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1. Introduction

The study of randomly generated trees and tree-like structures is a growing field with
connections to stochastic processes, combinatorics, and computer science. The present
notes summarize the content of a course on the topic given by the author at LMU Munich.
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2. Basic vocabulary

2.1. Notation. — We let
N=1{1,2,3,..}

denote the positive integers and Ny the non-negative integers. We also use the notation
N =NU {oo} and Ny = NyU {oo}.

For any integer n > 0 we set

n] ={1,...,n}.
This includes the case n = 0, for which [0] = (). Summation and products of numbers
are also subject to the usual conventions. That is, the sum of an empty collection (of
numbers) equals 0, the product of an empty collection equals 1. Given a power series
f(2) =3",50an2™ we use the notation [2"]f(z) = a, to denote its nth coefficient.

All unspecified limits are as n — co. We say an event (that depends on n) holds
with high probability if its probability tends to 1 as n becomes large. Convergence in
probability and distribution are denoted by —— and 45 For any sequence a, > 0
we let o,(a,) denote an unspecified random variable Z,, such that Z,/a, -250. Likewise
O,(a,) is a random variable Z,, such that Z,,/a,, is stochastically bounded. In other words,

for any € > 0 we may select a number M such that
P(|Z.] > Ma,) < €

for all large enough n.
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FIGURE 1. A connected graph with vertex set {a,b,...,n}.
There is a green path from ¢ to f and a blue cycle with vertices
e, d, and g.

2.2. Graphs. —

DEFINITION 2.1 (GRAPH). — A graph G = (V, E) is a pair of a set V and a collection
E of 2-element subsets of V. Elements of V' are called vertices. Elements of E are called
edges. We say an edge e € E is incident to a vertex v € V if v € e.

Figure 1 depicts an example of a graph. Vertices are displayeMR3853863d as dots and
edges by lines.

REMARK 2.2. — There are many variants of the notion of a graph. For example, edges
may be directed. Such a graph is called directed, or a digraph. Multigraphs are graphs
where we allow multiple edges between the same pair of vertices, and edges with identical

ends.

REMARK 2.3. — By abuse of notation, we will sometimes write v € G instead of v € V.
We will also let |G| € Ny denote the number of vertices in G.

DEFINITION 2.4 (VERTEX DEGREE). — Let G = (V, E) be a graph and v € V' a vertex.
A wvertex uw € V' is called a neighbour of v if {v,u} is an edge of E. We say u and v are
adjacent. The degree of v, denoted by da(v) € Ny, is the number of neighbours of v.

DEFINITION 2.5 (PATH). — Let n > 0 be an integer. A path of length n is an (n + 1)-
vertex graph (V, E) of the form
V ={v;]0<i<n}, E={{v,vit1} |0 <i<n}.

The wvertices vy and v, are called endvertices or ends. All other vertices of the path are
called inner vertices. A directed path is a path with an additional direction - from vg to

v, or from v, to vy.
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DEFINITION 2.6 (CYCLE). — A cycle is a graph obtained by joining the end-points of
a path of length at least 2 by an additional edge. The length of a cycle is its number of
edges.

DEFINITION 2.7 (SUBGRAPHS). — A graph G' = (V', E') is a subgraph of a graph G =
(V,E) if V! CV and E' C E. We say G contains G'. We say G' is an induced subgraph,
if any edge of G with both ends in G’ is also an edge of G'. For any subset U C V we
may form the subgraph G[U| induced by U.

DEFINITION 2.8 (CONNECTED GRAPH). — Two vertices x,y € V in a graph G = (V| E)
are joined by a path P in G if P is a subgraph of G and x,y are its endvertices. We say

G is connected if any two vertices of G may be joined by some path in G.

DEFINITION 2.9 (BRIDGES AND CUT VERTICES). — Let G be a connected graph. Any
vertex of G whose removal disconnects G is called a cut vertex. Any edge of G whose
removal disconnects G is called a bridge.

DEFINITION 2.10 (ROOTED GRAPH). — A rooted graph is a pair (G,0) of a graph G

and a vertex o of G. We say o is the root vertex of G, and G s rooted at o.

DEFINITION / PROPOSITION 2.11 (GRAPH DISTANCE). — Let G = (V, E) denote a
connected graph. The graph distance dg(x,y) of two vertices x,y € V is the length of a
shortest path from x to y. The pair (V,dg) is a metric space.

DEFINITION 2.12 (HEIGHT AND DIAMETER). — Let G denote a connected graph.
1) The diameter of G is given by

D(G) = sup da(z,y).

z,yeV
2) Letv € V be a vertex so that G* = (G,v) is a rooted connected graph. The height of

a vertex u € V s given by
hge (1) = dg(u,v).
3) The height of G* is defined by
H(G®) = sup hg(u).

ueV
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FIGURE 2. To the left: a uniformly generated tree with vertex
set [50] = {1,...,50}. The colours correspond to the graph
distance from a uniformly selected root vertex, in this case
the vertex 21. To the right: the same, but with half a million

vertices.

2.3. Trees. —

DEFINITION 2.13 (TREE). — A tree is a connected graph with no cycles.
Figure 2 illustrates two randomly generated trees.

PROPOSITION 2.14. — The following assertions are equivalent for a graph T.

i) T is a tree.
ii) Any two vertices of T are linked by a unique path.
iii) T is connected and removing any single edge of T' disconnects the graph.
iv) T has no cycles and adding any single edge that is not already present produces a

cycle.

Proof. — See exercises. O

COROLLARY 2.15. — A finite graph T with n vertices is a tree if and only if it is connected
and has n — 1 edges.

Proof. — See exercises. m

We will need some vocabulary for referring to vertices in a tree:
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U v v U
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of v.
U v
u u
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of an com- of the binary
addi- mon tree. tree.
tional ances-
vertex tor of u
and v.

u.

FiGuRrE 3. Notation for vertices in rooted trees. The root is marked with a square.

DEFINITION 2.16 (NOTATION FOR ROOTED TREES). — Let T' be a rooted tree with root

vertex o. Let u and v be vertices of T'.

1) The ancestors of v are all vertices of T' that lie on the path from v to the root o. In
particular, o and v are both ancestors of v.

2) A wvertez is called a descendant of v, if v is one of its ancestors.

3) The directed path from u to o and the directed path from v to o meet for the first
time at a vertex w and then proceed in the same way all the way to the root o. We
say w 1is the lowest (or youngest) common ancestor of u and v.

4) If v # o, then the second vertex x on the directed path from v to the root o is called
the parent of v. Conversely, we say v is an offspring vertex or child of x.
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FIGURE 4. Spanning trees of a connected graph. The one in
the middle was obtained via a breadth-first-search started at
the vertex marked by a big disc. The one on the right by a
depth-first-search started at the same vertex.

5) The number of offspring vertices of v is called its outdegree and denoted by
dt(v) € Ny. The collection of all offspring vertices of v is called its offspring set.

6) A vertex is called a leaf, if it has outdegree 0.

7) A rooted tree is called d-ary for d > 2 an integer, if all of its vertices have outdegree d.

See Figure 3 for an illustration of these concepts.

REMARK 2.17. — The outdegree of a vertex makes only sense for rooted trees. For
unrooted trees, different definition are often used, that may be at odds with the rooted

world. For example, a leaf in an unrooted tree is a vertex with degree 1.

DEFINITION 2.18 (SPANNING TREE). — Let G be a connected graph. A spanning tree of

G is a subtree containing all the vertices of G.

DEFINITION / PROPOSITION 2.19 (BREADTH-FIRST-SEARCH)
The breadth-first-search (BES) of a rooted connected finite graph (G,o0) maintains a

queue @ of queued vertices, a list L of visited vertices, and a tree T'.

1. In the beginning we mark the root o as queued, adding it to ), and let T be a rooted
tree consisting only of o.

2. In each step the first vertex v of Q) is moved to the end of L, and all its neighbours
in G that haven’t been visited or queued so far are added to the end of Q) and also
added as offspring of v in T.

3. We proceed in this way until the queue Q) is empty.

After the procedure terminates, the rooted tree T is a spanning tree and L is an ordering
of the vertices of G.

See Figure 4 for an illustration.
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PROPOSITION 2.20. — Let G* = (G, 0) be rooted connected finite graph and T' a rooted

spanning tree obtained via a breadth-first-search of G*. Then
hGo (U) = hT('U)
for all vertices v of G.

DEFINITION / PROPOSITION 2.21 (DEPTH-FIRST-SEARCH)

The depth-first-search (DFS) of a rooted connected finite graph (G,o0) is an algorithm
that produces an ordering of the vertices of G together with a spanning tree. Starting from
o, we move along the edges of G, going only to vertices not visited so far. If there is no
such vertex there are two cases. If our current vertex v satisfies v # o, then we traverse
back along the edge by which the current vertex was first reached. If our current vertex is
the root v = o, then we stop.

