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Complexity of Hartman sequences

par Christian STEINEDER et Reinhard WINKLER

Résumé. Soit T : x 7→ x + g une translation ergodique sur un
groupe abélien compact C et soit M une partie de C dont la
frontière est de measure de Haar nulle. La suite binaire infinie
a : Z 7→ {0, 1} défine par a(k) = 1 si T k(0C) ∈ M et a(k) = 0
sinon, est dite de Hartman. Notons Pa(n) le nombre de mots
binaires de longueur n qui apparaissent dans la suite a vue comme
un mot bi-infini. Cet article étudie la vitesse de croissance de
Pa(n). Celle-ci est toujours sous-exponentielle et ce résultat est
optimal. Dans le cas où T est une translation ergodique x 7→ x+α
(α = (α1, . . . , αs)) sur Ts et M un parallélotope rectangle pour
lequel la longueur du j-ème coté ρj n’est pas dans αjZ + Z pour
tout j = 1, . . . , s, on obtient limn Pa(n)/ns = 2s

∏s
j=1 ρs−1

j .

Abstract. Let T : x 7→ x + g be an ergodic translation on the
compact group C and M ⊆ C a continuity set, i.e. a subset with
topological boundary of Haar measure 0. An infinite binary se-
quence a : Z 7→ {0, 1} defined by a(k) = 1 if T k(0C) ∈ M and
a(k) = 0 otherwise, is called a Hartman sequence. This paper
studies the growth rate of Pa(n), where Pa(n) denotes the num-
ber of binary words of length n ∈ N occurring in a. The growth
rate is always subexponential and this result is optimal. If T is an
ergodic translation x 7→ x + α (α = (α1, . . . , αs)) on Ts and M is
a box with side lengths ρj not equal αjZ + Z for all j = 1, . . . , s,
we show that limn Pa(n)/ns = 2s

∏s
j=1 ρs−1

j .
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1. Motivation and Notation

The notion of a Hartman sequence has recently been introduced and
studied (cf. [5], [10], [12]). It can be seen as a generalisation of the notion
of a Sturmian sequence. Sturmian sequences (and their close relatives, the
Beatty sequences) are very interesting objects, as well from the combinato-
rial, the number theoretic and the dynamical point of view. Let us sketch
two approaches.



Consider sequences a = (ak) of two symbols, say 0 and 1, where k runs
through the set Z of all integers or N of all positive integers. Such sequences
are also called two resp. one sided infinite binary words. Let Pa(n) be the
number of different binary words of length n occurring in a. The mapping
n 7→ Pa(n) is called the complexity function of a. It is easily seen that the
complexity function is bounded if and only if a is (in the one sided case:
eventually) periodic. Among all aperiodic sequences Sturmian sequences
have minimal complexity, namely P (n) = n + 1. This is the combinatorial
approach to characterise Sturmian sequences, which has been introduced
in [6] and [7].

A different characterisation uses the symbolic coding of irrational rota-
tions. If T = R/Z denotes the circle group (one dimensional torus) and M
is a segment of T of angle 2πα with irrational α ∈ T, then the definition
ak = 1 if and only if kα ∈ M defines a Sturmian sequence (cf. for instance
[2]).

For understanding the definition of a Hartman sequence the second ap-
proach is more appropriate. Replace T by more general compact abelian
groups C with normalised Haar measure µ = µC and replace α by any
ergodic group translation. This means that we are interested in the trans-
formation T : C 7→ C, T : x 7→ x + g, where g is a generating element
of C, i.e. the orbit {kg : k ∈ Z} is dense in C. Thus C is required to
be monothetic. C can also be interpreted as a group compactification of
Z since C is the closure of the image of Z under the dense homomorphic
embedding ι : Z → C, ι(k) = kg. (Note that for group compactifications
one usually does not require ι to be injective. But to avoid trivial case
distinctions we will demand that ι(Z) is infinite.) This approach is particu-
larly appropriate for Theorems 1 and 2. For the classical theory of ergodic
group translations we refer for instance to [11].

