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7.4. The Poincaré-Birkhoff-Witt theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8. Selected classical algebraic results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.1. The Jacobson radical of noncommutative rings. . . . . . . . . . . . . . . . . . . . 58
8.2. The Krull–Schmidt theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3. The Wedderburn–Artin theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9. Cocommutative Hopf algebras in characteristic 0. . . . . . . . . . . . . . . . . . . . . . 65
9.1. Irreducible and pointed coalgebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.2. The coradical filtration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.3. Irreducible cocommutative Hopf algebras in characteristic 0. . . . . . . 69
9.4. Cocommutative Hopf algebras in characteristic 0. . . . . . . . . . . . . . . . . . 74

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



HOPF ALGEBRAS 3

1. Introduction

The present notes summarize the content of an advanced course on the algebraic foun-

dation of Hopf algebra theory given by the author at the University of Zurich in 2018.

The study of Hopf algebras lies at the interface of representation theory, combinatorial

algebra, and mathematical physics. We start with an introduction to the algebraic foun-

dations (coalgebras, bialgebras, Hopf algebras, Hopf modules and comodules, universal

enveloping algebras, ...). The highlight of the lecture will be a proof of the Cartier-Kostant

theorem for pointed cocommutative Hopf algebras, that describes how a large variety of

Hopf algebras are isomorphic to a smash product algebra composed out of the primitive

and grouplike elements.

2. Basics

2.1. Tensor products. — We let R denote a ring (with 1, not necessarily commuta-

tive).

Definition 2.1 (universal middle-linear maps). — Let X be a right R-module, Y

a left R-module, and T an abelian group.

1) A map τ : X × Y → T is termed middle linear, if for all x, x′ ∈ X, y, y′ ∈ Y , r ∈ R
it holds that

τ(x+ x′, y) = τ(x, y) + τ(x′, y),

τ(x, y + y′) = τ(x, y) + τ(x, y′),

τ(xr, y) = τ(x, ry).

2) A middle-linear map τ : X × Y → T is universal, if for any abelian group M and

any middle-linear map ϕ : X × Y → M there exists a unique group homomorphism

ϕ̄ : T →M such that the diagram

X × Y
ϕ

//

τ
��

M

T

ϕ̄
;;

commutes.

Theorem 2.2 (tensor products). — Let X be a right R-module and Y a left R-

module.
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1) If τ : X × Y → T and τ ′ : X × Y → T ′ are both universal middle-linear maps, then

there is a unique isomorphism ϕ : T → T ′ such that the diagram

X × Y τ ′
//

τ
��

T ′

T

ϕ
;;

commutes.

2) There is an abelian group T with an universal middle-linear map τ : X × Y → T .

Notation: T = X ⊗ Y and τ(x, y) = x⊗R y for all x ∈ X, y ∈ Y .

Proof. — Let Z(X×Y ) be the free Z-module with basis X × Y . Let N be the submodule

that is generated by all elements of the form

(x+ x′, y)− (x, y)− (x′, y)

(x, y + y′)− (x, y)− (x, y′)

(xr, y)− (x, ry)

with x, x′ ∈ X, y, y′ ∈ Y , and r ∈ R. Let T = Z(X×Y )/N and define τ by

Z(X×Y ) can
// T

X × Y

can

OO

τ

;;
.

Remark 2.3. — 1) (x⊗ y)x∈X,y∈Y is a Z-span of X ⊗R Y . We often denote Z-linear

maps on the tensor product by stating how they act on this spanning family, but care

has to be taken whether such maps actually exist (or are ”well-defined”).

2) Z�(n)⊗Z Q = 0 for all n ≥ 1.

Definition 2.4 (bimodules). — Let R and S be rings. Suppose that the set X is

equipped both with a left R-module structure and an right S-module structure.

1) We say X is an (R, S)-bimodule, if for all x ∈ X, r ∈ R, and s ∈ S it holds that

(rx)s = r(xs)

2) A map φ : X → Y between (R, S)-bimodules X and Y is (R, S)-linear if it is both

R-linear (from the left) and S-linear (from the right).

Theorem 2.5 (module structures on tensor products)

Let R, S, T, U be rings, X an (R, S)-bimodule, Y an (S, T )-bimodule, and Z an (T, U)-

bimodule.
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1) The tensor product X ⊗S Y is an (R, T )-bimodule via r(x ⊗ y) = rx ⊗ y and

(x⊗ y)s = x⊗ ys.
2) (X⊗SY )⊗T Z ' X⊗S (Y ⊗T Z) is an (R,U)-linear isomorphism that is functorial

in X, Y , and Z.

3) X ⊗S S ' X with x⊗ s 7→ xs is (R, S)-linear and functorial in X.

R⊗R X ' X with r ⊗ x 7→ rx is (R, S)-linear and functorial in X.

4) If R is commutative and M,N are R-modules, then

M ⊗R N ' N ⊗RM with m⊗ n 7→ n⊗m

is R-linear and functorial.

Definition 2.6. — Let X,X ′ be right R-modules, Y, Y ′ be left R-modules, and f : X →
X ′, g : Y → Y ′ be a R-linear maps. Then we let

f ⊗ g : X ⊗R Y → X ′ ⊗R Y ′, x⊗ y 7→ f(x)⊗ g(y).

Theorem 2.7 (coproducts and tensors). — Let (Xi)i∈I be a family of right R-

modules, Y a left R-module. Then φ :
∐

i∈I(Xi ⊗R Y ) →
(∐

i∈I Xi

)
⊗R Y defined via

Xi ⊗R Y
can⊗id−→

(∐
i∈I Xi

)
⊗R Y for all i ∈ I is a functorial isomorphism.

Corollary 2.8 (bases of tensor products). — 1) Let X be a right R-module

with basis (xi)i∈I and let Y be a left R-module. Then each element t ∈ X ⊗R Y has

a unique representation t =
∑

i∈I xi ⊗ yi with yi ∈ Y for all i ∈ I and yi = 0 for

almost all (=all but finitely many) i ∈ I.

2) k field, V,W k-vector spaces with bases (vi)i∈I , (wj)j∈J . Then the family (vi ⊗
wj)i∈I,j∈J is a basis of V ⊗k W .

Theorem 2.9 (⊗ is right exact). — Let A,B,C be left R-modules and let

A
f−→B

g−→C → 0 be an exact sequence of R-linear maps. Then for all right R-

modules Y it holds that the sequence Y ⊗R A
id⊗f−→Y ⊗R B

id⊗g−→Y ⊗ C → 0 is exact

too.

Proof. — See exercises.

2.2. Algebras. — We let k denote a commutative ring (with 1).

Definition 2.10. — 1) Let A be a ring (with 1) and a k-module. We say A is a

k-algebra if for all λ ∈ k and x, y ∈ A it holds that λ.(xy) = (λ.x)y = x(λ.y).

2) An algebra homomorphism from a k-algebra A to a k-algebra B is a k-linear ring

homomorphism.

3) The center of an algebra A is the subalgebra

Z(A) = {x ∈ A | xy = yx for all y ∈ A}.
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Remark 2.11. — 1) Let A be a k-algebra. The unique ring homomorphism η : k → A

satisfies im(η) ⊂ Z(A).

2) Conversely, if A is a ring and η : k → A is a ring homomorphism with im(η) ⊂ Z(A),

then A is a k-algebra via λ.x = η(λ) for all λ ∈ k, x ∈ A.

Remark 2.12. — 1) Let A be a k-algebra. The linear map µ : A ⊗k A → A with

µ(a⊗ b) = ab and the ring homomorphism η : k → A satisfy

k ⊗k A
η⊗id

//

can

%%

A⊗k A
µ

��

A⊗k k
id⊗η
oo

can
yy

A

and

A⊗k (A⊗k A)

can

��

id⊗µ
// A⊗k A

µ
// A

(A⊗k A)⊗k A
µ⊗id

// A⊗k A
µ

<<
.

2) Conversely, let A be a k-module. If µ : A ⊗k A → A and η : k → A are k-linear

maps such that these diagrams commute, then A is a k-algebra with xy = µ(x ⊗ y)

and 1A = η(1k).

Remark 2.13. — 1) Mn(k) and Endk(V ) (V a k-module) are k-algebras.

2) If A is a k-algebra, then we define the algebra Aop by setting Aop := A as k-module

and defining ηAop := ηA and µAop := µA ◦τ with the linear map τ : A⊗kA→ A⊗kA,

τ(x⊗ y) = y ⊗ x.

3) If A is a k-algebra then

δ :A→ Endk(A), a 7→ (x 7→ ax)

δ′ :A→ Endk(A)op, a 7→ (x 7→ xa)

are algebra homomorphisms.

Remark 2.14. — 1) If A and B are k-algebras, then so is A⊗k B.

2) If ϕ : A → A′ and ψ : B → B′ are algebra homomorphisms then so is ϕ ⊗ ψ :

A⊗k B → A′ ⊗k B′.

Definition 2.15. — Let G be a monoid. Then k[G] := k(G) (also denoted by kG) is a

k-algebra with µ(g ⊗ h) = gh (product in G). It satisfies the universal property, that for

any algebra A and any monoid homomorphism ϕ : G → (A, ·) there is a unique algebra
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homomorphism ϕ̄ : k[G]→ A such that

G
ϕ
//

can
��

A

k[G]

ϕ̄

==
.

Remark 2.16. — 1) Let G = N0 be the additive monoid. Then k[G] ' k[X1, . . . , Xn]

polynomial ring in n indeterminates.

2) Let X be a set, <X> the free monoid over X, then k<X> is called the free algebra

over X.

Proposition 2.17. — Let A be a k-algebra and I ⊂ A a both-sided ideal. Then for any

algebra homomorphism ϕ : A→ B with ϕ(I) = 0 there is a unique algebra homomorphism

ϕ̄ : A/I → B such that

A
ϕ
//

can
��

B

A/I

ϕ̄

==
.

2.3. Category theory. — The language of category theory allows us to express com-

plex relationships in a concise and elegant way. Setting up a rigorous foundation for the

set-theoretic background does not lie within the scope of this lecture. We naively define

classes to be collections of sets which we can define and talk about. Hence we may form

the class of all sets, which is a proper class as it cannot be a set. We may also consider

maps between classes.

Definition 2.18. — A category C consists of a class Ob(C), whose elements are called

the objects of the class, with the following additional structures:

– For any two objects X, Y ∈ Ob(C) we are given a set C(X, Y ) whose elements are

called the morphisms from X to Y . We require that

C(X, Y ) ∩ C(X ′, Y ′) = ∅

for all X,X ′, Y, Y ′ ∈ Ob(C) with X 6= X ′ or Y 6= Y ′. Instead of f ∈ C(X, Y ) we

also write f : X → Y or X
f−→Y .

– For any X, Y, Z ∈ Ob(C) we are given a map

C(Y, Z)× C(X, Y )→ C(X,Z), (g, f) 7→ gf = g ◦ f.

We require that for all X
f−→Y , Y

g−→Z and Z
h−→U

h(gf) = (hg)f.
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– For any X ∈ Ob(C) there is a distinguished element idX ∈ C(X,X). We require that

f idX = f = idY f

for all X
f−→Y .

Example 2.19. — 1) The category Set of all sets with maps as morphisms.

2) The category Gr of all groups with group homomorphisms as morphisms.

3) The categories RM and MR of left R-modules and right R-modules.

Remark 2.20. — A category C is termed small, if Ob(C) is a set.

Definition 2.21. — Let C be a category. A morphism X
f−→Y in C is termed an

isomorphism, if there exists a morphism Y
g−→X with gf = idX and fg = idY . If this is

the case then g is uniquely determined and we may write g = f−1.

Definition 2.22. — Given a category C we may form the category Cop with Ob(Cop) =

Ob(C) and Cop(X, Y ) = C(Y,X) for all objects X,Y .

Definition 2.23. — Let C and D be categories.

1) A (covariant) functor F : C → D consists of a map

Ob(C)→ Ob(D), X 7→ F (Y )

together with a family of maps

C(X, Y )→ D(X, Y ), f 7→ F (f),

for X, Y ∈ Ob(C), such that

F (gf) = F (g)F (f) and F (idX) = idF (X)

for all X, Y, Z ∈ Ob(C), f ∈ C(X, Y ), and g ∈ C(Y, Z).

2) A contravariant functor C → D is a functor Cop → D.

Example 2.24. — 1) Let k be a commutative ring. kM→ kM defined by

V 7→ V ∗ = Homk(V, k) and f 7→ (f ∗ : g 7→ gf)

is a contravariant functor.

2) Let R, S be rings and X an (R,X)-bimodule. Then

X ⊗S − : SM→ ZM

is a covariant functor.
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3) Let R be a ring and X ∈ RM. Then

HomR(X,−) : RM→ ZM

is a covariant functor, and

HomR(−, X) : RM→ ZM

is a contravariant functor.

4) Let C be a category and X ∈ Ob(C). Then

C(X,−) : C → Set

is a covariant functor, and

C(−, X) : C → Set

is a contravariant functor.

Remark 2.25. — Any category C admits the trivial functor idC : C → C. We may

concatenate a functor F : C → D with a functor G : D → E to form a functor GF : C → E.

This operation is associative and the functors behave like neutral elements.

Definition 2.26. — 1) Let C, D be categories and F,G : C → G be functors. A

natural transformation α : F → G is a family α = (αC)C∈Ob(C) of morphisms αC :

F (C)→ G(C) such that for all C,C ′ ∈ Ob(C) and f ∈ C(C,C ′)

F (C)
F (f)

//

αC

��

F (C ′)

αC′

��

G(C)
G(f)

// G(C ′)

.

2) The natural transformation α is a natural isomorphism, if αC is an isomorphism for

each C ∈ Ob(C). We denote the existence of a natural isomorphism between F and

G by

F ' G.

3) We may think of natural transformation as “morphisms between functors”. Any

functor F admits the trivial natural isomorphism idF : F → F . We may concatenate

a natural transformation α : F → G with a natural transformation β : G → H to

form a natural transformation βα : F → H. This operation is associative and the

trivial natural isomorphisms behave like neutral elements.

4) The natural transformation α : F → G is a natural isomorphism, if and only if there

exists a natural transformation β : G→ F such that βα = idF and αβ = idG.
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Example 2.27. — 1) Suppose that k is a field. For any k-vector space V let αV : V →
V ∗∗, v 7→ (f 7→ f(v)). Then α = (αV )V is a natural transformation id → ()∗∗. α is

a natural isomorphism when restricted to finite dimensional vector spaces.

2) Let k be commutative ring and let X and Y be k-modules. The map X ⊗k Y ∗ →
Hom(Y,X) with x⊗ f 7→ (y 7→ f(y)x is functorial in X and Y . That is,

−⊗k Y ∗ → Homk(Y,−)

is a natural transformation of covariant functors, and

X ⊗k ()∗ → Homk(−, X)

is a natural transformation of contravariant functors.

Definition 2.28. — A functor F : C → D is an equivalence of categories if there is a

functor G : D → C such that GF ' idC and FG ' idD.

Definition 2.29. — A functor F : C → D is termed left adjoint to a functor G : D → C,

if there is a family of bijections ϕC,D = D(F (C), D) → C(C,G(D)) (with C ∈ Ob(C),

D ∈ Ob(D)) that is functorial in C and D. In this case there is a canonical natural

transformation η : idC → GF with ηC = ϕC,F (C)(idF (C)) for all C ∈ Ob(C).

Proof. — Diagram chasing.

Proposition 2.30. — Let R, S, and T be rings.

1) Let RXS and RYT be bimodules. Then HomR(RXS, RYT ) is an (S, T )-bimodule with

(s.f)(x) = f(x.s)

(f.t)(x) = f(x).t

(“Left Hom from (R, S) to (R, T ) gives (S, T )”; we may use the notation

SHomR(RXS, RYT )T )

2) Let RXS and TYS be bimodules. Then HomS(RXS, TYS) is an (T,R)-bimodule with

(f.r)(x) = f(rx)

(t.f)(x) = tf(x)

(“Right Hom from (R, S) to (T, S) gives (T,R)”; we may use the notation

THomS(RXS, TYS)R)

3) Let RXS be a bimodule. Then

HomR(RXS,−) : RM→ SM

HomS(RXS,−) :MS →MR
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are covariant functors, and

HomS(−, RXS) :MS → RM

HomR(−, RXS) : RM→MS

are contravariant functors.

Proposition 2.31. — 1) There is a canonical isomorphism of right T -modules:

HomR(RXS ⊗S SY, RZT )T ' HomS(SY,HomR(RXS, RZT ))T

2) The functor

RXS ⊗S − : SM→ RM
is left adjoint to

HomR(RXS,−) : RM→ SM.

Corollary 2.32. — If S ⊂ R is a subring, then

RRS ⊗S − : SM→ RM

is left-adjoint to

HomR(RRS,−) : RM→ SM.
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3. Coalgebras and Hopf algebras

Unless otherwise stated, k always denotes a field and all vector spaces are over k. We

let ⊗ = ⊗k denote the tensor product over k.

3.1. Coalgebras. —

Definition 3.1 (coalgebras). — Let C be a vector space over k, and let ∆ : C →
C ⊗C and ε : C → k be k-linear maps. The tupel (C,∆, ε) is a coalgebra, if the following

diagrams commute:

k ⊗k C C ⊗k C
ε⊗id
oo

id⊗ε
// C ⊗k k

C

∆

OO

'
99

'

ee

and

C ⊗k (C ⊗k C) C ⊗k C
id⊗∆
oo C

∆
oo

∆
||

(C ⊗k C)⊗k C

'

OO

C ⊗k C
∆⊗id
oo

.

Example 3.2. — 1) If G is a set, then k(G) is a coalgebra with ∆(g) = g⊗ g, ε(g) = 1

for all g ∈ G.

2) Let C be a vector space over k with basis (xi,j)1≤i,j≤n. C is a coalgebra with ∆(xi,j) =∑n
k=1 xi,k ⊗ xk,j, ε(xi,j) = δi,j.

Proof. — It suffices to verify the axioms on the basis of C.

n∑
k=1

∆(xi,k)⊗ xk,j =
∑

1≤k1,k2≤n

xi,k1 ⊗ xk1,k2 ⊗ xk2,j =
n∑
k=1

xi,k ⊗∆(xk,j)

and
n∑
k=1

ε(xi,k)⊗ xk,j = 1⊗ xi,j,
n∑
k=1

xi,k ⊗ ε(xk,j) = xi,j ⊗ 1.

3) C a vector space over k with basis (xi)i≥0. C is a coalgebra with ∆(xn) =
∑n

i=0 xi ⊗
xn−i and ε(xn) = δ0,n.

Proof. —

n∑
i=0

∆(xi)⊗ xn−i =
∑

i1+i2+i3=n

xi1 ⊗ xi2 ⊗ xi3 =
n∑
i=0

xi ⊗∆(xn−i).

The rest is clear.
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4) Let C be a vector space over k with basis g, h, x. Then C is a coalgebra with ∆(g) =

g ⊗ g, ε(g) = 1, ∆(h) = h⊗ h, ε(h) = 1, ∆(x) = g ⊗ x+ x⊗ h, ε(x) = 0.