The edges traversed form a spanning tree, and the order in which each vertex is visited

for the first time gives an ordering of the vertices of G.

Note that we may describe depth-first-search in the same way as we described breadth-
first-search. The only difference is that in the second step, when adding the so far not
visited and not queued neighbours of v to the queue (), we add them at the beginning
instead of the end.

Depth-first-search may be used, for example, to find all bridges of a connected finite
graph GG. See the exercises.
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FIGURE 5. The two trees are not identical, but isomorphic.

2.4. Symmetries. —

DEFINITION 2.22 (GRAPH ISOMORPHISMS). — Let (V, E) and (V',E") be graphs. A

graph isomorphism between the two is a bijective map
o: V=V

such that for all x,y € V we have {z,y} € E if and only if {p(x),p(y)} € E'. In this
case we say the two graphs are isomorphic. An unlabelled graph is an isomorphism class
of graphs.

Figure 5 illustrates an example of two isomorphic graphs.

DEFINITION 2.23 (GRAPH ISOMORPHISMS OF ROOTED GRAPHS)

Two rooted graphs are considered isomorphic, if there exists an isomorphism between
the two that maps the root vertices to each other. An unlabelled rooted graph is an iso-
morphism class of rooted graphs.

DEFINITION 2.24 (SYMMETRIC GROUP). — Given a set X we let
S(X)={f:X — X | [ is bijective}
denote the corresponding symmetric group on X. Its unit element is the identity map idx .

DEFINITION 2.25 (FIXED POINTS AND SUPPORT). — Let f € &(X) be a permutations.
Any element v € X with f(x) = x is called a fized point of f. The subset

{ye X | fly) #y}
15 called the support of f.

DEFINITION 2.26 (CYCLES). — An element 7 € &(X) is called a cycle, if its support
may be ordered in a way x,...,rr with k > 2 such that
Tip1, 1<i<k
7'(.’13'1) = .
Zy, 1=k
In this case we say T is a k-cycle. Two cycles in S(X) are disjoint if they have disjoint
support sets.
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DEFINITION 2.27 (GROUP OPERATIONS). — Let M be a group with unit element ey,
and let X denote a set. A (left-)group operation of M on X is a map

p:MxX =X, (m,x)—mx
such that for all m,m’ € M and x € X we have eyr.x = x and m.(m'.x) = (mm/).x.
PROPOSITION 2.28. — Let M be a group and X a set. Any group operations
pw:Mx X —X
corresponds to a group homomorphism
0, M — &(X),m— (z— m.x).
Conversely, any group homomorphism
p: M — 6(X)
corresponds to a group operation
po: M x X = X, (m,z) — ¢(m)(z).
Moreover, these two constructions are inverse to each other.

DEFINITION / PROPOSITION 2.29 (ORBITS). — Suppose that a group M operates on a
set X. This defines an equivalence relation ~ on X with x ~ y if there is a group element
m € M with m.x = y. The equivalence classes are called orbits of the group operation.
We denote the orbit of an element x € X by Orbit(zx).

DEFINITION / PROPOSITION 2.30 (STABILIZERS). — Let a group M operate on a set X.
For any x € X the stabilizer

Stab(z) ={m € M | m.x =z}
1s a subgroup of M.
LEMMA 2.31. — Let a group M operate on a set X. For any element x € X, the map
M /Stab(z) — Orbit(x), m— m.x
18 well-defined and bijective.

Proof. — The map is well-defined: let m, m’ € M such that m = m’ mod Stab(z). That
is, there is a group element g € Stab(z) with m’ = mg. Hence

m'.x = (mg).x =m.(g.x) = m.x.

It is clearly surjective. To see that it is injective suppose that m, m’ € M with m.x = m/.x.
Then m~'m’ € Stab(z) and hence m = m’ mod Stab(x). O
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FIGURE 6. Decomposition of a permutation into disjoint cycles.

LEMMA 2.32. — Let a group M operate on a set X. For any element x € X and any
group element m € M it holds that

Stab(g.z) = gStab(x)g".
Here we define gStab(z)g~' := {ghg™" | h € Stab(z)}.
Proof. — This easy observation is left as an exercise to the reader. O

EXAMPLE 2.33. — Let V be a fized set and &(V') the collection of all graphs with vertex
set V. The symmetric group &(V') operates on &(V') via relabelling of vertices. The orbits
of this operation correspond bijectively to unlabelled graphs whose vertex set has the same
cardinality as V. The stabilizer of a graph is called its automorphism group. If V has
n > 1 elements, then

n! = |Orbit(G)||Stab(G)|
for any graph G € &(V).

THEOREM 2.34. — Let X be a finite set. Then any permutation on X may be represented
as a product of disjoint cycles. Moreover, this product representation is unique up the order
of the factors.

Proof. — For any permutation o € &(X) the generated subgroup < o > operates on the
set X in a canonical way. The orbits with at least 2 elements correspond precisely to the

disjoint cycles in the product composition of . Compare with Figure 6. O]

THEOREM 2.35 (CAYLEY). — Let V be a fized set with n > 1 elements. There are
precisely n" % edge-configurations E such that (V, E) is a tree.

Proof. — Consider the collection End(V') of all functions f : V' — V. Clearly End(V)
has n" elements. For any function f : V — V we may consider its recurrent points v € V'
that satisfy f¥(v) = v for some k& > 1, and it’s non-recurrent points u € V, that satisfy
f¥(u) # u for all K > 1. Any non-recurrent point corresponds to a unique recurrent point.
Conversely, the collection of all non-recurrent points corresponding to a given recurrent

point u may be viewed as a tree rooted at u, with f acting like the parent function. The
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FIGURE 7. Decomposition of an endofunction into a compos-

ite structure consisting of a partition with a rooted tree struc-
ture on each partition class and a permutation structure on

the collection of classes.

recurrent points may be grouped into cycles and fixed-points, in the same way as any
permutation may be decomposed into cycles and fixed-points in a unique way. Summing
up, there is a bijection between functions from End(V') and triples (7,0, (Ag)ger) With
7 a partition of V, o0 € (V) a permutation, and Ag a rooted tree with vertex set ) for
each class @) € m. Compare with Figure 7.

Now let us consider the collection A*(V') of all doubly rooted trees with vertex set V.
Any such tree has a unique directed path from the first root to the second. Any vertex on
that path may be viewed as the root of a subtree consisting of all the non-path vertices we
may reach without passing through another path-vertex. Summing up, there is a bijection
between doubly rooted trees from (V') and triples (7, w, (Ag)ger) With 7 a partition of
V', w a linear order on V', and Ag a rooted tree with vertex set ) for each partition class
Q € w. Compare with Figure 8.

The number of linear orders on a given set is equal to the number of permutations on
that set. Hence there is a bijection between End(V') and 2*(V), yielding that there are
precisely n™ doubly rooted trees on a given m-element vertex set. Hence there are n™!
rooted trees and n"~2 unrooted trees on that set. O

REMARK 2.36. — There many different proofs of Cayley’s theorem. The one given here
illustrates two important concepts. First, introducing roots serves as a starting point for
decompositions. Second, we used a very important tool in enumerative combinatorics:

partitions of sets where each partition class is endowed with an additional structure of
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FI1GURE 8. Decomposition of a doubly rooted tree into a lin-
early ordered of rooted trees.

some kind (such as graphs or trees) and where the collection of classes is endowed with
an additional structure of another kind (such as linear orders or permutations).

There is also a third remark to be made here. The proof does not work for unlabelled
graphs. The bijection between End(V') and A*(V') is not compatible with relabelling oper-
ations. Moreover, although any labelled graph with n vertices has n rooted versions, this

is no longer true (in general) for unlabelled graphs.
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FiGURE 9. The spanning tree in the case the random walk
starts like (1,6,1,5,4,5,1,6,2,4,5,3,8,3,1,3,7,...).

3. The random walk construction of uniform spanning trees

3.1. Generating uniform spanning trees. — Let G = (V, E) denote a finite (non-empty)
connected graph. A simple random walk (X,,),>¢ starts at some (random or deterministic)
vertex Xy and walks in each step to a uniformly selected neighbour of the current vertex.
We may view (X,,),>0 as a discrete time Markov chain with transition matrix P of the
form

1 {v,w} € E

Pv,w) = da(v)?
0, otherwise

for v,we V.

For each vertex v of G we let
T, =min{n > 0: X, = v}

denote the first hitting time.

