tensor product is left-adjoint to the Hom functor, hence
Hom(Z* ® X,Y) ~ Hom(X, Hom(Z*,Y)).
As Z is finite dimensional we have Z ~ Z** and
Hom(Z*Y)>~Y @ Z" ~Y ® Z.

Here y ® z corresponds to Z* — Y, f — f(z)y. So a linear map § : X — Y ® Z
corresponds to x — (f — 2of(z1)). And this map in turn corresponds to Z* @ X —
Y, f@x = xof(x). O

DEFINITION 5.9. — Let C' be a coalgebra , V' a vector space, 6 : V — V @ C k-linear.
Then (V,6) is a C' right comodule structure if and only if the corresponding map

pw:C"V =V, feu—vyf(v)

is a module structure (that extends the k-vector space structure on V). We say the C*-
module structure p is adjungated to 5. If ¢ : V — W is a linear map with V,W € M
then ¢ 1s a C' comodule homomorphism if and only if it is C*-linear.

Proof. — Consider the map
k:C* — Endp(V), fr (v—=uvof(vy)).

Then
K(fx g)(v) = vo(f © g)(A(v1))
and
r(f)R(g9)(v) = K(f)(vog(v1)) = voof (vor)g(v1).
The two expressions are equal for all f, g € C* if and only if
d(vo)vr = veA(vy).

Moreover, k(1¢+)(v) = k(€)(v) = voe(vy) is equal to id(v) = v if and only if vye(vy) = v.
This shows that ¢ is a comodule structure if and only if 4 is an extending module structure.
For f € C*, v € V it holds that

o(fv) = p(vof(v1)) = p(vo) f(v1)
and
flp(v) = @)of(p()1).

The two expressions are equal for all f € C* if and only if

©(ve) ® v1 = (v)o ® (V)1
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THEOREM 5.10. — 1) Let C be a finite dimensional coalgebra, V' a vector space. Then
the C' right comodule structures on V' correspond bijectively to the extending C* left
module structures.

2) Let H be a finite dimensional algebra, A an algebra. Then the H right comodule
algebra structures on A correspond bijectively to the extending H* left module algebra
structures.

3) MY ~ o« M and likewise for the categories of H right comodule algebras and H* left
module algebra structures.

Proof. — We already verified 1). In order to check 2), let the comodule structure ¢ : A —
A ® H correspond to the module structure p: H* @ A — A.

Then ¢ is a comodule algebra structure if and only if ug: A® A — Aandns: k— A
are H colinear with respect to the comodule structures on A ® A and k.

We know that p is a module algebra structure if and only if 4 and n4 are H*-linear
with respect to the H* module structures on A ® A and k.

We also now that H colinearity is equivalent to H* linearity on the adjungated H*
module structure. Hence it suffices to show that H* module structures on A ® A and k
induced by Ag+ and ey« are the adjungated structures to the H comodule structures on
A® A and k.

Indeed, for all a,b € A and f € H*

fla®b) = fi.a® fo.b
= agfi(a1) ® bof2(b1)
= (a0 ® bo) f1(a1) f2(b1)
= (a0 ® bo) f(a1by).

This verifies that A ® A carries the H* module structure that is adjungated to the H

module structure.

Also, for all f € H*
fle=en-(f) = f(ln) = (d O f)(1x ® 1x).

Hence k carries the H* module structure that is adjungated to its H comodule structure.
Part 3) follows from parts 1) and 2). O

6. Affine groups

6.1. Affine schemes, monoids, and groups. —

DEFINITION 6.1. — Let C be a category. A functor F : C — Set is representable if there
is an object C' € C such that F ~ C(C, —).
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LEMMA 6.2 (YONEDA). — 1) Let F' : C — Set be a functor and C' € C an object.
Then

Mor(C(C, —), F) ~ F(C)
(ap)p — ac(ide)
(ap: C(C, E) = F(E), [ F(f)(x)p <=
2) For C,D € C:
Mor(C(C,—),C(D,—)) ~C(D,C)
(ag)E — ac(id)
Clg, =) g
Proof. — Tt is clear that 2) follows from 1). Let us first check that the two maps are well-

defined. If (ag) g is a natural transformation from C(C, —) to F then o : C(C,C) — F(C)
and consequently ac(ide) € F(C). Conversely, if z € F(C') then the maps

ap:C(C,B) = F(E), fr F(f)(@), Eec
are well-defined and functorial in E. Indeed, if g : £ — E’ is a morphism in C, then

cc,B) 9 e By

JaE JOLE/
F(g)

because

(F(9)ap)(f) = Fg)F(f)(z) = F(gf)(x) = ap(gf) = (awC(id, 9))(f).
To see that the two constructions are inverse to each other, note that for z € F(C) it
holds that
F(id¢e)(x) = x.
Conversely, if (ag)g is a natural transformation from C(C,—) to F, then for each f €

C(C, E) it holds that

C(id,f)
—

c(C, ) C(C, E)

and hence
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REMARK 6.3. — We are sweeping some set-theoretic aspects under the table, since our
naive definition that classes are just collections of sets does not work for the collection

Mor(C(C, —), F).

REMARK 6.4. — Let F': C — D be a functor.
1) F is called faithful, if for each X,Y € C the map

C(X,Y)—=>DX,)Y), [~ F(f)

is injective. We say F' s full, if this map is surjective, and fully faithful if it is
bijective.

2) We say F is essentially surjective, if for each D € D there is an object C € C such
that F(C) ~ D.

3) The functor F is an equivalence of categories, if and only if it is fully faithful and
essentially surjective.

Proof. — Suppose that F is fully faithful and for each D € D there is an object G(D) € C
with an isomorphism Sp : F(G(D)) ~ D. This defines a map G from the objects of D
to the objects of C (using a suitable axiom of choice). Since F' is fully faithful it holds

that for any morphism D -2+ D’ in D there is a unique morphism G(D) AN G(D') with
F(f) = B, g98p. We set G(g) = f, hence

FG(D) 25 D

lFG(g) g

Bpr
FG(D) —= D'

Since F' is a functor it follows that F'G is a functor too, and (8p)p is natural isomorphism
from F'G to idp. As F' is faithful, this implies that G is also a functor. It remains to
verify that GF ~ id¢. To this end, note that

F(GF) = (FG)F ~ (idp)F ~ F.
In other words, for all C' el

FGF(C) —— F(0)

lFGF(h) lF(h)

FGF(C") —— F(C").
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Since F' is fully faithful, it follows that

~

GF(C) —==C

JGF(h) lh

~

GF(C') —== ¢,

REMARK 6.5. — Let C and D denote categories.

1) A functor F : C — Set is representable, if there is an object C € C such that
F ~C(C,—). We may from the category £ of representable functors from C — Set

with natural transformations as sets.
2) The functor

CP & CmC(C,-)

s fully faithful by the Yoneda lemma and hence an equivalence of categories.

DEFINITION 6.6. — Let Ay denote the category of commutative k-algebras. We let Mon
denote the category of monoids and Gr the category of groups. The forgetful functors from
these categories to the category Set of sets will be denoted by Fo.

1) A representable functor F : Ay, — Set is called an affine scheme. We let Schy, denote
the category of affine schemes.

2) A representable functor F : Ay, — Mon is called an affine monoid. We let Mony,
denote the category of affine monoids.

3) A representable functor F : Ay, — Gr is called an affine group. We let Gry denote
the category of affine groups.

4) For each algebra A € Ay, the affine scheme Sp(A) := Alg, (A, —) is called the spec-
trum of A. Thus

Sp : AP ~ Schy.
EXAMPLE 6.7. — 1) A, : Ay — Gr, A~ (A", +) is an affine group with
A, ~Sp(k[Ty,...,T,)).
2) GL, : A, — Gr, A~ GL,(A) is an affine group with
GLy = Sp(k[(Tig)i<igen, d ™ | d7'det(Ti )iy = 1].

3) If chark = p > 0 then a,, : Ay — Gr, A~ ({a € A|a? =0},+) is an affine group
with
ap ~ Algy (k[T]/(T7), —).
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6.2. Groups in the category of affine schemes. —

THEOREM 6.8. — 1) If H is a commutative bialgebra, then Sp(H) is an affine monoid
with respect to the x-product. For a bialgebra homomorphism ¢ : H — H' the
natural transformation Sp(p) : Sp(H') — Sp(H) is a morphism of monoids. Hence
we obtain a functor

Sp : {com. k-bialgebras}°® — Mony,

This functor is fully faithful. In Sp(H)(H®H) it holds that A = iyxis ifi1(x) = 2®1
and is(x) = 1@ x. In Sp(H)(k) it holds that € is the unit element.

Proof. — Let H and H' be bialgebra. Then

Alg, (H', H) —2— Schy.(Sp(H), Sp(H"))

BiAlg, (', H) — Mony(Sp(H), Sp(H"))

and the first row is a bijection. This readily yields that Sp is full. What is left
to show is that if ¢ : H' — H is an algebra homomorphism such that Sp(y) re-
spects the monoid structures on Sp(H) and Sp(H’) then ¢ is already a bialgebra
homomorphism. Indeed, since

is a monoid homomorphism for all commutative k-algebras A, the special case A =
H® H and ¥ = Ay = iy * iy yields

A = (irp) * (129),
that is
p(2)1 @ ()2 = p(71) @ P(x9).
Likewise, for A = k and ¢ = ey the unit element in Alg,(H, k) it follows that
€EHr = €Y.

