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Abstract. For a compact metric space X and a continuous transfor-
mation T : X → X with at least one transitive and recurrent orbit,
there is a set M0(T ) of T -invariant probability measures on X such that
for a comeager set of starting points the set of limit measures is exactly
M0(T ).

1. Introduction

For a compact metric space X and T : X → X a point x ∈ X is called
transitive resp. recurrent if its T -orbit (Tnx)n∈N is dense resp. meets ev-
ery neighbourhood of x infinitely many times. Furthermore M(X,T ) de-
notes the set of those µ ∈ M(X) (the compact metrizable space of all
Borel probability measures) which are T -invariant, and M(T, x) the set
of all limit measures of the sequence x = (xn)n∈N with xn = Tnx. By
definition, a limit measure of x is an accumulation point of the measures
µx,n = 1

n

∑n−1
n=0 δxn ∈ M(X), n = 1, 2, 3, . . ., δxn denoting the point mea-

sures concentrated in xn ∈ X. We will prove:

Theorem Let X be a compact metric space, T : X → X a continuous
transformation, x0 ∈ X a transitive and recurrent point and M0(T ) the
union of all M(T, x) with transitive x. Then M(T, x) = M0(T ) for most
x ∈ X, i.e. for all x ∈ X \E where the exceptional set E is meager (of first
Baire category).

Note that for infinite X the assumptions of the Theorem imply that X
is perfect (i.e. has no isolated points), hence uncountable, and that every
dense orbit is recurrent.

For an ergodic measure µ ∈ M(X,T ), Birkhoff’s ergodic theorem yields
that for µ-almost all x ∈ X the sequence x = (Tnx)n∈N is uniformly dis-
tributed with respect to µ, i.e. M(T, x) = {µ}. Thus the Theorem above
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can be considered as a topological counterpart in the sense of Baire cate-
gories (see also the classical textbook [O 80]) where the singleton {µ} has
to be replaced by the set M0(T ). The proof of the Theorem is the con-
tent of Section 2. Section 3 is a short discussion including examples where
M0(T ) = M(X,T ), i.e. where most points have maximal oscillation in the
sense of (21.17) in [DGS 76]. Section 4 shows that M0(T ) 6= M(X,T ) is
possible as well.

Related properties of the topologically typical distribution behaviour of
orbits have already been observed in [D 53], for arbitrary sequences by
Prof. Hlawka in his seminal paper [H 56]. For more recent investigations
cf. [Wi 97], [GSW 00], [GSW 07] and [TZ 10].

2. Proof of the Theorem

Let in this Section X,T and x0 be as in the assumptions of the Theorem.
For any sequence of mappings φn : X → Y (Y metric space) and y ∈ Y
the set X((φn), y) of all x ∈ X such that y is an accumulation point of
(φn(x))n∈N) can be written as

X((φn), y) =
⋂

N,k∈N

⋃
n≥N

φ−1
n (B(y,

1
k + 1

)).

(B(y, r) denotes the open ball with center y and radius r.) For any topo-
logical space X and continuous φn the sets φ−1

n (B(y, 1
k+1)) are open. This

shows that for continuous φn : X → Y , X((φn), y) is a Gδ-set and that
X((φn), y) is residual if and only if for all N, k ∈ N the set⋃

n≥N
φ−1
n

(
B(y,

1
k + 1

)
)

is dense in X. Take Y = M(X), φn : x 7→ µ(Tkx)k∈N,n = 1
n

∑n−1
k=0 δTkx

and y = µ ∈ M(T, x0). Since then µ ∈ M(T, Tn(x0)) for all n ∈ N,⋃
n≥N φ

−1
n (B(µ, 1

k+1)) is dense in X for all N, k ∈ N (the balls taken w.r.t.
any metric for the topology on M(X)). Hence:

Proposition 1. If µ ∈M(T, x0) then µ ∈M(T, x) for most x ∈ X.

As a subset of the compact metric spaceM(X), M0(T ) contains a count-
able dense subset {µn : n ∈ N}. Let Xµn denote the set of all x ∈ X with
µn ∈ M(T, x). By Proposition 1 each Xµn , n ∈ N, is residual in X. Hence
also the countable intersection X1 =

⋂
n∈NXµn is residual. For all x ∈ X1

and n ∈ N we have µn ∈M(T, x). Since M(T, x) is closed this implies:

Proposition 2. M0(T ) ⊆M(T ) ⊆M(T, x) for most x ∈ X.