PROPOSITION 3.1. — The stationary distribution (7(v))yev of the simple random walk
(Xp)n>0 on the finite connected graph G is given by
_ dg(v)

veV.

m(v) =

Proof. — First, note that 7w defined as above is a probability distribution: In the sum

201E]

> vev da(v) we count each edge twice (once for each end), and hence

> da(v) =2|E|.
veV
Moreover, 7 is the stationary distribution, as for each vertex v € V

1 dg(v
Z 7(w)P(w,v) = 5] Z Ly wier = 26;;])

weV weV
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F1cURE 10. The possible predecessors of the spanning tree in Figure 9.

DEFINITION / PROPOSITION 3.2. — The graph T with vertex set V and edges { X1, _1,v}
forve V\{Xo} is a spanning tree of G that we view as rooted at X.

Proof. — 1t is clear that the covering time is almost surely finite, so we eventually reach
each vertex. The construction means that we start at Xy and whenever we walk across
an edge e to arrive at a vertex v € V' \ {Xo} for the first time, we keep e. This way, we
keep |V| — 1 edges in total, and we construct T via a growth procedure, attaching always
one edge to a pre-existing tree to form a new tree in each step. O

See Figure 9 for an illustration.

THEOREM 3.3 (ALDOUS, BRODER). — If we view T as an unrooted tree, then it is
uniformly distributed among all spanning trees of G. Conditional on Xg = v for some
vertex v of G, the tree T is uniform among all rooted spanning trees of G with root v. If

Xo is uniform, then T is uniform among all rooted spanning trees of G.

Proof. — For now, suppose that X, follows the stationary distribution 7. Let us extend
the random walk in negative time so that (X,,)ncz forms a stationary process.

We let § denote the collection of rooted spanning subtrees of G. For each n € Z and
v eV we set

Ty =min{k >n | X, =v}.

That is, T, is the first time starting from n that we encounter the vertex v. We define
the spanning subtree S, rooted at X, with vertex set V' and edges {Xr, ,—1,v} for v €
V A\ A{X,}. As (X,)nez is stationary, it follows that (S),)nez is an S-valued stationary
process.

For each spanning tree ¢t € S with root vertex v we let D(t) = dg(v) denote the number
of neighbours of v in GG. Note that if Sy = ¢, then X_; must be one of the neighbours of
v. Each neighbour w has chance 1/D(t), and each possibility leads to S_; being equal to
some tree ¢’ that is determined by ¢ and w. Specifically, ¢’ is obtained from ¢ by deleting
the edge from w to its parent and adding an edge from w to v. See Figure 10 for an
example.
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F1GURE 11. The possible successors of the spanning tree in
Figure 9. For example, we would obtain the first if the random
walk starts with (1,6,1,5,4,5,1,6,2,4,5,3,8,3,1,3,7,...) as
in the caption of Figure 9.

It follows that (S_,)nez is a stationary S-valued Markov chain. Its transition matrix
Q) with

(3.1) Q) =P(S_y =1 | Sy =1)

satisfies the property, that for each t € S there are D(t) trees t' € S for which

(3:2) Q(t.t1") =1/D(¢),
and of course
(3.3) Qt,t")=0

for all other ¢'. Note that for (3.1) we have used that X, follows the stationary distribu-
tion 7.

Now, conversely, suppose that ¢ € S is given and let w denote its root. We know that
for each t € S it holds that Q(t,t') € {1/D(t),0}. The question is, how many rooted
spanning trees ¢ with Q(¢,t') > 0 are there exactly? To answer this, note that removing
w from #' produces dy(w) connected components (or fringe subtrees) T1,. .., Ty, (), each
rooted at the corresponding t-neighbour of w. We know that if S_; = t/, then the
random walk beginning at time —1 sets foot on one of these components first and it
visits w again before arriving at any of the other component. Hence ¢t must be obtained
from t' by selecting some index 1 < i < dy(w), removing the edge from w to the root of
T;, and adding an arbitrary G-edge that links 7; with w. The choice of component and
edge of course depends on the precise route of the random walk. But, in total, we have
D(t) = dg(w) possibilities for t. Compare with Figure 11.

Thus, for each rooted spanning tree t' € S there are D(t') trees t € S for which

Q(t.t") =1/D(t)
and

Q(t,t") =0
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for all other ¢. This implies
(3.4) > D(1)Q(t, ') = D(t').
tes

Note that the Markov chain (S_,,),ez is irreducible: Indeed, given any rooted spanning
tree t € S we may consider a sequence vy, . . ., v, of its vertices obtained from a depth-first-
search walk, including the steps we have to backtrack towards the root. (This way, s equals
twice the number of edges of ¢.) The probability for (Xo,..., Xs) to equal (v, ...,vs) is
positive and a lower bound for the probability that Sy = t.

It follows from Equation (3.4) that the stationary distribution of (S_,),ez is propor-
tional to (D(t))ses-

We have shown that when X follows the stationary distribution 7 from Proposition 3.1,
then P(7 = t) is proportional to D(t). Hence, conditional on X, = v for some fixed vertex
v of G, T is uniformly distributed among all rooted spanning trees of G with root v. If we
regard 7 as an unrooted tree, then it is uniformly distributed among all spanning trees of
T. Likewise, if X is assumed to have uniform distribution, it follows that 7 is uniform

among all rooted spanning trees of G. O

REMARK 3.4. — Suppose that G = K,, is the complete graph with vertex set [n| (such
that any two distinct vertices are connected). The irreducible Markov chain on the set of
all n"~! rooted trees on [n] with transition matriz given in (3.1) takes the following shape:
In each step, choose a uniform non-root vertex v. Delete the edge to its parent, add a
new edge linking v and the old root, and declare v to be the nmew root. The stationary
distribution of this chain is the uniform distribution on all rooted trees.
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3.2. Generating uniform labelled trees. —

THEOREM 3.5 (ALDOUS). — For each integer n > 2 consider the following procedure
that generates a random tree T, with with vertez set [n] = {1,...,n}.
1) Let U, ..., U, be random elements that are independent and uniform on [n].

2) Let o € &,, be a uniformly selected permutation of degree n.
3) For2 < j <n add an edge between o(j) and o(min(j — 1,U;)).

Then T, is uniform among all labelled trees with vertex set [n].

Note that there is always an edge between (1) and o(2). The random variable U, is

not used, we just keep it for ease of notation.

Proof of Theorem 3.5. — Let (Z;);>0 be a sequence of independent random variables, each
uniformly distributed on [n]. Let 7y, m,..., 7, € [n| denote the distinct states hit first,
second, etc. by (Z;)i>0, and let 0 = & < & < ... < &, denote the corresponding hitting
times. For 2 < j <n, we let P; € [n] denote the last state right before hitting 7, for the
first time. That is,

(3.5) Pi=2Z 1.

Consider the tree R with vertex set [n] in which 7; is connected to P; for all 2 < j < n.

The construction of R does not change if we replace (Z;);>0 by the sequence (Z!);>o
where terms identical to their predecessor are deleted. Clearly (Z});> is the simple random
walk on the complete graph with n vertices, and the construction of R from (Z);>¢ is
identical to the construction of the tree 7. By Theorem 3.3 it follows that R is uniformly
distributed among all trees with vertex set [n].

Let us analyse the distribution of P; conditionally on the ordered sequence (mq, ..., mj_1).
Conditionally on (71, ...,7,;_1), the last state m;_; has a higher chance than the others:
At time §;_q + 1, that is, right after hitting m;_; for the first time, the probability for
Ze,_,+1 to belong to one of the n — (j — 1) not previously visited states is 1 — ]%1 In this
case we have §; = £;_; + 1 and P; is the state at time §;_y, that is P; = Z¢,_| = 7(j — 1).
Now consider the other case, assumed with probability j%l, where Z¢, | 1 belongs to one
of the j —1 previously visited states. Here Z¢, , 11 assumes any of these previously visited
states with equal conditional probability. Hence, regardless how many additional steps it
takes to hit a state that has not been previously visited, any of the states m,...,7;_1 is
equally likely to be the last before hitting a new state. Hence in the second case, P; is
conditionally uniformly distributed among {y,...,7;_;}. Combining the two cases, we
obtain the conditional probability
1 1<i<j—1

1-== 1=5-1
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Note that this conditional probability only depends on ¢, 7, and n. Moreover, interpreting

(7:)1<i<n as permutation, it holds by symmetry that

(3.7) P((mi)i<icn =7) =

for all permutations v € &,,.

Recall that in the construction of R we start with vertex set [n| and connect 7; to P;
for all 2 < j < n. This means the construction of R is equivalent to first selecting a
uniform permutation o from &,,, and then adding for each 2 < 7 < n an edge between

o(j) and o(V;) for an independent random index 1 < V; < j — 1 with distribution

L 1<i<j—1
(3.8) P(V;=i)={" =l

1-L£2 j=j-1
It is elementary that
(3.9) V£ min(i — 1,0)
for an uniform random element U of [n]. Hence this sampling procedure is equivalent to
the construction of 7,,. This completes the proof. m
REMARK 3.6. — Theorem 3.3 also entails that the random tree R from the proof rooted

at 71 is uniform among all rooted trees with vertex set [n]. Thus, T, rooted at o(1) is also

uniform among all rooted trees on [n].



