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1. Introduction

The study of randomly generated trees and tree-like structures is a growing field with

connections to stochastic processes, combinatorics, and computer science. The present

notes summarize the content of a course on the topic given by the author at LMU Munich.
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2. Basic vocabulary

2.1. Notation. — We let

N = {1, 2, 3, . . .}
denote the positive integers and N0 the non-negative integers. We also use the notation

N = N ∪ {∞} and N0 = N0 ∪ {∞}.

For any integer n ≥ 0 we set

[n] = {1, . . . , n}.
This includes the case n = 0, for which [0] = ∅. Summation and products of numbers

are also subject to the usual conventions. That is, the sum of an empty collection (of

numbers) equals 0, the product of an empty collection equals 1. Given a power series

f(z) =
∑

n≥0 anz
n we use the notation [zn]f(z) = an to denote its nth coefficient.

All unspecified limits are as n → ∞. We say an event (that depends on n) holds

with high probability if its probability tends to 1 as n becomes large. Convergence in

probability and distribution are denoted by
p−→ and

d−→ . For any sequence an > 0

we let op(an) denote an unspecified random variable Zn such that Zn/an
p−→ 0. Likewise

Op(an) is a random variable Zn such that Zn/an is stochastically bounded. In other words,

for any ϵ > 0 we may select a number M such that

P(|Zn| > Man) < ϵ

for all large enough n.
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Figure 1. A connected graph with vertex set {a, b, . . . , n}.
There is a green path from i to f and a blue cycle with vertices

e, d, and g.

2.2. Graphs. —

Definition 2.1 (Graph). — A graph G = (V,E) is a pair of a set V and a collection

E of 2-element subsets of V . Elements of V are called vertices. Elements of E are called

edges. We say an edge e ∈ E is incident to a vertex v ∈ V if v ∈ e.

Figure 1 depicts an example of a graph. Vertices are displayeMR3853863d as dots and

edges by lines.

Remark 2.2. — There are many variants of the notion of a graph. For example, edges

may be directed. Such a graph is called directed, or a digraph. Multigraphs are graphs

where we allow multiple edges between the same pair of vertices, and edges with identical

ends.

Remark 2.3. — By abuse of notation, we will sometimes write v ∈ G instead of v ∈ V .

We will also let |G| ∈ N0 denote the number of vertices in G.

Definition 2.4 (Vertex degree). — Let G = (V,E) be a graph and v ∈ V a vertex.

A vertex u ∈ V is called a neighbour of v if {v, u} is an edge of E. We say u and v are

adjacent. The degree of v, denoted by dG(v) ∈ N0, is the number of neighbours of v.

Definition 2.5 (Path). — Let n ≥ 0 be an integer. A path of length n is an (n + 1)-

vertex graph (V,E) of the form

V = {vi | 0 ≤ i ≤ n}, E = {{vi, vi+1} | 0 ≤ i < n}.

The vertices v0 and vn are called endvertices or ends. All other vertices of the path are

called inner vertices. A directed path is a path with an additional direction - from v0 to

vn or from vn to v0.
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Definition 2.6 (Cycle). — A cycle is a graph obtained by joining the end-points of

a path of length at least 2 by an additional edge. The length of a cycle is its number of

edges.

Definition 2.7 (Subgraphs). — A graph G′ = (V ′, E ′) is a subgraph of a graph G =

(V,E) if V ′ ⊂ V and E ′ ⊂ E. We say G contains G′. We say G′ is an induced subgraph,

if any edge of G with both ends in G′ is also an edge of G′. For any subset U ⊂ V we

may form the subgraph G[U ] induced by U .

Definition 2.8 (Connected graph). — Two vertices x, y ∈ V in a graph G = (V,E)

are joined by a path P in G if P is a subgraph of G and x, y are its endvertices. We say

G is connected if any two vertices of G may be joined by some path in G.

Definition 2.9 (Bridges and cut vertices). — Let G be a connected graph. Any

vertex of G whose removal disconnects G is called a cut vertex. Any edge of G whose

removal disconnects G is called a bridge.

Definition 2.10 (Rooted graph). — A rooted graph is a pair (G, o) of a graph G

and a vertex o of G. We say o is the root vertex of G, and G is rooted at o.

Definition / Proposition 2.11 (Graph distance). — Let G = (V,E) denote a

connected graph. The graph distance dG(x, y) of two vertices x, y ∈ V is the length of a

shortest path from x to y. The pair (V, dG) is a metric space.

Definition 2.12 (Height and diameter). — Let G denote a connected graph.

1) The diameter of G is given by

D(G) = sup
x,y∈V

dG(x, y).

2) Let v ∈ V be a vertex so that G• = (G, v) is a rooted connected graph. The height of

a vertex u ∈ V is given by

hG•(u) = dG(u, v).

3) The height of G• is defined by

H(G•) = sup
u∈V

hG(u).
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Figure 2. To the left: a uniformly generated tree with vertex

set [50] = {1, . . . , 50}. The colours correspond to the graph

distance from a uniformly selected root vertex, in this case

the vertex 21. To the right: the same, but with half a million

vertices.

2.3. Trees. —

Definition 2.13 (Tree). — A tree is a connected graph with no cycles.

Figure 2 illustrates two randomly generated trees.

Proposition 2.14. — The following assertions are equivalent for a graph T .

i) T is a tree.

ii) Any two vertices of T are linked by a unique path.

iii) T is connected and removing any single edge of T disconnects the graph.

iv) T has no cycles and adding any single edge that is not already present produces a

cycle.

Proof. — See exercises.

Corollary 2.15. — A finite graph T with n vertices is a tree if and only if it is connected

and has n− 1 edges.

Proof. — See exercises.

We will need some vocabulary for referring to vertices in a tree:
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(a) Off-

spring

of v.

(b) De-

scen-

dants

of v.

(c)

Parent

of v.

(d) An-

cestors

of v.

(e) An-

cestors

of an

addi-

tional

vertex

u.

(f)

Lowest

com-

mon

ances-

tor of u

and v.

(g)

Leaves

of the

tree.

(h) A

rooted

binary

tree.

Figure 3. Notation for vertices in rooted trees. The root is marked with a square.