Definition 3.3 (Sweedler notation). — Let C be a coalgebra, x ∈ C. We use the

notation

∆(x) =:
∑
i

x1,i ⊗ x2,i =: x(1) ⊗ x(2) =: x1 ⊗ x2,

∆n(x) =: (∆⊗ id)(∆n−1)(x) =: x(1) ⊗ . . .⊗ x(n+1) =: x1 ⊗ . . .⊗ xn+1.

For f : Cn → X multilinear, f̄ :
⊗

1≤i≤nC → X the induced map, we set

f̄(∆n−1(x)) =: f(x(1), . . . , x(n)) =: f(x1, . . . , xn).

Definition 3.4. — A k-linear map f : C → C ′ between coalgebras is called a coalgebra

homomorphism if for all x ∈ C it holds that εC′(f(x)) = εC(x) and f(x)1 ⊗ f(x)2 =

f(x1)⊗ f(x2).

Definition 3.5. — A an algebra, C a coalgebra, f, g ∈ Homk(C,A). Then f ∗ g ∈
Homk(C,A) with (f ∗ g)(x) = f(x1)g(x2) is called the convolution of f and g. That is:

C
∆
//

f∗g

77C ⊗ C
f⊗g
// A⊗ A

µ
// A

Theorem 3.6. — Let A be an algebra, C a coalgebra.

1) Then Homk(C,A) is an algebra with product ∗ and unit element ηε.

Proof. —

Associativity: ((f ∗ g) ∗ h)(x) = f(x1)g(x2)h(x3) = (f ∗ (g ∗ h))(x)

Unit element: (f ∗ (ηε))(x) = f(x1)ε(x2) = f(x1ε(x2)) = f(x)

((ηε) ∗ f)(x) = ε(x1)f(x2) = f(ε(x1)x2) = f(x).

2) We have the following functors:

Homk(C,−) : Algebrask → Algebrask

Homk(−, A) : Coalgebrasop
k → Algebrask

Proof. — Let ϕ : A→ A′ be an algebra homomorphism. Then

Homk(id, ϕ) : Homk(C,A)→ Homk(C,A
′), f 7→ ϕf

is an algebra homomorphism, because

(ϕηAε)(x) = ϕ(ε(x)1A) = ε(x)1A′ = (ηA′ε)(x)
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and

(ϕ(f ∗ g))(x) = ϕ(f(x1)g(x2)) = ϕ(f(x1))ϕ(f(x2)) = ((ϕf) ∗ (ϕg))(x).

This shows that Homk(C,−) is a functor Algebrask → Algebrask.

Let ψ : C → C ′ be a coalgebra homomorphism. Then

Homk(ψ, id) : Homk(C
′, A)→ Homk(C,A), f 7→ fψ

is an algebra homomorphism, because

(ηεC′ψ)(x) = 1AεC′(ψ(x)) = 1AεC(x) = (ηεC)(x)

and

((f ∗ g)ψ)(x) = (f � g)((ψ(x))1 ⊗ (ψ(x))2)

= (f � g)(ψ(x1)⊗ ψ(x2))

= ((fψ) ∗ (gψ))(x).

Corollary 3.7. — If C is a coalgebra, then C∗ is an algebra.

Example 3.8. — 1) If G is a finite set, then the coalgebra kG from Example 3.2, 1)

satisfies (kG)∗ ' kG as algebras.

2) The coalgebra C from Example 3.2, 2) satisfies C∗ 'Mn(k) as k-algebras.

3) The coalgebra C from Example 3.2, 3) satisfies C∗ ' k[X] as k-algebras.

Proof. — See exercises.

Proposition 3.9. — Let X and Y be vector spaces over k. Then

X∗ ⊗ Y ∗ → (X ⊗ Y )∗, f ⊗ g 7→ (f � g : x⊗ y 7→ f(x)g(y)).

If X or Y is finite dimensional, then this linear map is an isomorphism.

Proof. — As the functor X ⊗− is left-adjoint to the functor Hom(X,−), it holds that

Hom(X ⊗ Y, k) ' Hom(Y,Hom(X, k)) = Hom(Y,X∗).

We have seen in the exercises that for all vector spaces V and W it holds that

V ⊗W ∗ → Hom(W,V ), v ⊗ f 7→ (w 7→ f(w)v)

is an isomorphism if V or W is finite dimensional. In particular,

Hom(Y,X∗) ' X∗ ⊗ Y ∗

if X or Y is finite dimensional.
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Theorem 3.10. — Let A be a finite dimensional algebra. Then A∗ is a coalgebra with

ε(f) = f(1) and ∆(f) = f1⊗f2 uniquely determined by f1(a)f2(b) = f(ab) for all a, b ∈ A.

That is,

A∗
η∗
//

ε

>>
k∗

'
// k

and

A∗
µ∗
//

∆

88
(A⊗ A)∗

'
// A∗ ⊗ A∗

Proof. — ε is a counit because η is a unit, that is

(ε(f1)f2)(x) = f1(1)f2(x) = f(1x) = f(x)

and

f1ε(f2)(x) = f1(x)f2(1) = f(x1) = f(x).

∆ is coassociative because µ is associative, that is for all a, b, c ∈ A

f11(a)f12(b)f2(c) = f1(ab)f2(c) = f(abc)

f1(a)f21(b)f22(c) = f1(a)f2(bc) = f(abc)

and hence

f11 ⊗ f12 ⊗ f2 = f1 ⊗ f21 ⊗ f22.

Example 3.11. — Let G be a finite monoid and k[G] the corresponding monoid alge-

bra. Let (eg)g∈G be the dual basis of (g)g∈G. Then ε(eg) = eg(1G) = δg,1G and ∆(eg) =∑
a,b∈G,ab=g ea ⊗ eb because for x, y ∈ G:∑

ab=g

ea(x)eb(y) =
∑
ab=g

δa,xδb,y = δg,xy = eg(xy).

Corollary 3.12. — We have an equivalence of categories

{C | C f. d. k-coalgebra}op ' {A | A f. d. k-algebra}

with C 7→ C∗ and A 7→ A∗.

Proof. — These functors are well-defined: We have already seen that Homk(−, k) :

Coalgebrasop
k → Algebrask is a functor. It is also easy to check that if κ : A → A′ is an

homomorphism between finite dimensional algebras, then κ∗ : (A′)∗ → A∗ is a coalgebra

homomorphism.

We already know that id ' ()∗∗ for finite dimensional vector spaces. It remains to show

that this natural isomorphism restricts to isomorphisms of finite dimensional coalgebras

and algebras.



16 BENEDIKT STUFLER

That is, for A a finite dimensional algebra, consider the bijective map

ϕ : A→ A∗∗, a 7→ (f 7→ f(a)).

We have to check that ϕ is an algebra homomorphism. For F,G ∈ A∗∗, f ∈ A∗ we have

(F ·G)(f) = F (f1)G(f2) with f1(a)f2(b) = f(ab) for all a, b ∈ A. This implies that

ϕ(ab)(f) = f(ab) = f1(a)f2(b) = (ϕ(a) · ϕ(b))(f).

Also,

ϕ(1)(f) = f(1) = 1A∗∗(f).

This shows that A ' A∗∗ as algebras.

Likewise, for C a finite dimensional coalgebra, the linear bijection

ψ : C → C∗∗, x 7→ (f 7→ f(x))

preserves the coalgebra structures: For F ∈ C∗∗ we have that ∆(F ) = F1⊗F2 is uniquely

determined by F1(f)F2(g) = F (f ∗ g) for all f, g ∈ C∗. So

ψ(x1)(f)ψ(x2)(g) = f(x1)g(x2) = (f ∗ g)(x) = ψ(x)(f ∗ g)

implies that

∆(ψ(x)) = ψ(x1)⊗ ψ(x2).

Moreover, εC∗∗(F ) = F (1C∗) = F (εC) implies that

εC∗∗(ψ(x)) = ψ(x)(εC) = εC(x).

This shows that C ' C∗∗ as coalgebras. The isomorphism is easily seen to be functorial.

Proposition 3.13. — Let C and D be k-coalgebras. Then so is C ⊗ D is a coalgebra

with a componentwise structure. That is, ∆(x⊗ y) = (x1⊗ y1)⊗ (x2⊗ y2) and ε(x⊗ y) =

εC(x)εD(y).

Definition 3.14. — Let C be a coalgebra.

1) An element g ∈ C is called grouplike, if ∆(g) = g ⊗ g and ε(g) = 1.

2) We set G(C) := {g ∈ C | g is grouplike}.
3) Let x ∈ C, g, h ∈ G(C). We say x is (g, h)-primitive or skew-primitive, if ∆(x) =

g ⊗ x+ x⊗ h.

Proposition 3.15. — Let C be a coalgebra.

1) If g ∈ C satisfies ∆(g) = g ⊗ g and g 6= 0 then ε(g) = 1.

2) If x ∈ C is skew-primitive, then ε(x) = 0.

Proposition 3.16. — If A is a finite dimensional algebra, then G(A∗) = Algk(A, k).
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Proof. — Let f ∈ A∗. Then f ∈ G(A∗) if and only if 1 = εA∗(f) = f(1A) and f1 ⊗ f2 =

f ⊗ f , which is equivalent to f(a)f(b) = f(ab) for all a, b ∈ A.

Lemma 3.17 (Dedekind). — Let M be a set, µ : M ×M →M a map, k a field. Then

X = {f ∈ kM \ 0 | f(µ(a, b)) = f(a)f(b) for all a, b ∈M}

is a linear independent subset of kM .

Proof. — Suppose that X is not linear independent. Then there are distinct elements

f1, . . . , fn ∈ X that linear dependent such that all proper subsets of {f1, . . . , fn} are

linear independent. Hence we may write

f1 =
∑
i≥2

λifi.

Thus for all a, b ∈M :(∑
i≥2

λifi(a)

)(∑
j≥2

λjfj(b)

)
= f1(a)f2(b)

= f1(µ(a, b))

=
∑
i≥2

λifi(µ(a, b))

=
∑
i≥2

λifi(a)fi(b).

This implies that f2, . . . , fn are linear dependent, contradicting our minimality assump-

tion.

Theorem 3.18. — If C is a coalgebra, then G(C) ⊂ C is linear independent.

Proof. — The injective coalgebra homomorphism

ψ : C → C∗∗, x 7→ (f → f(x))

restricts to an injective linear map

G(C)→ G(C∗∗) = Alg(C∗, k).

Since Alg(C∗, k) ⊂ C∗∗ is linear independent by Dedekind’s lemma, it follows that G(C) ⊂
C is linear independent.

Definition 3.19. — Let C be a coalgebra. A subspace I ⊂ C is a coideal if ∆(I) ⊂
C ⊗ I + I ⊗ C and ε(I) = 0. In this case C/I is a coalgebra as well.

Proof. — The conditions on I are precisely what we require for ε to factor over C/I and

for ∆ to factor over C/I ⊗ C/I. The coalgebra axioms of C/I then follow from the

coalgebra axioms of C.
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Remark 3.20. — If X, Y are vector spaces and U ⊂ X, V ⊂ X are subspaces, then

U ⊗ V ⊂ X ⊗ Y is a subspace. This needs not hold for tensor products over arbitrary

rings.

Proposition 3.21. — Let ϕ : C → C ′ be a coalgebra homomorphism. Then ker(ϕ) ⊂ C

is a coideal and im(ϕ) ⊂ C ′ is a subcoalgebra. The map ϕ induces a coalgebra isomorphism

ϕ̄ : C/ ker(ϕ)→ im(ϕ), x̄ 7→ ϕ(x).

Proof. — The homomorphism theorem for modules gives us that ϕ̄ is a well-defined k-

linear map. As ϕ is a coalgebra homomorphism it follows that ϕ̄ is aslo a coalgebra

homomorphism.

3.2. Hopf algebras. —

Definition 3.22. — Let H be a k-algebra and let ∆ : H → H ⊗ H and ε : H → k be

k-linear maps.

1) H is a bialgebra, with (H,∆, ε) is a coalgebra and ∆ and ε are algebra homomor-

phisms.

2) H is a Hopf algebra if it is a bialgebra and id ∈ Homk(H,H) has an ∗-inverse S.

That is, if there exists a linear map S : H → H such that

S(x1)x2 = ε(x)1H = x1S(x2)

for all x ∈ H. We way S the antipode of H. Note that any bialgebra may have at

most one antipode.

Example 3.23. — 1) If G is a group then k[G] is a Hopf algebra.

Proof. — ∆ and ε are algebra homomorphisms by construction (via the universal

property of the monoid algebra). Let S : k[G] → k[G]op be the algebra homomor-

phism with S(g) = g−1. Then S satisfies the antipode axioms.

2) If H is a Hopf algebra and g ∈ G(H) then S(g) = g−1.

Proof. — ε(g) = 1 implies S(g)g = 1H = gS(g).

3) If H is a Hopf algebra, and x ∈ H is (g, h)-primitive, then S(x) = −g−1xh−1.

Proof. — ∆(x) = g ⊗ x+ x⊗ h and ε(x) = 0 implies

0 = S(g)x+ S(x)h = g−1x+ S(x)h.

We know that h is invertible because it is grouplike, hence

S(x) = −g−1xh−1.
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Proposition 3.24. — Let H be an algebra and (H,∆, ε) a coalgebra. Then

∆(xy) = x1y1 ⊗ x2y2 ∆ is an algebra hom.

µ is a coalgebra hom. ∆(1) = 1⊗ 1

η is a coalgebra hom. ε(xy) = ε(x)ε(y) ε is an algebra hom.

ε(1) = 1

Definition 3.25. — 1) If C is a coalgebra, we may form the coalgebra Ccop with

∆Ccop(x) = x2 ⊗ x1.

2) We say a coalgebra C is cocommutative, if x1 ⊗ x2 = x2 ⊗ x1 for all x ∈ C.

3) Let A,B be algebras. An anti-algebra homomorphism ϕ : A → B is an algebra

homomorphism ϕ : Aop → B.

4) Let C,D be coalgebras. An anti-coalgebra homomorphism ψ : C → D is a coalgebra

homomorphism ψ : Ccop → D.

5) Let H1 and H2 be bialgebras. A linear map ϕ : H1 → H2 is a bialgebra homomor-

phism if ϕ is both an algebra homomorphism and a coalgebra homomorphism.

6) Hopfalgebra homomorphisms are bialgebra homomorphisms.

7) Subcoalgebras, subbialgebras and sub Hopf algebras are defined in a canonical way.

Theorem 3.26. — 1) Let H1 and H2 be Hopf algebras and ϕ : H1 → H2 a bialgebra

homomorphism. Then SH2ϕ = ϕSH1.

2) Let H1 ⊂ H2 be a sub Hopf algebra. Then SH2(H1) ⊂ H1 and SH1 = (SH2) |H1.

Proof. — 1) The idea is to show that SH2ϕ and ϕSH1 are both ∗-inverse to ϕ in the

algebra Homk(H1, H2). To this end, note that for all x ∈ H1

SH2(ϕ(x1))ϕ(x2) = SH2(ϕ(x)1)ϕ(x)2 = ε(ϕ(x))1 = ε(x)1

and likewise ϕ(x1)SH2(ϕ(x2)) = ε(x)1. Thus SH2ϕ the ∗-inverse of ϕ.

It also holds that

ϕ(SH1(x1))ϕ(x2) = ϕ(SH1(x1)x2) = ϕ(ε(x)1) = ε(x)1

and likewise ϕ(x1)ϕ(SH1(x2)) = ε(x)1. This shows that ϕSH1 is the ∗-inverse of ϕ and

hence must be identical to SH2ϕ.

2) Let ι : H1 ⊂ H2 be the inclusion map. By 1) we know that SH2ι = ιSH1 , so

SH2(H1) ⊂ H1 and SH1 = (SH2) |H1 .

Proposition 3.27. — 1) If C is a coalgebra, then k(G(C)) ⊂ C is a subcoalgebra.
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2) If B is a bialgebra, then G(B) is a monoid and k[G(B)] ⊂ B is a subbialgebra.

3) If H is a Hopf algebra, then G(H) is a group and k[G] ⊂ H is a sub Hopf algebra.

Proposition 3.28. — Let H be a Hopf algebra with antipode S.

1) S is an anti-algebra homomorphism.

Proof. — Consider the map

ϕ : H ⊗H → H, x⊗ y 7→ S(xy)

and the map

ψ : H ⊗H → H, x⊗ y 7→ S(y)S(x).

We are going to show φ = ψ by verifying that both maps are both left ∗-inverse to

the multiplication µ.

Indeed

ϕ(x1 ⊗ y1)µ(x2 ⊗ y2) = S(x1y1)(x2y2) = S((xy)1)(xy)2 = ε(xy)1H = ε(x)ε(y)1H

implies that ϕ ∗ µ = ηHεH⊗H . Analogously we may check that µ ∗ ϕ = ηHεH⊗H .

Furthermore

ψ(x1 ⊗ y1)µ(x2 ⊗ y2) = S(y1)S(x1)x2y2 = ε(x)S(y1)y2 = ε(x)ε(y)1H .

Hence ψ = µ−1 = ϕ in Hom(H ⊗H,H).

2) S is an anti-coalgebra homomorphism.

Proof. — Consider

ϕ : H → H ⊗H, x 7→ S(x2)⊗ S(x1)

and

ψ : H → H ⊗H ⊗H, x 7→ S(x)1 ⊗ S(x)2.

We are going to show that ϕ = ∆−1 = ψ in the algebra Hom(H,H ⊗H).

To this end, note that for all x ∈ H:

∆(x1)ϕ(x2) = (x1 ⊗ x2)(S(x4)⊗ S(x3))

= x1S(x4)⊗ x2S(x3)

= x1S(x3)⊗ ε(x2)1H

= x1S(ε(x2)x3)⊗ 1H

= x1S(x2)⊗ 1H

= ε(x)1H ⊗ 1H .

This shows that ∆ ∗ ϕ = ηH⊗HεH in Hom(H,H ⊗ H). Analogously, we may check

that ϕ ∗∆ = ηH⊗HεH .
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Furthermore, it holds that

∆(x1)ψ(x2) = ∆(x1)∆(S(x2)) = ∆(x1S(x2)) = ε(x)∆(1) = ε(x)1⊗H.

This show that ψ = ∆−1 in Hom(H,H ⊗H).

3) The following three conditions are equivalent:

a) S2 = id

b) x2S(x1) = ε(x)1H for all x ∈ H
c) S(x2)x1 = ε(x)1H for all x ∈ H

Proof. — a)⇒ b): Suppose that a) holds. Then S is bijective and

S(x2S(x1)) = S2(x1)S(x2) = x1S(x2) = ε(x)1 = S(ε(x)1).

hence x2S(x1) = ε(x).

b)⇒ a): Suppose that b) holds. Then

ε(x)1H = S2(x1)S(x2).

Hence S2 is left-∗-inverse to S, yielding S2 = id.

The equivalence a)⇔ c) may be proven analogously.