RANDOM TREES 21

<
<

"y
KX
0

(a) All Pdlya trees with 5 (b) All wunlabelled (un-
vertices. rooted) trees with 6
vertices.

FiGURE 12. Notation for vertices in rooted trees. The root is marked with a square.

4. Plane trees

Trees in the graph-theoretical sense are also called labelled trees, and the vertex set is
often referred to as the set of labels. Unlabelled rooted trees are often called Pélya trees,
in honour of the Hungarian mathematician George Pélya (1887 — 1985). Note that unlike
the labelled case, the number root locations in an unlabelled (unrooted) tree depends on
the tree and not only on the number of vertices. See Figure 12 for an example.

These three tree models - labelled, unlabelled rooted, and unlabelled unrooted - are also
called unordered trees. There are also various kinds of ordered trees, the most important
and common one being planted plane trees. They are the most common type of trees in
the probabilistic literature. Often, the shorter term plane tree is used synonymously with
planted plane trees when there is no risk of confusion with other types. We will abide by
this convention.

DEFINITION 4.1 (FINITE PLANE TREE). — A finite plane tree is an unlabelled rooted
tree where each offspring set is endowed with a linear order.

That is, the offspring of any vertex v of a finite plane tree T' is enumerated from 1 to
d(v). This allows us to to refer to the first, second, etc. offspring vertex of v.

NOTATION 4.2. — The set of all plane trees with n > 1 vertices is denoted by T,,. We

let
@:Um

n>1

denote the collection of all finite plane trees.

See Figure 13 for the collection of all plane trees with 5 vertices. We may also define
plane trees that admit vertices with infinite degree.
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Ficurg 13. All 14 plane trees with 5 vertices.
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DEFINITION 4.3 (INFINITE PLANE TREES). — An infinite plane tree T may have nodes
v with outdegree dt(v) = oo. In this case we require the children to be ordered vy, vy, . . ..
That s, the order type on the offspring set is N. We let T denote the collection of all
plane trees, finite and infinite.

DEFINITION 4.4 (LOCALLY FINITE PLANE TREES). — A plane tree T is called locally
finite, if df(v) < oo for all vertices v of T. We let Ty¢ denote the collection of all locally

finite plane trees.

Note that
T C Ty CX.
4.1. Ulam—-Harris tree encoding. — Plane trees may be realized as canonical subtrees
of the Ulam-Harris tree:
DEFINITION 4.5 (ULAM—HARRIS TREE). — The Ulam—Harris tree Uy, is a tree whose

vertex set is the collection
Ve ={0}u N
n>1
of finite sequences of positive integers. Here any such sequence (iy,...,ix) € N¥, k>0
has the linearly ordered offspring

(2T P Y (S TR P IS
The empty sequence O is the root of the Ulam—Harris tree.

PROPOSITION 4.6 (ENCODING AS SUBTREES OF THE ULAM—HARRIS TREE)
A finite plane tree T may be canonically realized as a subtree of the Ulam—Harris tree

Uy by labelling the root of T with the empty sequence (). The linearly ordered offspring
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FIGURE 14. The two depicted trees are not identical as

planted plane trees.

set vy, ... » Ut (v) of a vertex of T that received label (i1, ..., i) € N¥ k>0, receives the
labels

(iry e oyign 1), (iny ey 2), ey (it i, dE (V).

Compare with Figure 14. This embedding allows us to identify plane trees with families
of outdegrees, indexed by V,.:

COROLLARY 4.7 (ENCODING BY OUTDEGREES). — There is a bijection between the
collection of plane trees ¥ and the collection of all families

_VOO
(dU)UEVoo € N0
satisfying

The bijection maps a plane tree T to the family of outdegrees (di-(v))vev,, . Here we
identify the vertex set of T' in the canonical way as a subset of V., and set

dt(v) =0 when véT.

Be careful that d;.(v) = 0 may also hold for some vertices v € T

4.2. Enumeration of plane trees. — In general, a depth-first-search of a rooted tree may
yield different outcomes, since there is no general rule along which previously unvisited
neighbour to proceed first. For plane trees, there is fortunately a canonical way:

DEFINITION 4.8 (CANONICAL DFS ORDERING). — Given a finite plane tree with we
may order its vertices in a canonical way via depth-first-search. Here we start at the root
and always try to proceed along the left-most unvisited offspring. This ordering is identical
to the lexicographic ordering when interpreting the vertex set of T' as a subset of the vertex
set Vo of the Ulam—Harris tree.

DEFINITION 4.9 (DEGREE SEQUENCE AND LUKASIEWICZ PATH)
Let T be a finite plane tree and let vy, ..., v, be its depth-first-search ordered list of
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vertices. We say (df(vy),...,d+5(vy)) is the degree sequence of T. The corresponding
sequence (Wi)o<k<n with
k
W= () - 1)
i=1
15 called the Lukasiewicz path of T.
LEMMA 4.10. — A sequence dy, . ..,d, of n > 1 non-negative integers is a degree sequence

of some plane tree if and only if

n

D (di—1)=-1

i=1

and
k
Z(di—nzo for all 1<k<n.
i=1
Proof. — See exercises. O]
The following combinatorial result ensures that any sequence (dy, ... ,d,) of n > 1 non-

negative integers satisfying » ", d; = n — 1 corresponds via a unique cyclic shift to a
degree sequence of a plane tree:

LEMMA 4.11 (CYCLE LEMMA). — Let z1,...,2, > —1 and r > 1 be integers such that

n
E xr; = —rT.
i=1

For alli,j € Z let xgj) = x;4; with the index taken modulo n. For each integer k > 0

consider the partial sums
k

SO =3 4.

=1

Show that there are precisely r values j € {1,...,n} such that

S,gj S —
foralll <k <n.
Proof. — See exercises. n
THEOREM 4.12. — The number of planted plane trees with n > 1 vertices equals

1/2n—2
|$n|—5(n_1)‘
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FiGUurE 15. The lattice walk corresponding to the monoton-
ically increasing sequence (1,2,2,3).

Proof. — Let Z(n — 1,n) denote the number of sequences (di,...,d,) of non-negative
integers satisfying » ", d; = n — 1. By Lemmas 4.10 and 4.11 it follows that

1
n| — — _17 .
1T, nZ(n n)

Consider the grid G = {(4,j) | 4,5 € {0,...,n — 1}}. Suppose we want to walk in
G from (0,0) to (n —1,n — 1) in such a way that in each step we either move distance
1 upwards or distance 1 to the right. In total we have to take 2n — 2 steps, precisely

n — 1 of which are upwards and n — 1 are to the right. The total number of such walks is
2n—2)

hence ( o

Each walk corresponds in a bijective way to a sequence (Ds,..., D, 1) of integers

satisfying
0<D: <Dy <...D,_1<n-—1.

Here for each 1 < k < n—1 the number D, corresponds to the height of the k£th horizontal
segment of the walk. Compare with Figure 15.

Each such sequence (Dy, ..., D,,_1) corresponds bijectively to a sequence (dy,...,d,) of
non-negative integers satisfying > d; = n — 1. Here for each 1 < k < n —1 the number
D), corresponds to the sum Zle d;.

Thus,
2n — 2
Z(n—l,n)—(n >

n—1
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5. Galton—Watson trees

5.1. Basic definitions. — Throughout this section we let £ denote a random non-negative
integer satisfying

(5.1) P(E=0)>0 and P(£>2)>0.

We let

(5.2) é(2) = E[]

denote its probability generating series, and

(5-3) p = E[¢] €]0, o]

its first moment.

DEFINITION 5.1 (GALTON—WATSON PROCESS). — Let (51.(’“)%,@1 denote a family of in-

dependent copies of €. A &-Galton—Watson process is a stochastic process (Zp)n>o in
discrete time, defined by

Zn,
(5.4) Zo=1, Zna=» &".
=1

The process models the genealogical structure of a population that starts with a single indi-
vidual and reproduces asexually. The number Z,, represents the size of the nth generation,
and the offspring of the ith individual in this generation is represented by ffn) for each
1<i< Z,.

The random variable £ and its distribution are called the branching law or the offspring
distribution of the process.

DEFINITION 5.2 (GALTON-WATSON TREE). — The family tree T corresponding to a
&-Galton—-Watson process (Zy)n>o is called a £-Galton-Watson tree. We interpret T as a

random element of the collection T of plane trees.