Definition 2.16 (Notation for rooted trees). — Let T be a rooted tree with root

vertex o. Let u and v be vertices of T .

1) The ancestors of v are all vertices of T that lie on the path from v to the root o. In

particular, o and v are both ancestors of v.

2) A vertex is called a descendant of v, if v is one of its ancestors.

3) The directed path from u to o and the directed path from v to o meet for the first

time at a vertex w and then proceed in the same way all the way to the root o. We

say w is the lowest (or youngest) common ancestor of u and v.

4) If v ̸= o, then the second vertex x on the directed path from v to the root o is called

the parent of v. Conversely, we say v is an offspring vertex or child of x.
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Figure 4. Spanning trees of a connected graph. The one in

the middle was obtained via a breadth-first-search started at

the vertex marked by a big disc. The one on the right by a

depth-first-search started at the same vertex.

5) The number of offspring vertices of v is called its outdegree and denoted by

d+T (v) ∈ N0. The collection of all offspring vertices of v is called its offspring set.

6) A vertex is called a leaf, if it has outdegree 0.

7) A rooted tree is called d-ary for d ≥ 2 an integer, if all of its vertices have outdegree d.

See Figure 3 for an illustration of these concepts.

Remark 2.17. — The outdegree of a vertex makes only sense for rooted trees. For

unrooted trees, different definition are often used, that may be at odds with the rooted

world. For example, a leaf in an unrooted tree is a vertex with degree 1.

Definition 2.18 (Spanning tree). — Let G be a connected graph. A spanning tree of

G is a subtree containing all the vertices of G.

Definition / Proposition 2.19 (breadth-first-search)

The breadth-first-search (BFS) of a rooted connected finite graph (G, o) maintains a

queue Q of queued vertices, a list L of visited vertices, and a tree T .

1. In the beginning we mark the root o as queued, adding it to Q, and let T be a rooted

tree consisting only of o.

2. In each step the first vertex v of Q is moved to the end of L, and all its neighbours

in G that haven’t been visited or queued so far are added to the end of Q and also

added as offspring of v in T .

3. We proceed in this way until the queue Q is empty.

After the procedure terminates, the rooted tree T is a spanning tree and L is an ordering

of the vertices of G.

See Figure 4 for an illustration.
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Proposition 2.20. — Let G• = (G, o) be rooted connected finite graph and T a rooted

spanning tree obtained via a breadth-first-search of G•. Then

hG•(v) = hT (v)

for all vertices v of G.

Definition / Proposition 2.21 (depth-first-search)

The depth-first-search (DFS) of a rooted connected finite graph (G, o) is an algorithm

that produces an ordering of the vertices of G together with a spanning tree. Starting from

o, we move along the edges of G, going only to vertices not visited so far. If there is no

such vertex there are two cases. If our current vertex v satisfies v ̸= o, then we traverse

back along the edge by which the current vertex was first reached. If our current vertex is

the root v = o, then we stop.

The edges traversed form a spanning tree, and the order in which each vertex is visited

for the first time gives an ordering of the vertices of G.

Note that we may describe depth-first-search in the same way as we described breadth-

first-search. The only difference is that in the second step, when adding the so far not

visited and not queued neighbours of v to the queue Q, we add them at the beginning

instead of the end.

Depth-first-search may be used, for example, to find all bridges of a connected finite

graph G. See the exercises.
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Figure 5. The two trees are not identical, but isomorphic.

2.4. Symmetries. —

Definition 2.22 (Graph isomorphisms). — Let (V,E) and (V ′, E ′) be graphs. A

graph isomorphism between the two is a bijective map

φ : V → V ′

such that for all x, y ∈ V we have {x, y} ∈ E if and only if {φ(x), φ(y)} ∈ E ′. In this

case we say the two graphs are isomorphic. An unlabelled graph is an isomorphism class

of graphs.

Figure 5 illustrates an example of two isomorphic graphs.

Definition 2.23 (Graph isomorphisms of rooted graphs)

Two rooted graphs are considered isomorphic, if there exists an isomorphism between

the two that maps the root vertices to each other. An unlabelled rooted graph is an iso-

morphism class of rooted graphs.

Definition 2.24 (Symmetric group). — Given a set X we let

S(X) = {f : X → X | f is bijective}

denote the corresponding symmetric group on X. Its unit element is the identity map idX .

Definition 2.25 (Fixed points and support). — Let f ∈ S(X) be a permutations.

Any element x ∈ X with f(x) = x is called a fixed point of f . The subset

{y ∈ X | f(y) ̸= y}

is called the support of f .

Definition 2.26 (Cycles). — An element τ ∈ S(X) is called a cycle, if its support

may be ordered in a way x1, . . . , xk with k ≥ 2 such that

τ(xi) =

xi+1, 1 ≤ i < k

x1, i = k
.

In this case we say τ is a k-cycle. Two cycles in S(X) are disjoint if they have disjoint

support sets.
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Definition 2.27 (Group operations). — Let M be a group with unit element eM
and let X denote a set. A (left-)group operation of M on X is a map

µ : M ×X → X, (m,x) 7→ m.x

such that for all m,m′ ∈ M and x ∈ X we have eM .x = x and m.(m′.x) = (mm′).x.

Proposition 2.28. — Let M be a group and X a set. Any group operations

µ : M ×X → X

corresponds to a group homomorphism

φµ : M → S(X),m 7→ (x 7→ m.x).

Conversely, any group homomorphism

φ : M → S(X)

corresponds to a group operation

µφ : M ×X → X, (m,x) 7→ φ(m)(x).

Moreover, these two constructions are inverse to each other.

Definition / Proposition 2.29 (Orbits). — Suppose that a group M operates on a

set X. This defines an equivalence relation ∼ on X with x ∼ y if there is a group element

m ∈ M with m.x = y. The equivalence classes are called orbits of the group operation.

We denote the orbit of an element x ∈ X by Orbit(x).

Definition / Proposition 2.30 (Stabilizers). — Let a group M operate on a set X.

For any x ∈ X the stabilizer

Stab(x) = {m ∈ M | m.x = x}

is a subgroup of M .

Lemma 2.31. — Let a group M operate on a set X. For any element x ∈ X, the map

M/Stab(x) → Orbit(x), m̄ 7→ m.x

is well-defined and bijective.