]

2) If H is a commutative Hopf algebra, then Sp(H) is an affine group. Hence we obtain
a fully faithful functor

Sp : {com. k-Hopf algebras}°® — Gry

In Sp(H)(H) it holds that S =id™".
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3) If A and B are commutative k-algebras / bialgebras / Hopf algebras, then
Sp(A ® B) ~ Sp(A) x Sp(B).

as affine schemes / monoids / groups.
4) If G is an affine monoid / group, then there is a commutative bialgebra / Hopf algeba
H with G ~ Sp(H) as affine monoids / groups. In particular,

Sp : {com. k-bialgebras}°® ~ Mony,
Sp : {com. k-Hopf algebras}® ~ Gry.

Proof. — Without loss of generality we may assume that there is a commutative
algebra H with G(A) = Sp(H)(A) for all commutative algebras A. We are going
to show that there is a bialgebra structure / Hopf algebra structure (H, A, €) such
that the monoid structure / group structure on G(A) is the *-multiplication monoid
/ group structure on Sp(H)(A) for all commutative algebras A.

Consider the multiplication of Sp(H) as a functor

fo: Sp(H) x Sp(H) — Sp(H)
and the unit element as a functor
n:1+— Sp(H).

Since Sp is fully faithful, there is an algebra homomorphism A : H — H ® H such
that

Sp(id®A)
Sp(H © H ® H) 0 Sp(H ® H) .

\ /

idxp

Sp(H) x Sp(H) x Sp(H) —— Sp(H) x Sp(H)

Sp(A®id) uxidl lu Sp(A)

Since Sp is faithful, this implies that

HeoHoHS2 HeH

cia | [

HoH«+——> [

The rest of the proof works analogously. m
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5) From an abstract point of view, what happened in the last proof is that the equivalence

Sp : AP ~ Schy, induces equivalences
Mony, ~ {monoids in Schy with respect to x}
~ {monoids in A’ with respect to @}

~ {commutative k-bialgebras}°?

and
Gry, =~ {groups in Schy, with respect to x}
~ {groups in A" with respect to ®}
~ {commutative k-Hopf algebras}®.
THEOREM 6.9. — Let V' be a vector space of dimension n, H a commutative Hopf algebra,

G ~ Sp(H) an affine group. Then
{6: V=V ®H|§ H-comodule structure} ~ Gry(G,GLy,).

Proof. — Since H is a Hopf algebra and

d := det(Ti;)i; € K[(Ti;)i]
is group-like, it follows that any bialgebra homomorphism from k[(7;;); ;] to H factors
through the localization

kK{(T))ig,d" | dd™" =1].
Hence the injection
BiAlgy, (k[(Tij)1<ijn, d '], H) —— BiAlg, (k[(Tij)1<ij<nl, H)
induced by the epismorphism
k(T3 j)ig) — k[(Tij)ig,d ™ | dd™ = 1]

is actually a bijection. Using that k[(T}); ;, d"'] is a Hopf algebra and that we established
that Sp : {commutative Hopfalgebras}°® — Gry, is an equivalence

{6:V =V ®H |§ H-comodule structure} ~ BiAlg, (k[(T; ;)1<ij<nl, H)
~ BiAlg, (k[(T;)1<ij<n, d7'], H)
=~ Gr(Sp(H), Sp(k[(Tij)1<ij<n, d 1))
=~ Gry(Sp(H), GLn).
]
DEFINITION 6.10. — 1) An affine scheme X is algebraic if X ~ Sp(A) for an algebra

A that is finitely generated as algebra.
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2) A morphism X —=Y of affine schemes is a closed embedding, if the algebra homo-
morphism ¢ : B — A with X ~ Sp(A), Y ~ Sp(B) and

1S surjective.

REMARK 6.11. — 1) If X -5 Y is a closed embedding, then X (R) ~% Y (R) is injec-
tive for all R € Ay.

2) The inverse needs not hold. For example, k[T| C k(T) is not surjective, but
Sp(k(T))(R) — Sp(k[T])(R) is injective for all R € Ay.

THEOREM 6.12. — If G is an affine algebraic group, then there is a closed embedding
G— GL,.

Proof. — Let H be a commutative Hopf algebra with G ~ Sp(H). Let z1,...,x,, be an
algebra generating set of H that is linear independent. Then there is a finite dimensional
subcomodule V' C H with zy,...,z,, € V. We may extend (z;); to a basis xy,...,x, of
V. The corresponding algebra homomorphism

K(Tig)igd ™' = H,  Tij e @y
with A(z;) =), ; ® x;; is surjective, because x; = ), €(x) e ;. O

DEFINITION 6.13. — X an affine scheme, G an affine group, p : X xG — X a morphism.
We say (X, ) is a G-scheme and p is an operation of G on X if for all R € Ay

pr: X(R) x G(R) - X(R)
is an operation of the group G(R) on the set X (R).

EXAMPLE 6.14. — A" x SL,, — A™ is an operation.

THEOREM 6.15. — Let G ~ Sp(H) be an affine group, X ~ Sp(A) an affine scheme.
Then

{p: X xG— X operation} ~ {6 : A — A® H right comodule algebra struct}
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Proof. — Suppose that p: X x G — X is an operation. Then

Sp(id®A
Sp(A® H @ H) pides) Sp(A® H) .
\ dxp /
XXxXGxG——XxG
Sp(é®id) uxidl lu Sp(A)
XxG—r X
/ <5 ~
SPA®H) =~ = -~ -~ - - L 5 Sp(A)

Since Sp is faithful, this implies that

A9HOHE Ao H

soia | [

A9 H " A
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7. Lie algebras and their universal enveloping algebras

7.1. Lie algebras. —

DEFINITION 7.1. — Let g be a k-vector space and [—,—| : g X g — ¢ a k-bilinear map.
We say g is a Lie algebra if

[z,2] =0  and [z, y], 2] + [y, 2], 2] + [[2, 2], ] = O
forall x,y,z € g.
REMARK 7.2. — 1) If g is a Lie algebra then [x,y] = —[y, z].
Proof. — Tt holds that 0 = [z —y,x —y] =0 — [z, y] — [y, 2] + 0. O

2) Any vector space V is a lie algebra with [v,v] =0 for allv € V.
3) If A is an associative algebra then A~ with A~ := A and [z,y] := xy — yx is a Lie
algebra.

DEFINITION 7.3. — 1) A linear map f : g — ¢ between Lie algebras is a Lie algebra
homomorphism, if f([x,y]) = [f(z), f(y)] for all z,y € g.
2) A subspace a C g is a sub Lie algebra if [x,y] € a for all z,y € a.
3) A subspace a C g is an ideal if [x,y] € a for all x € a and y € g. Notation: a < g.
In this case g/a is a Lie algebra.
4) If f g — @ is a Lie algebra homomorphism, then ker f < g, imf C g is a sub Lie
algebra, and

imf ~ g/ ker f.

DEFINITION 7.4. — 1) Let A be a k-vector spaces and p: AX A — A a k-bilinear map.
We say a linear map d : A — A is a deriwation, if d(u(a,b)) = u(d(a),b)+ p(a,d(d))
holds for all a,b € A. The set Der(A, A) C Endy(A)~ of all derivations is a sub Lie
algebra. If (A, 1) has a unit element then d(1) = 0.

2) If g is a Lie algebra, then for all z € g the map ad,. : g — g,y — [z,y] is a derivation.
The map

ad : g — Der(g, g)

15 a Lie algebra homomorphism.

Proof. — It holds that

ad,([y, 2]) = [z, [y, 2]] = [[z, 9], 2] + [y, [7, 2]] = [ad.(y), 2] — [y, ad.(2)]

and

adpy)(2) = [[2, 9], 2] = |2, [y, 2]] = [y, |2, 2]] = (ad.ady — adyad,)(2).
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3) Let H be a bialgebra. Then P(H) = {z | A(z) = 2@ 1+1®z} C H is a

subliealgebra. If chark = p > 0 then x € P(H) implies 2 € P(H).

Proof. — For x,y € P(H) it holds that A(xy — yz) is given by
2e1+1er)(yel+10y) —(Y®1+1Ry)(z®@1+1Q1)
=ryR1l+ry+yRr+1Qry— (yzR1l+yQRzr+yRz+1Qyz)
=(zy—yr) ®1+1® (zy — yz).

O]
4) Let H be a bialgebra. Then Der.(H, k) denotes the set of all e-derivations from H to

k, that is linear maps d : H — k with d(ab) = d(a)e(b) + €(a)d(b) for all a,b € H. It
holds that Der.(H, k) C (H*)™ is a sub lie algebra.

Proof. — For d,d € Der.(H, k) it holds that d x d’ — d’' * d € Der.(H, k) because for
all a,b € H
(d * dl - d/ * d) (ab) = d(albl)dl(agbg) — d’(albl)d’(a2b2)
= (d(a1)e(br) + €e(a1)d(br))(d' (az)e(bz) + €(as)d'(b2))
— (d'(a1)e(br) + €(ar)d'(br))(d(az)e(b2) + €(az)d(b2))
= (d*xd —d *xd)(a)e(d) +e(a)(d*d —d = d)().
]
5) H w— Der.(H, k) is a functor from the category of Hopf algebras over k to the category

of Lie algebras over k.