4) In particular, if H is commutative or cocommutative then S2 = id.

Corollary 3.29. — Let H be an algebra and M ⊂ H an algebra generating system.

1) Suppose that ∆ : H → H ⊗H, and ε : H → k are algebra homomorphisms. Then H

is a bialgebra if the axioms are satisfied on M .

2) Suppose that H a bialgebra, S : H → H an anti-algebrahomomorphism. Then H is

a Hopf algebra if the axioms are satisfied on M .

Corollary 3.30. — 1) Let H be a bialgebra, A a commutative algebra. Then

Algk(H,A) is a monoid. If H is a Hopf algebra, then it is a group.

Proof. — For ϕ, ψ ∈ Algk(H,A) the commutativity of A implies that

(ϕ ∗ ψ)(xy) = ϕ(x1y1)ψ(x2y2)

= ϕ(x1)ψ(x2)ϕ(y1)ψ(y2)

= (ϕ ∗ ψ)(x)(ϕ ∗ ψ)(y)

As (ϕ ∗ ψ)(1) = ϕ(1)ψ(1) = 1 this implies that Algk(H,A) is a monoid.

Suppose that H is a Hopf algebra. As A is commutative it follows that ϕS is an

algebra homomorphism. We are going to check that ϕS is the inverse of ϕ. To this

end:

ϕ(S(x1))ϕ(x2) = ϕ(S(x1)x2) = εH(x)1
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and

ϕ(x1)ϕ(S(x2)) = ϕ(x1S(x2)) = εH(x)1.

2) Let H be a bialgebra, C a cocommutative coalgebra. Then Coalgk(C,H) is a monoid.

If H is a Hopf algebra, then it is a group.

Proof. — Let ϕ, ψ ∈ Coalgk(C,H). Then the cocommutativity of C implies that

∆H((ϕ ∗ ψ)(x)) = ∆H(ϕ(x1))∆H(ψ(x2))

= (ϕ(x1)⊗ ϕ(x2))(ψ(x3)⊗ ψ(x4))

= ϕ(x1)ψ(x3)⊗ ϕ(x2)ψ(x4)

= ϕ(x1)ψ(x2)⊗ ϕ(x3)ψ(x4)

= (ϕ ∗ ψ)(x1)⊗ (ϕ ∗ ψ)(x2).

Moreover,

εH((ϕ ∗ ψ)(x)) = εH(ϕ(x1))εH(ψ(x2)) = εC(x1)εC(x2) = εC(εC(x1)x2) = εC(x).

This shows that Coalgk(C,H) is a monoid.

Suppose that H is a Hopf algebra. We are going to show that Sϕ is the ∗-inverse

of ϕ. Indeed:

(Sϕ)(x1)ϕ(x2) = S(ϕ(x1))ϕ(x2) = S(ϕ(x)1)ϕ(x)2 = εH(ϕ(x))1H = εC(x)1H .

That is, Sϕ ∗ ϕ = ηHεC . Likewise, we may check that ϕ ∗ Sϕ = ηHεC .

Theorem 3.31. — We have an equivalence of categories

{B | B f. d. k-bialgebra}op ' {B | B f. d. k-bialgebra}

with B 7→ B∗. It restricts to

{H | H f. d. Hopf algebra over k}op ' {H | H f. d. Hopf algebra over k}

Proof. — We know that if B if a finite dimensional k-bialgebra then B∗ is both an algebra

and a coalgebra. In order to check that it is a bialgebra, we have to verify that ∆B∗ and

εB∗ are algebra homomorphisms.

Recall that

B∗
µ∗B
//

∆B∗
88

(B ⊗B)∗
'
// B∗ ⊗B∗.

The map

B∗
µ∗B−→ (B ⊗B)∗, f 7→ (x⊗ y 7→ f(xy))
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is an algebra homomorphism (since µB : B⊗B → B is a coalgebra homomorphism), and

the isomorphism

B∗ ⊗B∗ ' (B ⊗B)∗, (f ⊗ g) 7→ (x⊗ y 7→ f(x)g(y))

is an algebra homomorphism as well. This shows that ∆B∗ is an algebra homomorphism.

Recall that

B∗
η∗B
//

εB∗

>>
k∗

'
// k .

The map εB∗ is an algebra homomorphism: The map

B∗
η∗B−→ k∗, f 7→ (λ 7→ λf(1))

preserves the algebra structure (as η : k → B is a coalgebra homomorphism) and the map

k∗ ' k, g 7→ g(1)

is an algebra isomorphism. Here k∗ becomes an algebra via the coalgebra structure

∆k(λ) = λ1k ⊗ 1k and εk(λ) = λ for λ ∈ k.

The functorial vector space isomorphism

ϕ : B → B∗∗, b 7→ (f 7→ f(b))

preserves both the algebra and coalgebra structures, and is hence a bialgebra isomorphism.

This proves the first equivalence of categories.

In order to prove the second equivalence, it remains to show that if H is a finite

dimensional Hopf algebra, then H∗ is a Hopfalgebra with antipode SH∗ = S∗H , that is

SH∗(f) = fS for all f ∈ H∗.
Indeed, it holds that

f1 ∗ f2(S) = εH∗(f)1H∗

because for all x ∈ H

f1(x1)f2(S(x2)) = f(x1S(x2)) = f(ε(x)1H) = ε(x)f(1H) = 1H∗(x)εH∗(f).

Likewise we may verify that

f1(S) ∗ f2 = εH∗(f)1H∗ .

Definition 3.32. — 1) H a bialgebra, I ⊂ H a subspace. We say I is a biideal, if it

is both an ideal an a coideal. In this case H/I is a bialgebra.

2) If φ : H → H ′ is a bialgebra homomorphism then kerφ ⊂ H is a biideal. The usual

homorphism theorems hold.

3) If H and H ′ are bialgebras then so is H ⊗H ′.
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Definition 3.33. — 1) H a Hopf algebra. A biideal I ⊂ H is a Hopf ideal if S(I) ⊂ I.

In this case S/I is a Hopf algebra.

2) If φ : H → H ′ is a Hopf algebra homomorphism then kerφ ⊂ H is a Hopf ideal.

3) If H and H ′ are Hopf algebras, then so is H ⊗H ′.

Proposition 3.34. — Let H be a bialgebra, G ⊂ G(H) a subset. Then I =< g−1 | g ∈
G > (the ideal generated by all elements g − 1) is a biideal of H. If H is Hopf algebra,

then it is a Hopf ideal.

Proof. — I is an ideal be definition. It is a coideal because for all g ∈ G it holds that

ε(g − 1) = 0 and

∆(g − 1) = g ⊗ g − 1⊗ 1 = g ⊗ (g − 1) + (g − 1)⊗ 1 ∈ H ⊗ I + I ⊗H.

Moreover, if H is a Hopf algebra then I is an Hopf ideal, since S(g − 1) = S(g) − 1 =

g−1 − 1 = −g−1(g − 1) ∈ HI ⊂ I.

3.3. Examples. — In the previous section we saw that when H is a Hopf algebra, then

Alg(H,−) is a functor from the category of commutative algebras to the category of

groups. The following are few examples of Hopf algebras for which we may determine this

functor explicitly.

Example 3.35. — 1) The polynomial algebra k[T ] is a Hopf algebra with T primitive.

It holds that

∆(T n) =
n∑
i=0

(
n

i

)
T i ⊗ T n−i

for all n ≥ 0. If A is a commutative algebra then

Algk(k[T ], A)→ (A,+), ϕ 7→ ϕ(T )

is a group isomorphism.

Proof. — For ϕ, ψ ∈ Algk(k[T ], A) it holds that

(ϕ ∗ ψ)(T ) = ϕ(T )ψ(1) + ϕ(1)ψ(T ) = ϕ(T ) + ψ(T ).

2) If char(k) = p then (T p) ⊂ k[T ] is a Hopf-ideal and k[T ]/(T p) is a quotient Hopf

algebra. For any commutative algebra A set αp(A) = {a ∈ A | ap = 0}. Then

Algk(k[T ]/(T p), A)→ αp(A), ϕ 7→ ϕ(T̄ )

is a group isomorphism that is functorial in A.
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Example 3.36. — The polynomial ring B = k[Ti,j | 1 ≤ i, j ≤ n] is a bialgebra with

∆(Ti,j) =
∑

1≤`≤n Ti,`⊗T`,j and ε(Ti,j) = δi,j. Consider the matrix M = (Ti,j)i,j ∈Mn(B)

and set d = det(M). Then d is a group-like element, because

∆(d) = det(
∑

1≤`≤n

Ti,` ⊗ T`,j)i,j

= (det(Ti,j ⊗ 1)i,j)(det(1⊗ Ti,j)i,j)

= (d⊗ 1)(1⊗ d)

= d⊗ d.

Hence (d− 1) ⊂ B is a biideal and H = B/(d− 1) is a bialgebra.

By Cramer’s rule there is a matrix N = (ti,j)i,j ∈Mn(B) with

MN = NM = dI.

Note that this implies det(N) = dn−1 since B is an integral domain. Let S : B → H be

the algebra homomorphism with S(Ti,j) = t̄i,j. Then

S(d− 1) = det(t̄i,j)i,j − 1 = 0.

Hence S induces an algebra homomorphism S̄ : H → H with

S̄(T̄i,j) = t̄i,j.

We may verify that S̄ is an antipode of H, making H a Hopf algebra:

(∆(Ti,j))i,j = (Ti,j ⊗ 1)i,j(1⊗ Ti,j)i,j

and hence

((T̄i,j)1S̄((T̄i,j)2))i,j = (S((T̄i,j)1)(T̄i,j)2)i,j = I = (ε̄(T̄i,j)1)i,j.

If A is a commutative algebra, then

Alg(k[Ti,j]/(d− 1), A)→ SLn(A), ϕ 7→ (ϕ(T̄i,j))i,j

is a group isomorphism that is functorial in A.

Definition 3.37. — Let v be an indeterminate. In the field Q(v) we define for 0 ≤ i ≤ n

(n)v =
vn − 1

v − 1
= 1 + . . .+ vn−1 ∈ Z[v](3.1)

(n)v! = (1)v · . . . · (n)v ∈ Z[v](3.2) (
n

i

)
v

=
(n)v!

(i)v!(n− i)v!
∈ Z[v].(3.3)

For i < 0 or i > n we set
(
n
i

)
v

= 0.
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Lemma 3.38. — For 0 < i < n it holds that(
n

i

)
v

=

(
n− 1

i− 1

)
v

+ vi
(
n− 1

i

)
v

.

Proof. — (
n− 1

i− 1

)
v

+ vi
(
n− 1

i

)
v

=
(n− 1)v!

(i− 1)v!(n− i)v!
+

vi(n− 1)v!

(i)v!(n− i− 1)v!

=
(n− 1)v!((i)v + vi(n− i)v)

(i)v!(n− i)v!

Since

(i)v + vi(n− i)v = 1 + . . .+ vi + vi(1 + . . . vn−i) = (n)v

it follows that this expression is equal to
(
n
i

)
v
.

Definition 3.39. — Given q ∈ k there is a ring homomorphism Z[v] → k with v 7→
q. We let (n)q, (n)q!, and

(
n
i

)
q

denote the images of (n)v, (n)v!, and
(
n
i

)
v

under this

homomorphism.

Corollary 3.40. — Let A be an algebra, a, b ∈ A, ba = qab for some q ∈ k.

1) (a+ b)n =
∑n

i=0

(
n
i

)
q
aibn−i

2) If q is a primitive nth root of unity then
(
n
i

)
q

= 0 for 1 ≤ i ≤ n − 1 and hence

(a+ b)n = an + bn.

Proof. — 1) By induction on n. If (a+ b)n =
∑n

i=0

(
n
i

)
q
aibn−i then

(a+ b)(a+ b)n =
n∑
i=0

(
n

i

)
q

ai+1bn−i + qi
n∑
i=0

(
n

i

)
q

aibn+1−i

= an + bn +
n∑
k=1

((
n

k − 1

)
q

+ qk
(
n

k

)
q

)
akbn+1−k

=
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

2) Suppose that n ≥ 2. Since

(q − 1)(i)q = qi − 1

it follows that (i)q 6= 0 for 0 ≤ i < n and (n)q = 0. Hence for 0 < i < n it follows that

(i)q!(n− i)q!
(
n

i

)
q

= (n)q! = 0,

and hence
(
n
i

)
q

= 0.
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Example 3.41. — 1) For q ∈ k× the bialgebra

H = k < g, x | gx = qxg >= k < g, x > /(gx− qxg)

with g group-like and x (g, 1)-primitive is called the quantum plane.

Proof. — We may define a bialgebra structure on k < g, x > with g group-like and

x (g, 1)-primitive. The ideal (gx− qxg) is a biideal, since

∆(gx− qxg) = g2 ⊗ gx+ gx⊗ g − qg2 ⊗ xg − qxg ⊗ g

= g2 ⊗ (gx− qxg) + (gx− qxg)⊗ g

This makes H = k < g, x | gx = qxg > a bialgebra.

2) For q ∈ k× the Hopf algebra

H =< g, h, x | gh = 1 = hg, gx = qxg >

with g, h group-like, x (g, 1)-primitive has an antipode with S(x) = q−1x.

Proof. — It is clear that H is a bialgebra. Let Ŝ : k[G,H,X] → H be the anti-

algebra homomorphism with Ŝ(G) = h, Ŝ(H) = g, and Ŝ(x) = −hx. Then Ŝ

factorizes over H, since

Ŝ(GH) = Ŝ(hg) = 1

and

Ŝ(GX − qXG) = −hxh+ qh2x = 0.

It is clear that the induced map S satisfies the antipode axioms. Moreover, S2(x) =

S(−hx) = hxg = q−1hgx = q−1x.

3) Let q ∈ k× be a primitive nth root of unity. Then

H = k < g, x | gn = 1, xn = 0, gx = qxg >

with g group-like and x (g, 1)-primitive is called the Taft Hopf algebra. Its antipode

satisfies S2(x) = q−1x.

Proof. — Consider B = k < G,X > as a bialgebra with G-grouplike and X (G, 1)-

primitive. Then I = (Gn − 1, Xn − 0, GX − qXG) is a biideal: We know that

∆(Gn − 1) ∈ I ⊗B +B ⊗ I

because G is group-like. We already made the calculations to verify

∆(GX − qXG) ∈ I ⊗B +B ⊗ I.

Since q is a primitive nth root of unity it follows by the q-binomial formula that

∆(X)n = (g ⊗ x+ x⊗ 1)n = gn ⊗ xn + xn ⊗ 1 = 0.
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Hence H is a bialgebra. It is easy to check that H is a Hopfalgebra with antipode

S(g) = g−1 and S(x) = g−1x.

4. H-module algebras and smash products

Remark 4.1. — 1) Let M be an abelian group, R a ring. Then

{µ : R×M →M | µ R-module structure} ' AlgZ(R,EndZ(M))

µ 7→ (λ 7→ (m 7→ µ(λ,m)))

((λ,m) 7→ δ(λ)(m))←[ δ

is a bijection.

2) Let V be a k-vector space, A a k-algebra. Let us call an A-module structure on V

“extending”, if the k-module structure on V induced by η : k → A is identical to

the vector space structure that is already present on V . (That is, λ.v = (λ1A).v for

λ ∈ k, v ∈ V .) Then the above bijection induces a vector space isomorphism

{µ : A× V → V | µ extending A-module struct.} ' Algk(A,Endk(V )).

Definition 4.2. — Let A be an algebra and let S : Aop → A, ∆ : A→ A⊗A, ε : A→ k

be algebra homomorphisms. Then for all V,W ∈ AM:

k ∈ AM via ε, that is a.λ = ε(a)λ

V ⊗k W ∈ AM via ∆, that is a.(v ⊗ w) = a1v ⊗ a2w

Homk(V,W ) ∈ AM via ∆, S, that is (a.f)(v) = a1f(S(a2)v)

V ∗ ∈ AM via S, that is (a.f)(v) = f(S(a).v)

Note that the module structure on V ∗ needs not be a special case of the module structure

on Homk(V, k) (with (a.f)(v) = f(S(ε(a1)a2).v)), but it is if ε satisfies the counit axioms.

In this setting:

1) The k-linear isomorphism (U ⊗V )⊗W ' U ⊗ (V ⊗W ) is A-linear for all U, V,W ∈
AM, if and only if ∆ is coassociative.

2) The k-linear isomorphism V ⊗ k ' V ' k ⊗ V is A-linear for all V ∈ AM, if and

only if ∆, ε satisfy the counit axioms.

3) The evaluation map V ∗⊗V → k is A-linear for all V ∈ AM, if and only if S(a1)a2 =

ε(a)1A for all a ∈ A.

4) The map k → Endk(V ) is A-linear for all V ∈ AM, if and only if a1S(a2) = ε(a)1A
for all a ∈ A.

Proof. — 1) It holds that

a.((u⊗ v)⊗ w) = a11u⊗ a12v ⊗ a2w
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and

a.(u⊗ (v ⊗ w)) = a1u⊗ a21v ⊗ a22w.

If ∆ is coassociative then these two expressions are identical. Conversely, taking

U = V = A and u = v = w = 1A would yield coassociativity.

2) It holds that

a.(v ⊗ λ) = a1v ⊗ ε(a2)λ = λ(ε(a2)a1)v ⊗ 1.

and

a(λv) = λ(av).

If ε is a counit, then the first expression corresponds to the second under the canonical

isomorphism. Conversely, taking V = A, v = 1A and λ = 1k would yield the counit

axiom.

3) It holds that

a.(f ⊗ v) = a1.f ⊗ a2v = f(S(a1) · −)⊗ a2v

gets mapped to

f(S(a1)a2v).

If S(a1)a2 = ε(a) then this is equal to ε(a)f(v) = a.f(v). Conversely, if the evaluation

map is always A-linear, then taking V = A, v = 1A yields f(S(a1)a2) = f(ε(a)1A)

for all f ∈ A∗ which implies S(a1)a2 = ε(a)1A.

4) The element a.λ = ε(a)λ gets mapped to

v 7→ ε(a)λv.

This is equal to

a.(v 7→ λv) = (v 7→ a1S(a2)v)

if S satisfies the second antipode axiom. Conversely, taking V = A, v = 1A yields

the second antipode axiom if k → Endk(A) is A-linear.

Definition 4.3. — Let H be a bialgebra, A an algebra.

1) Let H be an A-left-module such that H → Endk(A) is an algebra homomorphism.

We say A is an H left module algebra if for all a, b ∈ A and x ∈ H

x.(ab) = (x1.a)(x2.b) and x.1A = ε(x)1A.

That is, we require that µA and ηA are H-linear. It suffices to verify these axioms

on an algebra generating set of H.
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2) Let σ, τ ∈ Algk(A,A), δ ∈ Homk(A,A). We say δ is a (σ, τ)-derivation, if

δ(ab) = σ(a)δ(b) + δ(a)τ(b).

This is equivalent to requiring that

A→M2(A), a 7→

(
σ(a) δ(a)

0 τ(a)

)
is an algebra homomorphism.