A set M ⊂ C is called a (µC-)continuity set if µC(∂M) = 0 holds for
its topological boundary ∂M . For a continuity set M consider the induced
binary sequence a = (ak)∞k=−∞ defined by ak = 1 if T k(0C) ∈ M and ak = 0
otherwise. Such sequences are called Hartman sequences. The set H ⊂ Z
defined by k ∈ H if and only if ak = 1 is accordingly called a Hartman set.
Thus, by definition, a Hartman set H is the preimage H = ι−1(M) of a
continuity set M ⊆ C where (C, ι) is a group compactification of Z and we
can write a = 1H . Note that for C = Ts and g = (α1, . . . , αs), where the
family {1, α1, . . . , αs} is linearly independent over Z, Hartman sequences
are binary coding sequences of Kronecker sequences.

As a consequence of uniform distribution of ergodic group translations
(for the theory of uniform distribution of sequences we refer to [9]), Hartman
sequences share some nice properties with Sturmian sequences (cf. [5], [10]).
In particular each finite subword occurs with a uniform asymptotic density.
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More precisely: If the measure of a Hartman set H = ι−1(M) is defined by
µ(H) := µC(M), then

µ(H) = dens(H) = lim
n→∞

card(H ∩ {k, k + 1, . . . , k + n− 1})
n

holds uniformly in k ∈ Z, cf. [5]. In particular, for a given Hartman set
H, this value neither depends on (C, ι) nor on M . In terms of Hartman
sequences: If, for a = (ak) = 1H , Ak(n) denotes the number of occur-
rences of 1’s in the block akak+1 . . . ak+n−1 of length n, there exists a bound
cM (n) = o(1), n →∞, such that

∣∣∣Ak(n)
n

− µC(M)
∣∣∣ ≤ cM (n)

for all k ∈ N. This has been used in [12] to develop a new approach to
identify the underlying dynamical system from its symbolic coding.

In this paper we start to investigate the complexity of Hartman se-
quences. Corresponding to the zero entropy of the underlying dynamical
system, the growth rate of the complexity function of any Hartman se-
quence is subexponential. This upper bound turns out to be best possible.
In particular, the complexity of a Hartman sequence might be much higher
than, for instance, interval coding sequences for which the complexity es-
sentially is linear (cf. for instance [1] and [3]). In some sense this fact is due
to the more general choice of M rather than to the more general choice of
the compact group C. Nevertheless, for the case of an M with a very simple
geometric structure, namely a box in a finite dimensional compactification
C = Ts the complexity grows polynomially of maximal order s. A more
systematic investigation of the role of the geometric properties of M and
the further development of the arguments used here is to be the object of
future research. So the results in this paper are the following:

• For any Hartman sequence a and λ > 1 we have Pa(n) = o(λn) for
n →∞ (Theorem 1).

• For any sequence Pn of subexponential growth rate and any compact-
ification (C, ι) there is a Hartman sequence a coming from (C, ι) with
Pn = o(Pa(n)). This is even true, if Pa(n) counts only binary words
which occur in a with strictly positive density (Theorem 2).

• Assumes that M is a box of side lengths ρj , j = 1, . . . , s, in Ts. Then
the complexity Pa(n) of the induced Hartman sequence a has the
asymptotic growth rate cns if ρj 6∈ αjZ + Z for all j = 1, . . . , s. The
multiplicative constant c is given by c = 2s

∏s
j=1 ρs−1

j (Theorem 3).
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2. A universal upper bound for the complexity of Hartman
sequences

Corresponding to the fact that ergodic group translations have entropy
0, one conjectures that the complexity of a Hartman sequence is subexpo-
nential. Note that the topological entropy of shift spaces and complexity
are very closely related. Nevertheless we cannot apply immediately perti-
nent theorems in textbooks as [4] or [11] to obtain an upper bound for the
complexity of a Hartman sequence in terms of the entropy of the underlying
group rotation. Therefore we give a direct proof that the above conjecture
is true.

Theorem 1. For any compactification (C, ι) of Z and any continuity set
M ⊆ C the complexity Pa(n) of the corresponding Hartman sequence a =
1H with H = ι−1(M) satisfies

lim
n→∞

log Pa(n)
n

= 0.

Proof. By Theorem 4 in [10] we may presume that there is a metric d for
the topology on C. Let g = ι(1) ∈ C denote the generating element of the
compactification.