That is, the root of 7 has él) children. For each 1 <7 < 5%1), the 7th child of the root
has 552) children of its own. This process continues on and on, producing a tree that a
priori may be infinite.

PROPOSITION 5.3. — 1) For each n > 1 the number Z, corresponds to the total num-
ber of vertices in T with height n.
2) The total number of vertices of T equals |T| =", -0 Zn-
3) The height of T is given by H(T) = sup{k > 0| Z, > 0}.
4) The mazimal outdegree of T is given by A(T) := Sup{@(n) ln>0,1<i<Z,}.

DEFINITION 5.4 (CRITICALITY). — We say the Galton-Watson tree T is critical, sub-
critical, or supercritical, if p =1, p <1, or p > 1.
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5.2. The probability of extinction. — Depending on the offspring distribution, it is pos-
sible that the tree T is infinite. We will clarify this situation.

LEMMA 5.5. — 1) Letn > 1 be an integer. The population Z, at time n has probability
generating function

E[z%"] = (po...0¢)(2).

and first moment

2) It holds that
P(|T| < o0) = lim P(Z, = 0)
n—o0

Proof. — By (5.4) it follows that

E[z71] = ¢(2)
and
E[z7+1] = ¢(E[z7"]).

By induction on n, it follows that the probability generating series for 7, is the nth iterate
of the probability generating series ¢(z) of the offspring distribution. Using the chain rule,

it follows again by induction on n that

EZ,] = —E[*]

d(gbo...ogb)(z)
————

=1 dz

z=1
n times

The Galton—Watson tree 7T is finite if and only if Z,, = 0 for some integer n. Letting &,
denote the event Z,, = 0, it follows that

P(|T] < 00) =P (U 5n) .

n>0

Of course, if Z, =0, then Z,,1 = 0 holds as well. That is, &, C &,,1. Consequently,

P(&,) — P (U 5n>

n>0

as n — 0o. This shows P(|7| < 00) = lim,,_,o, P(Z,, = 0). O

THEOREM 5.6 (THE PROBABILITY OF EXTINCTION). —

1) If p <1, then P(|T| < 00) = 1.
2) If u>1, then 0 < P(|T| < o0) < 1.
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FIGURE 16. The probability generating function ¢(z) = E[z¢]
has either one or two fixed points in the unit interval [0, 1],
depending on whether E[¢] > 1 or E[{] < 1.

Proof. — For ease of notation, let us set
p=P(T| <o0)>P(E=0)>0.

The Galton—Watson tree T is finite if and only if the 59) fringes subtrees dangling from
the root are all finite. Conditionally on f{l), each of these is distributed like 7. This
readily yields

p=>Y_ PE=n)p" =)

n>0

Assumption (5.1) asserts that P(¢ = 0) > 0 and P(§ > 2) > 0. Hence ¢ is strictly
increasing and strictly convex on the unit interval. Furthermore, ¢(0) = P({ = 0) > 0
and ¢(1) = 1. By basic properties of convex functions it follows that 1 is the only fixed
point of ¢ in the unit interval if

: /
p=limg(t) <1

Hence in this case, p must be equal to 1. In the other case, when

— |1 /
p=lim () > 1,

then there is some number 0 < ¢ < 1 so that ¢ and 1 are the only fixed points of ¢ in the
unit interval. Compare with Figure 16. Hence p € {¢,1}. In order to see that p = ¢, note
that 0 < ¢ implies ¢(0) < ¢(q) = q. More generally, it follows from Lemma 5.5 that

P(Z,=0)=(¢o...00)0) <q.
o
As, again by Lemma 5.5, p = lim, . P(Z, = 0), it follows that p < ¢ and hence
p=q€]0,1]. O
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5.3. Topological properties of the collection of plane trees. —

5.3.1. Tychonoff’s theorem. — In Corollary 4.7, we learned that we may interpret the
collection ¥ as a subspace of the product N(‘)/oo. Note that V., is countably infinite. We
may endow each factor

NU :N()U{OO}

with the usual compact topology given by the one-point compactification of the discrete
space Ny. That is, a subset O C N is open if and only if O C Ny, or co € O and
No \ O C Ny is finite. This makes the bijection

No = {0}u{l/n|n>1}, ne1/(n+1)

a homeomorphism, if we endow {0} U {1/n |n > 1} C R with the subspace topology. In
particular, Ny is metrizable by a metric dr, induced from this bijection.

A famous theorem in topology states that the product of compact topological spaces is
compact:

THEOREM 5.7 (TYCHONOFF). — If (X;, 7i)ier is a family of compact topological spaces,

then their product [],.; Xi is compact with respect to the product topology.

1€l

This makes NXOO a compact space. A direct proof of Tychonoft’s theorem is sufficiently
straightforward that it seems worth giving before proceeding.

LEMMA 5.8. — Let (X;,7)ier be a family of compact topological spaces and let X =
[Lic; Xi be endowed with the product topology. For any i € I let m; : X — X; denote the
projection to the ith coordinate. Then any open cover C' of X satisfying

Cc{r;'(0)|iel,Ocm}
has a finite subcover.
Proof. — For each ¢ € I define

C;i={0 e |n'(0)eC}

Suppose that there is no index ¢ € I such that C; covers X;. Then for each ¢« € I we
may select an element x; that is not covered by C;. Hence x := (z;);e; € X would not be
covered by C, a contradiction as we assumed C' to be a cover of X.

Hence there is an index ¢ € I such that C; covers X;. As X; is compact, it follows that
C; admits a finite subcover C! C C; of X;. Hence

{=7'(0)|OeC}cC

is a finite subcover of X. O]
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Recall that a basis of a topological space (X, 7) is a subset B C 7 such that each open
subset of X is a union of elements from B. A subbasis S C 7 is a collection of open
sets such that the collection of all finite intersections of elements from S forms a basis
of 7. Care has to be taken that “finite” is allowed to mean zero, using the convention
Noep O := X. (Without this convention, only proper subsets of X would be required to
admit expressions as unions of finite intersections of elements from S.) Equivalently, S is
a subbasis if 7 is the smallest topology on X containing S.

For example, if X = []..; X; is equipped with the product topology as in Lemma 5.8,
then

{7;1(0O)|ieI,0 €}
is a subbasis. In Lemma 5.8 we showed that if X is compact for all + € I, then any
collection of sets from this subbasis that covers X has a finite subcover. Hence Tychonoft’s

theorem may be readily deduced from the following result:

LEMMA 5.9 (ALEXANDER’S SUBBASIS THEOREM). — Let S be a subbasis of a topological
space (X, 7). If every collection of sets from S that covers X has a finite subcover, then

X 1s compact.

Proof. — Consider the collection E of all open covers of X that do not have a finite
subcover. F is partially ordered by set inclusion. Any totally ordered subset T C E has
C = Uger €' as an upper bound. To see that C' has no finite subcover, note that any
finite subset of C' is necessarily a subset of some element of T'.

Now, if X is not compact, then E is nonempty and hence has a maximal element M
by Zorn’s Lemma. We claim that M N S is a cover of X. To see this, let x € X be an
element. M is a cover of X, hence there is an element O € M with x € O. As M has no
finite subcover, it must hold that O C X. As S is a subbasis, it follows that

reON...NO, CO

for some n > 1 and elements O,,...,0,, € S. If O; € M for some 1 < j < n, then z is
covered by M N S. If Oy,...,0, ¢ M, then, by maximality of M, M U{O;} has a finite
subcover containing O; for each 1 < j < n. That is, we may write

for some open set U; C X that is the union of finitely many elements of M. This means
that O U U?Zl Uj is a union of finitely many elements from M. But

OUOU]'D (ﬁ@) UOUJ'D ﬁ(O]UUJ):X
j=1 j=1 j=1 j=1

This contradicts the fact that M has by construction no finite subcover. Thus M NS is
a cover of X.
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By assumption on S, it follows that M N S has a finite subcover. This contradicts the

fact that M has no finite subcover. This means X must be compact. O

This concludes the proof of Tychonoft’s theorem.

5.3.2. The space T is Polish. — Going back to Né/oo, we have now verified that N[‘)/OO is a
(countable) product of compact spaces and hence compact with respect to the product
topology.

PROPOSITION 5.10. — A sequence of points in Ngm converges if and only if each coor-

dinate converges.