ExXamMpPLE 7.5. — 1) sl, ={A € M,(k) | tr(A) =0} C M, (k)™ is a sub Lie algebra.
2) For () € M, (k) it holds that o(Q) = {X € M, (k) | QX + X7Q =0} C M, (k)” is a
sub Lie algebra.

REMARK 7.6. — We saw in the exercises that if B is a bialgebra, then for each x € BT =
ker(e) it holds that
Alz) el®z+z®1+ B ® B*.

THEOREM 7.7. — Let A be a commutative Hopf algebra, G = Sp(A) an affine group,
AT =Xker(eq) the augmentation ideal.

1) It holds that
Der (A, k) ~ (A+/(A+)2)*
dw (a— d(a))
(a — fla—e(a)la)) < f
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Proof. — The ideal (A1)? is generated by terms of the form ab with a,b € A*, and
for each such term and each d € Der (A, k) it holds that

d(ab) = d(a)e(b) + €(a)d(b) = 0.

This shows that the map Der (A, k) — (AT/(AT)?)" is well-defined. Conversely,
given f € (A*/(A1)?)" it follows that the map

di: A—k, a— fla—e(a)ly)
is an e-derivation. To see this, note that for all a,b € A

de(a)e(b) + e(a)ds(b) = f(ae(b) — e(a)e(b)14 + e(a)b — e(a)e(b)14)

and
ae(b) — 2¢e(a)e(b)14 + €(a)b — (ab — e(ab)1,)
= —ab+ ae(b) + €(a)b — e(ab)14
= (a—¢€(a)la)(e(b)la —b)

€ (AM)2.
It is clear that the two constructions are inverse to each other, yielding Der (A, k) ~
(A*/(A)2)", 0

2) The quotient algebra k[T)/(T?) is generated by T = T. Let 7 : k[7] — k be the algebra
=0. We set

Lie(G) := ker(G(m) : G(k[]) — G(k))
= {y € Alg (A k[r]) [ 7 = €}

homomorphism with 7(7)

Then
Der (A, k) ~ Lie(G)
d— (a—€(a) +d(a)T)
15 a biyjection.

Proof. — Let d € Der (A, k) and ¢4 : A — k[7],a — €(a) + d(a)T. Then ¢, is an
algebra homomorphism, because d(1) = 0 and for all a,b € A

pa(a)pa(b) = (e(a) + d(a)7)(e(b) + d(b)T)
= e(ab) + (d(a)e(b) + €(a)d(b))T
= €(ab) + d(ab)T.

Conversely, any element ¢ € Lie(G) is of the form ¢, for some d € A*, and using
that 1,7 is a basis a similar calculation yields that this already implies that d &€
Der (A, k). O
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3) The isomorphism
Der (A, k) ~ Lie(G)
1s an 1somorphism of Lie algebras. We define the a vector space structure and Lie

algebra structure on Lie(G) as follows. Let A, iy,iy € Alg, (k[T], k[T] ® k[T]) be the
algebra homomorphisms with

AlT)=7®T
hWr)=17®1
iQ(T):1®T.

For each A € k we let f\ € Alg,(k[r],k[T]) be the algebra homomorphism with
I(T) = A1, For p,¢" € Lie(G), p = e+dr, ¢ =e+d'1, d,d € Der.(A, k) we set

o+ =px¢ =e+ (d+d)r

and
A =G(\)(p) = frp=e+ (Ad)T.
We define [, ¢'] by
G(A)([p. 1) = [G(i1)(9), G(i2)(¢)] = ghg™ R~
with g = G(i1)(@), h = G(is)(¢). That is
[o, ] =€+ [d,d]r.

4) It holds that
(A — Lie(Sp(A))) =~ (A — Der (A, k))

functors from commutative Hopf algebras over k to Lie algebras over the field k.

COROLLARY 7.8. — 1) If G C G’ is an affine closed subgroup, then Lie(G) — Lie(G’)
1s a sub Lie algebra.

Proof. — Without loss of generality G = Sp(H) and G’ = Sp(H’). Let the closed
embedding G — G’ be given by Sp(p) with ¢ : H — H a surjective Hopf algebra

homomorphism. Then
Der.(H, k) — Der(H', k), d~— dp
is injective and an Lie algebra homomorphism. ]

2) It holds that Lie(GL,,) ~ M, (k)~
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Proof. — We have
Lie(GL,) = ker(GL,(k[r]) "5 GL, (k) = {BE + 7A | A e M,(k)}.

because any element of the form E + 7A is invertible with inverse £ — 7A (since
72 =0).
The sum of X = E+ At € Lie(GL,) and Y = E+ A'r € Lie(GL,,) is given by

X+Y=(E+AT)(E+AT)=E+ (A+A)r
and for A € k the scalar product of A and E + A7 in Lie(GL,,) is given by
AX =E+)A
The Lie bracket of X and Y is defined by
(X,Y]=FE+7C
with
EFE+77C=(E+7Q1A)(E+17A)E-T®1A)(E -1 714"
=F+7o7(AA — A'A).
O

3) In particular, for any affine algebraic group G it holds that Lie(G) — M, (k)™ is a
sub Lie algebra for some n.

7.2. The universal enveloping algebra. —

DEFINITION 7.9. — Let V be a vector space. Then
T(V):=[]ve"
n>0

15 an algebra with multiplication given by
VO x VO 5 YOI (b)) = a ® b.
We call T(V') the tensor algebra of V. If (v;)ier is a basis of V' then
T(V)~k<x,iel>

as algebras. For any algebra A and any k-linear map f .V — A there is a unique algebra
homomorphism ¢ : T(V) — A such that the diagram

v

TV

LA

A
-
//SD
)
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commutes. That 1s,
Homy (V, A) ~ Alg, (T(V), A).

DEFINITION 7.10. — Let g be a Lie algebra. The factor algebra
Ulg) =T(g)/ <z@y—y@z—[r,y|z,y€g>

15 called the universal enveloping algebra of g. We let o denote the canonical map g —
U(g),x +— . For any algebra A and any Lie algebra homomorphism f : g — A~ there is
a unique algebra homomorphism ¢ : U(g) — A such that the diagram

commutes. That 1is,

REMARK 7.11. — 1) If g is a Lie algebra with basis (z;)ic; and [x;, x;] = > ,c, af,ja:e
for all i,7 then
U(g) =k < (zi)ies | 2ixj — xj0 = Zafijg foralli,j > .
el

2) This yields the representation of the enveloping algebra U(sly) of Remark 4.10.
COROLLARY 7.12. — 1) U(g) is a Hopf algebra with o(x) primitive for all x € g.
Proof. — The maps
Aig—U@eUg), z—o@)el+100(x)

e:g—k, z—0
S:g— (U(g)P)", z~ —uz.

are Lie algebra homomorphisms. Hence they induce algebra homomorphisms A :
U(g) > U(g) @U(g), € : U(g) — k and S : U(g) — U(g)°? that satisfy the Hopf
algebra axioms on the algebra generating set o(g) C U(g). O

2) For any bialgebra H and any Lie algebra homomorphism f : g — P(H) there is a
unique bialgebra homomorphism ¢ : U(g) — H such that the diagram

g P(H) 3 H

—~
o -~
// SO
~

—

Ulg)
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commutes. That 1s,

DEFINITION 7.13. — Let g be a Lie algebra, V' a vector space, and p: g x V. — V a
bilinear map that we denote by u(x,v) = x.v for allx € g,v € V. The pair (V, 1) is called
a g-module if for all x,y € g, v € V it holds that

[z, ylv =z.(yv) —y.(x.v).

DEFINITION 7.14. — Let VW be g-modules. A linear map f :V — W is called g-linear,
if for all z € g and v € Vit holds that f(x.v) = z.f(v).

REMARK 7.15. — 1) Let V be a vector space, g a Lie algebra. Then

{p:9gxV =V g module structure}

~ LieAlg, (g, Endg(V)7)

~ Alg,.(U(g), Endi(V))

~{p:U(g) x V=V U(g) module structure}.

A linear map f :'V — W is g-linear with respect to g-module structures on V and
W if and only if it is U(g)-linear with the corresponding U(g)-module structures.
2) u@M =~ {g modules} is an equivalence of categories.

7.3. Hopf algebra filtrations. —

DEFINITION 7.16. — 1) (A, (A)n>0) filtered algebra: A algebra,

AyCAic...cA A=[]JA,
n>0
sub vector spaces, 1 € Ay, AnAy C Apsm for all m,m > 0.
2) (C,(Cp)n>0) filtered coalgebra: C' coalgebra,

CocCic...cc, cCc=Jc,
n>0
sub vector spaces, A(Cp,) C Y 1 C; @ Cy_y for all m > 0.
3) (H,(Hp)n>0) filtered bialgebra: H bialgebra and (H,)n>o is both an algebra and coal-
gebra filtration.

4) (H,(Hp)n>0) filtered Hopf algebra: H Hopf algebra, (H,)n>o0 bialgebra filtration,
S(H,) C H,, for alln > 0.