We write M ′ for the complement C \M and Mδ for the set of all x ∈ C
with d(x, y) < δ for some y ∈ M . Fix ε > 0. Using the regularity of the
Haar measure µC and the µC-continuity of M , we obtain µC(R) < ε for
R = (Mδ1 \ M) ∪ (M ′

δ1
\ M ′) whenever δ1 > 0 is sufficiently small. By a

standard argument we may assume that R is a continuity set. At least one
of the sets M and M ′, say M , has nonempty interior. This means that
there is some open ball B with center x and positive diameter δ < δ1/2
with B ⊂ M . For the sake of simpler notation we assume x = 0.

Let Wl denote the set of all binary words a0 . . . al−1 of length l with
ak = 1 whenever kg + B ⊆ M and ak = 0 whenever kg + B ⊆ M ′.

By compactness of C there is some N0 ∈ N such that

C ⊆
N0−1⋃
n=0

(−ng + B),

showing that for every y ∈ C there is some n ∈ {0, 1, . . . , N0 − 1} with
y + ng ∈ B.

Thus any word w of length N0 + l occurring in a lies in some of the sets
WN0+l,i, 0 ≤ i ≤ N0 − 1, consisting of all words

b0b1 . . . bi−1a0 . . . al−1bi . . . bN0−1

with a0a1 . . . al−1 ∈ Wl and b0b1 . . . bN0−1 ∈ {0, 1}n. Since |WN0+l,i| =
2N0 |Wl|, this shows Pa(N0 + l) ≤ N02N0 |Wl|.

4



Note that each translate y + B is totally contained either in M or in M ′

whenever y /∈ R. Thus, by the uniform distribution of (ng)n in C, the subset
T ⊆ Z of all k ∈ Z such that y = kg 6∈ R has density µC(C \R) > 1− ε.

It follows that |Wl| ≤ 22εl, hence Pa(N0+l) ≤ N02N0+2εl for l sufficiently
large. This yields

log Pa(N0 + l) ≤ log N0 + (N0 + 2εl) log 2

and, for n = N0 + l

lim sup
n→∞

log Pa(n)
n

≤ lim sup
l→∞

log N0 + (N0 + 2εl) log 2
N0 + l

≤ 2ε log 2.

Since ε > 0 can be chosen arbitrarily small this proves the theorem. �

3. A Hartman sequence of arbitrarily subexponential
complexity

We are going to show that the bound deduced in Theorem 1 is best
possible.

Let (C, ι) be any group compactification of Z and φ : N 7→ N. Suppose
φ(n) = εnn ≤ n with limn→∞ εn = 0. We have to show that there exists
a continuity set M ⊂ C such that the Hartman sequence a := 1H with
H = ι−1(M) fulfills Pa(n) ≥ 2φ(n).

By Theorem 4 in [12] it suffices to prove the assertion for metrisable C
and by Theorem 8.3 in [8] there is an invariant metric d for the topology
on C. For c ∈ C we write ‖c‖ = d(c, 0). For each n ∈ N choose a subset
H(n) of {0, . . . , n− 1} of cardinality An ≥ εnn and containing 0 such that
the diameter dn of ι(H(n)) is minimal. We claim that limn→∞ dn = 0.

Otherwise we had a sequence n1 < n2 < . . . and a δ > 0 such that
dnk

≥ 2δ for all k. There is some r ∈ (0, δ) such that the open ball B with
center 0 ∈ C and radius r is a continuity set. By construction, the lower
density of the set of all n with ι(n) ∈ B is at most εnk

for all k. By uniform
distribution of ι(n), the lower density is a density and coincides with the
Haar measure, hence µ(B) ≤ limk→∞ εnk

= 0. This contradicts the fact
that nonempty open sets have positive measure.

Let now Hn(0),Hn(1), . . . ,Hn(2An − 1) be an enumeration of all sub-
sets of H(n). Define recursively mn(0) = 0 and mn(i + 1) to be the
minimal integer > mn(i) + n such that ‖ι(mn(i + 1))‖ < dn. We put
Hn =

⋃2An−1
i=0 (mn(i) + Hn(i)). Obviously Hn is a finite set of nonnegative

integers bounded by, say hn ∈ N. Observe furthermore that by construction
‖ι(h)‖ < 2dn for all h ∈ Hn. Define, again recursively, l0 = 1 and ln+1 to
be the minimal integer > ln + hn such that ‖ι(ln+1)‖ < dn. For the union
H =

⋃∞
n=0(Hn + ln) this implies limn→∞,n∈H ι(n) = 0. Thus M = ι(H) is

a countable closed subset of C with the only accumulation point 0, hence
a continuity set of measure 0 and H = ι−1(M) is a Hartman set.
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In the corresponding Hartman sequence each Hn induces at least 2An

different binary words of length n. Thus the complexity function P (n) is
bounded below by

P (n) ≥ 2An ≥ 2εnn = 2φ(n).