Proposition 4.4. — Let H be a bialgebra, A a H left module algebra, g, h ∈ G(H), and

x ∈ H (g, h)-primitive. Then the element g ∈ B operates on A as an algebra homomor-

phism. That is, A → A, a 7→ g.a is an algebra homomorphism. The element x operates

on A as a (g.−, h.−)-derivation.

Proof. — It holds that

g.(ab) = (g1.a)(g2.b) = (g.a)(g.b)

and

g.(1A) = ε(g)1A = 1A.

Moreover,

x.(ab) = (g.a)(x.b) + (x.a)(h.b).

Definition 4.5. — Let H be a bialgebra, A an H left module algebra. The algebra

A#H := A⊗H as vector space, with a#h = a⊗ h and

(a#g)(b#h) = ag1.b#g2.h

for all a, b ∈ A, g, h ∈ H is called the smash product algebra of A and H. We use the

notation

a = a#1 ∈ A#H, g = 1#g ∈ A#H.

Thus a#g = (a#1)(1#g) = ag and

ga = g1.a#g2 = g1.ag2.

Definition 4.6. — Let A be a k-algebra, σ ∈ Algk(A,A), δ : A→ A a (σ, id)-derivation.

We define the algebra extension A ⊂ A[x, σ, δ] as follows. Let H = k < g, x > be the

bialgebra with g group-like and x (g, 1)-primitive. The algebra A becomes an H left module

algebra via g.a = σ(a) and x.a = δ(a) for all a ∈ A. We define the sub algebra

A[x, σ, δ] := A⊗ k[x] ⊂ A#H.
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This is well-defined since ∆(k[x]) ⊂ H⊗k[x]. The extension A ⊂ A[x, σ, δ] is termed Ore

extension. Every element y ∈ A[x, σ, δ] has a unique representation y =
∑

i≥0 aix
i (with

but finitely many coefficients equal to zero). For a ∈ A it holds that

xa = g.a#x+ x.a#1 = σ(a)x+ δ(a).

Example 4.7. — 1) Weyl algebra: k < x, t | xt = tx + 1 >' k[T ][X, id, d
dT

]. Hence

(tixj)i,j≥0 is a k-basis of the Weyl algebra.

2) Quantum plane: k < g, x | gx = qxg >' k[X]#k[G], q ∈ k×, with G group-like and

G.X = qX. Hence (xigj)i,j≥0 is a k-basis of the quantum plane.

3) k < g, h, x | gh = 1 = hg, gx = qxg >' k[X]#k(G), q ∈ k× with G group-like and

G.X = qX. Hence (xigj)i≥0,j∈Z is a k-basis.

4) Taft Hopf algebra: For q ∈ k× a primitive n-th root of unity

k < g, x | gn = 1, xn = 0, gx = qxg >' k[X]/(Xn)#k[G]/(Gn − 1)

with G group-like, G.X = qX. Hence the Taft Hopf algebra has dimension n2 and

(xigj)0≤i,j<n is basis.