Proof. — Indeed, the projections 7, : Néfm — Ny (with v € V) are continuous, hence
convergence in NX“’ implies convergence of each coordinate. Conversely, suppose that x,,,
n > 1 is a sequence in Né/w and x € NE)/OO so that m,(x,) — m,(x) for each v € V. We
know that

{7,1(0) | v € Vo, O C Ny open}

is a subbasis. Hence if O C Né/m is an open neighbourhood of «, then there exists an
open set O’ that is the intersection of finitely many elements of the subbasis such that
x € O C O. Convergence of each coordinate of x, ensures that for n large enough
x, € O" and hence x,, € O. Thus, @, converges to « in the product topology. O]

The space Néf * has a countable basis, given by the intersections of finitely many elements
of its countable subbasis

(r () | v € Vien € No} U {r ({oo} U{n,n+ 1,...}) | v € Vie,n € Ny}

Hence NZM is a second-countable space. Consequently, it also admits a countable dense
subset, just pick an element of each basis element. This means Né/w is separable.
The space Ny is metrizable, for example by the metric dg, induced from the homeomor-
phism
No — {0} u{l/n|n>1}

and the subspace metric on the right-hand side. Consequently, the product NKM is metriz-
able as well: if we pick any bijection ¢ : V, — N, then the metric

1
Ao ((To)vevao, (Yo)vevas) = sup g, (), Yoi))

induces the product topology on Né/m. One way to see this is to first observe that conver-
gence with respect to dgve 1s equivalent to convergence of each coordinate, just as with

0
the product topology. Hence a set is closed in the product topology if and only if it is
closed with respect to dgve.

0
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A topological space is called Polish if it is homeomorphic to a separable complete

. . _Voo . . .
metric space. We have shown that the metric space (N, ,dem) is compact, hence it is
0

also complete. Since N(‘)/m is separable, it follows that N(‘)/m is Polish.
Recall that by Corollary 4.7 we may identify ¥ with a subset of NX‘”.

PROPOSITION 5.11. — The subset T C NX“ is closed.

Proof. — Recall that a point (z,)yev,, € NXOO belongs to ¥ if and only if for each v € V
and each ¢ € N with ¢ > x, it holds that

Tyi = 0.

Hence we may write

T=Ny™\ U Uy

VEVoo, €N, iENI>T
for
Upwi = {@ € N} | mp(@) = 2, mi(a) # 0}

=, ({z}) Nm,; (No \ {0}).
Each such set U, ,; is open, making T a closed subset. O
COROLLARY 5.12. — % is a compact Polish space.
Proof. — Closed subsets of compact spaces are compact, hence T is compact. As a

compact metric space, ¥ is of course complete. Subspaces of second-countable space are
second-countable, making T second-countable and hence separable. O

Note that %) and %¢ are not closed subsets of ¥.

5.3.3. Truncated trees and distributional convergence. —

DEFINITION 5.13 (TRUNCATIONS OF TREES). — For any tree T € T and any integer
m > 1 we let T™ denote the tree obtained by removing all vertices with height larger than
m. We also define the subset

yiml — U{l,...,m}k C Vs
k=0

and let T'™ denote the tree with vertex set restricted to V(T) N V1M,

That is, the tree T is obtained from T by truncating at height m. The tree T
is obtained by additionally pruning so that all outdegrees are at most m. The following

: . : N N
result is an immediate consequence from the characterization of convergence in N;™:

PROPOSITION 5.14. — Let (T,,)n,>1 be a sequence of trees in T and let T € .
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1) The sequence converges to T if and only if for each m > 1 there is a constant
n(m) > 1 such that for all n > n(m)

Timl — iml,

2) Suppose that T € ;. Then the sequence converges to T if and only if for each m > 1
there is a constant n(m) > 1 such that for all n > n(m)

T<m> — T<m>
n .

PROPOSITION 5.15. — We equip N(‘)/w with its Borel g-algebra. A sequence of random
points &1, xa, ... € N(‘)/oo converges in distribution to a random point x € Né/oo, iof and only

if for each integer m > 1

(T0(®n))werim — (1 () )peyin.

Proof. — Necessity follows from the mapping theorem. Turning to sufficiency, define for
each m > 1 the projection
P Ny ST e o (@) ey

The finite dimensional marginals are measure-determining: If & and y are two random
elements with p,,(x) ipm(y) for all m > 1, then z<y. This follows from the usual
m-A-Lemma.

Now, suppose that x, is a sequence of random elements of N(‘)/OO such that the finite
dimensional marginals convergence in distribution. Our space is a compact Polish space,
hence so this the corresponding space of Borel probability measures. Hence any sequence
of random elements is tight and thus has a convergent subsequence. In order to verify
distributional convergence of x,, it suffices to show that the distribution of the limit along
a subsequence does not depend on the choice of subsequence. But this is clear, since
any two distributional limits along subsequences must have the same finite dimensional

marginal distributions. O

Proposition 5.15 allows us to verify the following convergence criteria in a straight-

forward way:.

PROPOSITION 5.16. — Let (T,),>1 be a sequence of random trees in <.
1) For a random tree T in ¥ it holds that

T, 5T

if and only if
Tl _d Tlm]

for each m > 1.
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2) For a random tree T that almost surely lies in Ty it holds that
T,- 5T

iof and only of

for each m > 1.
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5.4. Size-biased Galton—Watson trees. — Recall that our assumptions on the offspring
distribution £ entail p > 0. Suppose that u < oco. Let us define the size-biased random
variable £* with distribution given by

1
(5.5) P =k) = —kP(& = k), k> 0.
]
DEFINITION 5.17 (SIZE-BIASED GALTON—WATSON TREE). — Suppose that p < oo.

We let T* denote a size-biased Galton—Watson tree where there are two types of vertices,
normal and special. Normal vertices receive offspring according to independent copies of &,
all of which are declared normal. The root is declared special. Any special vertex receives
offspring according to an independent copy of £, and among these a uniformly selected

vertex is declared special again, whereas the rest is declared normal.

DEFINITION / PROPOSITION 5.18 (SPINE OF THE SIZE-BIASED GALTON—WATSON
TREE)

The special vertices of the size-biased Galton—Watson tree T* form a one-sided infinite
path that starts at the root vertex. This path is called the spine of T*.

DEFINITION 5.19 (LEVEL SETS). — For any rooted tree T and any integer n > 0 we let
L,(T) the number of vertices with height n.

For example, L, (7T) = Z, for all n > 0.
PROPOSITION 5.20. — For each integer k > 0,
P(L,(T") =k) =kP(Z, = k)u ".
For each finite plane tree T,
P(T*™ = T) = p " L,(T)P(T™ =T).

Proof. — We may mark the finite trimmed tree 7™ at the unique special vertex u,
with height n. For finite plane tree 7" with height n and any vertex v of T" with height
hr(v) = n it holds that

(5.6) P((T*™, u,) = (T,v)) = p "P(T™ =T).

To see this, note that the event (7*™ u,) = (T,v) corresponds to a unique choice of
outdegrees and selections of special vertices. The probability that an independent copy of
&* assumes a given outdegree d > 1 and that a given child is declared special is given by

P =d)- =P =d)

SHN

1
s
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As there are n choices to be made for selecting special children in 7*™, Equation (5.6)
follows. The event 7*™ = T corresponds to Ly, (T equally likely outcomes for (7™ w,),
hence

(5.7) P(T*™ = T) = " L,(T)P(T™ = T).
Summing over all 7" with L, (T") = k, this readily implies
P(L,(T") =k) = pu "kP(Z, = k).
O
DEFINITION / PROPOSITION 5.21. — For any ¢ > 0 we may consider the size-biased tree
T*® that is constructed like T*, with the only difference being that the (th special vertex

ug s declared normal instead, and hence receives offspring according to an independent
copy of &, all of which are declared normal again. Thus, T*© has a spine of length ¢.

PROPOSITION 5.22. — For any finite plane tree T and any vertex v of T with height ¢
it holds that

P((T", ue) = (T, 0)) = u"B(T =T).
The proof is by identical arguments as for Equation (5.6). Note that if 1 > 1, then

T+ and T may be infinite. The Equation in Proposition 5.22 still holds for infinite trees
T, but in this case both sides of the Equation equal zero.



RANDOM TREES 37

5.5. The Kesten—Stigum theorem. — We observed that the population of a super-critical
Galton-Watson process has a positive chance of survival. Our aim in this section is to

describe the growth of population in case of survival.

LEMMA 5.23. — Suppose that p < co. Then
Zn
(5.8) W, = 2.
/'Ln

18 a martingale with respect to the natural filtration.

Proof. — 1t holds that E[IW,] = 1 for all n > 1 and

Z,

1 i

E[W,i1 | W,] = MME [§ ol
=1

.

Z,
1 & .,
=—5 > E ﬁf)Wn]
K =1
Mn

]

DEFINITION / PROPOSITION 5.24. — Suppose that u < co. As E[W,] =1 for alln > 1,

it follows from the martingale convergence theorem that
W = lim W,
n—oo
exists almost surely. Fatou’s lemma implies
EW] <1
PROPOSITION 5.25. — Suppose that i < co. Then

P(W = 0) € {1,P(|T] < c0)}.