This construction generates a zero set M . Hence each word in a con-
taining the letter 1 has asymptotic density 0. It would be nice to get a
positive frequency for many words. Let therefore M = {0,m1,m2, . . .} be
an enumeration of M . There are δn > 0 with δn → 0 such that balls Bn,
n ∈ N, with center mn and radius δn are pairwise disjoint continuity sets.
Replace M by the union of all Bn, which is again a continuity set. This
shows:

Theorem 2. Let (C, ι) be any group compactification of Z. Assume φ(n) ≤
n and φ(n) = o(n) for n → ∞. Then there exists a continuity set M ⊂
C such that its Hartman sequence a := 1ι−1(M) fulfills Pa(n) ≥ 2φ(n).
Furthermore M can be chosen in such a way that for each n ∈ N at least
2φ(n) words of length n occur in a with strictly positive density.

4. The case of Kronecker sequences and Boxes

We finally restrict our attention to the special case that C = Ts is a fi-
nite dimensional compactification with generating element g = (α1, . . . , αs)
modulo 1, i.e. ι : k 7→ kg = k(α1, . . . , αs), where the family {1, α1, . . . , αs}
is linearly independent over Z (such (kg)k are also called Kronecker se-
quences), and M a box in Ts. To be more precise we use the following
notational convention.

As usual, {r} = r − [r] and [r] = max{k ∈ Z : k ≤ r} denote the
fractional respectively integer part of r ∈ R. Thus Ts = (R/Z)s = κ(Rs) is
considered to be the image of the additive group Rs under the mapping κ =
κs : (x1, . . . , xs) 7→ ({x1}, . . . , {xs}). Although T has no order structure it
is useful to think about intervals in T as images of intervals in R under
κ1, boxes in Ts as images of boxes in Rs etc. To avoid too cumbersome
notation we therefore write, for instance,

∏s
j=1[−ρj/2, ρj/2), ρj ∈ (0, 1)

also for the set M = κs(
∏s

j=1[−ρj/2, ρj/2)). It is natural to call a set
M =

∏s
j=1[mj ,mj +ρj) ⊆ Ts an s-dimensional box in Ts with side lengths

ρj , j = 1, . . . , s. We are especially interested in Hartman sequences a = 1H ,
H = ι−1(M), for this kind of M and call such a Bohr sequences.

Let us fix a box M of side lengths ρj , j = 1, . . . , s, and assume that no
ρj is in αjZ + Z. We are going to determine the asymptotic behaviour of
Pb(n) for the Bohr sequence b = 1H , H = ι−1(M).

We will use the following notation: For a word w = a0 . . . an−1 ∈ {0, 1}n

we introduce the set

Aw := {x ∈ Ts : (x + ig ∈ M ⇔ ai = 1) for i = 0, . . . , n− 1}
6



and write w = w(x) for x ∈ Aw. Note that, provided Aw 6= ∅, Aw has inner
points. Because of the density of the set {ng : n ∈ N}, the continuity of T
and the special form of M this implies

Pb(n) = |{w ∈ {0, 1}n : Aw 6= ∅}|.
To compute the number of all nonempty Aw we first consider a half open
cube C0 := c0 + [−σ/2, σ/2)s ⊆ Ts with center c0 and side length σ < ρj

for all j = 1, . . . , s. We are going to estimate the local complexity function
P (C0, n) := |W | for W = W (C0) := {w ∈ {0, 1}n : Aw ∩ C0 6= ∅}. Note
that for k cubes C1, . . . , Ck in Ts with disjoint closures we have

Pa(n) ≥
k∑

j=1

P (Cj , n)

for sufficiently large n. As above, Aw ∩ C0 6= ∅ implies µC(Aw ∩ C0) > 0.
So P (C0, n) is the number of different words w = bi . . . bi+n−1 of length n
in b with ig ∈ C0. Define

M0 :=
s∏

j=1

[−ρj

2
+

σ

2
,
ρj

2
−σ

2
), M1 :=

s∏
j=1

[−ρj

2
−σ

2
,
ρj

2
+

σ

2
), Γ := M1\M0,

and furthermore, for each j = 1, . . . , s,

Q
(j)
1 := {x = (x1, . . . , xs) ∈ M1 : xj < −ρj

2
+

σ

2
or xj ≥

ρj

2
− σ

2
},

Q
(j)
0 := Q

(j)
1 \

⋃
j′ 6=j

Q
(j′)
1 .