Remark 4.8. — For the Taft Hopf algebra B we are in the situation

k[g] �
�

//

=

��

B

~~~~

k[g]

with the arrows denoting Hopf algebra homomorphisms. This is analogous to the semi-

direct product: If M and H are groups with

H �
� ι

//

=

��

M

π~~~~

H

then M ' GoH with G = kerπ.

Example 4.9 (Quantum enveloping algebra of sl2). — Let q ∈ k\{0,±1}. Then

the algebra Uq(sl2) generated by indeterminates E,F,K,K−1 subject to the relations

KK−1 = 1 = K−1K

KEK−1 = q2E

KFK−1 = q−2F

EF − FE =
K −K−1

q − q−1
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is a Hopf algebra with K group-like, E (K, 1)-primitive, F (1, K−1)-primitive. It holds

that

Uq(sl2) ' A[E, σ, δ]

with

A = k < F,K,K−1 | KK−1 = 1 = K−1K,KF = q−2FK >,

and σ ∈ Algk(A,A) the algebra endomorphism with σ(K) = q−2K and σ(F ) = F , and δ :

A→ A the (σ, id)-derivation given by δ(K) = 0 = δ(K−1) and δ(F ) = (K−K−1)(q−q−1).

In particular, (F iKjE`)i∈N0,j∈Z,`∈N0 is a k-basis of Uq(sl2).

Proof. — Checking that Uq(sl2) is a Hopf algebra will be an exercise. We are going to

verify that Uq(sl2) ' A[E, σ, δ].

To this end, let us first check that A[E, σ, δ] is well-defined. It is clear that σ is a well-

defined algebra homomorphism. As for δ, we need to show that the algebra homomorphism

ϕ : A→M2(A) with

ϕ(F ) =

(
F K−K−1

q−q−1

0 F

)

ϕ(K) =

(
q−2K 0

0 K

)

ϕ(K−1) =

(
q2K−1 0

0 K−1

)

is well-defined. Indeed,

ϕ(K)ϕ(K−1) = I = ϕ(K−1)ϕ(K),

and

ϕ(K)ϕ(F ) =

(
q−2K 0

0 K

)(
F K−K−1

q−q−1

0 F

)
=

(
q−2KF q−2KK−K−1

q−q−1

0 KF

)
,

and

ϕ(F )ϕ(K) =

(
F K−K−1

q−q−1

0 F

)(
q−2K 0

0 K

)

=

(
q−2FK K−K−1

q−q−1 K

0 FK

)

=

(
KF KK−K−1

q−q−1

0 q2KF

)
.
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The relations of the Uq(sl2) hold in the Ore extension A[E, σ, δ]. It is clear that

KK−1 = 1 = K−1K and KF = q−2FK

holds in A[E, σ, δ]. Moreover,

EK = σ(K)E + δ(K) = q−2KE

and

EF = σ(F )E + δ(F ) = FE +
K −K−2

q − q−1
.

This yields well-defined algebra homomorphism

ψ : Uq(sl2)→ A[E, σ, δ].

By our previous examples we know that A has a k-basis (F iKj)i≥0,j∈Z. Hence A[E, σ, δ]

has a k-basis (F iKjE`)i≥0,j∈Z,`≥0. The algebra homomorphism ϕ maps the vector space

generating family (F iKjE`)i≥0,j∈Z,`≥0 of Uq(sl2) to the k-basis (F iKjE`)i≥0,j∈Z,`≥0 of

A[E, σ, δ]. Hence it is an isomorphism.

Remark 4.10. — sl2 = {A ∈M2(k) | tr(A) = 0} has a k-basis given by

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

sl2 is a Lie algebra with Lie bracket given by [A,B] = AB −BA. Thus

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Its universal enveloping algebra

U(sl2) = k < e, f, h | he− eh = 2e, hf − fh = −2f, ef − fe = h >

is a cocommutative Hopf algebra with e, f, h primitive.
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5. Comodules and comodule algebras

Definition 5.1. — Let C be a coalgebra.

1) Let V be a vector space and δ : V → V ⊗ C a k-linear map that we denote by

δ(v) = v0 ⊗ v1. We say (V, δ) is a right C comodule if

δ(v0)⊗ v1 = v0 ⊗∆(v1)

v = v0ε(v1)

for all v ∈ V . That is:

V ⊗k (C ⊗k C) V ⊗k C
id⊗∆
oo V

δ
oo

δ
||

(V ⊗k C)⊗k C

'

OO

V ⊗k C
δ⊗id
oo

.

and

V ⊗k C
id⊗ε

// V ⊗k k

V

δ

OO

'
99

2) Let (V, δV ) and (W, δW ) be C right comodules. A k-linear map f : V → W is a

termed C-colinear or C comodule homomorphism if

δW (f(v)) = f(v0)⊗ v1

for all v ∈ V .

3) Left comodules are defined analogously. We let MC and CM denote the categories

of C right comodules and C left comodules.

4) A subspace V ′ ⊂ V of a C right comodule V is a subcomodule if δ(V ′) ⊂ V ′ ⊗ C.

Remark 5.2. — 1) A coalgebra homomorphism ϕ : C → D induces a functor MC →
MD with (V, δ) 7→ (V, (id⊗ ϕ)δ).

2) Let H be a bialgebra, V,W ∈MH . Then V ⊗kW ∈MH via δ(v⊗w) = v0⊗w0⊗v1w1.

Also k ∈MH via k → k ⊗H, 1 7→ 1⊗ 1.

Proof. — It holds that

v0 ⊗ w0 ⊗∆(v1w1) = v0 ⊗ w0 ⊗ v1w1 ⊗ v2w2 = δ(v0 ⊗ w0)⊗ v1w1

and

(v0 ⊗ w0)ε(v1w1) = v ⊗ w.

Lemma 5.3. — C a coalgebra, V a finite dimensional vector space with basis v1, . . . , vn.
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1) Let δ : V → V ⊗C be a k-linear with δ(vj) =
∑n

i=1 vi ⊗ ci,j. The map δ is a C right

comodule structure if and only if ∆(ci,j) =
∑

` ci,` ⊗ c`,j and ε(ci,j) = δi,j.

Proof. — It holds that
n∑
i=1

δ(vi)⊗ ci,j =
n∑
h=1

n∑
i=1

vh ⊗ ch,i ⊗ ci,j.

2) Let (ei,j)i,j be the standard basis of Mn(k) and (xi,j)i,j the corresponding dual basis

of Mn(k)∗. Then

{δ : V → V ⊗ C | δ right comodule structure} ' Coalg(Mn(k)∗, C)

δ 7→

(
xi,j 7→ ci,j with δ(vj) =

n∑
i=1

vi ⊗ ci,j

)
Proof. — It holds that ∆(xi,j) =

∑n
`=1 xi,` ⊗ x`,j because∑

`

xi,`(A)x`,j(B) =
∑
`

ai,`b`,j = xi,j(AB)

for all A = (ai,j) ∈Mn(k), B = (bi,j)i,j ∈Mn(k). Also

ε(xi,j) = xi,j(I) = δi,j.

Theorem 5.4. — Let C be a coalgebra, V ∈MC.

1) V is the union of all its finite dimensional C subcomodules.

2) C is the union of all its finite dimensional subcoalgebras.

Proof. — It suffices to verify 1). Let 0 6= v ∈ V . We need to show that v is contained in

some finite dimensional subcomodule. Let (ci)i∈I be a basis of C. Let (vi)i ∈ V be the

unique elements with

δ(v) =
∑
i

vi ⊗ ci.

Here all but finitely many vi = 0. It clearly holds that

v = v0ε(v1) ∈ V ′ :=
∑
i

kvi.

Moreover, ∑
i

δ(vi)⊗ ci =
∑
i

vi ⊗∆(ci) ∈ V ′ ⊗ C ⊗ C.

As C =
⊕

i kci we have V ⊗ C ⊗ C '
⊕

i V ⊗ C ⊗ kci. Applying the projection to the

ith component to
∑

i δ(vi)⊗ ci yields

δ(vi) ∈ V ′ ⊗ C
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for all i.

Definition 5.5. — Let H be a bialgebra, A an algebra, δ : A → A ⊗ H an H right

comodule structure. We say (A, δ) is a right comodule algebra if δ is an algebra homo-

morphism.

This is equivalent to requiring that µ and η are colinear.

Proof. — It holds that

(µ⊗ id)δA⊗A(a⊗ b) = a0b0 ⊗ a1b1

and

δ(µ(a⊗ b)) = (ab)0 ⊗ (ab)1.

That is, µ is colinear if and only if δ(ab) = δ(a)δ(b) for all a, b. Likewise δ(1) = 1A ⊗ 1H
if and only if η is colinear, since

(η ⊗ id)δk(λ) = λ1A ⊗ 1H

and

δ(η(λ)) = λδ(1A).

Remark 5.6. — 1) Let A be an algebra, H a bialgebra. A is an H left module algebra,

if it is an algebra in HM with respect to ⊗k. (That is, if µ and η are H-linear.) A

is an H right comodule algebra if it is in algebra in MH with respect to ⊗k. (That

is, if µ and η are H-colinear.)

2) Let A be an algebra, H a bialgebra, δ : A→ A⊗H an algebra homomorphism. Then

δ is a right comodule algebra structure if the axioms are satisfied on some algebra

generating set of A.

3) A bialagebra homomorphism ϕ : H → H ′ induces a functor from the category of H

right comodule algebras to H ′ right comodule algebras.

Example 5.7. — 1) If H is a bialgebra, A an H left module algebra. Then A#H is

an H right comodule algebra via id⊗∆.

2) G a group, N�G a normal subgroup. Then k[G] is a k[G/N ] right comodule algebra

via δ(g) = g ⊗ ḡ.

3) If ϕ : H → H ′ is a bialgebra homomorphism, then H is a H ′ right comodule algebra

via (id⊗ ϕ)∆.

4) k[X1, . . . , Xn] is a k[Xi,j | 1 ≤ i, j ≤ n] right comodule algebra via δ(xn) =
∑n

`=1 x`⊗
x`,i. (Recall ∆(Xi,j) =

∑n
`=1 Xi,` ⊗X`,j and ε(Xi,j) = δi,j.)

Lemma 5.8. — Let X, Y, Z be vector spaces such that Z is finite dimensional. Then

Hom(X, Y ⊗ Z) ' Hom(Z∗ ⊗X, Y ), δ 7→ (f ⊗ x 7→ x0f(x1)).
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Proof. — The tensor product is left-adjoint to the Hom functor, hence

Hom(Z∗ ⊗X, Y ) ' Hom(X,Hom(Z∗, Y )).

As Z is finite dimensional we have Z ' Z∗∗ and

Hom(Z∗, Y ) ' Y ⊗ Z∗∗ ' Y ⊗ Z.

Here y ⊗ z corresponds to Z∗ → Y, f 7→ f(z)y. So a linear map δ : X → Y ⊗ Z

corresponds to x 7→ (f 7→ x0f(x1)). And this map in turn corresponds to Z∗ ⊗ X →
Y, f ⊗ x 7→ x0f(x1).

Definition 5.9. — Let C be a coalgebra , V a vector space, δ : V → V ⊗ C k-linear.

Then (V, δ) is a C right comodule structure if and only if the corresponding map

µ : C∗ ⊗ V → V, f ⊗ v 7→ v0f(v1)

is a module structure (that extends the k-vector space structure on V ). We say the C∗-

module structure µ is adjungated to δ. If ϕ : V → W is a linear map with V,W ∈ MC

then ϕ is a C comodule homomorphism if and only if it is C∗-linear.

Proof. — Consider the map

κ : C∗ → Endk(V ), f 7→ (v 7→ v0f(v1)).

Then

κ(f ∗ g)(v) = v0(f � g)(∆(v1))

and

κ(f)κ(g)(v) = κ(f)(v0g(v1)) = v00f(v01)g(v1).

The two expressions are equal for all f, g ∈ C∗ if and only if

δ(v0)v1 = v0∆(v1).

Moreover, κ(1C∗)(v) = κ(ε)(v) = v0ε(v1) is equal to id(v) = v if and only if v0ε(v1) = v.

This shows that δ is a comodule structure if and only if µ is an extending module structure.

For f ∈ C∗, v ∈ V it holds that

ϕ(f.v) = ϕ(v0f(v1)) = ϕ(v0)f(v1)

and

f.(ϕ(v)) = ϕ(v)0f(ϕ(v)1).

The two expressions are equal for all f ∈ C∗ if and only if

ϕ(v0)⊗ v1 = ϕ(v)0 ⊗ ϕ(v)1.
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Theorem 5.10. — 1) Let C be a finite dimensional coalgebra, V a vector space. Then

the C right comodule structures on V correspond bijectively to the extending C∗ left

module structures.

2) Let H be a finite dimensional algebra, A an algebra. Then the H right comodule

algebra structures on A correspond bijectively to the extending H∗ left module algebra

structures.

3) MC ' C∗M and likewise for the categories of H right comodule algebras and H∗ left

module algebra structures.

Proof. — We already verified 1). In order to check 2), let the comodule structure δ : A→
A⊗H correspond to the module structure µ : H∗ ⊗ A→ A.

Then δ is a comodule algebra structure if and only if µA : A⊗ A→ A and ηA : k → A

are H colinear with respect to the comodule structures on A⊗ A and k.

We know that µ is a module algebra structure if and only if µA and ηA are H∗-linear

with respect to the H∗ module structures on A⊗ A and k.

We also now that H colinearity is equivalent to H∗ linearity on the adjungated H∗

module structure. Hence it suffices to show that H∗ module structures on A ⊗ A and k

induced by ∆H∗ and εH∗ are the adjungated structures to the H comodule structures on

A⊗ A and k.

Indeed, for all a, b ∈ A and f ∈ H∗

f.(a⊗ b) = f1.a⊗ f2.b

= a0f1(a1)⊗ b0f2(b1)

= (a0 ⊗ b0)f1(a1)f2(b1)

= (a0 ⊗ b0)f(a1b1).

This verifies that A ⊗ A carries the H∗ module structure that is adjungated to the H

module structure.

Also, for all f ∈ H∗

f.1k = εH∗(f) = f(1H) = (id� f)(1k ⊗ 1H).

Hence k carries the H∗ module structure that is adjungated to its H comodule structure.

Part 3) follows from parts 1) and 2).

6. Affine groups

6.1. Affine schemes, monoids, and groups. —

Definition 6.1. — Let C be a category. A functor F : C → Set is representable if there

is an object C ∈ C such that F ' C(C,−).
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Lemma 6.2 (Yoneda). — 1) Let F : C → Set be a functor and C ∈ C an object.

Then

Mor(C(C,−), F ) ' F (C)

(αE)E 7→ αC(idC)

(αE : C(C,E)→ F (E), f 7→ F (f)(x))E ← [ x

2) For C,D ∈ C:

Mor(C(C,−), C(D,−)) ' C(D,C)

(αE)E 7→ αC(id)

C(g,−)←[ g

Proof. — It is clear that 2) follows from 1). Let us first check that the two maps are well-

defined. If (αE)E is a natural transformation from C(C,−) to F then αC : C(C,C)→ F (C)

and consequently αC(idC) ∈ F (C). Conversely, if x ∈ F (C) then the maps

αE : C(C,E)→ F (E), f 7→ F (f)(x), E ∈ C

are well-defined and functorial in E. Indeed, if g : E → E ′ is a morphism in C, then

C(C,E)
C(id,g)

//

αE

��

C(C,E ′)
αE′

��

F (E)
F (g)

// F (E ′)

because

(F (g)αE)(f) = F (g)F (f)(x) = F (gf)(x) = αE′(gf) = (αE′C(id, g))(f).

To see that the two constructions are inverse to each other, note that for x ∈ F (C) it

holds that

F (idC)(x) = x.

Conversely, if (αE)E is a natural transformation from C(C,−) to F , then for each f ∈
C(C,E) it holds that

C(C,C)
C(id,f)

//

αC

��

C(C,E)

αE

��

F (C)
F (f)

// F (E)

and hence

F (f)(αC(idC)) = αE(C(id, f)(idC)) = αE(f).
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Remark 6.3. — We are sweeping some set-theoretic aspects under the table, since our

naive definition that classes are just collections of sets does not work for the collection

Mor(C(C,−), F ).

Remark 6.4. — Let F : C → D be a functor.

1) F is called faithful, if for each X, Y ∈ C the map

C(X, Y )→ D(X, Y ), f 7→ F (f)

is injective. We say F is full, if this map is surjective, and fully faithful if it is

bijective.

2) We say F is essentially surjective, if for each D ∈ D there is an object C ∈ C such

that F (C) ' D.

3) The functor F is an equivalence of categories, if and only if it is fully faithful and

essentially surjective.

Proof. — Suppose that F is fully faithful and for each D ∈ D there is an object G(D) ∈ C
with an isomorphism βD : F (G(D)) ' D. This defines a map G from the objects of D
to the objects of C (using a suitable axiom of choice). Since F is fully faithful it holds

that for any morphism D
g−→D′ in D there is a unique morphism G(D)

f−→G(D′) with

F (f) = β−1
D′ gβD. We set G(g) = f , hence

FG(D)

FG(g)

��

βD
// D

g

��

FG(D′)
βD′
// D′

Since F is a functor it follows that FG is a functor too, and (βD)D is natural isomorphism

from FG to idD. As F is faithful, this implies that G is also a functor. It remains to

verify that GF ' idC. To this end, note that

F (GF ) = (FG)F ' (idD)F ' F.

In other words, for all C
h−→C ′

FGF (C)

FGF (h)

��

'
// F (C)

F (h)

��

FGF (C ′)
'
// F (C ′).
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Since F is fully faithful, it follows that

GF (C)

GF (h)

��

'
// C

h

��

GF (C ′)
'
// C ′.

Remark 6.5. — Let C and D denote categories.

1) A functor F : C → Set is representable, if there is an object C ∈ C such that

F ' C(C,−). We may from the category E of representable functors from C → Set

with natural transformations as sets.

2) The functor

Cop → E , C 7→ C(C,−)

is fully faithful by the Yoneda lemma and hence an equivalence of categories.

Definition 6.6. — Let Ak denote the category of commutative k-algebras. We let Mon

denote the category of monoids and Gr the category of groups. The forgetful functors from

these categories to the category Set of sets will be denoted by Fo.

1) A representable functor F : Ak → Set is called an affine scheme. We let Schk denote

the category of affine schemes.

2) A representable functor F : Ak → Mon is called an affine monoid. We let Monk
denote the category of affine monoids.

3) A representable functor F : Ak → Gr is called an affine group. We let Grk denote

the category of affine groups.

4) For each algebra A ∈ Ak the affine scheme Sp(A) := Algk(A,−) is called the spec-

trum of A. Thus

Sp : Aop
k ' Schk.

Example 6.7. — 1) An : Ak → Gr, A 7→ (An,+) is an affine group with

An ' Sp(k[T1, . . . , Tn]).

2) GLn : Ak → Gr, A 7→ GLn(A) is an affine group with

GLn ' Sp(k[(Ti,j)1≤i,j≤n, d
−1 | d−1det(Ti,j)i,j = 1].

3) If chark = p > 0 then αp : Ak → Gr, A 7→ ({a ∈ A | ap = 0},+) is an affine group

with

αp ' Algk(k[T ]/(T p),−).



42 BENEDIKT STUFLER

6.2. Groups in the category of affine schemes. —

Theorem 6.8. — 1) If H is a commutative bialgebra, then Sp(H) is an affine monoid

with respect to the ∗-product. For a bialgebra homomorphism ϕ : H → H ′ the

natural transformation Sp(ϕ) : Sp(H ′) → Sp(H) is a morphism of monoids. Hence

we obtain a functor

Sp : {com. k-bialgebras}op → Monk

This functor is fully faithful. In Sp(H)(H⊗H) it holds that ∆ = i1∗i2 if i1(x) = x⊗1

and i2(x) = 1⊗ x. In Sp(H)(k) it holds that ε is the unit element.

Proof. — Let H and H ′ be bialgebra. Then

Algk(H
′, H)

Sp
// Schk(Sp(H), Sp(H ′))

BiAlgk(H
′, H)

?�

OO

Sp
// Monk(Sp(H), Sp(H ′))

?�

OO

and the first row is a bijection. This readily yields that Sp is full. What is left

to show is that if ϕ : H ′ → H is an algebra homomorphism such that Sp(ϕ) re-

spects the monoid structures on Sp(H) and Sp(H ′) then ϕ is already a bialgebra

homomorphism. Indeed, since

Algk(H,A)→ Algk(H
′, A), ψ 7→ ψϕ

is a monoid homomorphism for all commutative k-algebras A, the special case A =

H ⊗H and ψ = ∆H = i1 ∗ i2 yields

∆Hϕ = (i1ϕ) ∗ (i2ϕ),

that is

ϕ(x)1 ⊗ ϕ(x)2 = ϕ(x1)⊗ ψ(x2).

Likewise, for A = k and ψ = εH the unit element in Algk(H, k) it follows that

εH′ = εHϕ.

2) If H is a commutative Hopf algebra, then Sp(H) is an affine group. Hence we obtain

a fully faithful functor

Sp : {com. k-Hopf algebras}op → Grk

In Sp(H)(H) it holds that S = id−1.
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3) If A and B are commutative k-algebras / bialgebras / Hopf algebras, then

Sp(A⊗B) ' Sp(A)× Sp(B).

as affine schemes / monoids / groups.

4) If G is an affine monoid / group, then there is a commutative bialgebra / Hopf algeba

H with G ' Sp(H) as affine monoids / groups. In particular,

Sp : {com. k-bialgebras}op ' Monk

Sp : {com. k-Hopf algebras}op ' Grk.

Proof. — Without loss of generality we may assume that there is a commutative

algebra H with G(A) = Sp(H)(A) for all commutative algebras A. We are going

to show that there is a bialgebra structure / Hopf algebra structure (H,∆, ε) such

that the monoid structure / group structure on G(A) is the ∗-multiplication monoid

/ group structure on Sp(H)(A) for all commutative algebras A.

Consider the multiplication of Sp(H) as a functor

µ : Sp(H)× Sp(H)→ Sp(H)

and the unit element as a functor

η : 1 7→ Sp(H).

Since Sp is fully faithful, there is an algebra homomorphism ∆ : H → H ⊗H such

that

Sp(H ⊗H ⊗H)
'

Sp(id⊗∆)
//

Sp(∆⊗id)

��

Sp(H ⊗H)

'

Sp(∆)

��

Sp(H)× Sp(H)× Sp(H)
id×µ

//

µ×id

��

Sp(H)× Sp(H)

µ

��

Sp(H)× Sp(H)
µ

// Sp(H)

Sp(H ⊗H)

'

Sp(∆)
// Sp(H)

'

