I was invited to give a talk in the Set Theory Seminar of the University of Vienna on May 24, 2022.
Inner Models, Determinacy, and Sealing
Inner model theory has been very successful in connecting determinacy axioms to the existence of inner models with large cardinals and other natural hypotheses. Recent results of Larson, Sargsyan, and Trang suggest that a Woodin limit of Woodin cardinals is a natural barrier for our current methods to prove these connections. One reason for this comes from Sealing, a generic absoluteness principle for the theory of the universally Baire sets of reals introduced by Woodin. Woodin showed in his famous Sealing Theorem that in the presence of a proper class of Woodin cardinals Sealing holds after collapsing a supercompact cardinal. I will outline the importance of Sealing and discuss a new and stationary-tower-free proof of Woodin’s Sealing Theorem that is based on Sargsyan’s and Trang’s proof of Sealing from iterability. This is joint work with Grigor Sargsyan and Bartosz Wcisło.