Proof. — The map is well-defined: let m,m′ ∈ M such that m ≡ m′ mod Stab(x). That

is, there is a group element g ∈ Stab(x) with m′ = mg. Hence

m′.x = (mg).x = m.(g.x) = m.x.

It is clearly surjective. To see that it is injective suppose thatm,m′ ∈ M withm.x = m′.x.

Then m−1m′ ∈ Stab(x) and hence m ≡ m′ mod Stab(x).
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Figure 6. Decomposition of a permutation into disjoint cycles.

Lemma 2.32. — Let a group M operate on a set X. For any element x ∈ X and any

group element m ∈ M it holds that

Stab(g.x) = gStab(x)g−1.

Here we define gStab(x)g−1 := {ghg−1 | h ∈ Stab(x)}.

Proof. — This easy observation is left as an exercise to the reader.

Example 2.33. — Let V be a fixed set and G(V ) the collection of all graphs with vertex

set V . The symmetric group S(V ) operates on G(V ) via relabelling of vertices. The orbits

of this operation correspond bijectively to unlabelled graphs whose vertex set has the same

cardinality as V . The stabilizer of a graph is called its automorphism group. If V has

n ≥ 1 elements, then

n! = |Orbit(G)||Stab(G)|
for any graph G ∈ G(V ).

Theorem 2.34. — Let X be a finite set. Then any permutation on X may be represented

as a product of disjoint cycles. Moreover, this product representation is unique up the order

of the factors.

Proof. — For any permutation σ ∈ S(X) the generated subgroup < σ > operates on the

set X in a canonical way. The orbits with at least 2 elements correspond precisely to the

disjoint cycles in the product composition of σ. Compare with Figure 6.

Theorem 2.35 (Cayley). — Let V be a fixed set with n ≥ 1 elements. There are

precisely nn−2 edge-configurations E such that (V,E) is a tree.

Proof. — Consider the collection End(V ) of all functions f : V → V . Clearly End(V )

has nn elements. For any function f : V → V we may consider its recurrent points v ∈ V

that satisfy fk(v) = v for some k ≥ 1, and it’s non-recurrent points u ∈ V , that satisfy

fk(u) ̸= u for all k ≥ 1. Any non-recurrent point corresponds to a unique recurrent point.

Conversely, the collection of all non-recurrent points corresponding to a given recurrent

point u may be viewed as a tree rooted at u, with f acting like the parent function. The
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Figure 7. Decomposition of an endofunction into a compos-

ite structure consisting of a partition with a rooted tree struc-

ture on each partition class and a permutation structure on

the collection of classes.

recurrent points may be grouped into cycles and fixed-points, in the same way as any

permutation may be decomposed into cycles and fixed-points in a unique way. Summing

up, there is a bijection between functions from End(V ) and triples (π, σ, (AQ)Q∈π) with

π a partition of V , σ ∈ S(V ) a permutation, and AQ a rooted tree with vertex set Q for

each class Q ∈ π. Compare with Figure 7.

Now let us consider the collection A•(V ) of all doubly rooted trees with vertex set V .

Any such tree has a unique directed path from the first root to the second. Any vertex on

that path may be viewed as the root of a subtree consisting of all the non-path vertices we

may reach without passing through another path-vertex. Summing up, there is a bijection

between doubly rooted trees from A•(V ) and triples (π, ω, (AQ)Q∈π) with π a partition of

V , ω a linear order on V , and AQ a rooted tree with vertex set Q for each partition class

Q ∈ π. Compare with Figure 8.

The number of linear orders on a given set is equal to the number of permutations on

that set. Hence there is a bijection between End(V ) and A•(V ), yielding that there are

precisely nn doubly rooted trees on a given n-element vertex set. Hence there are nn−1

rooted trees and nn−2 unrooted trees on that set.

Remark 2.36. — There many different proofs of Cayley’s theorem. The one given here

illustrates two important concepts. First, introducing roots serves as a starting point for

decompositions. Second, we used a very important tool in enumerative combinatorics:

partitions of sets where each partition class is endowed with an additional structure of
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Figure 8. Decomposition of a doubly rooted tree into a lin-

early ordered of rooted trees.

some kind (such as graphs or trees) and where the collection of classes is endowed with

an additional structure of another kind (such as linear orders or permutations).

There is also a third remark to be made here. The proof does not work for unlabelled

graphs. The bijection between End(V ) and A•(V ) is not compatible with relabelling oper-

ations. Moreover, although any labelled graph with n vertices has n rooted versions, this

is no longer true (in general) for unlabelled graphs.
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Figure 9. The spanning tree in the case the random walk

starts like (1, 6, 1, 5, 4, 5, 1, 6, 2, 4, 5, 3, 8, 3, 1, 3, 7, . . .).

3. The random walk construction of uniform spanning trees

3.1. Generating uniform spanning trees. — Let G = (V,E) denote a finite (non-empty)

connected graph. A simple random walk (Xn)n≥0 starts at some (random or deterministic)

vertex X0 and walks in each step to a uniformly selected neighbour of the current vertex.

We may view (Xn)n≥0 as a discrete time Markov chain with transition matrix P of the

form

P (v, w) =

 1
dG(v)

, {v, w} ∈ E

0, otherwise
for v, w ∈ V.

For each vertex v of G we let

Tv = min{n ≥ 0 : Xn = v}

denote the first hitting time.

Proposition 3.1. — The stationary distribution (π(v))v∈V of the simple random walk

(Xn)n≥0 on the finite connected graph G is given by

π(v) =
dG(v)

2|E|
, v ∈ V.

Proof. — First, note that π defined as above is a probability distribution: In the sum∑
v∈V dG(v) we count each edge twice (once for each end), and hence∑

v∈V

dG(v) = 2|E|.

Moreover, π is the stationary distribution, as for each vertex v ∈ V∑
w∈V

π(w)P (w, v) =
1

2|E|
∑
w∈V

1{v,w}∈E =
dG(v)

2|E|
.
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Figure 10. The possible predecessors of the spanning tree in Figure 9.

Definition / Proposition 3.2. — The graph T with vertex set V and edges {XTv−1, v}
for v ∈ V \ {X0} is a spanning tree of G that we view as rooted at X0.