It is well-known that in transitive systems most orbits are dense (cf. for
instance [DGS 76], 6.11). By the definition of M0(T ) as the union of the
M(T, x) with transitive x and since M(T, x) ⊆ M(X,T ) (cf. for instance
[GSW 07], Lemma 2.17 (1)) this implies the converse inclusion M(T, x) ⊆
M0(T ) for most x ∈ X, proving the Theorem.
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3. Discussion

Trivial examples for the Theorem are uniquely ergodic transformations
whereM0(T ) =M(X,T ) is a singleton. A less trivial example withM0(T ) =
M(X,T ) is the full shift, i.e. X = AN, the set of all sequences over a finite
alphabet A, and T = σ : x = (an)n∈N 7→ (an+1)n∈N (cf. [DGS 76] chap-
ter 21, in particular 21.18). The full shift also shows that the residual set
of all x ∈ X with M(T, x) = M0(T ), in general, does not coincide with
the set of all transitive and recurrent x: Take any sequence x which con-
tains all finite words, separated by sufficiently long blocks of 0’s. Then
M(T, x) = {δ0∞} 6=M(X,T ) = M0(T ) while x is transitive and recurrent.

It is clear that the transitivity assumption in the Theorem cannot be
omitted. (Otherwise we might have disjoint open sets with disjoint T -orbits
such that the Theorem must fail. Most trivial example: T the identity on X
where X contains at least two points.) However, some kind of generalization
of the Theorem to the intransitive case is possible. But since this requires a
much broader framework I do not go into this direction here.

Similarly to the transitivity assumption, the Theorem does not hold in
general if we omit the recurrence condition. Consider X = X1 ∪ {x0}, the
compact space X1 = {0, 1}N of all binary sequences plus an isolated point
x0. Let T = T0 ∪ T1 with the shift T1 = σ : (an)n∈N → (an+1)n∈N on X1

and T0 : x0 7→ x1 with some x1 ∈ X1. If x1 contains each binary word of
finite length, then x0 is a transitive point (but not recurrent). As already
mentioned above there is a M0(T1), namely the set of all invariant measures
on X1. If x1 is suitably chosen (see above), then M(T, x0) = M(T, x1) does
not contain all invariant measures. {x0}, as an open set, is not meager.
Thus, provided M(T, x1) 6= M(X,T1), there is no Baire-typical M0(T ) for
T considered as a transformation on the whole space X = X1 ∪ {x0}.

4. An example with M0(T ) 6=M(X,T )

Our example is the subshift generated by the binary sequence

x0 = a = (an)n∈N = a0a1a2 . . . = 0111a00212a0a10313a0a1a2 . . . .

LetX be the orbit closure of x0 under σ and T the restriction of σ toX. Note
that x0 is defined in such a way that each finite initial word of x0 occurs
infinitely many times in x0. Hence x0 is recurrent. Since X is the orbit
closure, x0 is also transitive. So the Theorem applies and M(T, x) = M0(T )
for most x ∈ X. Note that 1∞ = 111 . . . ∈ X since x0 contains all 1-blocks
1n, n ∈ N. Furthermore the point measure δ1∞ is shift invariant, hence
δ1∞ ∈ M(X,T ). So the proof of M0(T ) 6= M(X,T ) will be complete as
soon as we have shown δ1∞ /∈M0(T ).

The definition of x0 induces a partition of N into subintervals Ik = I
(0)
k ∪

I
(1)
k ∪ I(r)

k , k = 1, 2, 3, . . ., in such a way that I1 < I2 < . . . elementwise,
I

(0)
k < I

(1)
k < I

(r)
k elementwise and |I(0)

k | = |I(1)
k | = |I(r)

k | = k. Clearly this
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determines the partition uniquely. Note that an = 0 for all n ∈ I(0)
k , an = 1

for all n ∈ I(1)
k and an = aj if n = m+ j ∈ I(r)

k = {m,m+ 1, . . . ,m+ k− 1}
with j < k.

