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ABSTRACT. For a compact metric space X and a continuous transfor-
mation T : X — X with at least one transitive and recurrent orbit,
there is a set Mo(T") of T-invariant probability measures on X such that
for a comeager set of starting points the set of limit measures is exactly
Mo(T).

1. INTRODUCTION

For a compact metric space X and T': X — X a point ¢ € X is called
transitive resp. recurrent if its T-orbit (T"x),cn is dense resp. meets ev-
ery neighbourhood of x infinitely many times. Furthermore M(X,T) de-
notes the set of those p € M(X) (the compact metrizable space of all
Borel probability measures) which are T-invariant, and M (T,x) the set
of all limit measures of the sequence x = (x,)pen with x, = T"z. By
definition, a limit measure of x is an accumulation point of the measures
txn = %Zz;é Oz, € M(X), n =1,2,3,..., 05, denoting the point mea-
sures concentrated in x, € X. We will prove:

Theorem Let X be a compact metric space, T : X — X a continuous
transformation, xo € X a transitive and recurrent point and My(T) the
union of all M(T,z) with transitive x. Then M(T,xz) = My(T) for most
x € X, i.e. for allx € X \ E where the exceptional set E is meager (of first
Baire category).

Note that for infinite X the assumptions of the Theorem imply that X
is perfect (i.e. has no isolated points), hence uncountable, and that every
dense orbit is recurrent.

For an ergodic measure p € M(X,T), Birkhoff’s ergodic theorem yields
that for p-almost all x € X the sequence x = (1T"z),en is uniformly dis-
tributed with respect to u, i.e. M(T,z) = {u}. Thus the Theorem above
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can be considered as a topological counterpart in the sense of Baire cate-
gories (see also the classical textbook [O 80]) where the singleton {u} has
to be replaced by the set My(7T). The proof of the Theorem is the con-
tent of Section 2. Section 3 is a short discussion including examples where
My(T) = M(X,T), i.e. where most points have maximal oscillation in the
sense of (21.17) in [DGS 76]. Section 4 shows that My(T") # M(X,T) is
possible as well.

Related properties of the topologically typical distribution behaviour of
orbits have already been observed in [D 53], for arbitrary sequences by
Prof. Hlawka in his seminal paper [H 56]. For more recent investigations
cf. [Wi 97], [GSW 00], [GSW 07] and [TZ 10].

2. PROOF OF THE THEOREM

Let in this Section X, T and zg be as in the assumptions of the Theorem.
For any sequence of mappings ¢, : X — Y (Y metric space) and y € Y
the set X ((¢n),y) of all x € X such that y is an accumulation point of
(¢n(2))nen) can be written as

X = N U o' B )

N,keENn>N

(B(y,r) denotes the open ball with center y and radius r.) For any topo-
logical space X and continuous ¢, the sets ¢, 1 (B(y, k%rl)) are open. This
shows that for continuous ¢, : X — Y, X((¢n),y) is a Gs-set and that
X((¢n),y) is residual if and only if for all N,k € N the set

1
WSN E+1
is dense in X. Take Y = M(X), ¢n : & = fiprg), yn = LS Ok
and y = p € M(T,xzp). Since then u € M(T,T"(xg)) for all n € N,
Unsw o, (B(u, %H)) is dense in X for all N,k € N (the balls taken w.r.t.
any metric for the topology on M(X)). Hence:

Proposition 1. If p € M(T,xg) then p € M(T,x) for most x € X.

As a subset of the compact metric space M(X), My(T") contains a count-
able dense subset {j, : n € N}. Let X, denote the set of all z € X with
pn € M(T,z). By Proposition 1 each X, n € N, is residual in X. Hence
also the countable intersection X; = (1), ey X, is residual. For all z € X
and n € N we have p, € M(T,z). Since M (T, x) is closed this implies:

Proposition 2. My(T) C M(T) C M(T,z) for most x € X.

It is well-known that in transitive systems most orbits are dense (cf. for
instance [DGS 76], 6.11). By the definition of My(T") as the union of the
M (T, z) with transitive x and since M(T,z) C M(X,T) (cf. for instance
[GSW 07], Lemma 2.17 (1)) this implies the converse inclusion M (T, x) C
My(T) for most = € X, proving the Theorem.

n?
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3. DISCUSSION

Trivial examples for the Theorem are uniquely ergodic transformations
where My(T') = M(X,T) is asingleton. A less trivial example with My(T) =
M(X,T) is the full shift, i.e. X = AN, the set of all sequences over a finite
alphabet A, and T' = 0 : © = (an)nen — (@n+1)nen (cf. [DGS 76] chap-
ter 21, in particular 21.18). The full shift also shows that the residual set
of all z € X with M(T,z) = My(T), in general, does not coincide with
the set of all transitive and recurrent x: Take any sequence x which con-
tains all finite words, separated by sufficiently long blocks of 0’s. Then
M(T,z) = {0p=} # M(X,T) = My(T) while z is transitive and recurrent.

It is clear that the transitivity assumption in the Theorem cannot be
omitted. (Otherwise we might have disjoint open sets with disjoint T-orbits
such that the Theorem must fail. Most trivial example: T the identity on X
where X contains at least two points.) However, some kind of generalization
of the Theorem to the intransitive case is possible. But since this requires a
much broader framework I do not go into this direction here.