Proof. — It is clear that the covering time is almost surely finite, so we eventually reach

each vertex. The construction means that we start at X0 and whenever we walk across

an edge e to arrive at a vertex v ∈ V \ {X0} for the first time, we keep e. This way, we

keep |V | − 1 edges in total, and we construct T via a growth procedure, attaching always

one edge to a pre-existing tree to form a new tree in each step.

See Figure 9 for an illustration.

Theorem 3.3 (Aldous, Broder). — If we view T as an unrooted tree, then it is

uniformly distributed among all spanning trees of G. Conditional on X0 = v for some

vertex v of G, the tree T is uniform among all rooted spanning trees of G with root v. If

X0 is uniform, then T is uniform among all rooted spanning trees of G.

Proof. — For now, suppose that X0 follows the stationary distribution π. Let us extend

the random walk in negative time so that (Xn)n∈Z forms a stationary process.

We let S denote the collection of rooted spanning subtrees of G. For each n ∈ Z and

v ∈ V we set

Tv,n = min{k ≥ n | Xk = v}.

That is, Tv,n is the first time starting from n that we encounter the vertex v. We define

the spanning subtree Sn rooted at Xn with vertex set V and edges {XTv,n−1, v} for v ∈
V \ {Xn}. As (Xn)n∈Z is stationary, it follows that (Sn)n∈Z is an S-valued stationary

process.

For each spanning tree t ∈ S with root vertex v we let D(t) = dG(v) denote the number

of neighbours of v in G. Note that if S0 = t, then X−1 must be one of the neighbours of

v. Each neighbour w has chance 1/D(t), and each possibility leads to S−1 being equal to

some tree t′ that is determined by t and w. Specifically, t′ is obtained from t by deleting

the edge from w to its parent and adding an edge from w to v. See Figure 10 for an

example.
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Figure 11. The possible successors of the spanning tree in

Figure 9. For example, we would obtain the first if the random

walk starts with (1, 6, 1, 5, 4, 5, 1, 6, 2, 4, 5, 3, 8, 3, 1, 3, 7, . . .) as

in the caption of Figure 9.

It follows that (S−n)n∈Z is a stationary S-valued Markov chain. Its transition matrix

Q with

Q(t, t′) = P(S−1 = t′ | S0 = t)(3.1)

satisfies the property, that for each t ∈ S there are D(t) trees t′ ∈ S for which

Q(t, t′) = 1/D(t),(3.2)

and of course

Q(t, t′) = 0(3.3)

for all other t′. Note that for (3.1) we have used that X0 follows the stationary distribu-

tion π.

Now, conversely, suppose that t′ ∈ S is given and let w denote its root. We know that

for each t ∈ S it holds that Q(t, t′) ∈ {1/D(t), 0}. The question is, how many rooted

spanning trees t with Q(t, t′) > 0 are there exactly? To answer this, note that removing

w from t′ produces dt′(w) connected components (or fringe subtrees) T1, . . . , Tdt′ (w), each

rooted at the corresponding t′-neighbour of w. We know that if S−1 = t′, then the

random walk beginning at time −1 sets foot on one of these components first and it

visits w again before arriving at any of the other component. Hence t must be obtained

from t′ by selecting some index 1 ≤ i ≤ dt′(w), removing the edge from w to the root of

Ti, and adding an arbitrary G-edge that links Ti with w. The choice of component and

edge of course depends on the precise route of the random walk. But, in total, we have

D(t) = dG(w) possibilities for t. Compare with Figure 11.

Thus, for each rooted spanning tree t′ ∈ S there are D(t′) trees t ∈ S for which

Q(t, t′) = 1/D(t)

and

Q(t, t′) = 0



18 BENEDIKT STUFLER

for all other t. This implies ∑
t∈S

D(t)Q(t, t′) = D(t′).(3.4)

Note that the Markov chain (S−n)n∈Z is irreducible: Indeed, given any rooted spanning

tree t ∈ S we may consider a sequence v0, . . . , vs of its vertices obtained from a depth-first-

search walk, including the steps we have to backtrack towards the root. (This way, s equals

twice the number of edges of t.) The probability for (X0, . . . , Xs) to equal (v0, . . . , vs) is

positive and a lower bound for the probability that S0 = t.

It follows from Equation (3.4) that the stationary distribution of (S−n)n∈Z is propor-

tional to (D(t))t∈S .

We have shown that when X0 follows the stationary distribution π from Proposition 3.1,

then P(T = t) is proportional to D(t). Hence, conditional on X0 = v for some fixed vertex

v of G, T is uniformly distributed among all rooted spanning trees of G with root v. If we

regard T as an unrooted tree, then it is uniformly distributed among all spanning trees of

T . Likewise, if X0 is assumed to have uniform distribution, it follows that T is uniform

among all rooted spanning trees of G.

Remark 3.4. — Suppose that G = Kn is the complete graph with vertex set [n] (such

that any two distinct vertices are connected). The irreducible Markov chain on the set of

all nn−1 rooted trees on [n] with transition matrix given in (3.1) takes the following shape:

In each step, choose a uniform non-root vertex v. Delete the edge to its parent, add a

new edge linking v and the old root, and declare v to be the new root. The stationary

distribution of this chain is the uniform distribution on all rooted trees.
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3.2. Generating uniform labelled trees. —

Theorem 3.5 (Aldous). — For each integer n ≥ 2 consider the following procedure

that generates a random tree Tn with with vertex set [n] = {1, . . . , n}.

1) Let U2, . . . , Un be random elements that are independent and uniform on [n].

2) Let σ ∈ Sn be a uniformly selected permutation of degree n.

3) For 2 ≤ j ≤ n add an edge between σ(j) and σ(min(j − 1, Uj)).

Then Tn is uniform among all labelled trees with vertex set [n].

Note that there is always an edge between σ(1) and σ(2). The random variable U2 is

not used, we just keep it for ease of notation.