Proof. — The (n + 1)th generation of 7 may be partitioned into the nth generations
Zﬁl), c 27 of the Z, fringe subtrees dangling from the root of 7. Thus

Al
Tpi1 = Z Zi(n)'
=1

The generations (Zi(n))izl are i.i.d., each distributed and constructed like the nth genera-
tion of a £&-Galton—Watson process. Furthermore, they are independent from Z;.
Dividing both sides of the equation by p" and letting n — oo, it follows that

Z
pw => "W,

=1
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with (W®),5, representing i.i.d. random variables, each distributed like W, that are also
independent from Z;. This entails
P(W =0)=> P =i)P(W =0)' = ¢(P(W = 0)).
>0
Consequently,
P(W =0) € {1,P(|T| < o0)}.
O

Of course, in the case u < 1, we have W = 0 almost surely. The question is whether

W is also degenerate in the case ;1 > 1. The Kesten—-Stigum theorem provides an answer:

THEOREM 5.26 (KESTEN, STIGUM). — Suppose that 1 < u < co. The following claims
are equivalent.

1) EW] =1

2) P(W =0)=P(|T] < 00)

3) E[¢ logmax(1,&)] < oo.

We are going to need some preliminary observations before we can proceed to prove
this.

5.5.1. Preliminaries 1: Properties of Radon—Nikodym derivatives. — Let (Q, F) be a
measurable space. Let @ be a finite measure on F (with finite meaning Q(§2) < o0),
and let P be a probability measure on F. Let (F,),>1 be a filtration of F such that
F=0c (Un>1 ]—"n). Let ), and P, denote the restrictions of () and P to F,.

Suppose}hat Qn < P, foralln > 1. Set X, = ig: and X = limsup,,_,., X,,. We are
going to show:

THEOREM 5.27. — The Lebesque decomposition Q) = @, + Qs with (), < P and Qs L P

s given by
Q)= [ XaP ad QA = QUAN{Y = o))
for all A € F.
The first part of the proof is the following observation:

LEMMA 5.28. — (X)), defined on (Q, F, P) is a martingale with respect to the filtra-
tion (Fn)n-

Proof. — By definition, X,, = 3?3: is F,-measurable. As P, is the restriction of P to JF,,
it follows that for any A € F,

/AX” P = /AX” AP, = Qn(A) = Q(A).
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Since this holds for all n > 1 and since F,, C F, 41, it follows that

/Xn+1 dP = Q(A) = / X, dP.
A A
As this holds for all A € F,, it follows that
X, = E[X,11 | Ful
]

Lemma 5.28 and the martingale convergence theorem entail that X = lim,, ,,, X,, < 00
holds P-a.s.. In particular, the measure A — Q(A N {X = oo}) is singular with respect
to P. Thus, verifying Theorem 5.27 reduces to showing

(5.9) Q(A) = /AXdP +QAN{X = o0})
for all A € F.

Proof of Equation (5.9) and hence Theorem 5.27. — Dividing @ by Q() allows us as-
sume without loss of generality that () is a probability measure.
We define the probability measures R = (P + Q)/2, so that R, = (P, + Q,)/2 is the

restriction of R to F,,. By standard properties of Radon—Nikodym derivatives,

dpP, dQ, dR,

dR, T AR,  Cdm, >
Using Lemma 5.28 and the martingale convergence theorem, it follows that the martingales
4P and % are R-a.s. convergent with limits Y and Z. It holds that

dRy,
dpP d@

Y = TR, and 7 = ﬁ
To see this, it suffices to show the first equality. By dominated convergence, for any
AcF,

dpP, dp,
P(A)=P,(A) = “dR, = " dR Y dR.
= fld) /Aan /Aan ﬁ/A

Hence,

P(A) = /AYdR

for all A € J,~, Fn. As we assumed that F = o (|, Fu), and since |-, Fy is a -
system, it follows from Dynkin’s 7-A-Lemma that P(AS = [,Y dR for all AeF. Thus,
Y =4
Since ), < R, < P, and P, < R, it holds that
¥ d@, _ dQ, dR, _ dQn/dPn
" dpP, dR,dP, dR,'dR,’

Since ggz + j%n” = 2, it follows that Y + Z = 2 holds R-a.s., and hence
R(Y =0,Z=0)=0.
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Thus,
dQ,, ,dp,
n= ZlY
i, ar, Y
holds R-a.s.. As we defined X = limsup,, ,. X, it follows that
X=27/Y

holds R-a.s.. Now, for any A € F we have
Q(A) = / ZdR
A
= / YZ/Y1ysodR + / Zly_odR
A A

_ / XYdR + / Z1x-odR
A A

:/XdP+Q(Am{X = 00}).
A

O
COROLLARY 5.29. — In this setting,
Q<P & X<ooQ-as. & EpX]=1
and
QLP & X=00Q-as. < EpX]=0.
5.5.2. Preliminaries 2: Seneta’s theorem. — Seneta’s theorem is stated in the general

context of Galton-Watson processes with immigration:

DEFINITION 5.30 (GALTON—WATSON PROCESS WITH IMMIGRATION)

Let & be an offspring distribution subject to our requirements (5.1). Let ¢ be a random
non-negative integer with P(¢ > 0) > 0, which in this context will be called the immigration
distribution. The processes starts with no particles, say, and in each generation n > 1
there is an immigration of Y, individuals, with (Y,)n>1 being independent copies of the

immagration law. Each individual has, independently, a £-Galton—Watson descendant tree.

For example, we may view the non-spine vertices of the size-biased tree 7* as a Galton—

Watson process with offspring distribution ¢ and immigration distribution £* — 1.

THEOREM 5.31 (SENETA). — Let (Z}),>1 denote the generation sizes of a Galton—
Watson process with offspring distribution € and immigration distribution (. Suppose
that u = E[¢] > 1. If E[log max((,1)] < oo, then lim, o Z/u™ exists and is finite almost
surely. If E[logmax((,1)] = oo, then limsup,,_,., Z/c" = oo for every constant ¢ > 0.

The first step of the proof is a small general observation that follows from the Borel—
Cantelli Lemma:
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LEMMA 5.32. — Let X, X1, Xo, ... be non-negative i.i.d. random variables. Then
. 1 0, E[X]<ox
limsup —X,, = .

Proof. — Suppose that E[X] < co. Then for any € > 0

> P(X >en) / P(X/e > z)dz = ¢ 'E[X] < oc.

n>1

By the first Borel-Cantelli Lemma it follows that almost surely there is an N > 0 with

X, < enforall n > N. Since this holds for any € > 0, it follows that limsup,,_, ., +X,, = 0.
Now, suppose that E[X]| = co. Then for any ¢ > 0

ZIP X >en) > / P(X/e > z)dx > e 'E[X] — 1 = 0.

n>1
Since (X,,)n>1 are i.i.d., it follows from the second Borel-Cantelli Lemma that almost
surely X,, > en for infinitely many n. Since this holds for each ¢ > 0, it follows that
lim sup,,_, %Xn = 00. ]

Proof of Theorem 5.31. — Assume first that E[log max((, 1)] = co. Then, by Lemma 5.32,
the number Y,, of immigrants in generation n > 1 satisfies

1
lim sup — log max(Y,,,1) = oo
n

n—o0

almost surely. As Z* > Y, it follows that limsup,,_,. Z/c" = oo for every constant
c> 0.

Now, assume instead that E[log max((, 1)] < oo. Let ) denote the o-field generated by
(Yn)n>1. For all integers n > k > 1 let Z), denote the number of descendants at level n
of the individuals who immigrated in generation k. Thus, the total population at level n

is given by
=> 7,
k=1
Thus,
E ("2 | Y] =E [p Z ZolY| = Z R [Z P [ V]

Given Y}, the size 7} ; is distributed like the population in generatlon n — k of Y inde-

pendent ¢-Galton-Watson processes. Thus, E[Z7 | Yi] = Yu"™* and hence

E[p"Zy | V) =) n 'V
k=1
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Since we assumed E[logmax((,1)] < oo, it follows from Lemma 5.32 that almost surely

1
lim sup — log max(Y,,,1) = 0.

n—oo 1

Hence "7, 1~ *Y}, converges almost surely, providing a bound
E[n"Z | V] <Y n 'Y
k=1

that is uniform in n > 1. Furthermore, note that
E [ 20 | V.2 = 2y Yo 2 i

Thus, p~"Z" is a submartingale when conditioned on ) with bounded expectation (given
V). Hence p="Z"* converges almost surely to a finite limit. []

5.5.3. Proof of the Kesten—Stigum theorem. — Having done all preparations, the Kesten—
Stigum theorem may now be verified in a short and elegant way.