Let Wl be the set of all words w = (a′n, a
′
n+1, . . . , a

′
n+l−1) of length l

occuring in x0 and W =
⋃
l∈NWl. Let us write µ(0|w) and µ(1|w) = 1 −

µ(0|w) for the relative frequency of 0’s resp. 1’s in a nonempty word w.
Formally: For w = (a′0, . . . , a

′
l−1), µ(i|w) = 1

l |{n : 0 ≤ n ≤ l− 1, a′n = i}| ∈
[0, 1], i ∈ {0, 1}, l = 1, 2, . . ..

Proposition 3. In every initial word w = (a0, a1, . . . , al−1) of x0, l ∈ N,
we have µ(0|w) ≥ 1

2 ≥ µ(1|w).

Proof of Proposition 3: One sees immediately that the assertion holds for
l = 0, 1, 2, 3, hence it holds for the word induced by x0 on I1, hence on I2
etc., hence on all concatenations of these finite words. 2

Proposition 4. If w = 10w′ ∈W , then µ(0|0w′) ≥ 1
2 ≥ µ(1|0w′).

Proof of Proposition 4: Let us, by contradiction, suppose that the claim
fails. Then there is a minimal n0 ∈ N and an l ≥ 2 such that

w = (an0 , an0+1, . . . , an0+l−1) = 10w′

is a counterexample to the proposition. Since n0 /∈ I
(0)
k for any k ∈ N it

suffices to distinguish two cases for n0.
Case 1, n0 ∈ I(1)

k0
: In the first subcase (l − 1 ≤ k0) we have w = 10w′ =

10a1 . . . al−1 = 1a0a1 . . . al−1, contradicting Proposition 3. In the other sub-
case (l − 1 > k0) we have w = 1a0 . . . ak0−1bk0+1bk0+2 . . . bk1−1bk1 where the
bj are the finite words induced by x0 on Ij , bk1 being only an initial segment.
This again contradicts Proposition 3.

Case 2, n0 ∈ I
(r)
k0

: If (first subcase) n0 + l − 1 ∈ I
(r)
k0

then w occurs
already as w = am0 . . . am0+l−1 with m0 < n0, contradicting the minimal
choice of n0. Otherwise (second subcase) we can write w as a concatenation
w = bk0bk0+1 . . . bk1−1bk1 of words bi with k1 > k0 in such a way that bk0 =
10w′′ comes from an end word of I(r)

k0
, the bk0+j with 0 < j < k1 − k0 come

from the corresponding Ik0+j and bk1 is an initial word. By the minimality
of n0 the claim of the lemma holds for 0w′′ instead of 0w′. For the tail
bk0+1 . . . bk1−1bk1 of w, Proposition 3 implies that there are at least as many
0’s as 1’s, contradiction. 2

Proposition 5. Every x = (a′n)n∈N ∈ X is either of the form x = w1∞

(type 1) with a finite initial word w or the upper density µ(1|x) of the set
{n : a′n = 1} is at most 1

2 (type 0). (Here µ(1|x) denotes the upper limit of
µ(1|wn) for n → ∞ where wn is the n-th initial word of x.) In particular,
δ1∞ /∈M(T, x) for every x of type 0.

Proof of Proposition 5: If x ∈ X is not of type 1 then x contains infin-
itely many 0’s. For x = 0∞ the claim is obvious, otherwise there is a finite
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word w0 and an infinite sequence x′ such that x = w010x′. For all finite
initial words w′ of x′ we have 10w′ ∈ W . In combination with Proposition
4 this implies that µ(1|x) ≤ 1

2 for all x of type 0. Thus for such x and any
µ ∈M(T, x) we have µ(X1) ≤ 1

2 , X1 denoting the set of all sequences in X
starting with the digit 1. Since δ1∞(X1) = 1 this implies δ1∞ /∈M(T, x) for
all x of type 0. 2

Proof of M0(T ) 6= M(X,T ): Since X has no isolated points, each of
the points of type 1 (in the sense of Proposition 5), as a singleton, forms a
nowhere dense subset. Since there are not more than countably many points
of type 1, most points are of type 0. By Proposition 5 we have δ1∞ /∈M(T, x)
for every x of type 0, hence δ1∞ /∈M0(T ). 2
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