Similarly to the transitivity assumption, the Theorem does not hold in
general if we omit the recurrence condition. Consider X = X; U {zo}, the
compact space X1 = {0, I}N of all binary sequences plus an isolated point
xg. Let T = Ty U Ty with the shift 77 = o : (an)neN — (an+1)neN on Xy
and Ty : g — z1 with some z; € Xq. If 1 contains each binary word of
finite length, then xz( is a transitive point (but not recurrent). As already
mentioned above there is a My(7}), namely the set of all invariant measures
on Xi. If z1 is suitably chosen (see above), then M (T, z¢) = M (T, x1) does
not contain all invariant measures. {zo}, as an open set, is not meager.
Thus, provided M(T,z1) # M(X,T1), there is no Baire-typical My(T) for
T considered as a transformation on the whole space X = X; U {zo}.

4. AN EXAMPLE WITH My(T) # M(X,T)
Our example is the subshift generated by the binary sequence
Top=a= (an)neN = apgai1ag ... = 0111a00212a0a10313a0a1a2 e

Let X be the orbit closure of xg under o and T the restriction of o to X. Note
that zg is defined in such a way that each finite initial word of zg occurs
infinitely many times in zg. Hence xg is recurrent. Since X is the orbit
closure, xg is also transitive. So the Theorem applies and M (T, z) = My(T)
for most x € X. Note that 1°° = 111... € X since g contains all 1-blocks
1", n € N. Furthermore the point measure d;~ is shift invariant, hence
d1e € M(X,T). So the proof of My(T) # M(X,T) will be complete as
soon as we have shown d1 ¢ My(T).

The definition of x( induces a partition of N into subintervals I}, = I Igo) U
I,gl) u Ilir), k=1,2,3,..., in such a way that I; < Iy < ... elementwise,
I’go) < I,gl) < I,ir) elementwise and |I,§O)| = \I,gl)| = |I,S,r)] = k. Clearly this
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determines the partition uniquely. Note that a,, = 0 for all n € 1 (0), anp =1
for allnef,gl) and a, = ajifn=m+j EI,iT) ={mm+1,.... m+k—1}
with j < k.

Let W, be the set of all words w = (a,,a;,,4,...,a,,;_;) of length
occuring in xg and W = ;e Wi. Let us write p(0jw) and p(ljw) = 1 —
p(0jlw) for the relative frequency of 0’s resp. 1’s in a nonempty word w.
Formally: For w = (a,...,a,_,), p(ilw) = ;{{n: 0<n<1-1, a, =i}| €
0,1],i€{0,1},1=1,2,....

Proposition 3. In every initial word w = (ag,a1,...,a;—1) of zg, | € N,
we have p(0lw) > & > p(1jw).

Proof of Proposition 3: One sees immediately that the assertion holds for
[l =0,1,2,3, hence it holds for the word induced by zg on I, hence on I
etc., hence on all concatenations of these finite words. O

Proposition 4. If w = 10w’ € W, then p(0[0w’) > 1 > p(1j0w’).

Proof of Proposition 4: Let us, by contradiction, suppose that the claim
fails. Then there is a minimal ng € N and an [ > 2 such that

/
w = ((Zn(), Ano+1y-- -, an0+l—1) = 10w

)

is a counterexample to the proposition. Since ng ¢ I Igo for any k € N it

suffices to distinguish two cases for nyg.

Case 1, ng € I,gé): In the first subcase (I — 1 < kg) we have w = 10w’ =
10a; ...a;—1 = lagay . ..a;_1, contradicting Proposition 3. In the other sub-
case (I —1 > ko) we have w = lag . .. agy—1bky+10ky+2 - - - b, —1bk, where the
b; are the finite words induced by zg on I, by, being only an initial segment.
This again contradicts Proposition 3.

Case 2, ng € I,ig): If (first subcase) ng +1—1 € I,gg) then w occurs
already as w = amy - - - Gmy+1—1 With mg < ng, contradicting the minimal
choice of ng. Otherwise (second subcase) we can write w as a concatenation
w = brybrg+1 - - - b, —1bk, of words b; with k1 > ko in such a way that by, =
10w” comes from an end word of I,gz), the byy4; with 0 < j < ki — kg come
from the corresponding Iy 4; and by, is an initial word. By the minimality
of ng the claim of the lemma holds for Ow” instead of Ow’. For the tail
bio+1 - - - b, —1bk, of w, Proposition 3 implies that there are at least as many
0’s as 1’s, contradiction. O

Proposition 5. Every © = (a))nen € X is either of the form x = wl®™®
(type 1) with a finite initial word w or the upper density fi(1|z) of the set
{n: aj, =1} is at most & (type 0). (Here fi(1|x) denotes the upper limit of
w(llwy) for n — oo where wy, is the n-th initial word of x.) In particular,
d100 & M(T, x) for every z of type 0.

Proof of Proposition 5: If x € X is not of type 1 then x contains infin-
itely many 0’s. For = 0*° the claim is obvious, otherwise there is a finite
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word wg and an infinite sequence x’ such that x = wy10z’. For all finite
initial words w’ of 2’ we have 10w’ € W. In combination with Proposition
4 this implies that fi(1|z) < 1 for all z of type 0. Thus for such z and any
1 € M(T,z) we have (X1) < 1, X1 denoting the set of all sequences in X
starting with the digit 1. Since d10(X7) = 1 this implies 61 ¢ M (T, x) for
all z of type 0. O

Proof of My(T) # M(X,T): Since X has no isolated points, each of
the points of type 1 (in the sense of Proposition 5), as a singleton, forms a
nowhere dense subset. Since there are not more than countably many points
of type 1, most points are of type 0. By Proposition 5 we have d10c ¢ M(T, x)
for every x of type 0, hence 01 ¢ My(T). O
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