Proof of Theorem 5.26. — Consider the space Ty of locally finite plane trees, equipped
with its Borel o-algebra F. For each integer n > 1 let F,, C F denote the o-algebra
generated by the projection 7'+ T to the first n levels. Then F = o(|J,», Fn). Let
@ and P be the probability measures on F corresponding to the laws of the size-biased
tree 7* and the Galton—Watson tree 7. We let @), and P, denote the corresponding
restrictions to F,,. Recall that by Proposition 5.20

P(T*" = T) = "L, (T)P(T™ = T).

for any finite plane tree 7" and any integer n > 1. In other words, @), < P, with

dQn _ Lu()
dp, un

We know that X = limsup,,_, LZ,(L') is P-a.s. finite by Lemma 5.28. By Corollary 5.29,

Q<P & X<oxo@as < EpX]=1

and
QLP & X=ocQ@as <« EpX]|=0.

The generation size L, (7*) may be interpreted as 1 plus the size of the n-th generation
in a Galton—Watson process with immigration, with the immigration law given by &* — 1.
Hence by Theorem 5.31,

X < o0 Q-as. < Ellogmax(£*—1,1)] < oo.
Note that the definition of £* implies

Ellogmax(¢* — 1,1)] = p' Y P(¢ = k)klog k.

k>1
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Hence the previous condition is also equivalent to
E[¢log&, & > 1] < oc.

Summing up,

Ep[X]=1 < E[tlogé,¢> 1] < oo.
We know that W = X P-a.s. and P(W =0) € {1,P(|T| < o0)} by Proposition 5.25. As
Ep[X] =0 if and only if X = oo Q-a.s., it follows that

Ep[X]=1 & PB(W=0)=P(T]< o).

This completes the proof of the Kesten—Stigum theorem. n
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5.6. The total population. — The total population of the Galton—Watson process is given

7= Zn

n>0

of the associated Galton—Watson tree. We observed in (5.5) that E[Z,] = u". Hence:
PROPOSITION 5.33. —

1) If p =1, then E[|T|] = oc.

2) If u < 1, then E[|T]] 1%1*3[51'

by the number of vertices

PROPOSITION 5.34. — Suppose that n < 1. Then the probability generating series
Z(2) = E[2T1] of the total population and ¢(z) = E[z¢] are related by the equation

Proof. — Letting (7%);>; denote independent copies of T, it holds that
d o
ITIS14+ ) [T
=1

This readily implies Z(z) = z¢(2(2)). O

Given integers k,n > 1, let T, denote the collection of sequences of k finite plane
trees, such that the total number of vertices of all trees equals n. Let B,,_;,, denote the

collection of sequences (d;)1<;<, of n non-negative integers satisfying

i=1

Recall that any finite plane tree has an outdegree sequence, obtained by listing the outde-
grees of its vertices in a depth-first-search order (starting with the root). The outdegree
sequence of a forest (T;)1<i<k € Ty is formed by concatenating the outdegree sequences
of the individual trees.

LEMMA 5.35. — Consider the map
Ik,n X [n] — %n—k,n

that maps a forest (T;)1<i<k with outdegree sequence (d;)1<i<n and an integer j € [n] to
the cyclically shifted list
(ditj)1<i<n

with the index taken modulo n. Then any element of B,_j, has precisely k preimages.
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Proof. — By Lemma 4.10, for any integer ¢ > 1 there is a bijection between the collection
T of plane trees with £ vertices and the collection of all sequences d}, . . ., d;, of non-negative

integers satisfying

> (di—1)=-1

and

d(di—1)=0 forall 1<s<L
i=1
The bijection maps a tree to its outdegree sequence.
Consequently, mapping a forest from ¥ ,, to its outdegree sequence yields a bijection
from Ty, to the collection of all sequences (d;)1<;<, of non-negative integers satisfying

n

(5.10) > (di—1) =~k

i=1

and

S

(5.11) > (di—1)>—-k forall 1<s<n
i=1
By Lemma 5.10, any sequence (d;)i1<;<n, of n non-negative integers satisfying (5.10)
admits precisely k integers j € [n]| such that shifting (d;)i1<;<, cyclically by j yields a
sequence satisfying (additionally) Equation (5.11). Hence the k pairs ((d;+;)1<i<n, —j) for
these k choices of j, with the index i+ j and the shift —j both taken modulo n, correspond
precisely to the preimages of (d;)i<;<, under the mapping Ty, X [n] = B,_gn- O

THEOREM 5.36 (OTTER-DWASS FORMULA). — Let (T%);>1 denote independent copies
of T, and let (&);>1 denote independent copies of £&. Then, for all integers k,n > 1,

P(Zz;m:n) :§P<g§i:n—k).

Proof. — 1If a forest (T%)1<;<x € T, has outdegree sequences (d;);<i<n, then
P((T")1<i<k = (T")1<i<k) H]P’ ¢ =d;)

Using Equations (5.10) and (5.11), and Lemma 5.35 it follows that

k n
P(Z]Tﬂzn)zl?(Z( - 1) —k;z >—k;foralll§s<n>
i=1

i=1
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]

The probability P (3", & = n) may be approximated using many forms of local limit
theorems, thus providing precise asymptotic expressions for P (Zle T = n) when k is
fixed and n — oo.

Recall the classical Gnedenko local limit theorem for the lattice case:

LEMMA 5.37 (GNEDENKO LOCAL LIMIT THEOREM). — Let (X;);>1 denote independent
copies of a random integer X with finite first moment E[X] and finite non-zero variance
V[X]. Let d > 1 denote the smallest positive integer such that the support {i € Z | P(X =
i) > 0} is contained in a lattice of the form a+dZ for some a € Z. Fix any such integer a.
Then the sum S, = X1 + ...+ X, satisfies P(S,, = x) =0 for all x € Z\ (na + dZ) and

d (nE[X] — x)z)‘ .

lim sup \/E]P’(Sn =) — W exp (‘

N—=0 ycnat+dZ 27V

2nV|[X]
Applying this local limit theorem, we obtain:

COROLLARY 5.38. — Suppose that the offspring distribution & is critical and has finite

variance o*. Let d > 1 denote the greatest common divisor of all integers i > 1 with

P& =1i)>0. Then P(|T| =n) =0 when n ¢ 1+ dN, and
d

2ro

n=3/2

P(IT] =n) ~

2

asn € 14 dN tends to infinity.

Note that this means P(|7| = n) > 0 at least for all large enough n € 1 + dN.

Proof of Corollary 5.38. — By the Otter-Dwass formula, it holds that

P(T|=n) = P (Z@ ~1)= —1) .

i=1

The support of the shifted integer & — 1 is contained in —1 4 dZ and in no lattice of the
form a + d'Z for a € Z and 1 < d < d. Hence this probability is equal to zero when
—1 ¢ —n+dZ, that is, when n ¢ 1+dN. By the Gnedenko local limit theorem for x = —1
and X = ¢ — 1, we obtain

P (Z(fi —-1) = —1> =(1+ 0(1))%711/2

2
i—1 ™o

when n € 1+ dN tends to infinity. m
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5.7. Local convergence. — For positive integers n the simply generated tree 7T, is ob-
tained by conditioning the &- Galton-Watson tree T on having n vertices. That is, the
process is restarted over and over again until a realization with total population

ZZk:TL

is generated.
The asymptotic behaviour of the tree 7,, as n tends to infinity forms a vital part of the
asymptotic analysis of random trees.

THEOREM 5.39. — Let d > 1 denote the greatest common divisor of all integers 1 > 1
with P(§ =14) > 0. If T is critical and its offspring distribution £ has finite variance, then
T -5 T

asn € 14 dN tends to infinity.

Proof. — Since T™ is locally finite and has infinite height, it suffices by Proposition 5.16
to show that for each integer A > 1 and each finite plane tree 7" with height h and we
have

P(T," =T) = P(T*" =T)
as n becomes large.

We let m > 1 denote the number of vertices of T" with height less than h. Let &k > 1
denote the number of vertices of 7' with height h. If 7" = T then the total size of T
is given by m plus the sum of the sizes of the k fringe subtrees rooted at its vertices of
height h. Each of these is distributed like an independent copy 7. Hence, with (7%);>1

denoting independent copies of T we have

Hmﬂ:nVﬂm:ﬂ:P(z]WhﬂO.

=1

By the Otter-Dwass formula and the local limit theorem, this simplifies to

(- -b{Ee)

i=1
_kd s

V2mo? .

This is precisely k times the asymptotic expression for P(|7| = n) we obtained in Corol-
lary 5.38. Hence

Y

P(|T|=n,T" =T
P = 1) = g

A — kP(T," = T).
By Proposition 5.20 this equals P(7*" = T') and the proof is complete. O

n
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