Observe that the sets Q
(j)
0 (in contrast to the Q

(j)
1 ) are pairwise disjoint.

For w = a0 . . . an−1 in W note that

(c0 + ig ∈ M0 ⇒ ai = 1) and (c0 + ig 6∈ M1 ⇒ ai = 0).

This shows that for w = a0 . . . an−1 and w′ = a′0 . . . a′n−1 in W the letters
ai and a′i can differ only if c0 + ig ∈ Γ. Since Γ =

⋃s
j=1 Q

(j)
1 , we define, for

j = 1, . . . , s and l = 0, 1,

I
(j)
l := {i ∈ {0, . . . , n− 1} : c0 + ig ∈ Q

(j)
l },

Il :=
s⋃

j=1

I
(j)
l .

Due to the special geometric situation (C0 and M are boxes), for x =
(x1, . . . , xs) ∈ C0, w = w(x) = (ai(x))0≤i<n ∈ W , j ∈ {1, . . . , s}, the
tuple (ai(x))

i∈I
(j)
0

depends only on xj , namely in the following way. Let

Xj = [y0, y0 + σ) be the interval for the j-th coordinate of points in C0.
Then for each i ∈ I

(j)
0 there is one point yi (namely either ρj/2 − ig or
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−ρj/2 − ig) such that yi splits the interval Xj into two subintervals X
(0)
j

and X
(1)
j such that ai(x) = 0 for xj ∈ X

(0)
j and ai(x) = 1 for xj ∈ X

(1)
j .

Since ρj 6∈ αjZ + Z, all yi, i ∈ I
(j)
0 , are distinct. As a consequence the

mapping xj 7→ (ai(x))
i∈I

(j)
0

takes at least |I(j)
0 + 1| different values, hence

Aj = |{(ai(x))
i∈I

(j)
0

: x ∈ C0}| ≥ |I(j)
0 + 1|.

Since the sets I
(j)
0 , j = 1, . . . , s, are pairwise disjoint and all coordinates j

can be treated independently, we conclude

P (C0, n) = |W | ≥
s∏

j=1

(|I(j)
0 |+ 1).

For ε > 0 we know by uniform distribution of the sequence (ng)n that

|I(j)
0 | ≥ µ(Q(j)

0 )n− εn

for n sufficiently large. Since µ(Q(j)
0 ) = 2

∏s
j=1,j 6=i(ρj − σ)σ, j = 1, . . . , s,

we get

|W | ≥ ns
s∏

i=1

(
2

s∏
j=1,j 6=i

((ρj − σ)σ − ε
)

for n sufficiently large. Thus we obtain

lim inf
n→∞

P (C0, n)
ns

≥ 2s
s∏

i=1

( s∏
j=1,j 6=i

(ρj − σ)σ − ε
)

for all ε > 0 and therefore

lim inf
n→∞

P (C0, n)
ns

≥ 2s
s∏

i=1

s∏
j=1,j 6=i

(ρj − σ)σ.

As a consequence of uniform distribution we know that d(x, x′) > δ implies
w(x) 6= w(x′) if the words are sufficiently long. Thus W (C0) and W (C ′0) are
disjoint whenever two cubes C0 and C ′0 are separated by a strictly positive
distance δ. Fix now k ∈ N and consider the disjoint cubes C1, . . . , Cks with
centers ci = (mi/k), mi ∈ {0, . . . , k − 1} and side length σ = 1/k − δ,
0 < δ < 1

k . We get

lim inf
n→∞

Pb(n)
ns

≥
ks∑
i=1

lim inf
n→∞

P (Ci, n)
ns

≥ ks2s(
1
k
− δ)s

s∏
i=1

s∏
j=1,j 6=i

(ρj −
1
k

+ δ).