Proof of Theorem 3.5. — Let (Zi)i≥0 be a sequence of independent random variables, each

uniformly distributed on [n]. Let π1, π2, . . . , πn ∈ [n] denote the distinct states hit first,

second, etc. by (Zi)i≥0, and let 0 = ξ1 < ξ2 < . . . < ξn denote the corresponding hitting

times. For 2 ≤ j ≤ n, we let Pj ∈ [n] denote the last state right before hitting πj for the

first time. That is,

Pj = Zξj−1.(3.5)

Consider the tree R with vertex set [n] in which πj is connected to Pj for all 2 ≤ j ≤ n.

The construction of R does not change if we replace (Zi)i≥0 by the sequence (Z ′
i)i≥0

where terms identical to their predecessor are deleted. Clearly (Z ′
i)i≥0 is the simple random

walk on the complete graph with n vertices, and the construction of R from (Z ′
i)i≥0 is

identical to the construction of the tree T . By Theorem 3.3 it follows that R is uniformly

distributed among all trees with vertex set [n].

Let us analyse the distribution of Pj conditionally on the ordered sequence (π1, . . . , πj−1).

Conditionally on (π1, . . . , πj−1), the last state πj−1 has a higher chance than the others:

At time ξj−1 + 1, that is, right after hitting πj−1 for the first time, the probability for

Zξj−1+1 to belong to one of the n− (j − 1) not previously visited states is 1− j−1
n
. In this

case we have ξj = ξj−1 + 1 and Pj is the state at time ξj−1, that is Pj = Zξj−1
= π(j − 1).

Now consider the other case, assumed with probability j−1
n
, where Zξj−1+1 belongs to one

of the j−1 previously visited states. Here Zξj−1+1 assumes any of these previously visited

states with equal conditional probability. Hence, regardless how many additional steps it

takes to hit a state that has not been previously visited, any of the states π1, . . . , πj−1 is

equally likely to be the last before hitting a new state. Hence in the second case, Pj is

conditionally uniformly distributed among {π1, . . . , πj−1}. Combining the two cases, we

obtain the conditional probability

P(Pj = πi | π1, . . . , πj−1) =

 1
n
, 1 ≤ i < j − 1

1− j−2
n
, i = j − 1

.(3.6)
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Note that this conditional probability only depends on i, j, and n. Moreover, interpreting

(πi)1≤i≤n as permutation, it holds by symmetry that

P((πi)1≤i≤n = γ) =
1

n!
(3.7)

for all permutations γ ∈ Sn.

Recall that in the construction of R we start with vertex set [n] and connect πj to Pj

for all 2 ≤ j ≤ n. This means the construction of R is equivalent to first selecting a

uniform permutation σ from Sn, and then adding for each 2 ≤ j ≤ n an edge between

σ(j) and σ(Vj) for an independent random index 1 ≤ Vj ≤ j − 1 with distribution

P(Vj = i) =

 1
n
, 1 ≤ i < j − 1

1− j−2
n
, i = j − 1

.(3.8)

It is elementary that

Vj
d
= min(i− 1, U)(3.9)

for an uniform random element U of [n]. Hence this sampling procedure is equivalent to

the construction of Tn. This completes the proof.

Remark 3.6. — Theorem 3.3 also entails that the random tree R from the proof rooted

at π1 is uniform among all rooted trees with vertex set [n]. Thus, Tn rooted at σ(1) is also

uniform among all rooted trees on [n].



RANDOM TREES 21

(a) All Pólya trees with 5

vertices.

(b) All unlabelled (un-

rooted) trees with 6

vertices.

Figure 12. Notation for vertices in rooted trees. The root is marked with a square.

4. Plane trees

Trees in the graph-theoretical sense are also called labelled trees, and the vertex set is

often referred to as the set of labels. Unlabelled rooted trees are often called Pólya trees,

in honour of the Hungarian mathematician George Pólya (1887 – 1985). Note that unlike

the labelled case, the number root locations in an unlabelled (unrooted) tree depends on

the tree and not only on the number of vertices. See Figure 12 for an example.

These three tree models - labelled, unlabelled rooted, and unlabelled unrooted - are also

called unordered trees. There are also various kinds of ordered trees, the most important

and common one being planted plane trees. They are the most common type of trees in

the probabilistic literature. Often, the shorter term plane tree is used synonymously with

planted plane trees when there is no risk of confusion with other types. We will abide by

this convention.

Definition 4.1 (Finite plane tree). — A finite plane tree is an unlabelled rooted

tree where each offspring set is endowed with a linear order.

That is, the offspring of any vertex v of a finite plane tree T is enumerated from 1 to

d+T (v). This allows us to to refer to the first, second, etc. offspring vertex of v.

Notation 4.2. — The set of all plane trees with n ≥ 1 vertices is denoted by Tn. We

let

Tf =
⋃
n≥1

Tn

denote the collection of all finite plane trees.

See Figure 13 for the collection of all plane trees with 5 vertices. We may also define

plane trees that admit vertices with infinite degree.
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Figure 13. All 14 plane trees with 5 vertices.

Definition 4.3 (Infinite plane trees). — An infinite plane tree T may have nodes

v with outdegree d+T (v) = ∞. In this case we require the children to be ordered v1, v2, . . ..

That is, the order type on the offspring set is N. We let T denote the collection of all

plane trees, finite and infinite.

Definition 4.4 (Locally finite plane trees). — A plane tree T is called locally

finite, if d+T (v) < ∞ for all vertices v of T . We let Tlf denote the collection of all locally

finite plane trees.

Note that

Tf ⊂ Tlf ⊂ T.

4.1. Ulam–Harris tree encoding. — Plane trees may be realized as canonical subtrees

of the Ulam–Harris tree:

Definition 4.5 (Ulam–Harris tree). — The Ulam–Harris tree U∞ is a tree whose

vertex set is the collection

V∞ = {∅} ∪
⋃
n≥1

Nn

of finite sequences of positive integers. Here any such sequence (i1, . . . , ik) ∈ Nk, k ≥ 0

has the linearly ordered offspring

(i1, . . . , ik, 1), (i1, . . . , ik, 2), . . . .

The empty sequence ∅ is the root of the Ulam–Harris tree.