DEFINITION 7.17. — Let (A, (Ay)n>0) be a filtered algebra.
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1) The algebra
gr(A) = [[An/Anr, A=

n>0

with multiplication
Am/Am—l X An/An—l — Am+n/Am+n—17 (C_L, 6) = CL_b

is the graded algebra associated to A.
2) (M, (My)n>0) filtered A right module: M A right module, M,, A, C M,y for all
m,n > 0.

gr(M) = [[ Mo/M,m1, M_y =0

n>0
is a gr(A) right-module via
Mm/Mm—l X An/An—l — Mm—&—n/Mm—&—n—l’ (m, C_L) — ma.
REMARK 7.18. — A left /right module is noetherian if any ascending sequence of left/right
modules stabilizes. Equivalently, all left/right submodules are finitely generated.

A ring is left/right noetherian if it is left/right noetherian as left/right module over
itself.

LEMMA 7.19. — Let (A, (An)n>0) be a filtered algebra.

1) If gr(A) is an integral domain, then so is A.

Proof. — Suppose that there are m,n > 0 with m +n minimal such that there exist
0#£z€ A, and 0 £y € A, with zy = 0. Then zy = 0 in gr(A) with z € A, /A, 1,
g € Ap/Ay—1. We assumed that gr(A) is an integral domain, hence it follows that
x € A,_1ory € A,_1. This contradicts the minimality assumption on m +n. [

2) If gr(A) is right- or left-noetherian, then so is A.

Proof. — Suppose that gr(A) is right-noetherian. Let I C gr(A) be a right-ideal.
Then (I, (I N A,)n>0) is a filtered A right module, gr(I) C gr(A) with

(INA)/(IOApy) > Ay/Au

is a right ideal of gr(A). We assumed that gr(A) is right noetherian, hence gr(I) is
finitely generated. That is, there are elements ay,...,ay € gr(), a; € (INA,,)/(IN
Ap,—1) for all i, with

gr(l) = Z a;gr(A).
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We are going to show by induction that I N A, C Zfil a; A for all n. For n = 0
this is trivial. Suppose that n > 1 and let z € I N A,. Then z € gr(I) with

ze(InA,)/(INA,1). Hence

N
ey agr(A).
i=1
In fact, it even holds that

€D i (Ann/Ann1).

,mi<n

That is, there are \; € I, N A,,, (with n; < n such that

T = Z CLz‘)\Z’: Z CLi)\z‘

in;<n 1,n;<n

This implies that
r— Y ahE€INA,.

,n;<n

By induction hypothesis it holds that I N A,,_; C Z,]L a;A. Thus

N
T E Z a;A.
i=1

7.4. The Poincaré-Birkhoff-Witt theorem. —

LEMMA 7.22. — Let g be a Lie algebra with basis (x;);e;. Let < be a total order on I.
1) gr(U(g)) is commutative.

Proof. — gr(U(g)) is generated as an algebra by (o(z;))ie;r with (o(z;))

Ui(g)/Uo(g). For all i,j € I it holds that

o(zi)o(x;) — o(z;)o(zi) = o[zi, 75]) € Ur(g)

and hence

o(zi)o(x;) = o(z;)o(w:)

in Ua(g)/Us(g).

]

PROPOSITION 7.20. — Let A be an algebra and (x;);c; an algebra generating set. Then
(An)n>o with A, the k-span of all x;, -+~ x;,, with m < n, iy,...,4, € I is the natural
filtration of A.

DEFINITION 7.21. — Let g be a Lie algebra with basis (x;)icr. We let (Un(g))n>o0 de-
note the natural filtration of U(g) with respect to (o(x;))icr and let gr(U(g)) denote the
corresponding graded algebra.

S
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2) U,(9) is already generated (as vector space) by all o(x;)) - o(x;,) with m < n and
W< .. <i.

Proof. — Follows from 1) and induction on n. ]

LEMMA 7.23. — Let g be a Lie algebra with basis (x;);c; and suppose that I is equipped
with a total order. Let M = {(iy,...,in) | n > 0,4y < ... <4, elements of I}. For each
M = (iy,...,i,) € M set

vy = o(xy) - o(wy,).
For each v € I we set
PHM = (i1, ..., 0p, 00041y -y 0n)
with 1y <1 <ippq. We write 1 < M if 1 < iy and in this case we set iM = i#M.

1) (var)mem s a k-linear generating set of U(g).
2) U(g) is a g-module via g —> U(g)~ — Endy(U(g))~. That is, x.v = o(z)v for all
x€gandv € U(g). Recall that M = (iy,...,1iy,).
a) For all i € I with i < M it holds that x;. vy = vips.
b) [z, xjlom =z (z5.0m) — xj.(25.00)
c¢) For alli € I it holds that x;.vpr = vigpyr mod Uy, (g)
3) If there is a g-module V' with basis (upr)apream such that a), b), and ¢) hold analogously
in 'V, then (var)meq 95 @ basis of U(g). (Here we have to replace U,(g) by the span
of all upy, M € M with length at most n.

Proof. — If >, Amoar = 0, then it follows that 0 = >, Ayopup = Z/\M ups and
hence \yy = 0 for all M. ]

4) Suppose that V' is a vector space with basis (up)pem and p: g x V. — V is a k-
bilinear map such that a), ¢) hold and b) holds for all 1,5 with j < i and j < M.
Then b) holds and V' is a g-module.

5) A pair (V, ) as in 4) exists.

THEOREM 7.24 (POINCARE-BIRKOHOFF—WITT). — Let g be a Lie algebra with basis

(x;)ier and suppose that I is equipped with a total order. Then (vyr)yem 1S a k-linear
basis of U(g).

COROLLARY 7.25. — 1) Ifg is a Lie algebra, then (U(g), (U,(8))n>0) is a filtered Hopf
algebra.
2) If g is finite dimensional then U(g) is left- and right-noetherian.
3) U(g) is an integral domain.
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LEMMA 7.26. — Let A be an algebra and ay,...,a,,b1,...,b, € A, a;b; = bja; for all

t,7. Then
(al + bl) a’ﬂ + b Z Z Ag(1) " - aa(v)ba(v—l—l) T ba(n)
oc€Sh
o(1)<...<o(v)
o(v+1)<...<o(n)
LEMMA 7.27. — 1) The canonical map o : g — U(g) is injective.
2) The map

KT i€ 1] = er(U(g), Ti o(w:) € Ui(g)/Us(g)

1s an algebra isomorphism.

57
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8. Selected classical algebraic results

8.1. The Jacobson radical of noncommutative rings. — In this section R denotes
a ring and M denotes an R left-module (or right-module).

DEFINITION 8.1. — 1) M is called simple if M # 0 and if 0 and M are the only
submodules of M.
2) For any subset X C M we set

Amn(X)={re R|rX =0}.

PropPoOSITION 8.2. — For N ;Ct M a submodule it holds that M /N is simple if and only

if N # M is a maximal submodule.
PROPOSITION 8.3. — For all m € M it holds that R/Ann(m) ~ Rm.

PROPOSITION 8.4. — Suppose that M # 0. Then the following statements are equivalent.
1) M is simple
2) There is a mazimal left-ideal I < R such that M ~ R/L as left-modules.
3) For any 0 #m € M it holds that M = Rm.

PROPOSITION 8.5. — 1) The Jacobson radical Ra(M) is defined as the intersection of
all mazimal submodules U ;Ct M. (If no such submodules exist then we set Ra(M) =

2) It holds that Ra(M /Ra(M)) = 0.
3) If M is finitely generated then Ra(M) C M.

LEMMA 8.6. — Let R be a ring and a,b € R.

1) Then 1 — ab has a left-inverse (right-inverse) if and only if 1 — ba has a left-inverse
(right-inverse).
2) More precisely, If x is a left-inverse (right-inverse) of 1 — ab then 1 + bxa is a
left-inverse (right-inverse) of 1 — ba.
3) The set
I={re€R|1—rx has a left-inverse for all x € R}

s a two-sided ideal of R.

LEMMA 8.7. — Let R be a ring and r € R. Then the following statements are equivalent:
1) r € Ra(rR)
2) r € Ra(Rg)
3) For any x € R it holds that 1 — xr has a left-inverse
4) For any x € R it holds that 1 — rx has a right-inverse
5) For all x,y € R it holds that 1 — xzry € R*
6) For any simple left R-module M it holds that rM =0
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7) For any simple right R-module M it holds that Mr =0

COROLLARY 8.8. — For any ring R it holds that Ra(R) := Ra(rR) = Ra(Rgr) < R is an
ideal.

PROPOSITION 8.9. — If M is simple then any ring homomorphism R — Endz(M) fac-
torizes over R/Ra(R). The two ring R and R/Ra(R) have the same simple left-modules
and right-modules.

PropPoOSITION 8.10. — For any any v € R it holds that r € R* if and only if ¥ €
(R/Ra(R))".
PROPOSITION 8.11. — [t holds that Ra(R) kM C Ra(gpM).

LEMMA 8.12 (NAKAYAMA). — Suppose that 0 # M is finitely generated. Let U C M be
a submodule with M = Ra(R)M + U. Then it follows that M = U.

PROPOSITION 8.13. — A left-ideal I C R is called nil if each element x € I is nilpotent.
If this is the case then I C Ra(R).