.

Since Sp is faithful, this implies that

H ⊗H ⊗H H ⊗Hid⊗∆
oo

H ⊗H

∆⊗id

OO

H.
∆

oo

∆

OO

The rest of the proof works analogously.
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5) From an abstract point of view, what happened in the last proof is that the equivalence

Sp : Aop
k ' Schk induces equivalences

Monk ' {monoids in Schk with respect to ×}

' {monoids in Aop
k with respect to ⊗}

' {commutative k-bialgebras}op

and

Grk ' {groups in Schk with respect to ×}

' {groups in Aop
k with respect to ⊗}

' {commutative k-Hopf algebras}op.

Theorem 6.9. — Let V be a vector space of dimension n, H a commutative Hopf algebra,

G ' Sp(H) an affine group. Then

{δ : V → V ⊗H | δ H-comodule structure} ' Grk(G,GLn).

Proof. — Since H is a Hopf algebra and

d := det(Ti,j)i,j ∈ k[(Ti,j)i,j]

is group-like, it follows that any bialgebra homomorphism from k[(Ti,j)i,j] to H factors

through the localization

k[(Ti,j)i,j, d
−1 | dd−1 = 1].

Hence the injection

BiAlgk(k[(Ti,j)1≤i,j≤n, d
−1], H) �

�
// BiAlgk(k[(Ti,j)1≤i,j≤n], H)

induced by the epismorphism

k[(Ti,j)i,j] // // k[(Ti,j)i,j, d
−1 | dd−1 = 1]

is actually a bijection. Using that k[(Ti,j)i,j, d
−1] is a Hopf algebra and that we established

that Sp : {commutative Hopfalgebras}op → Grk is an equivalence

{δ : V → V ⊗H | δ H-comodule structure} ' BiAlgk(k[(Ti,j)1≤i,j≤n], H)

' BiAlgk(k[(Ti,j)1≤i,j≤n, d
−1], H)

' Grk(Sp(H), Sp(k[(Ti,j)1≤i,j≤n, d
−1]))

' Grk(Sp(H), GLn).

Definition 6.10. — 1) An affine scheme X is algebraic if X ' Sp(A) for an algebra

A that is finitely generated as algebra.
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2) A morphism X
α−→Y of affine schemes is a closed embedding, if the algebra homo-

morphism ϕ : B → A with X ' Sp(A), Y ' Sp(B) and

X
α

//

'

Y

'

Sp(A)
Sp(ϕ)

// Sp(B)

is surjective.

Remark 6.11. — 1) If X
α−→Y is a closed embedding, then X(R)

αR−→Y (R) is injec-

tive for all R ∈ Ak.

2) The inverse needs not hold. For example, k[T ] ⊂ k(T ) is not surjective, but

Sp(k(T ))(R)→ Sp(k[T ])(R) is injective for all R ∈ Ak.

Theorem 6.12. — If G is an affine algebraic group, then there is a closed embedding

G 7→ GLn.

Proof. — Let H be a commutative Hopf algebra with G ' Sp(H). Let x1, . . . , xm be an

algebra generating set of H that is linear independent. Then there is a finite dimensional

subcomodule V ⊂ H with x1, . . . , xm ∈ V . We may extend (xi)i to a basis x1, . . . , xn of

V . The corresponding algebra homomorphism

k[(Ti,j)i,jd
−1]→ H, Ti,j 7→ xi,j

with ∆(xj) =
∑

i xi ⊗ xi,j is surjective, because xj =
∑

` ε(x`)x`,j.

Definition 6.13. — X an affine scheme, G an affine group, µ : X×G→ X a morphism.

We say (X,µ) is a G-scheme and µ is an operation of G on X if for all R ∈ Ak

µR : X(R)×G(R)→ X(R)

is an operation of the group G(R) on the set X(R).

Example 6.14. — An × SLn → An is an operation.

Theorem 6.15. — Let G ' Sp(H) be an affine group, X ' Sp(A) an affine scheme.

Then

{µ : X ×G→ X operation} ' {δ : A→ A⊗H right comodule algebra struct}
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Proof. — Suppose that µ : X ×G→ X is an operation. Then

Sp(A⊗H ⊗H)
'

Sp(id⊗∆)
//

Sp(δ⊗id)

��

Sp(A⊗H)

'

Sp(∆)

��

X ×G×G
id×µ

//

µ×id

��

X ×G
µ

��

X ×G
µ

// X

Sp(A⊗H)

'

Sp(δ)
// Sp(A)

'

.

Since Sp is faithful, this implies that

A⊗H ⊗H A⊗Hid⊗∆
oo

A⊗H

δ⊗id

OO

A.
δ

oo

δ

OO
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7. Lie algebras and their universal enveloping algebras

7.1. Lie algebras. —

Definition 7.1. — Let g be a k-vector space and [−,−] : g × g → g a k-bilinear map.

We say g is a Lie algebra if

[x, x] = 0 and [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ g.

Remark 7.2. — 1) If g is a Lie algebra then [x, y] = −[y, x].

Proof. — It holds that 0 = [x− y, x− y] = 0− [x, y]− [y, x] + 0.

2) Any vector space V is a lie algebra with [v, v] = 0 for all v ∈ V .

3) If A is an associative algebra then A− with A− := A and [x, y] := xy − yx is a Lie

algebra.

Definition 7.3. — 1) A linear map f : g → g′ between Lie algebras is a Lie algebra

homomorphism, if f([x, y]) = [f(x), f(y)] for all x, y ∈ g.

2) A subspace a ⊂ g is a sub Lie algebra if [x, y] ∈ a for all x, y ∈ a.

3) A subspace a ⊂ g is an ideal if [x, y] ∈ a for all x ∈ a and y ∈ g. Notation: a � g.

In this case g/a is a Lie algebra.

4) If f : g → g′ is a Lie algebra homomorphism, then ker f � g, imf ⊂ g is a sub Lie

algebra, and

imf ' g/ ker f.

Definition 7.4. — 1) Let A be a k-vector spaces and µ : A×A→ A a k-bilinear map.

We say a linear map d : A→ A is a derivation, if d(µ(a, b)) = µ(d(a), b) +µ(a, d(b))

holds for all a, b ∈ A. The set Der(A,A) ⊂ Endk(A)− of all derivations is a sub Lie

algebra. If (A, µ) has a unit element then d(1) = 0.

2) If g is a Lie algebra, then for all x ∈ g the map adx : g→ g, y 7→ [x, y] is a derivation.

The map

ad : g→ Der(g, g)

is a Lie algebra homomorphism.

Proof. — It holds that

adx([y, z]) = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [adx(y), z]− [y, adx(z)]

and

ad[x,y](z) = [[x, y], z] = [x, [y, z]]− [y, [x, z]] = (adxady − adyadx)(z).
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3) Let H be a bialgebra. Then P (H) = {x | ∆(x) = x ⊗ 1 + 1 ⊗ x} ⊂ H− is a

subliealgebra. If chark = p > 0 then x ∈ P (H) implies xp ∈ P (H).

Proof. — For x, y ∈ P (H) it holds that ∆(xy − yx) is given by

(x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)

= xy ⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ xy − (yx⊗ 1 + y ⊗ x+ y ⊗ x+ 1⊗ yx)

= (xy − yx)⊗ 1 + 1⊗ (xy − yx).

4) Let H be a bialgebra. Then Derε(H, k) denotes the set of all ε-derivations from H to

k, that is linear maps d : H → k with d(ab) = d(a)ε(b) + ε(a)d(b) for all a, b ∈ H. It

holds that Derε(H, k) ⊂ (H∗)− is a sub lie algebra.

Proof. — For d, d′ ∈ Derε(H, k) it holds that d ∗ d′ − d′ ∗ d ∈ Derε(H, k) because for

all a, b ∈ H

(d ∗ d′ − d′ ∗ d)(ab) = d(a1b1)d′(a2b2)− d′(a1b1)d′(a2b2)

= (d(a1)ε(b1) + ε(a1)d(b1))(d′(a2)ε(b2) + ε(a2)d′(b2))

− (d′(a1)ε(b1) + ε(a1)d′(b1))(d(a2)ε(b2) + ε(a2)d(b2))

= (d ∗ d′ − d′ ∗ d)(a)ε(b) + ε(a)(d ∗ d′ − d′ ∗ d)(b).

5) H 7→ Derε(H, k) is a functor from the category of Hopf algebras over k to the category

of Lie algebras over k.

Example 7.5. — 1) sln = {A ∈Mn(k) | tr(A) = 0} ⊂Mn(k)− is a sub Lie algebra.

2) For Q ∈Mn(k) it holds that o(Q) = {X ∈Mn(k) | QX +XᵀQ = 0} ⊂Mn(k)− is a

sub Lie algebra.

Remark 7.6. — We saw in the exercises that if B is a bialgebra, then for each x ∈ B+ =

ker(ε) it holds that

∆(x) ∈ 1⊗ x+ x⊗ 1 +B+ ⊗B+.

Theorem 7.7. — Let A be a commutative Hopf algebra, G = Sp(A) an affine group,

A+ = ker(εA) the augmentation ideal.

1) It holds that

Derε(A, k) '
(
A+/(A+)2

)∗
d 7→ (ā 7→ d(a))

(a 7→ f(a− ε(a)1A))←[ f
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Proof. — The ideal (A+)2 is generated by terms of the form ab with a, b ∈ A+, and

for each such term and each d ∈ Derε(A, k) it holds that

d(ab) = d(a)ε(b) + ε(a)d(b) = 0.

This shows that the map Derε(A, k) → (A+/(A+)2)
∗

is well-defined. Conversely,

given f ∈ (A+/(A+)2)
∗

it follows that the map

df : A→ k, a 7→ f(a− ε(a)1A)

is an ε-derivation. To see this, note that for all a, b ∈ A

df (a)ε(b) + ε(a)df (b) = f(aε(b)− ε(a)ε(b)1A + ε(a)b− ε(a)ε(b)1A)

and

aε(b)− 2ε(a)ε(b)1A + ε(a)b− (ab− ε(ab)1A)

= −ab+ aε(b) + ε(a)b− ε(ab)1A
= (a− ε(a)1A)(ε(b)1A − b)

∈ (A+)2.

It is clear that the two constructions are inverse to each other, yielding Derε(A, k) '
(A+/(A+)2)

∗
.

2) The quotient algebra k[T ]/(T 2) is generated by τ = T̄ . Let π : k[τ ]→ k be the algebra

homomorphism with π(τ) = 0. We set

Lie(G) := ker(G(π) : G(k[τ ])→ G(k))

= {ϕ ∈ Algk(A, k[τ ]) | πϕ = ε}

Then

Derε(A, k) ' Lie(G)

d 7→ (a 7→ ε(a) + d(a)τ)

is a bijection.

Proof. — Let d ∈ Derε(A, k) and ϕd : A → k[τ ], a 7→ ε(a) + d(a)τ . Then ϕd is an

algebra homomorphism, because d(1) = 0 and for all a, b ∈ A

ϕd(a)ϕd(b) = (ε(a) + d(a)τ)(ε(b) + d(b)τ)

= ε(ab) + (d(a)ε(b) + ε(a)d(b))τ

= ε(ab) + d(ab)τ.

Conversely, any element ϕ ∈ Lie(G) is of the form ϕd for some d ∈ A∗, and using

that 1, τ is a basis a similar calculation yields that this already implies that d ∈
Derε(A, k).
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3) The isomorphism

Derε(A, k) ' Lie(G)

is an isomorphism of Lie algebras. We define the a vector space structure and Lie

algebra structure on Lie(G) as follows. Let ∆, i1, i2 ∈ Algk(k[τ ], k[τ ] ⊗ k[τ ]) be the

algebra homomorphisms with

∆(τ) = τ ⊗ τ

i1(τ) = τ ⊗ 1

i2(τ) = 1⊗ τ.

For each λ ∈ k we let fλ ∈ Algk(k[τ ], k[τ ]) be the algebra homomorphism with

fλ(τ) = λτ . For ϕ, ϕ′ ∈ Lie(G), ϕ = ε+ dτ , ϕ′ = ε+ d′τ , d, d′ ∈ Derε(A, k) we set

ϕ+ ϕ′ := ϕ ∗ ϕ′ = ε+ (d+ d′)τ

and

λ.ϕ = G(fλ)(ϕ) = fλϕ = ε+ (λd)τ.

We define [ϕ, ϕ′] by

G(∆)([ϕ, ϕ′]) = [G(i1)(ϕ), G(i2)(ϕ′)] = ghg−1h−1

with g = G(i1)(ϕ), h = G(i2)(ϕ′). That is

[ϕ, ϕ′] = ε+ [d, d′]τ.

4) It holds that

(A 7→ Lie(Sp(A))) ' (A 7→ Derε(A, k))

functors from commutative Hopf algebras over k to Lie algebras over the field k.

Corollary 7.8. — 1) If G ⊂ G′ is an affine closed subgroup, then Lie(G)→ Lie(G′)

is a sub Lie algebra.

Proof. — Without loss of generality G = Sp(H) and G′ = Sp(H ′). Let the closed

embedding G → G′ be given by Sp(ϕ) with ϕ : H ′ → H a surjective Hopf algebra

homomorphism. Then

Derε(H, k)→ Derε(H
′, k), d 7→ dϕ

is injective and an Lie algebra homomorphism.

2) It holds that Lie(GLn) 'Mn(k)−
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Proof. — We have

Lie(GLn) = ker(GLn(k[τ ])
GLn(π)−→ GLn(k)) = {E + τA | A ∈Mn(k)}.

because any element of the form E + τA is invertible with inverse E − τA (since

τ 2 = 0).

The sum of X = E + Aτ ∈ Lie(GLn) and Y = E + A′τ ∈ Lie(GLn) is given by

X + Y = (E + Aτ)(E + A′τ) = E + (A+ A′)τ

and for λ ∈ k the scalar product of λ and E + Aτ in Lie(GLn) is given by

λ.X = E + λA.

The Lie bracket of X and Y is defined by

[X, Y ] = E + τC

with

E + τ ⊗ τC = (E + τ ⊗ 1A)(E + 1⊗ τA′)(E − τ ⊗ 1A)(E − 1⊗ τA′)

= E + τ ⊗ τ(AA′ − A′A).

3) In particular, for any affine algebraic group G it holds that Lie(G) ↪→ Mn(k)− is a

sub Lie algebra for some n.

7.2. The universal enveloping algebra. —

Definition 7.9. — Let V be a vector space. Then

T (V ) :=
∐
n≥0

V ⊗n

is an algebra with multiplication given by

V ⊗m × V ⊗n → V ⊗m+n, (a, b) 7→ a⊗ b.

We call T (V ) the tensor algebra of V . If (vi)i∈I is a basis of V then

T (V ) ' k < xi, i ∈ I >

as algebras. For any algebra A and any k-linear map f : V → A there is a unique algebra

homomorphism ϕ : T (V )→ A such that the diagram

V
f
//

can

��

A

T (V )

ϕ

==
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commutes. That is,

Homk(V,A) ' Algk(T (V ), A).

Definition 7.10. — Let g be a Lie algebra. The factor algebra

U(g) = T (g)/ < x⊗ y − y ⊗ x− [x, y] | x, y ∈ g >

is called the universal enveloping algebra of g. We let σ denote the canonical map g →
U(g), x 7→ x̄. For any algebra A and any Lie algebra homomorphism f : g→ A− there is

a unique algebra homomorphism ϕ : U(g)→ A such that the diagram

g
f
//

σ

��

A

U(g)

ϕ

==

commutes. That is,

LieAlgk(g, A
−) ' Algk(U(g), A).

Remark 7.11. — 1) If g is a Lie algebra with basis (xi)i∈I and [xi, xj] =
∑

`∈I a
`
i,jx`

for all i, j then

U(g) ' k < (xi)i∈I | xixj − xjxi =
∑
`∈I

a`i,jx` for all i, j > .

2) This yields the representation of the enveloping algebra U(sl2) of Remark 4.10.

Corollary 7.12. — 1) U(g) is a Hopf algebra with σ(x) primitive for all x ∈ g.

Proof. — The maps

∆̃ : g→ (U(g)⊗ U(g))−, x 7→ σ(x)⊗ 1 + 1⊗ σ(x)

ε̃ : g→ k−, x 7→ 0

S̃ : g→ (U(g)op)−, x 7→ −x.

are Lie algebra homomorphisms. Hence they induce algebra homomorphisms ∆ :

U(g) → U(g) ⊗ U(g), ε : U(g) → k and S : U(g) → U(g)op that satisfy the Hopf

algebra axioms on the algebra generating set σ(g) ⊂ U(g).

2) For any bialgebra H and any Lie algebra homomorphism f : g → P (H) there is a

unique bialgebra homomorphism ϕ : U(g)→ H such that the diagram

g
f
//

σ

��

P (H) �
�

// H

U(g)

ϕ

55
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commutes. That is,

LieAlgk(g, P (H)) ' BiAlgk(U(g), H).

Definition 7.13. — Let g be a Lie algebra, V a vector space, and µ : g × V → V a

bilinear map that we denote by µ(x, v) = x.v for all x ∈ g, v ∈ V . The pair (V, µ) is called

a g-module if for all x, y ∈ g, v ∈ V it holds that

[x, y].v = x.(y.v)− y.(x.v).

Definition 7.14. — Let V,W be g-modules. A linear map f : V → W is called g-linear,

if for all x ∈ g and v ∈ V it holds that f(x.v) = x.f(v).

Remark 7.15. — 1) Let V be a vector space, g a Lie algebra. Then

{µ : g× V → V g module structure}

' LieAlgk(g,Endk(V )−)

' Algk(U(g),Endk(V ))

' {µ : U(g)× V → V U(g) module structure}.

A linear map f : V → W is g-linear with respect to g-module structures on V and

W if and only if it is U(g)-linear with the corresponding U(g)-module structures.

2) U(g)M' {g modules} is an equivalence of categories.

7.3. Hopf algebra filtrations. —

Definition 7.16. — 1) (A, (An)n≥0) filtered algebra: A algebra,

A0 ⊂ A1 ⊂ . . . ⊂ A, A =
⋃
n≥0

An

sub vector spaces, 1 ∈ A0, AnAm ⊂ An+m for all n,m ≥ 0.

2) (C, (Cn)n≥0) filtered coalgebra: C coalgebra,

C0 ⊂ C1 ⊂ . . . ⊂ C, C =
⋃
n≥0

Cn

sub vector spaces, ∆(Cn) ⊂
∑n

i=0Ci ⊗ Cn−i for all n ≥ 0.

3) (H, (Hn)n≥0) filtered bialgebra: H bialgebra and (Hn)n≥0 is both an algebra and coal-

gebra filtration.

4) (H, (Hn)n≥0) filtered Hopf algebra: H Hopf algebra, (Hn)n≥0 bialgebra filtration,

S(Hn) ⊂ Hn for all n ≥ 0.

Definition 7.17. — Let (A, (An)n≥0) be a filtered algebra.
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1) The algebra

gr(A) =
∐
n≥0

An/An−1, A−1 = 0

with multiplication

Am/Am−1 × An/An−1 → Am+n/Am+n−1, (ā, b̄) 7→ āb

is the graded algebra associated to A.

2) (M, (Mn)n≥0) filtered A right module: M A right module, MmAn ⊂ Mm+n for all

m,n ≥ 0.

gr(M) =
∐
n≥0

Mn/Mn−1, M−1 = 0

is a gr(A) right-module via

Mm/Mm−1 × An/An−1 →Mm+n/Mm+n−1, (m̄, ā) 7→ m̄a.

Remark 7.18. — A left/right module is noetherian if any ascending sequence of left/right

modules stabilizes. Equivalently, all left/right submodules are finitely generated.

A ring is left/right noetherian if it is left/right noetherian as left/right module over

itself.

Lemma 7.19. — Let (A, (An)n≥0) be a filtered algebra.

1) If gr(A) is an integral domain, then so is A.

Proof. — Suppose that there are m,n ≥ 0 with m+n minimal such that there exist

0 6= x ∈ Am and 0 6= y ∈ An with xy = 0. Then x̄ȳ = 0 in gr(A) with x̄ ∈ An/An−1,

ȳ ∈ Am/Am−1. We assumed that gr(A) is an integral domain, hence it follows that

x ∈ An−1 or y ∈ Am−1. This contradicts the minimality assumption on m+ n.

2) If gr(A) is right- or left-noetherian, then so is A.

Proof. — Suppose that gr(A) is right-noetherian. Let I ⊂ gr(A) be a right-ideal.

Then (I, (I ∩ An)n≥0) is a filtered A right module, gr(I) ⊂ gr(A) with

(I ∩ An)/(I ∩ An−1) ↪→ An/An−1

is a right ideal of gr(A). We assumed that gr(A) is right noetherian, hence gr(I) is

finitely generated. That is, there are elements ā1, . . . , āN ∈ gr(I), āi ∈ (I ∩Ani
)/(I ∩

Ani−1) for all i, with

gr(I) =
N∑
i=1

āigr(A).
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We are going to show by induction that I ∩ An ⊂
∑N

i=1 aiA for all n. For n = 0

this is trivial. Suppose that n ≥ 1 and let x ∈ I ∩ An. Then x̄ ∈ gr(I) with

x̄ ∈ (I ∩ An)/(I ∩ An−1). Hence

x̄ ∈
N∑
i=1

āigr(A).

In fact, it even holds that

x̄ ∈
∑
i,ni≤n

āi (An−ni
/An−ni−1) .

That is, there are λi ∈ In ∩ Ani
(with ni ≤ n such that

x̄ =
∑
i,ni≤n

aiλi =
∑
i,ni≤n

aiλi

This implies that

x−
∑
i,ni≤n

aiλi ∈ I ∩ An−1.

By induction hypothesis it holds that I ∩ An−1 ⊂
∑N

i=1 aiA. Thus

x ∈
N∑
i=1

aiA.

Proposition 7.20. — Let A be an algebra and (xi)i∈I an algebra generating set. Then

(An)n≥0 with An the k-span of all xi1 · · · xim with m ≤ n, i1, . . . , im ∈ I is the natural

filtration of A.

7.4. The Poincaré-Birkhoff-Witt theorem. —

Definition 7.21. — Let g be a Lie algebra with basis (xi)i∈I . We let (Un(g))n≥0 de-

note the natural filtration of U(g) with respect to (σ(xi))i∈I and let gr(U(g)) denote the

corresponding graded algebra.

Lemma 7.22. — Let g be a Lie algebra with basis (xi)i∈I . Let ≤ be a total order on I.

1) gr(U(g)) is commutative.

Proof. — gr(U(g)) is generated as an algebra by (σ(xi))i∈I with (σ(xi)) ∈
U1(g)/U0(g). For all i, j ∈ I it holds that

σ(xi)σ(xj)− σ(xj)σ(xi) = σ([xi, xj]) ∈ U1(g)

and hence

σ(xi)σ(xj) = σ(xj)σ(xi)

in U2(g)/U1(g).
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2) Un(g) is already generated (as vector space) by all σ(xi1) · · ·σ(xim) with m ≤ n and

i1 ≤ . . . ≤ im.

Proof. — Follows from 1) and induction on n.

Lemma 7.23. — Let g be a Lie algebra with basis (xi)i∈I and suppose that I is equipped

with a total order. Let M = {(i1, . . . , in) | n ≥ 0, i1 ≤ . . . ≤ in elements of I}. For each

M = (i1, . . . , in) ∈M set

vM = σ(xi1) · · ·σ(xin).

For each i ∈ I we set

i#M = (i1, . . . , i`, i, i`+1, . . . , in)

with i` ≤ i ≤ i`+1. We write i ≤M if i ≤ i1 and in this case we set iM := i#M .

1) (vM)M∈M is a k-linear generating set of U(g).

2) U(g) is a g-module via g
can−→U(g)−−→Endk(U(g))−. That is, x.v = σ(x)v for all

x ∈ g and v ∈ U(g). Recall that M = (i1, . . . , in).

a) For all i ∈ I with i ≤M it holds that xi.vM = viM .

b) [xi, xj].vM = xi.(xj.vM)− xj.(xi.vM)

c) For all i ∈ I it holds that xi.vM = vi#M mod Un(g)