Proposition 4.6 (Encoding as subtrees of the Ulam–Harris tree)

A finite plane tree T may be canonically realized as a subtree of the Ulam–Harris tree

U∞ by labelling the root of T with the empty sequence ∅. The linearly ordered offspring
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Figure 14. The two depicted trees are not identical as

planted plane trees.

set v1, . . . , vd+T (v) of a vertex of T that received label (i1, . . . , ik) ∈ Nk, k ≥ 0, receives the

labels

(i1, . . . , ik, 1), (i1, . . . , ik, 2), . . . , (i1, . . . , ik, d
+
T (v)).

Compare with Figure 14. This embedding allows us to identify plane trees with families

of outdegrees, indexed by V∞:

Corollary 4.7 (Encoding by outdegrees). — There is a bijection between the

collection of plane trees T and the collection of all families

(dv)v∈V∞ ∈ NV∞
0

satisfying

di1...iki = 0 when i > di1...ik .

The bijection maps a plane tree T to the family of outdegrees (d+T (v))v∈V∞. Here we

identify the vertex set of T in the canonical way as a subset of V∞, and set

d+T (v) = 0 when v /∈ T.

Be careful that d+T (v) = 0 may also hold for some vertices v ∈ T .

4.2. Enumeration of plane trees. — In general, a depth-first-search of a rooted tree may

yield different outcomes, since there is no general rule along which previously unvisited

neighbour to proceed first. For plane trees, there is fortunately a canonical way:

Definition 4.8 (Canonical DFS ordering). — Given a finite plane tree with we

may order its vertices in a canonical way via depth-first-search. Here we start at the root

and always try to proceed along the left-most unvisited offspring. This ordering is identical

to the lexicographic ordering when interpreting the vertex set of T as a subset of the vertex

set V∞ of the Ulam–Harris tree.

Definition 4.9 (Degree sequence and  Lukasiewicz path)

Let T be a finite plane tree and let v1, . . . , vn be its depth-first-search ordered list of
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vertices. We say (d+T (v1), . . . , d
+
T (vn)) is the degree sequence of T . The corresponding

sequence (Wk)0≤k≤n with

Wk =
k∑

i=1

(d+T (vi)− 1)

is called the  Lukasiewicz path of T .

Lemma 4.10. — A sequence d1, . . . , dn of n ≥ 1 non-negative integers is a degree sequence

of some plane tree if and only if

n∑
i=1

(di − 1) = −1

and

k∑
i=1

(di − 1) ≥ 0 for all 1 ≤ k < n.

Proof. — See exercises.

The following combinatorial result ensures that any sequence (d1, . . . , dn) of n ≥ 1 non-

negative integers satisfying
∑n

i=1 di = n − 1 corresponds via a unique cyclic shift to a

degree sequence of a plane tree:

Lemma 4.11 (cycle lemma). — Let x1, . . . , xn ≥ −1 and r ≥ 1 be integers such that

n∑
i=1

xi = −r.

For all i, j ∈ Z let x
(j)
i = xi+j with the index taken modulo n. For each integer k ≥ 0

consider the partial sums

S
(j)
k =

k∑
i=1

x
(j)
i .

Show that there are precisely r values j ∈ {1, . . . , n} such that

S
(j)
k > −r

for all 1 ≤ k < n.

Proof. — See exercises.

Theorem 4.12. — The number of planted plane trees with n ≥ 1 vertices equals

|Tn| =
1

n

(
2n− 2

n− 1

)
.
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Figure 15. The lattice walk corresponding to the monoton-

ically increasing sequence (1, 2, 2, 3).

Proof. — Let Z(n − 1, n) denote the number of sequences (d1, . . . , dn) of non-negative

integers satisfying
∑n

i=1 di = n− 1. By Lemmas 4.10 and 4.11 it follows that

|Tn| =
1

n
Z(n− 1, n).

Consider the grid G = {(i, j) | i, j ∈ {0, . . . , n − 1}}. Suppose we want to walk in

G from (0, 0) to (n − 1, n − 1) in such a way that in each step we either move distance

1 upwards or distance 1 to the right. In total we have to take 2n − 2 steps, precisely

n− 1 of which are upwards and n− 1 are to the right. The total number of such walks is

hence
(
2n−2
n−1

)
.

Each walk corresponds in a bijective way to a sequence (D1, . . . , Dn−1) of integers

satisfying

0 ≤ D1 ≤ D2 ≤ . . . Dn−1 ≤ n− 1.

Here for each 1 ≤ k ≤ n−1 the number Dk corresponds to the height of the kth horizontal

segment of the walk. Compare with Figure 15.

Each such sequence (D1, . . . , Dn−1) corresponds bijectively to a sequence (d1, . . . , dn) of

non-negative integers satisfying
∑n

i=1 di = n− 1. Here for each 1 ≤ k ≤ n− 1 the number

Dk corresponds to the sum
∑k

i=1 di.

Thus,

Z(n− 1, n) =

(
2n− 2

n− 1

)
.
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5. Galton–Watson trees

5.1. Basic definitions. — Throughout this section we let ξ denote a random non-negative

integer satisfying

P(ξ = 0) > 0 and P(ξ ≥ 2) > 0.(5.1)

We let

ϕ(z) = E[zξ](5.2)

denote its probability generating series, and

µ = E[ξ] ∈]0,∞](5.3)

its first moment.

Definition 5.1 (Galton–Watson process). — Let (ξ
(k)
i )i,k≥1 denote a family of in-

dependent copies of ξ. A ξ-Galton–Watson process is a stochastic process (Zn)n≥0 in

discrete time, defined by

Z0 = 1, Zn+1 =
Zn∑
i=1

ξ
(n)
i .(5.4)

The process models the genealogical structure of a population that starts with a single indi-

vidual and reproduces asexually. The number Zn represents the size of the nth generation,

and the offspring of the ith individual in this generation is represented by ξ
(n)
i for each

1 ≤ i ≤ Zn.

The random variable ξ and its distribution are called the branching law or the offspring

distribution of the process.

Definition 5.2 (Galton–Watson tree). — The family tree T corresponding to a

ξ-Galton–Watson process (Zn)n≥0 is called a ξ-Galton–Watson tree. We interpret T as a

random element of the collection T of plane trees.

That is, the root of T has ξ
(1)
1 children. For each 1 ≤ i ≤ ξ

(1)
1 , the ith child of the root

has ξ
(2)
i children of its own. This process continues on and on, producing a tree that a

priori may be infinite.