Proof. — Let x € I. Then for all » € R it holds that rz € I, yielding that rz is
nilpotent. This means that 1 4 rz is invertible. As this holds for all » € R it follows that
z € Ra(R). O

DEFINITION 8.14. — We say M is artinian if any non-empty set of submodules has a
minimal element. This is equivalent to requiring that any descending chaing of submodules

stabilizes.

PROPOSITION 8.15. — Let 0 — M' — M — M" — 0 be an exact sequence. Then M is

artinian if and only if M', M" are artinian.

ProproOSITION 8.16. — If My, ..., M, are artinian then so is My ® ... M,,.

Proof. — The sequence 0 — M; — M; x My — M, — 0 is exact. O
PROPOSITION 8.17. — If gR is artinian and M 1s finitely generated then M is artinian.
DEFINITION 8.18. — An ideal I is called nilpotent if I =0 for some n > 1.

PROPOSITION 8.19. — If rR or Rg is artinian, then Ra(R) < R is the largest nilpotent
ideal of R.

Proof. — Suppose that gR is artinian. Set I = Ra(R). Then there is an n > 1 with
I™ = I?". Suppose that I" # 0. Then there is a left-ideal 0 # L <1 R that is minimal
with I"L = L. Hence there is an element 0 # x € L with 0 # "z C L. It holds that
I"(I"x) = I*"x = ["z. By minimality of L it follows that L = I"z. Since z € L it follows
that there is an element y € I"™ with yx = z. This implies (y — 1)z = 0. But y € Ra(R)
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implies that y — 1 € R* and hence x = 0. This contradicts our assumption. It follows

that I™ = 0. O
PROPOSITION 8.20. — R is a skew field if and only if rR is simple (equivalently, if Rg
is simple).

DEFINITION 8.21. — We say a ring R s local if any of the following equivalent conditions

is satisfied.

1) R has a unique mazximal left ideal
2) R has a unique mazximal Tight ideal
3) R/Ra(R) is a skew field

4) Ra(R) = R\ R

5) R\ R* is closed under addition

6) R\ R* is an ideal of R

Proof. — The first three equivalences are clear. For any r € R it holds that » € R* if and
only if ¥ € (R/Ra(R))™. Hence R/Ra(R) is a skew field if and only if Ra(R) = R\ R*.
Suppose that R\ R* is closed under addition. Let = € R\ Ra(R). Then there is a
maximal ideal I <R with « ¢ I. Hence R = I+ Rx. That is, thereisan y € I,r € R with
1 = y+rx. Since y is not invertible and we assumed that R\ R* is closed under addition
it follows that rx is invertible. In particular, x has a left-inverse. As this holds for all
z € R\ Ra(R) it follows that N := R/Ra(R) is simple as a left R module. Consequently,
N is also simple as an R/Ra(R) left module. Hence R/Ra(R) is a skew field. O

PROPOSITION 8.22. — If R is local then any element e € R with e? = e satisfies e = 1

ore=20.

Proof. — If e € R* then it follows that e = 1. If e ¢ R* then it follows that 1 — e is
invertible and hence e = 0. [

PROPOSITION 8.23. — Let R be a ring and suppose that each element r € R\ R* is
nilpotent. Then R is local.

Proof. — Suppose that R is not local. Then there are z,y € R\ R* with z +y € R*.
We may assume that © +y = 1. But this implies that y = 1 — x is invertible since z is

nilpotent. O

8.2. The Krull-Schmidt theorem. — In this section R denotes a ring and M a left
R-module.

PROPOSITION 8.24. — There is a bijection between the collection of families (M;);c; of
submodules of M with M = @,_; M; and the collection of families (e;)ic; of endomor-
phisms of M that satisfy e;e; = 6; je; for alli,j andid =) ., e;.
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Here such a family (e;)icr of endomorphisms gets mapped to the family (e;(M));er of
submodules. Conversely, a family (M;);c; of submodules with M = @,
to the family (mw;i;)ier of endomorphisms with v; © M; C M the subset embedding and

M; gets mapped

m; » M — M; the projection.

PROPOSITION 8.25. — Let f € End(M).

1) If M is artinian and f a monomorphism, then f is an isomorphism.

2) If M is noetherian and f an epimorphism, then f is an isomorphism.

3) If M is artinian and noetherian then there exists an integer N such that for all
n > N it holds that M = im f" @ ker f™.

Proof. — 1) Suppose that M is artinian. The descending chain imf C imf? C ...
stabilizes after a finite number n of steps. Then for any x € M there is an element y € M
with f?*(y) = f*(z). This implies x — f*(y) € ker f™. Since this holds for all z it follows
that M =imf" 4 ker f". In particular, if f is injective it follows that f is also surjective.

2) Suppose that M is noetherian. Then the ascending chain ker f C ker f2 C ...
stabilizes after a finite number n of steps. This implies imf"™ N ker f* = 0. If f is
surjective then this implies that is also injective.

3) If M is artinian and noetherian then we obtain M = imf™ @ ker f". O]

DEFINITION 8.26. — We say M is indecomposable if M # 0 and for any submodules
XY C M with M =X &Y 1t holds that X =0 or X = M.

PROPOSITION 8.27. — Let M # 0.

1) M is indecomposable if and only if End(M) has no idempotent elements besides 0
and id.
2) If End(M) is local then M is indecomposable.

PROPOSITION 8.28. — Let M # 0 be artinian and noetherian. Then M is indecomposable
if and only if End(M) is local.
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LEMMA 8.29. — Suppose that the following diagram has exact diagonals:

The gi is an isomorphism if and only if fh is an isomorphism.
Proof. — Suppose that ¢i is an isomorphism. Then
X =1imi @ ker g = imh @ ker f.
Thus fh is an isomorphism. O

PROPOSITION 8.30. — Let X, X', Y, Y’ be modules and ¢ : X &X' — Y &Y' an isomor-
phism. Let o, o/, 3, 3" be the morphism with

Then it holds that
id = fa + B'd.
1) If Ba is an isomorphism then X' ~ker f &Y.
2) If B'a’ is an isomorphism then X' ~Y @ ker f'.

LEMMA 8.31. — Let X, X' Y, Y’ be modules, X ® X' ~Y @Y', X ~Y, End(X) local.
Then it follows that X' ~ Y.

LEMMA 8.32. — Let Y)Y’ Xy,..., X, be modules such that @, X; ~Y &Y', End(X;)
local for alli, andY # 0. Then there is an index i such that the composition X; — Y — X;

1s an automorphism of X;.
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THEOREM 8.33 (KRULL-SCHMIDT). — Let Xy,...,Xp, Y1,..., Y, be indecomposable
(and hence nonzero) modules. Suppose that End(X;) is local for all i and

n m
Px.~Ppv;
i=1 j=1

Then m = n and there is a permutation o € S, with

Xi = Y5
forall1 <i<n.

THEOREM 8.34. — Let M # 0 be artinian and noetherian. Then there are up to reorder-
g unique indecomposable submodules My, ..., M, C M with

DEFINITION 8.35. — We sy M is projective if for all modules X,Y, any epimorphism
f: X =Y and any morphism g : M — Y there is a morphism h : M — X wiwth g = fh.

PROPOSITION 8.36. — The module M is projective if and only if there is a free module
F with submodules P, P’ C F such that F = P ® P" and M ~ P.

PROPOSITION 8.37. — Suppose that M 1is finitely generated. Then M s projective if
there is an integer n > 1 and submodules P, P C R™ such that R = P ® P' and M ~ P.

PROPOSITION 8.38. — If R is local then any finitely generated projective R module is

free.

Proof. — Let P # 0 be a finitely generated projective R module. Then there is an integer
n > 1 and a module P’ with

R*"~PgP.
The endomorphism ring Endg(R) ~ R is local. It follows that one of the compositions
R — P — R is an automorphism of R. This yields P ~ P; & R and hence

RP"~P RO P.

Using again that Endg(R) is local it follows that we may cancel the summand R from the

direct sum, yielding
R"'~pP@P.

If P, =0 we are done. Otherwise we may iterate. m
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8.3. The Wedderburn—Artin theorem. —

DEFINITION 8.39. — 1) We say R is simple if R # 0 and 0 and R are the only two-
sided ideals of R.

2) We say R is semi-simple if Ra(R) = 0 and R is left-artinian or right-artinian.

THEOREM 8.40 (WEDDERBURN—ARTIN). — Let R be a semisimple (left- or right-
artinian) ring. Then
R~ M, (D) X ...x M, (D,)

for some skew fields Dy,...,D, and integers r,ny,...,n, > 1. The pairs (D;,n;) are

unique up to reordering.

LEMMA 8.41. — Suppose that k is an algebraically closed field and D is a finite dimen-
sional k-algebra. If D is a skew field then D = k.

Proof. — Let x € D. Then there is a minimal integer n > 1 such that 1,x,...,2" are
linear independent. This implies that there is a monic polynomial f € k[x] with degree n
such that f(x). Since k is algebraically closed it follows that f has a zero ¢ € k. Hence
we may write f = (X — ()g for some monic polynomial g. Since n is minimal it follows
that g(z) # 0 and 0 = (x — {)g(x). Hence x = ¢ € k. O

COROLLARY 8.42. — Suppose that k is an algebraically closed field and A is a finite
dimensional semi-simple k-algebra. Then there is a unique integer v > 1 and up to
reordering unique integers ny, . ..,n, such that

A~ M, (k) x...x M,,(k).