3) If there is a g-module V with basis (uM)M∈M such that a), b), and c) hold analogously

in V , then (vM)M∈g is a basis of U(g). (Here we have to replace Un(g) by the span

of all uM , M ∈M with length at most n.

Proof. — If
∑

M λMvM = 0, then it follows that 0 =
∑

M λMvMu∅ =
∑

λM
uM and

hence λM = 0 for all M .

4) Suppose that V is a vector space with basis (uM)M∈M and µ : g × V → V is a k-

bilinear map such that a), c) hold and b) holds for all i, j with j < i and j ≤ M .

Then b) holds and V is a g-module.

5) A pair (V, µ) as in 4) exists.

Theorem 7.24 (Poincaré–Birkohoff–Witt). — Let g be a Lie algebra with basis

(xi)i∈I and suppose that I is equipped with a total order. Then (vM)M∈M is a k-linear

basis of U(g).

Corollary 7.25. — 1) If g is a Lie algebra, then (U(g), (Un(g))n≥0) is a filtered Hopf

algebra.

2) If g is finite dimensional then U(g) is left- and right-noetherian.

3) U(g) is an integral domain.
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Lemma 7.26. — Let A be an algebra and a1, . . . , an, b1, . . . , bn ∈ A, aibj = bjai for all

i, j. Then

(a1 + b1) · · · (an + bn) =
n∑
v=0

∑
σ∈Sn

σ(1)<...<σ(v)
σ(v+1)<...<σ(n)

aσ(1) · · · aσ(v)bσ(v+1) · · · bσ(n)

Lemma 7.27. — 1) The canonical map σ : g→ U(g) is injective.

2) The map

k[Ti | i ∈ I]→ gr(U(g)), Ti 7→ σ(xi) ∈ U1(g)/U0(g)

is an algebra isomorphism.
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8. Selected classical algebraic results

8.1. The Jacobson radical of noncommutative rings. — In this section R denotes

a ring and M denotes an R left-module (or right-module).

Definition 8.1. — 1) M is called simple if M 6= 0 and if 0 and M are the only

submodules of M .

2) For any subset X ⊂M we set

Ann(X) = {r ∈ R | rX = 0}.

Proposition 8.2. — For N $ M a submodule it holds that M/N is simple if and only

if N 6= M is a maximal submodule.

Proposition 8.3. — For all m ∈M it holds that R/Ann(m) ' Rm.

Proposition 8.4. — Suppose that M 6= 0. Then the following statements are equivalent.

1) M is simple

2) There is a maximal left-ideal I �R such that M ' R/L as left-modules.

3) For any 0 6= m ∈M it holds that M = Rm.

Proposition 8.5. — 1) The Jacobson radical Ra(M) is defined as the intersection of

all maximal submodules U $M . (If no such submodules exist then we set Ra(M) =

M .)

2) It holds that Ra(M/Ra(M)) = 0.

3) If M is finitely generated then Ra(M) (M .

Lemma 8.6. — Let R be a ring and a, b ∈ R.

1) Then 1− ab has a left-inverse (right-inverse) if and only if 1− ba has a left-inverse

(right-inverse).

2) More precisely, If x is a left-inverse (right-inverse) of 1 − ab then 1 + bxa is a

left-inverse (right-inverse) of 1− ba.

3) The set

I = {r ∈ R | 1− rx has a left-inverse for all x ∈ R}
is a two-sided ideal of R.

Lemma 8.7. — Let R be a ring and r ∈ R. Then the following statements are equivalent:

1) r ∈ Ra(RR)

2) r ∈ Ra(RR)

3) For any x ∈ R it holds that 1− xr has a left-inverse

4) For any x ∈ R it holds that 1− rx has a right-inverse

5) For all x, y ∈ R it holds that 1− xry ∈ R×

6) For any simple left R-module M it holds that rM = 0
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7) For any simple right R-module M it holds that Mr = 0

Corollary 8.8. — For any ring R it holds that Ra(R) := Ra(RR) = Ra(RR)�R is an

ideal.

Proposition 8.9. — If M is simple then any ring homomorphism R → EndZ(M) fac-

torizes over R/Ra(R). The two ring R and R/Ra(R) have the same simple left-modules

and right-modules.

Proposition 8.10. — For any any r ∈ R it holds that r ∈ R× if and only if r̄ ∈
(R/Ra(R))×.

Proposition 8.11. — It holds that Ra(R) RM ⊂ Ra(RM).

Lemma 8.12 (Nakayama). — Suppose that 0 6= M is finitely generated. Let U ⊂M be

a submodule with M = Ra(R)M + U . Then it follows that M = U .

Proposition 8.13. — A left-ideal I ⊂ R is called nil if each element x ∈ I is nilpotent.

If this is the case then I ⊂ Ra(R).

Proof. — Let x ∈ I. Then for all r ∈ R it holds that rx ∈ I, yielding that rx is

nilpotent. This means that 1 + rx is invertible. As this holds for all r ∈ R it follows that

x ∈ Ra(R).

Definition 8.14. — We say M is artinian if any non-empty set of submodules has a

minimal element. This is equivalent to requiring that any descending chaing of submodules

stabilizes.

Proposition 8.15. — Let 0→ M ′ → M → M ′′ → 0 be an exact sequence. Then M is

artinian if and only if M ′, M ′′ are artinian.

Proposition 8.16. — If M1, . . . ,Mn are artinian then so is M1 ⊗ . . .⊗Mn.

Proof. — The sequence 0→M1 →M1 ×M2 →M2 → 0 is exact.

Proposition 8.17. — If RR is artinian and M is finitely generated then M is artinian.

Definition 8.18. — An ideal I is called nilpotent if In = 0 for some n ≥ 1.

Proposition 8.19. — If RR or RR is artinian, then Ra(R) �R is the largest nilpotent

ideal of R.

Proof. — Suppose that RR is artinian. Set I = Ra(R). Then there is an n ≥ 1 with

In = I2n. Suppose that In 6= 0. Then there is a left-ideal 0 6= L � R that is minimal

with InL = L. Hence there is an element 0 6= x ∈ L with 0 6= Inx ⊂ L. It holds that

In(Inx) = I2nx = Inx. By minimality of L it follows that L = Inx. Since x ∈ L it follows

that there is an element y ∈ In with yx = x. This implies (y − 1)x = 0. But y ∈ Ra(R)
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implies that y − 1 ∈ R× and hence x = 0. This contradicts our assumption. It follows

that In = 0.

Proposition 8.20. — R is a skew field if and only if RR is simple (equivalently, if RR

is simple).

Definition 8.21. — We say a ring R is local if any of the following equivalent conditions

is satisfied.

1) R has a unique maximal left ideal

2) R has a unique maximal right ideal

3) R/Ra(R) is a skew field

4) Ra(R) = R \R×

5) R \R× is closed under addition

6) R \R× is an ideal of R

Proof. — The first three equivalences are clear. For any r ∈ R it holds that r ∈ R× if and

only if r̄ ∈ (R/Ra(R))×. Hence R/Ra(R) is a skew field if and only if Ra(R) = R \ R×.

Suppose that R \ R× is closed under addition. Let x ∈ R \ Ra(R). Then there is a

maximal ideal I�R with x /∈ I. Hence R = I+Rx. That is, there is an y ∈ I, r ∈ R with

1 = y+ rx. Since y is not invertible and we assumed that R \R× is closed under addition

it follows that rx is invertible. In particular, x has a left-inverse. As this holds for all

x ∈ R \Ra(R) it follows that N := R/Ra(R) is simple as a left R module. Consequently,

N is also simple as an R/Ra(R) left module. Hence R/Ra(R) is a skew field.

Proposition 8.22. — If R is local then any element e ∈ R with e2 = e satisfies e = 1

or e = 0.

Proof. — If e ∈ R× then it follows that e = 1. If e /∈ R× then it follows that 1 − e is

invertible and hence e = 0.

Proposition 8.23. — Let R be a ring and suppose that each element r ∈ R \ R× is

nilpotent. Then R is local.

Proof. — Suppose that R is not local. Then there are x, y ∈ R \ R× with x + y ∈ R×.

We may assume that x + y = 1. But this implies that y = 1 − x is invertible since x is

nilpotent.

8.2. The Krull–Schmidt theorem. — In this section R denotes a ring and M a left

R-module.

Proposition 8.24. — There is a bijection between the collection of families (Mi)i∈I of

submodules of M with M =
⊕

i∈IMi and the collection of families (ei)i∈I of endomor-

phisms of M that satisfy eiej = δi,jei for all i, j and id =
∑

i∈I ei.
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Here such a family (ei)i∈I of endomorphisms gets mapped to the family (ei(M))i∈I of

submodules. Conversely, a family (Mi)i∈I of submodules with M =
⊕

i∈IMi gets mapped

to the family (πiιi)i∈I of endomorphisms with ιi : Mi ⊂ M the subset embedding and

πi : M →Mi the projection.

Proposition 8.25. — Let f ∈ End(M).

1) If M is artinian and f a monomorphism, then f is an isomorphism.

2) If M is noetherian and f an epimorphism, then f is an isomorphism.

3) If M is artinian and noetherian then there exists an integer N such that for all

n ≥ N it holds that M = imfn ⊕ ker fn.

Proof. — 1) Suppose that M is artinian. The descending chain imf ⊂ imf 2 ⊂ . . .

stabilizes after a finite number n of steps. Then for any x ∈M there is an element y ∈M
with f 2n(y) = fn(x). This implies x− fn(y) ∈ ker fn. Since this holds for all x it follows

that M = imfn + ker fn. In particular, if f is injective it follows that f is also surjective.

2) Suppose that M is noetherian. Then the ascending chain ker f ⊂ ker f 2 ⊂ . . .

stabilizes after a finite number n of steps. This implies imfn ∩ ker fn = 0. If f is

surjective then this implies that is also injective.

3) If M is artinian and noetherian then we obtain M = imfn ⊕ ker fn.

Definition 8.26. — We say M is indecomposable if M 6= 0 and for any submodules

X, Y ⊂M with M = X ⊕ Y it holds that X = 0 or X = M .

Proposition 8.27. — Let M 6= 0.

1) M is indecomposable if and only if End(M) has no idempotent elements besides 0

and id.

2) If End(M) is local then M is indecomposable.

Proposition 8.28. — Let M 6= 0 be artinian and noetherian. Then M is indecomposable

if and only if End(M) is local.
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Lemma 8.29. — Suppose that the following diagram has exact diagonals:

0

��

0

A
i

  

B

??

X

g
>>

f

  

C

h
>>

B

��

0

??

0

The gi is an isomorphism if and only if fh is an isomorphism.

Proof. — Suppose that gi is an isomorphism. Then

X = imi⊕ ker g = imh⊕ ker f.

Thus fh is an isomorphism.

Proposition 8.30. — Let X,X ′, Y, Y ′ be modules and φ : X⊕X ′ → Y ⊕Y ′ an isomor-

phism. Let α, α′, β, β′ be the morphism with

Y

##

β

))
X

α′

--

//

α
11

// X ⊕X ′
φ
// Y ⊕ Y ′

;;

##

Y ⊕ Y ′
φ−1

// X ⊕X ′ // X

Y ′

;;

β′

55

Then it holds that

id = βα + β′α′.

1) If βα is an isomorphism then X ′ ' ker β ⊕ Y ′.
2) If β′α′ is an isomorphism then X ′ ' Y ⊕ ker β′.

Lemma 8.31. — Let X,X ′, Y, Y ′ be modules, X ⊕X ′ ' Y ⊕ Y ′, X ' Y , End(X) local.

Then it follows that X ′ ' Y ′.

Lemma 8.32. — Let Y, Y ′, X1, . . . , Xn be modules such that
⊕n

i=1 Xi ' Y ⊕Y ′, End(Xi)

local for all i, and Y 6= 0. Then there is an index i such that the composition Xi → Y → Xi

is an automorphism of Xi.
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Theorem 8.33 (Krull–Schmidt). — Let X1, . . . , Xn, Y1, . . . , Ym be indecomposable

(and hence nonzero) modules. Suppose that End(Xi) is local for all i and

n⊕
i=1

Xi '
m⊕
j=1

Yj.

Then m = n and there is a permutation σ ∈ Sn with

Xi ' Yσ(i)

for all 1 ≤ i ≤ n.

Theorem 8.34. — Let M 6= 0 be artinian and noetherian. Then there are up to reorder-

ing unique indecomposable submodules M1, . . . ,Mn ⊂M with

M =
n⊕
i=1

Mi.

Definition 8.35. — We sy M is projective if for all modules X, Y , any epimorphism

f : X → Y and any morphism g : M → Y there is a morphism h : M → X wiwth g = fh.

Proposition 8.36. — The module M is projective if and only if there is a free module

F with submodules P, P ′ ⊂ F such that F = P ⊕ P ′ and M ' P .

Proposition 8.37. — Suppose that M is finitely generated. Then M is projective if

there is an integer n ≥ 1 and submodules P, P ⊂ Rn such that Rn = P ⊕ P ′ and M ' P .

Proposition 8.38. — If R is local then any finitely generated projective R module is

free.

Proof. — Let P 6= 0 be a finitely generated projective R module. Then there is an integer

n ≥ 1 and a module P ′ with

Rn ' P ⊕ P ′.

The endomorphism ring EndR(R) ' R is local. It follows that one of the compositions

R→ P → R is an automorphism of R. This yields P ' P1 ⊕R and hence

Rn ' P1 ⊕R⊕ P ′.

Using again that EndR(R) is local it follows that we may cancel the summand R from the

direct sum, yielding

Rn−1 ' P1 ⊕ P ′.

If P1 = 0 we are done. Otherwise we may iterate.
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8.3. The Wedderburn–Artin theorem. —

Definition 8.39. — 1) We say R is simple if R 6= 0 and 0 and R are the only two-

sided ideals of R.

2) We say R is semi-simple if Ra(R) = 0 and R is left-artinian or right-artinian.

Theorem 8.40 (Wedderburn–Artin). — Let R be a semisimple (left- or right-

artinian) ring. Then

R 'Mn1(D1)× . . .×Mnr(Dr)

for some skew fields D1, . . . , Dr and integers r, n1, . . . , nr ≥ 1. The pairs (Di, ni) are

unique up to reordering.

Lemma 8.41. — Suppose that k is an algebraically closed field and D is a finite dimen-

sional k-algebra. If D is a skew field then D = k.

Proof. — Let x ∈ D. Then there is a minimal integer n ≥ 1 such that 1, x, . . . , xn are

linear independent. This implies that there is a monic polynomial f ∈ k[x] with degree n

such that f(x). Since k is algebraically closed it follows that f has a zero ζ ∈ k. Hence

we may write f = (X − ζ)g for some monic polynomial g. Since n is minimal it follows

that g(x) 6= 0 and 0 = (x− ζ)g(x). Hence x = ζ ∈ k.

Corollary 8.42. — Suppose that k is an algebraically closed field and A is a finite

dimensional semi-simple k-algebra. Then there is a unique integer r ≥ 1 and up to

reordering unique integers n1, . . . , nr such that

A 'Mn1(k)× . . .×Mnt(k).

For each integer n ≥ 1 it holds that Mn(k) is simple. In particular, A is simple if and

only if A 'Mn(k) for some n ≥ 1.
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9. Cocommutative Hopf algebras in characteristic 0

9.1. Irreducible and pointed coalgebras. —

Definition 9.1. — Let C be a coalgebra.

1) C is called simple, if C 6= 0 and 0 and C are the only subcolagebras of C.

2) The subcoalgebra

C0 =
∑

D⊂C simple

D

is called the coradical of C.

3) We say C is pointed if every simple subcoalgebra 6= 0 of C has dimension 1.

4) We say C is irreducible if C has precisely one simple subcoalgebra.

Proposition 9.2. — 1) A coalgebra C is cocommutative if and only if C∗ is commu-

tative.

Proof. — If C is cocommuative then C∗ is commutative. Conversely, suppose that

C∗ is commutative. Let (xi)i be a basis of C and (ei)i the corresponding dual basis.

For x ∈ C write ∆(x) =
∑

i,j λi,jxi ⊗ xj. Then for all k, ` it holds that

λk,` = (ek ∗ e`)(x) = (e` ∗ ek)(x) = λ`,k.

2) Let D ⊂ C be a one-dimensional subcoalgebra. Then D is simple and there is a

group-like element g ∈ C with D = kg.

Proof. — Let D ⊂ C be a one-dimensional subcoalgebra, 0 6= x ∈ D. It must hold

that ∆(x) 6= 0 because otherwise x = x1ε(x2) = 0. Hence there is λ ∈ k× with

∆(x) = λx⊗x. Hence g = λx satisfies g 6= 0 and ∆(g) = g⊗ g. Hence g is grouplike

and D = kg.

3) If C is a simple coalgebra then C is finite dimensional and C∗ is a simple algebra.

If additionally k is algebraically closed then there is a unique integer n ≥ 1 with

C 'Mn(k)∗.

Proof. — C is finite dimensional since it is the union of its finite dimensional sub-

coalgebras. Let I � C∗ be an ideal. Then C∗ → C∗/I is a surjective algebra homo-

morphism. Consequently, (C∗/I)∗ → C∗∗ is an injective coalgebra homomorphism.

Since C∗∗ ' C is simple it follows that dimk(C
∗/I)∗ ∈ {0, dimk(C)}. That is, I = 0

or I = C∗.

If k is algebraically closed, then the Wedderburn–Artin theorem yields that C∗ '
Mn(k) for a unique integer n ≥ 1.

4) If C is a cocommutative coalgebra and k is algebraically closed then C is pointed.
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Proof. — Let D ⊂ C be a simple subcoalgebra. Then D is finite dimensional and

D ' Mn(k)∗ as coalgebra for a unique n. Since D is cocommutative it follows that

n = 1, that is D is one-dimensional.

Lemma 9.3. — Let 0 6= C be a coalgebra. Then there is a subcoalgebra 0 6= D ⊂ C that

is simple.

Proof. — Any coalgebra is the union of its finite dimensional subcoalgebras.

Definition 9.4. — Let V be a vector space, X ⊂ V and Y ⊂ V ∗ linear subspaces. We

set

X⊥ = {f ∈ V ∗ | f(X) = 0}

Y ⊥ = {v ∈ V | f(v) = 0 for all f ∈ Y }.

Proposition 9.5. — Let C be a coalgebra (not necessarily finite dimensional).

1) For I ⊂ C∗ it holds that I is a two-sided ideal if and only if I⊥ ⊂ C is a subcoalgebra.

2) For D ⊂ C it holds that D is a subcolagebra if and only of D⊥ is an ideal.

Proposition 9.6. — Let C be a finite dimensional coalgebra. Then X 7→ X⊥ and

Y 7→ Y ⊥ yield inclusion inverting bijections:

{X ⊂ C | X linear subspace} ' {Y ⊂ C∗ | Y linear subspace}

{D ⊂ C | D subcoalgebra}
?�

OO

' {I � C∗ | I two-sided ideal}
?�

OO

{D ⊂ C | D simple subcoalgebra}
?�

OO

' {I � C∗ | I maximal two-sided ideal}
?�

OO

In particular it holds that Ra(C∗) = C⊥0 with C0 the coradical of C. C is a simple coalgebra

if and only if C∗ is a simple algebra.

Proof. — It holds that

C⊥0 =

( ∑
D⊂C simple

D

)⊥
=

⋂
D⊂C simple

D⊥ =
⋂

I�C∗ maximal ideal

I = Ra(C∗).

Theorem 9.7. — Let (C, (C̃n)n≥0) be a filtered coalgebra. Then C0 ⊂ C̃0. In particular,

if C̃0 is one-dimensional then C is pointed and irreducible.
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Proof. — Suppose that there is a simple coalgebra D ⊂ C that is not a subset of C̃0.

Then there is an integer n ≥ 1 with D ⊂ C̃n and D∩ C̃n−1 = 0. In particular D∩ C̃0 = 0.

Hence there is an f ∈ C∗ with f(C0) = 0 and f |D = ε|D. This yields for all d ∈ D

d = d1f(d2) ∈
n∑
i=0

C̃if(C̃n−i) =
n−1∑
i=0

C̃if(C̃n−i) ∈ C̃n−1.

Corollary 9.8. — If g is a Lie algebra then U(g) is pointed and irreducible.

Theorem 9.9. — Suppose that k is characteristic 0. Let g be a Lie algebra with basis

(xi)i∈I . Let ' be a total order on I. For any m = (mi)i ∈ N(I)
0 we set

em =

∏
i∈I x

mi
i∏

i∈I mi!
.

1) (em)
m∈N(I)

0
is a k-basis of U(g).

2) For all m ∈ N(I)
0 it holds that ∆(em) =

∑
a+b=m ea ⊗ eb.

3) For any bialgebra H and any injective Lie algebra homomorphism

g ↪→ P (H)−