Proposition 5.3. — 1) For each n ≥ 1 the number Zn corresponds to the total num-

ber of vertices in T with height n.

2) The total number of vertices of T equals |T | =
∑

n≥0 Zn.

3) The height of T is given by H(T ) = sup{k ≥ 0 | Zn > 0}.

4) The maximal outdegree of T is given by ∆(T ) := sup{ξ(n)i | n ≥ 0, 1 ≤ i ≤ Zn}.

Definition 5.4 (Criticality). — We say the Galton–Watson tree T is critical, sub-

critical, or supercritical, if µ = 1, µ < 1, or µ > 1.
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5.2. The probability of extinction. — Depending on the offspring distribution, it is pos-

sible that the tree T is infinite. We will clarify this situation.

Lemma 5.5. — 1) Let n ≥ 1 be an integer. The population Zn at time n has probability

generating function

E[zZn ] = (ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
n times

)(z).

and first moment

E[Zn] = µn.

2) It holds that

P(|T | < ∞) = lim
n→∞

P(Zn = 0)

Proof. — By (5.4) it follows that

E[zZ1 ] = ϕ(z)

and

E[zZn+1 ] = ϕ(E[zZn ]).

By induction on n, it follows that the probability generating series for Zn is the nth iterate

of the probability generating series ϕ(z) of the offspring distribution. Using the chain rule,

it follows again by induction on n that

E[Zn] =
d

dz
E[zZn ]

∣∣∣
z=1

=
d

dz
(ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸

n times

)(z)
∣∣∣
z=1

= µn.

The Galton–Watson tree T is finite if and only if Zn = 0 for some integer n. Letting En
denote the event Zn = 0, it follows that

P(|T | < ∞) = P

(⋃
n≥0

En

)
.

Of course, if Zn = 0, then Zn+1 = 0 holds as well. That is, En ⊂ En+1. Consequently,

P(En) → P

(⋃
n≥0

En

)

as n → ∞. This shows P(|T | < ∞) = limn→∞ P(Zn = 0).

Theorem 5.6 (The probability of extinction). —

1) If µ ≤ 1, then P(|T | < ∞) = 1.

2) If µ > 1, then 0 < P(|T | < ∞) < 1.
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Figure 16. The probability generating function ϕ(x) = E[xξ]
has either one or two fixed points in the unit interval [0, 1],

depending on whether E[ξ] > 1 or E[ξ] ≤ 1.

Proof. — For ease of notation, let us set

p := P(|T | < ∞) ≥ P(ξ = 0) > 0.

The Galton–Watson tree T is finite if and only if the ξ
(1)
1 fringes subtrees dangling from

the root are all finite. Conditionally on ξ
(1)
1 , each of these is distributed like T . This

readily yields

p =
∑
n≥0

P(ξ = n)pn = ϕ(p).

Assumption (5.1) asserts that P(ξ = 0) > 0 and P(ξ ≥ 2) > 0. Hence ϕ is strictly

increasing and strictly convex on the unit interval. Furthermore, ϕ(0) = P(ξ = 0) > 0

and ϕ(1) = 1. By basic properties of convex functions it follows that 1 is the only fixed

point of ϕ in the unit interval if

µ = lim
t↗1

ϕ′(t) ≤ 1.

Hence in this case, p must be equal to 1. In the other case, when

µ = lim
t↗1

ϕ′(t) > 1,

then there is some number 0 < q < 1 so that q and 1 are the only fixed points of ϕ in the

unit interval. Compare with Figure 16. Hence p ∈ {q, 1}. In order to see that p = q, note

that 0 < q implies ϕ(0) < ϕ(q) = q. More generally, it follows from Lemma 5.5 that

P(Zn = 0) = (ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
n times

)(0) < q.

As, again by Lemma 5.5, p = limn→∞ P(Zn = 0), it follows that p ≤ q and hence

p = q ∈]0, 1[.
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5.3. Topological properties of the collection of plane trees. —

5.3.1. Tychonoff’s theorem. — In Corollary 4.7, we learned that we may interpret the

collection T as a subspace of the product NV∞
0 . Note that V∞ is countably infinite. We

may endow each factor

N0 = N0 ∪ {∞}

with the usual compact topology given by the one-point compactification of the discrete

space N0. That is, a subset O ⊂ N0 is open if and only if O ⊂ N0, or ∞ ∈ O and

N0 \O ⊂ N0 is finite. This makes the bijection

N0 → {0} ∪ {1/n | n ≥ 1}, n 7→ 1/(n+ 1)

a homeomorphism, if we endow {0} ∪ {1/n | n ≥ 1} ⊂ R with the subspace topology. In

particular, N0 is metrizable by a metric dN0
induced from this bijection.

A famous theorem in topology states that the product of compact topological spaces is

compact:

Theorem 5.7 (Tychonoff). — If (Xi, τi)i∈I is a family of compact topological spaces,

then their product
∏

i∈I Xi is compact with respect to the product topology.

This makes NV∞
0 a compact space. A direct proof of Tychonoff’s theorem is sufficiently

straightforward that it seems worth giving before proceeding.

Lemma 5.8. — Let (Xi, τi)i∈I be a family of compact topological spaces and let X =∏
i∈I Xi be endowed with the product topology. For any i ∈ I let πi : X → Xi denote the

projection to the ith coordinate. Then any open cover C of X satisfying

C ⊂ {π−1
i (O) | i ∈ I, O ∈ τi}

has a finite subcover.

Proof. — For each i ∈ I define

Ci = {O ∈ τi | π−1
i (O) ∈ C}.

Suppose that there is no index i ∈ I such that Ci covers Xi. Then for each i ∈ I we

may select an element xi that is not covered by Ci. Hence x := (xi)i∈I ∈ X would not be

covered by C, a contradiction as we assumed C to be a cover of X.

Hence there is an index i ∈ I such that Ci covers Xi. As Xi is compact, it follows that

Ci admits a finite subcover C ′
i ⊂ Ci of Xi. Hence

{π−1(O) | O ∈ C ′
i} ⊂ C

is a finite subcover of X.
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Recall that a basis of a topological space (X, τ) is a subset B ⊂ τ such that each open

subset of X is a union of elements from B. A subbasis S ⊂ τ is a collection of open

sets such that the collection of all finite intersections of elements from S forms a basis

of τ . Care has to be taken that “finite” is allowed to mean zero, using the convention⋂
O∈∅ O := X. (Without this convention, only proper subsets of X would be required to

admit expressions as unions of finite intersections of elements from S.) Equivalently, S is

a subbasis if τ is the smallest topology on X containing S.