For each integer n > 1 it holds that M,(k) is simple. In particular, A is simple if and
only if A ~ M, (k) for some n > 1.
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9. Cocommutative Hopf algebras in characteristic 0
9.1. Irreducible and pointed coalgebras. —

DEFINITION 9.1. — Let C be a coalgebra.
1) C' is called simple, if C # 0 and 0 and C are the only subcolagebras of C.
2) The subcoalgebra
Co= > D

DCC simple
15 called the coradical of C'.
3) We say C' is pointed if every simple subcoalgebra # 0 of C' has dimension 1.
4) We say C' is irreducible if C' has precisely one simple subcoalgebra.

PROPOSITION 9.2. — 1) A coalgebra C' is cocommutative if and only if C* is commu-
tative.
Proof. — If C'is cocommuative then C* is commutative. Conversely, suppose that

C* is commutative. Let (x;); be a basis of C' and (e;); the corresponding dual basis.
For x € C write A(z) = ), ; Aij7; @ z;. Then for all £, £ it holds that

Moo = (er xep)(x) = (er * eg)(x) = A

]

2) Let D C C be a one-dimensional subcoalgebra. Then D is simple and there is a

group-like element g € C with D = kg.

Proof. — Let D C C be a one-dimensional subcoalgebra, 0 # x € D. It must hold
that A(z) # 0 because otherwise © = x1€(z2) = 0. Hence there is A € k* with
A(x) = Mx®@x. Hence g = Az satisfies g # 0 and A(g) = g® g. Hence g is grouplike
and D = kg. O

3) If C is a simple coalgebra then C' is finite dimensional and C* is a simple algebra.
If additionally k is algebraically closed then there is a unique integer n > 1 with
C ~ M,(k)*.

Proof. — C' is finite dimensional since it is the union of its finite dimensional sub-
coalgebras. Let I << C* be an ideal. Then C* — C*/I is a surjective algebra homo-
morphism. Consequently, (C*/I)* — C** is an injective coalgebra homomorphism.
Since C** ~ C'is simple it follows that dimg(C*/I)* € {0,dimg(C)}. That is, I =0

or I =(C".
If k is algebraically closed, then the Wedderburn—Artin theorem yields that C* ~
M, (k) for a unique integer n > 1. O

4) If C is a cocommutative coalgebra and k is algebraically closed then C' is pointed.
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Proof. — Let D C C be a simple subcoalgebra. Then D is finite dimensional and
D ~ M, (k)* as coalgebra for a unique n. Since D is cocommutative it follows that

n = 1, that is D is one-dimensional. O

LEMMA 9.3. — Let 0 # C be a coalgebra. Then there is a subcoalgebra 0 # D C C' that

1s simple.
Proof. — Any coalgebra is the union of its finite dimensional subcoalgebras. O

DEFINITION 9.4. — Let V' be a vector space, X CV and Y C V* linear subspaces. We

set
Xt={feV'|f(X)=0}
Yit={veV|flv)=0 foral fecY}.

PROPOSITION 9.5. — Let C be a coalgebra (not necessarily finite dimensional).

1) For I C C* it holds that I is a two-sided ideal if and only if I+ C C is a subcoalgebra.
2) For D C C it holds that D is a subcolagebra if and only of D+ is an ideal.

PROPOSITION 9.6. — Let C' be a finite dimensional coalgebra. Then X +— X+ and
Y = Y+ yield inclusion inverting bijections:

{X C C| X linear subspace} ————— {Y C C* | Y linear subspace}
{D c C'| D subcoalgebra} —————— {I < C* | I two-sided ideal}

~

{D C C'| D simple subcoalgebra}

{I <« C* | I mazimal two-sided ideal}

In particular it holds that Ra(C*) = Cg- with Cy the coradical of C. C' is a simple coalgebra
if and only if C* is a simple algebra.

Proof. — It holds that

coi:( > D>L ( Dp'= N I = Ra(C¥).

DCC simple DCC simple 1<1C* maximal ideal

]

THEOREM 9.7. — Let (C, (én)nZO) be a filtered coalgebra. Then Cy C Cy. In particular,
if Cy is one-dimensional then C' is pointed and irreducible.
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Proof. — Suppose that there is a simple coalgebra D C C that is not a subset of Cj.
Then there is an integer n > 1 with D C C~’n and DN C’n_l = 0. In particular DN C’O =0.
Hence there is an f € C* with f(Cy) =0 and f|p = €|p. This yields for all d € D

d=d\f(dz) € Z ézf(én—z) = ézf<én—z) € Cp1.

=0 =0

COROLLARY 9.8. — If g is a Lie algebra then U(g) is pointed and irreducible.

THEOREM 9.9. — Suppose that k is characteristic 0. Let g be a Lie algebra with basis

(x;)ier. Let =~ be a total order on I. For any m = (m;); € N(()I) we set

1) (em),,cnn) 08 a k-basis of U(g).
0

2) For all m € N(()I) it holds that Alem) =Y,y €a @ €b.
3) For any bialgebra H and any injective Lie algebra homomorphism

g— P(H)~
it holds that the induced bialgebra homomorphism
Ulg) = H
1S injective.
#) Ulg) =kl[Ti[iel]], [ cyo flem)T™.
5) P(U(g)) = 9

9.2. The coradical filtration. —

DEFINITION 9.10. — Let C' be a coalgebra. For any two linear subspaces X,Y C C we
define the wedge product of X and Y as the preimage

XANY =AT"X@C+CxY).
We also set \°X =0 and
AX =(A"TIXOOAX =AY (AT X))@ C+C®X).

LEMMA 9.11. — Let C be a coalgebra and X, X', Y,Y', Z C C linear subspaces.
1) X A\Y = (Xty4h)t
2) (XANYINZ=XNYNZ)
3) If X and Y are subcoalgebras then so is X NY
4) If X C X andY CY' then X NY C X' ANY'
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Proof. — 1) It holds that

1
(XtyhHt = {Zfi*gi | fi € X+, g, € Yt for all i}
={ceC|(f*g)c)=0foral fc X+ gecY™t}
=X®(0C+0®Y.
2) It follows that
(XAYIANZ=(XAY) ZH) = (XY ZH) =X A (Y A 2).

8) If X and Y are subcoalgebras, then X+ and Y+ are ideals. Hence XY is an ideal
and consequently X AY = (X+Y1)+ is a subcoalgebra. (There is no problem with C not
being finite dimensional.)

4) This is clear. O
DEFINITION 9.12. — Let C' be a coalgebra and Cy its coradical. For alln > 1 set
C, = A" C,.
Then
CocCicCyC...

is a coalgebra filtration. We call (C;);>o the coradical filtration of C.

Proof. — 1) We show that C,, C C,1; for all n > 0 by induction. Cj is a subcoalgebra
and consequently it holds that Cy C C4. If C,,_; C C, then it follows that
Co=ACr1®C+C®Cy)
CAHC,®C+C®Ch)

= Cpyp1.
2) We show that A(C,,) C Y7, C; ® C,, for all n. This is clear for n = 0. For n > 1 it
holds for all 0 <7 < n 4+ 1 that
C, = (N'Co) A (AN"TEC).
Setting C'_; = 0 this may be expressed by
Cp=0Ci1 NChy.

It also holds that A(C,,) C C, ® C, since the wedge product of subcoalgebras is a
subcoalgebra. Hence Hence

n+1

=0
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Choose any supplementary subspace D; of C;_; inside ;. Then

for all 7 > 0. This implies

n+1 n+1
ﬂ(cz—1®cn+0n®cn—z) = ﬂ @ D?"®DS
=0 1=0 r<i—1 or s<n—1
= @ Dr ® Ds
r+s<n

= zn: C; ® Chy.
i=0

3) We show that Uizo C; = C. If D C C is a subcoalgebra then the corresponding
coradical filtration (D;);>o satisfies D; C C; for all i. Hence without loss of generality
we assume that C is finite dimensional. Then Cy = Ra(C*) is nilpotent, that is

0=(Cy)"
for some n > 1. Applying L to both sides yields
C = ((C3)™)*F = A"C.

O
COROLLARY 9.13. — If f : C' — D is a surjective coalgebra homomorphism, then Dy C
f(Co).
Proof. — It holds that
f(Co) C f(Ch) C ...
is a coalgebra filtration. Consequently, Dy C f(Cp). O

9.3. Irreducible cocommutative Hopf algebras in characteristic 0. —

THEOREM 9.14. — Suppose that k has characteristic 0. Then
{9 |9 Lie alg.} ~{H | H irred. cocom. Hopf alg.}
g— Ulg)
P(H) < H.

Proof. — The functors are well-defined and we already showed that P(U(g)) ~ g. We also
know that the Hopf algebra morphism U(P(H)) — H that we obtain from the universal
property of the enveloping algebra is injective (since k has characteristic 0). It remains
to check that is also surjective. We will do this at the end of this section. O

DEFINITION 9.15. — 1) We let Cy, denote the category of cocommutative coalgebras.
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2) We let & denote the category of cocommutative coalgebras.
3) For any C € Cy, we let

Cosp(C) : ¥ — Set, E +— Coalg(E,C)
denote the cospectrum functor.

