Chang models over derived models with supercompact measures

(with T. Gappo and G. Sargsyan)

Journal of Mathematical Logic, accepted. PDF. arXiv. Bibtex.

Based on earlier work of the third author, we construct a Chang-type model with supercompact measures extending a derived model of a given hod mouse with a regular cardinal $\delta$ that is both a limit of Woodin cardinals and a limit of ${<}\delta$-strong cardinals. The existence of such a hod mouse is consistent relative to a Woodin cardinal that is a limit of Woodin cardinals. We argue that our Chang-type model satisfies $\mathsf{AD}^+ + \mathsf{AD}_{\mathbb{R}} + \Theta$ is regular + $\omega_1$ is ${<}\delta_{\infty}$-supercompact for some regular cardinal $\delta_{\infty}>\Theta$. This complements Woodin’s generalized Chang model, which satisfies $\mathsf{AD}^+ + \mathsf{AD}_{\mathbb{R}}+\omega_1$ is supercompact, assuming a proper class of Woodin cardinals that are limits of Woodin cardinals.