Homework Assignment 4 - Bialgebras and Hopf algebras

Hopf algebras - Spring Semester 2018

Exercise 1

Fix n > 0 and for an algebra A consider the functor O, (A) := {M € M, (A)|MM* = Id}.
Find a commutative Hopf algebra H,, such that we have the natural isomorphism

On(=) =~ Alge(H, —).

Proof. Take H,, = k[(Tijh<ijen | (Tiy)ij(Tje)iy = I with AT ;) = >, Tiy ® Ty and
e(Tij) = 0ij.
]

Exercise 2
a) Let A C B be k-algebras, and let A*, B* the sets of invertible elements in the respective
algebras.

Suppose that A is finite dimensional. Show that A* = B* N A.

b) Suppose that H C B are bialgebras over k, H is a Hopf algebra and B finite dimen-
sional.

Then B is a Hopf algebra.

c) Suppose that H, B are bialgebras over k, H is a Hopf algebra and B finite dimensional.
Suppose that there is a surjective map ¢ : H — B.

Then B is a Hopf algebra.

Proof.  a) Clearly A* C B* N A. Take now an element a € B* N A and consider the
isomorphism ¢ : B — B given by ¢ : x — ax.
We have ¢(A) C A, and ¢|4 is injective. By a dimension argument, ¢(A) = A, so in
particular, 3b € A s.t. ab=1, so a € A*, as desired.

b) We just need to find an antipode in B. Take the antipode s : H — H in the Hopf alge-
bra H, and the inclusion ¢ : B — H. Since Homg(¢, H) : Homy(H, H) — Homg(B, H)
is an algebra homomorphism, ¢ = Homyg(¢, H)(idy) and ¢ o s = Homyg(¢, H)(s) are
*-inverses in the k-algebra Homy (B, H).



lHomk(L,H)
Homy, (B, H) (1)

Homy (B,¢)

Homy (B, B)

idp + : v € Homg(B, H)

Now Homy(B, B) is identified with a finite dimensional subalgebra of Homy (B, H),
where idg =« € Homy (B, H)x NHomg (B, B). By the previous exercise, idp is invert-
ible in Homy (B, B), and B is a Hopf algebra.

c) Again we need only to find an antipode in B.

The map ¢ is surjective, hence Homg (¢, B) is an injective algebra homomorphism,
so we can identify Homy(B, B) C Homy(H, B). Note that ¢ = Homy (¢, B)(idg), so
¢ € Homy (B, B).

Homy,(H, H) idy
lHomk H,p)
Homg(B, B) <™ P yom, (H, B) (2)
idp ) ¢ € Homy,(B, H)

As in the previous exercise, ¢ is invertible in Homy(B, H) and its inverse is given
as Homg(H, ¢)(s) = ¢pos. So ¢ € Homy(B, H)* N Homy(B, B) = Homy (B, B)* by
exercise a), as desired.

O

Exercise 3 - Kernel of counit

Suppose that B is a bialgebra, and denote Bt = ker(e) the augmentation ideal. Show that
if z € BT, then
Alr)erx®1+1@r+H " @ H .

Proof. 1t is easy to see that A(x) — 1 ® x — x ® 1 is in the kernel of the maps € ® idy and
idy ®e, by using the counit property and that e(z) = 0.
Now the following is exact

0—>B"—=BS5k—0,

so tensoring with H along the sequence in each side we obtain that ker(e ® idg) = Bt ® B
and that ker(idp ®¢) = B® B™.

SoA(z) —1®zr—2z®1e (BT®B)N(B® BT)=B"® B" holds in vector spaces, as
desired. O



Exercise 4 - Dedekind’s argument

Take a bialebra B and x € B a non-zero primitive element, i.e. Ar =a®@ x4+ 2 ® 1.
Suppose that char(k) = 0. Show that {1,z,2? ...} in Li.

Proof. Suppose that >, _, prz® = 0 such that p, # 0, and suppose that n is minimal in this
way. Note that since  # 0, we have that n > 2. In particular, 1,z,--- , 2" ! from a linearly
independent set. Consequently, {z" ® 2°}o<, 5 <n—1 is a linearly independent set.

So, from Az = 1® 2 + 2 ® 1 we see that Az* = ) (f) " ® x®, and consequently:

O®O:A(Zpkx Zpk Z (r>xr®x5
k=0

= r+s=k

:1®x”+x"®12pk Z (i)x”@xs

k=0 r4+s=k
r,s<n

n—1 n—1 n
s (Z_p_w> N (Z_p_kxk> 13 Y (Foren
p k—o Pr k=0 Tr—i;s<:7{€ r

n—1
:(Z—zﬂl@ b _ Dk k®1>+2pk Z (r)x’”®xs.

y—o Pn k=0  r+s=k
r,s<n

(3)

This contradicts the linear independence of {z" ® x°}o<, s <n—1, and we conclude that
{z"},>0 form a linear independent set. O

Exercise 5 - Primitive elements

For a Hopf algebra H, let P(H) = {x € H|Az = 1 ® x + x ® 1} be the set of primitive
elements.

a) Suppose that G is a group, and take the Hopf algebra H = k[G], where A(g) = g ® g.
Then P(H) = 0.

b) If G is a finite group, then P(k%) = Hom (G, k).
c) For a variable T', compute P(k[T]) for char k = 0 and chark = p > 0.

Proof.  a) Take a generic element x = )
that 1 = ldG

Note that

geG @gg such that Az = 1 ® 2 + 2 ® 1. Recall

1®x+x®1:Zag(id®g+g®idg)

geG

Ax) = Z g ®g.

g,heG

3



So, by linear independence of {g ® h}, rec we obtain that a, = 0 for every g # idg,

and aiq, = 2aiq,. Hence, v = 0 and P(H) = 0 is the zero vector space.
b) We have that x is primitive if and only if
Alx)(geh) =(1r+z®1)(g®h) YVg,h € G,
or equivalently, if and only of
z(gh) = x(g) + 2(h),

i.e., if and only if x is a group homomorphism.

c) First, note that AT =1 T+ T ® 1, so T € P(k[T]). Suppose that z ="  a,T".

Note that:

1®:E+;E®1:2a01®1+2anT”®1+Zan1®T”

n=1 n=1

Ax) = Z ar+s<T:8)TT®TS.

0<r,s<m

By linear independence, we obtain that x is primitive if and only if

2(10 =an

an :(g>an Vn >0

0:(T+S)ar+s Vr,s > 0.
r

(6)

This readily implies that ag = 0. Now we study two cases separately: call p = char k.

(a) Case p=0: If p =0 then 0 = (Tjs) Urys = arys = 0, so we obtain that a, = 0

for each n > 2. Consequently, P(k[T]) = span {T'}.
r+s

(b) Case p > 0 prime number: If p > 0 then we only have 0 = ( ! )pﬂrS = s =0

whenever ("7*) is not a multiple of p.

If n is not a power of p, take r = p* the biggest power of p smaller than n, and
s =n —r. Then it follows from Kummer’s theorem that (f) is not a multiple of

p, and so a,, = 0.

Also, if n = p* is a power of p, then, from Kummer’s theorem, (Z) is a multiple
of p for every positive s < n. We conclude that 7" is a primitive element of k[T,

and so we conclude that

P(k[T]) = span {T"|n is a power of p}.