PROPOSITION 9.16. — 1) Let C € Cy, and let R be a commutative finite dimensional
algebra. Then R @i C' is an R-coalgebra with comultiplication and counit given by

d®A ~
R®kOMR®kC®kC;>(R®kO) ®r (R®y C)

T—  a

and
e:R®,C =R, r®cw— re(c).

We have a functorial bijection of sets
G(R ®y C) ~ Coalg(R",C) = Cosp(C)(R")
te (f = (f©id)()).

If C' = H is a cocommutative Hopf algebra then R @, H is a Hopf algebra over R

and this is a natural isomorphism of groups.

Proof. — Let
x:Zn®cZ~€R®C

)

and let
p R C f Y fr)e
be the corresponding map under the isomorphism
R ®; C ~ Homy(R*,C)
rec— (f— f(r)c).
Then

Ap(f)) = o(f1) @ o(f2) for all f € R
&) fr)A(e) =) h(r)falr)e®c  foral f € R

&Y rle) =Y i) () e ®e  foral feR
7 s,t v
' frsrt)

& Arz) =z
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and

~—~
N e’ e(f)
e(e(f))

Now suppose that C' = H is cocommutative Hopf algebra. It remains to check that

¢:G(R® H) ~ Coalg(R*, H)

r)=1«< Zrie(ci) =1 Zf(rz)e(cz) = f(1) for all f € R".

is a group homomorphism. To this end, let z = >, 7, ® ¢; and y = Zj s; ® dj be
elements of G(R ® H). It holds for all f € R* that

(0(x) * () (f) = o(z)(f1)o(y)(f2)

= Z fi(ri)e; Z fa(rj)d;
= Zf(nrj)cidj
= ¢(xy)(f)

and
p(1® 1)(f) = f(1)ln.
O

2) For any C € Cy and any two finite dimensional commutative algebras R and S it
holds that
G(Rx9)®(C)~GR®C)xGS®().
Proof. —
G((R x S)® C) ~ Coalg((R x S)*,C)
~ Coalg(R",C) x Coalg(S™,C)
~GRRC)xGS®C).
O
3) Let C D bea morphism in Cy such that for any finite dimensional commutative

algebra R it holds that the map G(R ® C) idﬂG(R ® D) is bijective. Then f is an
1somorphism.

Proof. — For any finite dimensional commutative algebra R it holds that

G(RoC) —21 ., G(Re D)

l Ck (idvf) l

Coalg(R*,C) — Coalg(R*, D).
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That is, for any E € & it holds that
Coalg(E, C) ey Coalg(FE, D)
is bijective. This means that under the Yoneda bijection
Cr(C, D) — Mor(Cosp(C), Cosp(D))
g+ Ci(id, g)
the map f gets mapped to a natural isomorphism. Since
Cr ~{F : & — Set | F ~ Cosp(C) for some C € Cy}

is an equivalence of categories this implies that f is a bijection. O

LEMMA 9.17. — Let C be a coalgebra over k and k C K a field extension. Then (K ®
Co C K ® Cy. In particular, if C' is pointed and irreducible then so is K ® C.

Proof. — Let Cy C C C ... be the coradical filtration of C'. Then K ®Cy C K®C; C ...
is a coalgebra filtration of K ® C' and consequently

(K@C)QCK(X)CU
[l

THEOREM 9.18. — Let H be an wrreducible, cocommutative Hopf algebra and R a finite
dimensional commutative algebra. Then

GIRH)={gel1l®1+Ra(R)® H | A(g) =g ® g}.

Proof. — Since R is finite dimensional the collection Max(R) of maximal ideals is finite
by the Chinese remainder theorem. With Max(R) = {I,...,[,}, K; = R/I;, k C K;
finite field extension it holds that

G(R/Ra(R)® H) ~ G((K; x ... x K;) ® H)
~GKi®H)x...xGK,®H).

Since H is pointed and irreducible it follows that K; ® H is pointed and irreducible for all
. In particular the unit element of K; ® H is its only group-like element. It follows that

IG(R/Ra(R)) ® H)| = 1.
That is,
G(R® H) = ker(G(R® H) — G(R/Ra(R) ® H)).
This implies
G(R®H)—1®1 €ker(R® H — R/Ra(R)® H) = Ra(R) ® H.
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For each g € 1 ® 1 + Ra(R) ® H it holds that
€(g) € 1 + Ra(R) C R™

since each element of Ra(R) is nilpotent. Hence ¢ is group-like if and only if A(g) =
9®yg. u

THEOREM 9.19. — Let H be an irreducible cocommutative Hopf algebra and char(k) = 0.
Then for each finite dimensional commutative algebra R it holds that

exp

Ra(R)® P(H) “BG(RO H), 2+ Y %
n=0

1s bijective and functorial in R and H.
Proof. — Ra(R) is nilpotent, so exp yields a functorial bijection
Ra(R)®@ H~1® 1+ Ra(R)® H
with inverse given by log. The sequence
0 PH)CHAHoH
is exact with f(z) =2 ® 1+ 1®x for all z € H. Since ®y, is exact it follows that
0 — Ra(R)® P(H) - Ra(R)® H - Ra(R)® H® H

is exact. Here r ® y € Ra(R) ® P(H) gets mapped to

TR Yy —rRYR1-—1r01®yY.
Applying the canonical bijection R® H @ H ~ (R® H) @ (R ® H) yields that

Ra(R)@ P(H) ={r € Ra(R)®@ H | A(x) =2 ® 1+ 1®a}.

For any = € Ra(R) ® H it holds that A(z) = 1® x + = ® 1 if and only if A(exp(z)) =
exp(x) ® exp(z). This follows from

exp(A(z)) = A(z)
and
exp(ler+x®1)=(1®exp(x))(exp(r) ® 1) = exp(z) ® exp(z).
[

Remaining proof of Theorem 9.14. — In order to finalize the proof of Theorem 9.14 it
remains to show that the monomorphism U(P(H)) — H is surjective. We know that

v PU(P(H))) = P(H).
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Hence for any commutative algebra R it holds with H = U(P(H)) that

Ra(R) ® P(H) — G(R® H)

lid@@b lid@)w

Ra(R) ® P(H) — G(R® H).

9.4. Cocommutative Hopf algebras in characteristic 0. —

REMARK 9.20. — Let H be a Hopf algebra, G a group, H a k[G] left module algebra such
that for each g € G it holds that

g:H—H, z—gx

15 a coalgebra homomorphism. That is, we assume that the left module algebra structure

15 induced by a group homomorphism
p: G — BiAlg(H, H).
Then H#k|G] is a Hopf algebra with smash product algebra structure and

A(z#g) = 11#9 @ 2#yg
e(z#g) = e(x)
S(a#g) = (1#g)(S(x)#1)

forallz e H, g € G.
Proof. — For any z,y € H and g € G we have

g9-(xy) = (g1.2)(g2.¥) = (g.x)(g.x)  and  gl=e(g)l=1

That is, k[G] left module algebra structures correspond to algebra homomorphisms k[G] —
Alg(H, H), that is a group homomorphism

G — Alg(H,H), g~ g.

Hence requiring that ¢ is a coalgebra homomorphism is equivalent to requiring that this
group homomorphism is actually a morphism

G — BiAlg(H, H).
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It’s easy to see that A, e satisfy the coalgebra axioms. Let’s check that they are algebra
homomorphisms. It holds that

A((z#9)(y#h)) = Alz(g.y)#gh)
= 21(9.y)1#gh @ 22(g.y)2#gh
= 21(9.y1)#gh @ 22(9.y2)#gh
= (21#9 @ 2o#9) (1 #h @ yo#th)
= A(z#tg) A(y#h).

and

e((x#tg)(y#h)) = €

As for the antipode axioms:

)(S(z1)#1) (w29)
)(S(z1)w29g)

z) (g~ 149 g)

Y141,

-1
-1

S(xi#g)rattg = (1#g
(1#g

— ¢
=€z

The rest is clear. O

LEMMA 9.21. — Let C be a coalgebra, C; C C' a subcoalgebra for each i € I, and
E C 3 ,c; Ci a simple subcoalgebra. Then there is an inder i € I with E C C;.

Proof. — Since F is finite dimensional we may assume that [ is finite. By induction it
suffices to show that if £ C C; + C; and F Q C; then £ C C;. In this case it holds
that £ N C; = 0 since F is simple. Hence there is a functional f € C* with f |p= € and
fle;=0. Let 2 € E. Then there are a € C; and b € C; with = a + b. Hence

r = [Ele(.”L'Q) = l’1f([E2) = blf(bg) € Oj.
[

REMARK 9.22. — Recall: If A is a finite dimensional algebra, then A is artinian and
noetherian as A-module. By the Krull-Schhmidt theorem it follows that A = @, A; for
some indecomposable A-submodules A; C A. In particular, End4(A;) is a local ring for all
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i. Writing 1 = Z:.L:l e; with e; € A; it follows that e;e; = 0; je; for all i,7 and A; = Ae;.

Moreover,

End4(Ae;) ~ e; Ae;

o p(e) = o(e]) = epe;)

(x = xy) < y.

If A is commutative, this implies that A; ~ End4(A;)°P is a local ring with unit element

e;. In particular,

n

A=Pa~]]a
i=1 i=1
1s the product of local subrings.