Since this holds for all δ > 0 we can consider the limit δ → 0 to get

lim inf
n→∞

Pb(n)
ns

≥ ks2s 1
ks

s∏
i=1

s∏
j=1,j 6=i

(ρj −
1
k
) = 2s

s∏
j=1

(ρj −
1
k
)s−1.
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For k →∞ this finally shows the lower bound

lim inf
n→∞

Pb(n)
ns

≥ 2s
s∏

j=1

ρs−1
j .

To obtain an upper bound for the complexity we consider instead of Aj as
defined above the numbers

Bj = |{(ai(x))
i∈I

(j)
1

: x ∈ C0}| ≤ |I(j)
1 + 1|.

Note that the sets I
(j)
1 , j = 1, . . . , s, are (in contrast to the sets I

(j)
0 )

not disjoint. This implies that ai(x) possibly depends on more than one
component of x. Comparison with the argument for the lower bound shows
that the relevant mapping x 7→ (ai(x))

i∈I
(j)
1

, x ∈ C0, can only take one

additional value, namely the zero word ai(x) = 0 for all i ∈ I
(j)
1 . Thus

arguments similar (in fact even simpler) to those above show that |Bj | ≤
|I(j)

1 |+ 2 and finally

lim sup
n→∞

Pb(n)
ns

≤ 2s
s∏

j=1

ρs−1
j .

Since the same argument applies if M is not centered at 0 we have proved:

Theorem 3. Consider an ergodic translation T : x 7→ x + g on Ts with
g = (α1, . . . , αs). Assume ρj ∈ (0, 1) \ (αjZ + Z) for all j = 1, . . . , s.
For mj ∈ [0, 1), j = 1, . . . , s, let M =

∏s
j=1[mj ,mj + ρj) denote an s-

dimensional box of side lengths ρj, and b the corresponding Bohr sequence.
Then the complexity function of b satisfies

lim
n→∞

Pb(n)
ns

= 2s
s∏

j=1

ρs−1
j .

We add the following remarks.
Complexity and volume versus surface: Let V (M) denote the volume
of a box M in Ts and vj(M) =

∏s
i=1,i6=j ρi the (s−1)-dimensional measures

(surfaces) of the facettes of M . Then we can express the formula in Theorem
3 in terms of V (M) as well as in terms of the vj(M):

2s
s∏

j=1

ρs−1
j = 2sV (M)s−1 = 2s

s∏
j=1

vj(M)

Consider first M ′ := M0 ∪M1, where the Mi are disjoint translates of M .
The same arguments as in the proof of Theorem 3 show that M ′ induces a
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Hartman sequence a′ of complexity

lim
n→∞

Pa′(n)
ns

= 2s
s∏

j=1

(2vj(M)).

Comparison with the value 2s
∏s

j=1 vj(M) for M indicates that the com-
plexity is related to the surface rather than to the volume.

On the other hand we can consider an automorphism A of Ts (i.e.
A ∈ SL(s, Z)). The topological generator A(g) and the parallelepiped
A(M) induce the same Hartman sequence as g and M . Here the volume
V (M) = V (A(M)) is invariant while the product of the surface measures
may change.

The interplay between the geometry of more general sets M and the
complexity of the corresponding Hartman sequences might be an interest-
ing topic of more systematic future investigations.

Dropping linear independence: If the assumption ρj /∈ αjZ + Z fails
for j1, . . . , jl, an investigation of the proof of Theorem 3 shows that

lim
n→∞

Pb(n)
ns

= 2s−l
s∏

j=1

ρs−1
j .

Complexity determines dimension: Given Pb(n) and the information
that M is a box (of some unknown dimension s and unknown side lengths
ρj), Theorem 3 tells us how s can be determined.
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[5] S. Frisch, M. Pašteka, R. F. Tichy and R. Winkler, Finitely additive measures on

groups and rings. Rend. Circolo Mat. di Palermo 48 Series II (1999), 323–340.

[6] G. A. Hedlund and M. Morse, Symbolic Dynamics I. Amer. J. Math. 60 (1938), 815–866.
[7] G. A. Hedlund and M. Morse, Symbolic Dynamics II. Amer. J. Math. 62 (1940), 1–42.
[8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I. Springer, Berlin—Göttingen—

Heidelberg, 1963.
[9] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Wiley, New York,

1974.
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