it holds that the induced bialgebra homomorphism

U(g) ↪→ H

is injective.

4) U(g)∗ ' k[[Ti | i ∈ I]], f 7→
∑

m∈N(I)
0
f(em)Tm.

5) P (U(g)) = g

9.2. The coradical filtration. —

Definition 9.10. — Let C be a coalgebra. For any two linear subspaces X, Y ⊂ C we

define the wedge product of X and Y as the preimage

X ∧ Y = ∆−1(X ⊗ C + C ⊗ Y ).

We also set ∧0X = 0 and

∧nX = (∧n−1X) ∧X = ∆−1((∧n−1X)⊗ C + C ⊗X).

Lemma 9.11. — Let C be a coalgebra and X,X ′, Y, Y ′, Z ⊂ C linear subspaces.

1) X ∧ Y = (X⊥Y ⊥)⊥

2) (X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z)

3) If X and Y are subcoalgebras then so is X ∧ Y
4) If X ⊂ X ′ and Y ⊂ Y ′ then X ∧ Y ⊂ X ′ ∧ Y ′
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Proof. — 1) It holds that

(X⊥Y ⊥)⊥ =

{∑
i

fi ∗ gi | fi ∈ X⊥, gi ∈ Y ⊥ for all i

}⊥
= {c ∈ C | (f ∗ g)(c) = 0 for all f ∈ X⊥, g ∈ Y ⊥}

= X ⊗ C + C ⊗ Y.

2) It follows that

(X ∧ Y ) ∧ Z = ((X ∧ Y )⊥Z⊥)⊥ = (X⊥Y ⊥Z⊥)⊥ = X ∧ (Y ∧ Z).

3) If X and Y are subcoalgebras, then X⊥ and Y ⊥ are ideals. Hence X⊥Y ⊥ is an ideal

and consequently X ∧Y = (X⊥Y ⊥)⊥ is a subcoalgebra. (There is no problem with C not

being finite dimensional.)

4) This is clear.

Definition 9.12. — Let C be a coalgebra and C0 its coradical. For all n ≥ 1 set

Cn = ∧n+1C0.

Then

C0 ⊂ C1 ⊂ C2 ⊂ . . .

is a coalgebra filtration. We call (Ci)i≥0 the coradical filtration of C.

Proof. — 1) We show that Cn ⊂ Cn+1 for all n ≥ 0 by induction. C0 is a subcoalgebra

and consequently it holds that C0 ⊂ C1. If Cn−1 ⊂ Cn then it follows that

Cn = ∆−1(Cn−1 ⊗ C + C ⊗ C0)

⊂ ∆−1(Cn ⊗ C + C ⊗ C0)

= Cn+1.

2) We show that ∆(Cn) ⊂
∑n

i=0Ci ⊗ Cn for all n. This is clear for n = 0. For n ≥ 1 it

holds for all 0 ≤ i ≤ n+ 1 that

Cn = (∧iC0) ∧ (∧n+1−iC0).

Setting C−1 = 0 this may be expressed by

Cn = Ci−1 ∧ Cn−i.

It also holds that ∆(Cn) ⊂ Cn ⊗ Cn since the wedge product of subcoalgebras is a

subcoalgebra. Hence Hence

∆(Cn) ⊂
n+1⋂
i=0

(Ci−1 ⊗ Cn + Cn ⊗ Cn−i)
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Choose any supplementary subspace Di of Ci−1 inside Ci. Then

Ci = D0 ⊕ . . .⊕Di

for all i ≥ 0. This implies

n+1⋂
i=0

(Ci−1 ⊗ Cn + Cn ⊗ Cn−i) =
n+1⋂
i=0

⊕
r≤i−1 or s≤n−i

Dr ⊗Ds

=
⊕
r+s≤n

Dr ⊗Ds

=
n∑
i=0

Ci ⊗ Cn−i.

3) We show that
⋃
i≥0Ci = C. If D ⊂ C is a subcoalgebra then the corresponding

coradical filtration (Di)i≥0 satisfies Di ⊂ Ci for all i. Hence without loss of generality

we assume that C is finite dimensional. Then C⊥0 = Ra(C∗) is nilpotent, that is

0 = (C⊥0 )n

for some n ≥ 1. Applying ⊥ to both sides yields

C = ((C⊥0 )n)⊥ = ∧nC0.

Corollary 9.13. — If f : C → D is a surjective coalgebra homomorphism, then D0 ⊂
f(C0).

Proof. — It holds that

f(C0) ⊂ f(C1) ⊂ . . .

is a coalgebra filtration. Consequently, D0 ⊂ f(C0).

9.3. Irreducible cocommutative Hopf algebras in characteristic 0. —

Theorem 9.14. — Suppose that k has characteristic 0. Then

{g | g Lie alg.} ' {H | H irred. cocom. Hopf alg.}

g 7→ U(g)

P (H)←[ H.

Proof. — The functors are well-defined and we already showed that P (U(g)) ' g. We also

know that the Hopf algebra morphism U(P (H))→ H that we obtain from the universal

property of the enveloping algebra is injective (since k has characteristic 0). It remains

to check that is also surjective. We will do this at the end of this section.

Definition 9.15. — 1) We let Ck denote the category of cocommutative coalgebras.
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2) We let Ek denote the category of cocommutative coalgebras.

3) For any C ∈ Ck we let

Cosp(C) : Eop
k → Set, E 7→ Coalg(E,C)

denote the cospectrum functor.

Proposition 9.16. — 1) Let C ∈ Ck and let R be a commutative finite dimensional

algebra. Then R⊗k C is an R-coalgebra with comultiplication and counit given by

R⊗k C
∆

55

id⊗∆C
// R⊗k C ⊗k C

'
// (R⊗k C)⊗R (R⊗k C)

and

ε : R⊗k C → R, r ⊗ c 7→ rε(c).

We have a functorial bijection of sets

G(R⊗k C) ' Coalg(R∗, C) = Cosp(C)(R∗)

t 7→ (f 7→ (f � id)(t)).

If C = H is a cocommutative Hopf algebra then R ⊗k H is a Hopf algebra over R

and this is a natural isomorphism of groups.

Proof. — Let

x =
∑
i

ri ⊗ ci ∈ R⊗ C

and let

ϕ : R∗ → C, f 7→
∑
i

f(ri)ci

be the corresponding map under the isomorphism

R⊗k C ' Homk(R
∗, C)

r ⊗ c 7→ (f 7→ f(r)c).

Then

∆(ϕ(f)) = ϕ(f1)⊗ ϕ(f2) for all f ∈ R∗

⇔
∑
i

f(ri)∆(ci) =
∑
s,t

f1(rs)f2(rt)cs ⊗ ct for all f ∈ R∗

⇔
∑
i

ri∆(ci) =
∑
s,t

f1(rs)f2(rt)︸ ︷︷ ︸
f(rsrt)

cs ⊗ ct for all f ∈ R∗

⇔ ∆(x) = x⊗ x.
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and

ε(x) = 1⇔
∑
i

riε(ci) = 1⇔
∑
i

f(ri)ε(ci)︸ ︷︷ ︸
ε(ϕ(f))

= f(1)︸︷︷︸
ε(f)

for all f ∈ R∗.

Now suppose that C = H is cocommutative Hopf algebra. It remains to check that

φ : G(R⊗H) ' Coalg(R∗, H)

is a group homomorphism. To this end, let x =
∑

i ri ⊗ ci and y =
∑

j sj ⊗ dj be

elements of G(R⊗H). It holds for all f ∈ R∗ that

(φ(x) ∗ φ(y))(f) = φ(x)(f1)φ(y)(f2)

=
∑
i

f1(ri)ci
∑
j

f2(rj)dj

=
∑
i,j

f(rirj)cidj

= φ(xy)(f)

and

φ(1⊗ 1)(f) = f(1)1H .

2) For any C ∈ Ck and any two finite dimensional commutative algebras R and S it

holds that

G((R× S)⊗ C) ' G(R⊗ C)×G(S ⊗ C).

Proof. —

G((R× S)⊗ C) ' Coalg((R× S)∗, C)

' Coalg(R∗, C)× Coalg(S∗, C)

' G(R⊗ C)×G(S ⊗ C).

3) Let C
f−→D be a morphism in Ck such that for any finite dimensional commutative

algebra R it holds that the map G(R ⊗ C)
id⊗f−→G(R ⊗D) is bijective. Then f is an

isomorphism.

Proof. — For any finite dimensional commutative algebra R it holds that

G(R⊗ C)

'
��

id⊗f
// G(R⊗D)

'
��

Coalg(R∗, C)
Ck(id,f)

// Coalg(R∗, D).
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That is, for any E ∈ Ek it holds that

Coalg(E,C)
Ck(id,f)−→ Coalg(E,D)

is bijective. This means that under the Yoneda bijection

Ck(C,D)→ Mor(Cosp(C),Cosp(D))

g 7→ Ck(id, g)

the map f gets mapped to a natural isomorphism. Since

Ck ' {F : Eop
k → Set | F ' Cosp(C) for some C ∈ Ck}

is an equivalence of categories this implies that f is a bijection.

Lemma 9.17. — Let C be a coalgebra over k and k ⊂ K a field extension. Then (K ⊗
C)0 ⊂ K ⊗ C0. In particular, if C is pointed and irreducible then so is K ⊗ C.

Proof. — Let C0 ⊂ C1 ⊂ . . . be the coradical filtration of C. Then K⊗C0 ⊂ K⊗C1 ⊂ . . .

is a coalgebra filtration of K ⊗ C and consequently

(K ⊗ C)0 ⊂ K ⊗ C0.

Theorem 9.18. — Let H be an irreducible, cocommutative Hopf algebra and R a finite

dimensional commutative algebra. Then

G(R⊗H) = {g ∈ 1⊗ 1 + Ra(R)⊗H | ∆(g) = g ⊗ g}.

Proof. — Since R is finite dimensional the collection Max(R) of maximal ideals is finite

by the Chinese remainder theorem. With Max(R) = {I1, . . . , In}, Ki = R/Ii, k ⊂ Ki

finite field extension it holds that

G(R/Ra(R)⊗H) ' G((K1 × . . .×Kt)⊗H)

' G(K1 ⊗H)× . . .×G(Kt ⊗H).

Since H is pointed and irreducible it follows that Ki⊗H is pointed and irreducible for all

i. In particular the unit element of Ki ⊗H is its only group-like element. It follows that

|G(R/Ra(R))⊗H)| = 1.

That is,

G(R⊗H) = ker(G(R⊗H)→ G(R/Ra(R)⊗H)).

This implies

G(R⊗H)− 1⊗ 1 ∈ ker(R⊗H → R/Ra(R)⊗H) = Ra(R)⊗H.
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For each g ∈ 1⊗ 1 + Ra(R)⊗H it holds that

ε(g) ∈ 1 + Ra(R) ⊂ R×

since each element of Ra(R) is nilpotent. Hence g is group-like if and only if ∆(g) =

g ⊗ g.

Theorem 9.19. — Let H be an irreducible cocommutative Hopf algebra and char(k) = 0.

Then for each finite dimensional commutative algebra R it holds that

Ra(R)⊗ P (H)
exp−→G(R⊗H), x 7→

∞∑
n=0

xn

n!

is bijective and functorial in R and H.

Proof. — Ra(R) is nilpotent, so exp yields a functorial bijection

Ra(R)⊗H ' 1⊗ 1 + Ra(R)⊗H

with inverse given by log. The sequence

0→ P (H) ⊂ H
∆−f−→H ⊗H

is exact with f(x) = x⊗ 1 + 1⊗ x for all x ∈ H. Since ⊗k is exact it follows that

0→ Ra(R)⊗ P (H)→ Ra(R)⊗H → Ra(R)⊗H ⊗H

is exact. Here r ⊗ y ∈ Ra(R)⊗ P (H) gets mapped to

r ⊗ y1 ⊗ y2 − r ⊗ y ⊗ 1− r ⊗ 1⊗ y.

Applying the canonical bijection R⊗H ⊗H ' (R⊗H)⊗R (R⊗H) yields that

Ra(R)⊗ P (H) = {x ∈ Ra(R)⊗H | ∆(x) = x⊗ 1 + 1⊗ x}.

For any x ∈ Ra(R) ⊗ H it holds that ∆(x) = 1 ⊗ x + x ⊗ 1 if and only if ∆(exp(x)) =

exp(x)⊗ exp(x). This follows from

exp(∆(x)) = ∆(x)

and

exp(1⊗ x+ x⊗ 1) = (1⊗ exp(x))(exp(x)⊗ 1) = exp(x)⊗ exp(x).

Remaining proof of Theorem 9.14. — In order to finalize the proof of Theorem 9.14 it

remains to show that the monomorphism U(P (H))→ H is surjective. We know that

ψ : P (U(P (H))) = P (H).
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Hence for any commutative algebra R it holds with H̃ = U(P (H)) that

Ra(R)⊗ P (H̃)

id⊗ψ
��

'
// G(R⊗ H̃)

id⊗ψ
��

Ra(R)⊗ P (H)
'
// G(R⊗H).

9.4. Cocommutative Hopf algebras in characteristic 0. —

Remark 9.20. — Let H be a Hopf algebra, G a group, H a k[G] left module algebra such

that for each g ∈ G it holds that

ĝ : H → H, x 7→ g.x

is a coalgebra homomorphism. That is, we assume that the left module algebra structure

is induced by a group homomorphism

ρ : G→ BiAlg(H,H).

Then H#k[G] is a Hopf algebra with smash product algebra structure and

∆(x#g) = x1#g ⊗ x2#g

ε(x#g) = ε(x)

S(x#g) = (1#g−1)(S(x)#1)

for all x ∈ H, g ∈ G.

Proof. — For any x, y ∈ H and g ∈ G we have

g.(xy) = (g1.x)(g2.x) = (g.x)(g.x) and g.1 = ε(g)1 = 1.

That is, k[G] left module algebra structures correspond to algebra homomorphisms k[G]→
Alg(H,H), that is a group homomorphism

G→ Alg(H,H), g 7→ ĝ.

Hence requiring that ĝ is a coalgebra homomorphism is equivalent to requiring that this

group homomorphism is actually a morphism

G→ BiAlg(H,H).
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It’s easy to see that ∆, ε satisfy the coalgebra axioms. Let’s check that they are algebra

homomorphisms. It holds that

∆((x#g)(y#h)) = ∆(x(g.y)#gh)

= x1(g.y)1#gh⊗ x2(g.y)2#gh

= x1(g.y1)#gh⊗ x2(g.y2)#gh

= (x1#g ⊗ x2#g)(y1#h⊗ y2#h)

= ∆(x#g)∆(y#h).

and

ε((x#g)(y#h)) = ε(xg.y#gh)

= ε(x)ε(g.y)

= ε(x)ε(y)

= ε(x#g)ε(y#h).

As for the antipode axioms:

S(x1#g)x2#g = (1#g−1)(S(x1)#1)(x2#g)

= (1#g−1)(S(x1)x2#g)

= ε(x)(g−1.1#g−1g)

= ε(x)1#1.

The rest is clear.

Lemma 9.21. — Let C be a coalgebra, Ci ⊂ C a subcoalgebra for each i ∈ I, and

E ⊂
∑

i∈I Ci a simple subcoalgebra. Then there is an index i ∈ I with E ⊂ Ci.

Proof. — Since E is finite dimensional we may assume that I is finite. By induction it

suffices to show that if E ⊂ Ci + Cj and E * Ci then E ⊂ Cj. In this case it holds

that E ∩ Ci = 0 since E is simple. Hence there is a functional f ∈ C∗ with f |E= ε and

f |Ci
= 0. Let x ∈ E. Then there are a ∈ Ci and b ∈ Cj with x = a+ b. Hence

x = x1ε(x2) = x1f(x2) = b1f(b2) ∈ Cj.

Remark 9.22. — Recall: If A is a finite dimensional algebra, then A is artinian and

noetherian as A-module. By the Krull–Schhmidt theorem it follows that A =
⊕n

i=1Ai for

some indecomposable A-submodules Ai ⊂ A. In particular, EndA(Ai) is a local ring for all
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i. Writing 1 =
∑n

i=1 ei with ei ∈ Ai it follows that eiej = δi,jei for all i, j and Ai = Aei.

Moreover,

EndA(Aei)
op ' eiAei

ϕ 7→ ϕ(ei) = ϕ(e2
i ) = eiϕ(ei)

(x 7→ xy)← [ y.

If A is commutative, this implies that Ai ' EndA(Ai)
op is a local ring with unit element

ei. In particular,

A =
n⊕
i=1

Ai '
n∏
i=1

Ai

is the product of local subrings.

Definition 9.23. — A subcoalgebra D of a coalgebra C is an irreducible component if

D is a maximal irreducible subcoalgebra.

Theorem 9.24. — Let C be a coalgebra.

1) Every sum of pairwise distinct simple subcoalgebras is direct.

Proof. — If Ei ⊂ C is simple for all i ∈ I and the sum
∑

iEi is not direct, then

there is an index i ∈ I with Ei ∩
⋂
j 6=iEj 6= 0. But this would entail Ei ⊂ Ej for

some j 6= i.

2) Every irreducible subcoalgebra of C is contained in a unique irreducible component

of C.

Proof. — Let D ⊂ C be a simple subcoalgebra. It suffices that the sum of all

irreducible subcoalgebras C ′i, i ∈ I that contain D is irreducible. Indeed, if E ⊂∑
iC
′
i is a simple coalgebra then it follows that E ⊂ C ′i for some i. Since C ′i is

irreducible and D ⊂ C ′i it follows that E = D.

3) The sum of all irreducible components of C is direct.

Proof. — Let Ci ⊂ C, i ∈ I be the irreducible components. If the sum is not direct,

then there is an index i ∈ I such that Ci ∩
∑

j 6=iCj 6= 0. Let E ⊂ Ci be the unique

simple subcoalgebra. Since Ci ∩
∑

j 6=iCj is a non-trivial subcoalgebra of Ci that

contains a simple coalgebra it follows that E ⊂ Ci ∩
∑

j 6=iCj. Hence there is an

index j 6= i with E ⊂ Cj. But this would imply Ci = Cj.x

4) If C is cocommutative, then C =
⊕

D⊂C irred. comp.D.
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Proof. — It suffices to show that C is the sum of irreducible subcoalgebras. With-

out loss of generality we assume that C is finite dimensional. Then C∗ is a finite

dimensional commutative algebra, yielding

C∗ '
n∏
i=1

Ai

for some local subalgebras Ai ⊂ C∗. This implies that A∗i is an irreducible coalgebra

for all i and

C '
n⊕
i=1

A∗i .

Proposition 9.25. — Let C,D be coalgebras. Then (C⊗D)0 ⊂ C0⊗D0. In particular,

if C and D are pointed then so is C ⊗D.

Proof. — Without loss of generality we assume that C and D are finite dimensional. We

define the ideal

I := C⊥0 ⊗D∗ + C∗ ⊗D⊥0 � C∗ ⊗D∗ = (C ⊗D)∗.

Our aim is to show that

(C ⊗D)0 ⊂ I⊥ ⊂ C0 ⊗D0.

As for the first inclusion, note that

C⊥0 = Ra(C∗)

is nilpotent since C∗ is finite dimensional (and hence artinian). Likewise it holds that D⊥0
is nilpotent. This implies that I is nilpotent. Since Ra((C ⊗D)∗) is the largest nilpotent

ideal of (C ⊗D)∗ it follows that

I ⊂ Ra((C ⊗D)∗) = (C ⊗D)⊥0 .

That is, (C ⊗D)0 ⊂ I⊥.+

As for the second inclusion, let x =
∑

i ci⊗di ∈ I⊥ with (di)i linear independent. Then

for all f ∈ C⊥0 and g ∈ D∗ it follows that

0 =
∑
i

f(ci)g(di) = g(
∑
i

f(ci)di).

Hence ∑
I

f(ci)di = 0

and consequently

f(ci) = 0
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for all i. That is, ci ∈ C⊥⊥0 = C0 for all i and consequently

I⊥ ⊂ C0 ⊗D.

Analogously, it follows that

I⊥ ⊂ C ⊗D0

and hence

I⊥ ⊂ C0 ⊗D0.

Theorem 9.26 (Cartier–Kostant). — Let H be a Hopfalgebra, G = G(H). For each

g ∈ G let Hg be the irreducible component that contains g. We set

H ′ =
⊕
g∈G

Hg.

1) The map

ρ : G→ HopfAut(H1), ρ(g)(x) = gxg−1

is a well-defined group homomorphism. It holds that

H1#k[G] ' H ′, x#g 7→ xg

is an isomorphism of Hopf algebras.

2) If H is pointed and cocommutative, then

H1#k[G] ' H.

Proof. — 2) follows from 1), because if H is pointed and cocommutative then H is the

sum of its irreducible components and all irreducible components are of the form Hg,

g ∈ G(H). It remains to verify 1). We proceed in small steps.

a) For all g ∈ G it holds that Hg = gH1 = H1g.

The map H → H, x 7→ gx is a coalgebra isomorphism because g is group-

like. Hence gH1 ⊂ H is an irreducible component. Since g ∈ gH1 it follows that

g.H1 = Hg. Likewise it follows that H1g = Hg.

b) For all g ∈ G it holds that S(Hg) ⊂ Hg−1
.

S : Hcop → H is a coalgebra homomorphism and H̃ := Hg ⊂ Hcop is a sub-

coalgebra. This entails that S(H̃) ⊂ H is a subcoalgebra and g−1 ∈ S(H̃). So

S(H̃)0 ⊂ S(H̃0) = kg−1x. Hence S(H̃) is irreducible, yielding S(Hg) ⊂ Hg−1
.

c) (H1)2 = H1 and H1 ⊂ H is a sub Hopf algebra.

H1 is pointed and irreducible, and hence so is H1⊗H1. Hence (H1)2 = im(H1⊗
H1 → H1) is also pointed and irreducible. This yields (H1)2 ⊂ H1. Conversely,

H1 = H11 ⊂ (H1)2.
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d) H ′ is a sub Hopf algebra.

For any g, h ∈ G it holds by a) that

HgHh = H1ghH1 = H1Hgh = H1H1gh = H1gh = Hgh.

Hence H ′ is a subalgebra. It is a subcoalgebra because all irreducible components

are subcoalgebras. It is a sub Hopf algebra by b).

e) ρ is well-defined and hence H1#k[G] is a Hopf algebra

For all g, h ∈ G it holds by a) that gHhg−1 = Hghg−1
.

f) H1#k[G] ' Hg as Hopf algebras

For any g ∈ G it holds that the multiplication H1#kg → Hg is an isomorphism

of vector spaces, yielding a linear isomorphism

ϕ : H1#k[G]→ H ′, x#g 7→ xg.

This is already a Hopf algebra isomorphism, since

ϕ((x#g)(y#h)) = ϕ(xgyg−1#gh) = xgyh = ϕ(x#g)ϕ(y#h)

and

(ϕ⊗ ϕ)(x1#g ⊗ x2#g) = x1g ⊗ x2g = ∆(xg).

Theorem 9.27 (Cartier–Kostant). — Suppose that k is characteristic 0 and is alge-

braically closed. Let H be a cocommutative Hopf algebra and set G = G(H), g = P (H)−.

Define

ρ : G→ LieAut(g), g 7→ (x 7→ gxg−1).

Then

U(g)#k[G] ' H, x#g 7→ xg

is an isomorphism of Hopf algebras with U(g)#k[g] a Hopf algebra via ρ.

Proof. — It holds that LieAut(g) ' HopfAut(U(g)), so ρ yields a group isomorphism

from G to HopfAut(U(g)) that sends an element g ∈ G to the corresponding conjugation

map.

H is pointed since it is cocommutative and k is algebraically closed (recall that we

deduced this from the Artin–Wederburn theorem, since the dual of a simple sub coalgebra

must be of the form Mn(k)∗ because k is algebraically closed, and n = 1 follows from

cocommutativity). It follows that

H1#k[G] ' H

as Hopf algebras.

It holds that (using that k is characteristic 0)

H1 ' U(P (H1)) ⊂ U(P (H)) ⊂ H.
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As the monomorphic image of U(P (H)) in H is irreducible and contains H1 it follows

that H1 = im(U(P (H)) ⊂ H).

Corollary 9.28. — If H is finite dimensional cocommutative Hopf algebra over an

algebraically closed field of characteristic 0 then H ' k[G(H)] is a group algebra.

Proof. — We have U(P (H)) ⊂ H and hence P (H) = 0 since H is finite dimensional.
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