DEFINITION 9.23. — A subcoalgebra D of a coalgebra C' is an irreducible component if
D is a mazimal irreducible subcoalgebra.

THEOREM 9.24. — Let C be a coalgebra.

1) Every sum of pairwise distinct simple subcoalgebras is direct.

Proof. — If E; C C is simple for all i € I and the sum ), E; is not direct, then
there is an index ¢ € I with E; N ﬂ#i E; # 0. But this would entail F; C E; for
some j # i. O

2) Every irreducible subcoalgebra of C' is contained in a unique irreducible component

of C.

Proof. — Let D C C be a simple subcoalgebra. It suffices that the sum of all
irreducible subcoalgebras C!, i € I that contain D is irreducible. Indeed, if £ C
>, Clis a simple coalgebra then it follows that £ C C} for some . Since C! is
irreducible and D C C! it follows that F = D. O

3) The sum of all irreducible components of C' is direct.

Proof. — Let C; C C, i € I be the irreducible components. If the sum is not direct,
then there is an index i € I such that C; N Z#i C; #0. Let £ C C; be the unique
simple subcoalgebra. Since C; N Y ;+ Cj 1s a non-trivial subcoalgebra of C; that
contains a simple coalgebra it follows that £ C C; N Zj 4; Cj. Hence there is an
index j # ¢ with &/ C ;. But this would imply C; = C}.x O

4) If C is cocommutative, then C' =D pcc irped. comp. D-
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Proof. — 1t suffices to show that C' is the sum of irreducible subcoalgebras. With-

out loss of generality we assume that C' is finite dimensional. Then C* is a finite

dimensional commutative algebra, yielding

C* ZﬁAi

for some local subalgebras A; C C*. This implies that A} is an irreducible coalgebra

C ~ éA:
i=1

for all 7 and

[]

PROPOSITION 9.25. — Let C, D be coalgebras. Then (C® D)y C Co® Dy. In particular,
if C'and D are pointed then so is C ® D.

Proof. — Without loss of generality we assume that C' and D are finite dimensional. We
define the ideal

[=Cf®D"+C*® Dy <C*® D* = (C® D)*.
Our aim is to show that
(C® D)y C I C Cy® D.
As for the first inclusion, note that

Cy = Ra(C¥)

is nilpotent since C* is finite dimensional (and hence artinian). Likewise it holds that Dy
is nilpotent. This implies that I is nilpotent. Since Ra((C' ® D)*) is the largest nilpotent
ideal of (C'® D)* it follows that

I ¢ Ra((C ® D)) = (C ® D).

That is, (C ® D)y C I+.+
As for the second inclusion, let z =) . ¢; ®d; € I L with (d;); linear independent. Then
for all f € C5- and g € D* it follows that

0= Z flei)g(di) = Q(Z flei)ds).
Hence
> fle)di =0

and consequently

flei))=0
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for all i. That is, ¢; € C-+ = Cj for all i and consequently

It cCy®D.
Analogously, it follows that

It c C® D,
and hence

It ¢ Cy® Dy.

]

THEOREM 9.26 (CARTIER-KOSTANT). — Let H be a Hopfalgebra, G = G(H). For each
g € G let HI be the irreducible component that contains g. We set

H = H*.

geG

1) The map
p: G — HopfAut(H'), p(g)(x) = grg™"

15 a well-defined group homomorphism. It holds that
H'#E[G] ~ H', a#tg > xg

is an isomorphism of Hopf algebras.
2) If H is pointed and cocommutative, then

H'#k[G) ~ H.

Proof. — 2) follows from 1), because if H is pointed and cocommutative then H is the
sum of its irreducible components and all irreducible components are of the form HY,
g € G(H). It remains to verify 1). We proceed in small steps.

a) For all g € G it holds that H9 = gH' = H'g.

The map H — H,r — gx is a coalgebra isomorphism because g is group-
like. Hence gH' C H is an irreducible component. Since g € gH' it follows that
g.H' = HY. Likewise it follows that H'g = HY.

b) For all g € G it holds that S(HY) C HY .

S : H®P — H is a coalgebra homomorphism and H := H9 C H®P is a sub-
coalgebra. This entails that S(H) C H is a subcoalgebra and ¢~' € S(H). So
S(H)o C S(Hy) = kg~'x. Hence S(H) is irreducible, yielding S(H9) ¢ HI .

c) (H")? = H' and H' C H is a sub Hopf algebra.

H' is pointed and irreducible, and hence so is H' ® H!. Hence (H')? = im(H'®

H' — H") is also pointed and irreducible. This yields (H')? ¢ H'. Conversely,

H'=H' C (H")
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d) H’ is a sub Hopf algebra.
For any g, h € G it holds by a) that

HYH" = H'ghH' = H'HY" = H'H'gh = H'gh = H".

Hence H’ is a subalgebra. It is a subcoalgebra because all irreducible components
are subcoalgebras. It is a sub Hopf algebra by b).
e) p is well-defined and hence H'#k[G] is a Hopf algebra
For all g, h € G it holds by a) that gH"g~! = H99
f) H'#k|G] ~ HY as Hopf algebras
For any g € G it holds that the multiplication H'#kg — HY is an isomorphism

—1

of vector spaces, yielding a linear isomorphism
0 : H'#E[G] — H', x#g+— 2g.
This is already a Hopf algebra isomorphism, since

p((a#9)(y#h)) = p(zgyg™ ' #gh) = xgyh = p(x#9)p(y#h)
and
(P @ @)(T1#9 ® T2#g) = 119 @ T29 = A(xg).
0

THEOREM 9.27 (CARTIER—KOSTANT). — Suppose that k is characteristic 0 and is alge-
braically closed. Let H be a cocommutative Hopf algebra and set G = G(H), g = P(H)™.
Define
p: G — LieAut(g), g (z+— gzg™t).
Then
Ulg)#klG] ~ H,  x#g — xg
is an isomorphism of Hopf algebras with U(g)#klg] a Hopf algebra via p.

Proof. — 1t holds that LieAut(g) ~ HopfAut(U(g)), so p yields a group isomorphism
from G to HopfAut(U(g)) that sends an element g € G to the corresponding conjugation
map.

H is pointed since it is cocommutative and k is algebraically closed (recall that we
deduced this from the Artin—-Wederburn theorem, since the dual of a simple sub coalgebra
must be of the form M, (k)* because k is algebraically closed, and n = 1 follows from

cocommutativity). It follows that
H'#k[G) ~ H

as Hopf algebras.
It holds that (using that k is characteristic 0)

H'~U(P(H")) cU(P(H))C H.
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As the monomorphic image of U(P(H)) in H is irreducible and contains H' it follows
that H' = im(U(P(H)) C H). O

COROLLARY 9.28. — If H is finite dimensional cocommutative Hopf algebra over an
algebraically closed field of characteristic O then H ~ k[G(H)] is a group algebra.

Proof. — We have U(P(H)) C H and hence P(H) = 0 since H is finite dimensional. [



1]

8]

[9]

HOPF ALGEBRAS 81

References

E. ABE, Hopf algebras, vol. 74 of Cambridge Tracts in Mathematics, Cambridge University
Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and
Hiroko Tanaka.

D. GRINBERG AND V. REINER, Hopf Algebras in Combinatorics, ArXiv e-prints, (2014).
J. C. JANTZEN, Lectures on quantum groups, vol. 6 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 1996.

C. KASSEL, Quantum groups, vol. 155 of Graduate Texts in Mathematics, Springer-Verlag,
New York, 1995.

S. MAc LANE, Categories for the working mathematician, vol. 5 of Graduate Texts in Math-
ematics, Springer-Verlag, New York, second ed., 1998.

S. MONTGOMERY, Hopf algebras and their actions on rings, vol. 82 of CBMS Regional
Conference Series in Mathematics, Published for the Conference Board of the Mathematical
Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993.
H.-J. SCHNEIDER, Hopfalgebren und Quantengruppen, Lecture at the University of Munich,
(2008).

M. E. SWEEDLER, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc.,
New York, 1969.

R. G. UNDERWOOD, Fundamentals of Hopf algebras, Universitext, Springer, Cham, 2015.

BENEDIKT STUFLER



	1. Introduction
	2. Basics
	2.1. Tensor products
	2.2. Algebras
	2.3. Category theory

	3. Coalgebras and Hopf algebras
	3.1. Coalgebras
	3.2. Hopf algebras
	3.3. Examples

	4. H-module algebras and smash products
	5. Comodules and comodule algebras
	6. Affine groups
	6.1. Affine schemes, monoids, and groups
	6.2. Groups in the category of affine schemes

	7. Lie algebras and their universal enveloping algebras
	7.1. Lie algebras
	7.2. The universal enveloping algebra
	7.3. Hopf algebra filtrations
	7.4. The Poincaré-Birkhoff-Witt theorem

	8. Selected classical algebraic results
	8.1. The Jacobson radical of noncommutative rings
	8.2. The Krull–Schmidt theorem
	8.3. The Wedderburn–Artin theorem

	9. Cocommutative Hopf algebras in characteristic 0
	9.1. Irreducible and pointed coalgebras
	9.2. The coradical filtration
	9.3. Irreducible cocommutative Hopf algebras in characteristic 0
	9.4. Cocommutative Hopf algebras in characteristic 0

	References