For example, if X =
∏

i∈I Xi is equipped with the product topology as in Lemma 5.8,

then

{π−1
i (O) | i ∈ I, O ∈ τi}

is a subbasis. In Lemma 5.8 we showed that if Xi is compact for all i ∈ I, then any

collection of sets from this subbasis that coversX has a finite subcover. Hence Tychonoff’s

theorem may be readily deduced from the following result:

Lemma 5.9 (Alexander’s Subbasis Theorem). — Let S be a subbasis of a topological

space (X, τ). If every collection of sets from S that covers X has a finite subcover, then

X is compact.

Proof. — Consider the collection E of all open covers of X that do not have a finite

subcover. E is partially ordered by set inclusion. Any totally ordered subset T ⊂ E has

C =
⋃

C′∈T C ′ as an upper bound. To see that C has no finite subcover, note that any

finite subset of C is necessarily a subset of some element of T .

Now, if X is not compact, then E is nonempty and hence has a maximal element M

by Zorn’s Lemma. We claim that M ∩ S is a cover of X. To see this, let x ∈ X be an

element. M is a cover of X, hence there is an element O ∈ M with x ∈ O. As M has no

finite subcover, it must hold that O ⊊ X. As S is a subbasis, it follows that

x ∈ O1 ∩ . . . ∩On ⊂ O

for some n ≥ 1 and elements O1, . . . , On ∈ S. If Oj ∈ M for some 1 ≤ j ≤ n, then x is

covered by M ∩ S. If O1, . . . , On /∈ M , then, by maximality of M , M ∪ {Oj} has a finite

subcover containing Oj for each 1 ≤ j ≤ n. That is, we may write

X = Oj ∪ Uj

for some open set Uj ⊂ X that is the union of finitely many elements of M . This means

that O ∪
⋃n

j=1 Uj is a union of finitely many elements from M . But

O ∪
n⋃

j=1

Uj ⊃

(
n⋂

j=1

Oj

)
∪

n⋃
j=1

Uj ⊃
n⋂

j=1

(Oj ∪ Uj) = X.

This contradicts the fact that M has by construction no finite subcover. Thus M ∩ S is

a cover of X.



RANDOM TREES 31

By assumption on S, it follows that M ∩ S has a finite subcover. This contradicts the

fact that M has no finite subcover. This means X must be compact.

This concludes the proof of Tychonoff’s theorem.

5.3.2. The space T is Polish. — Going back to NV∞
0 , we have now verified that NV∞

0 is a

(countable) product of compact spaces and hence compact with respect to the product

topology.

Proposition 5.10. — A sequence of points in NV∞
0 converges if and only if each coor-

dinate converges.

Proof. — Indeed, the projections πv : NV∞
0 → N0 (with v ∈ V∞) are continuous, hence

convergence in NV∞
0 implies convergence of each coordinate. Conversely, suppose that xn,

n ≥ 1 is a sequence in NV∞
0 and x ∈ NV∞

0 so that πv(xn) → πv(x) for each v ∈ V∞. We

know that

{π−1
v (O) | v ∈ V∞, O ⊂ N0 open}

is a subbasis. Hence if O ⊊ NV∞
0 is an open neighbourhood of x, then there exists an

open set O′ that is the intersection of finitely many elements of the subbasis such that

x ∈ O′ ⊂ O. Convergence of each coordinate of xn ensures that for n large enough

xn ∈ O′ and hence xn ∈ O. Thus, xn converges to x in the product topology.

The space NV∞
0 has a countable basis, given by the intersections of finitely many elements

of its countable subbasis

{π−1
v ({n}) | v ∈ V∞, n ∈ N0} ∪ {π−1

v ({∞} ∪ {n, n+ 1, . . .}) | v ∈ V∞, n ∈ N0}.

Hence NV∞
0 is a second-countable space. Consequently, it also admits a countable dense

subset, just pick an element of each basis element. This means NV∞
0 is separable.

The space N0 is metrizable, for example by the metric dN0
induced from the homeomor-

phism

N0 → {0} ∪ {1/n | n ≥ 1}

and the subspace metric on the right-hand side. Consequently, the product NV∞
0 is metriz-

able as well: if we pick any bijection ι : V∞ → N, then the metric

dNV∞
0

((xv)v∈V∞ , (yv)v∈V∞) = sup
n≥1

1

n
dN0

(xι(n), yι(n))

induces the product topology on NV∞
0 . One way to see this is to first observe that conver-

gence with respect to dNV∞
0

is equivalent to convergence of each coordinate, just as with

the product topology. Hence a set is closed in the product topology if and only if it is

closed with respect to dNV∞
0

.
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A topological space is called Polish if it is homeomorphic to a separable complete

metric space. We have shown that the metric space (NV∞
0 , dNV∞

0
) is compact, hence it is

also complete. Since NV∞
0 is separable, it follows that NV∞

0 is Polish.

Recall that by Corollary 4.7 we may identify T with a subset of NV∞
0 .

Proposition 5.11. — The subset T ⊂ NV∞
0 is closed.

Proof. — Recall that a point (xv)v∈V∞ ∈ NV∞
0 belongs to T if and only if for each v ∈ V∞

and each i ∈ N with i > xv it holds that

xvi = 0.

Hence we may write

T = NV∞
0 \

⋃
v∈V∞,x∈N0,i∈N,i>x

Uv,x,i

for

Uv,x,i = {x ∈ NV∞
0 | πv(x) = x, πvi(x) ̸= 0}

= π−1
v ({x}) ∩ π−1

vi (N0 \ {0}).

Each such set Uv,x,i is open, making T a closed subset.

Corollary 5.12. — T is a compact Polish space.

Proof. — Closed subsets of compact spaces are compact, hence T is compact. As a

compact metric space, T is of course complete. Subspaces of second-countable space are

second-countable, making T second-countable and hence separable.

Note that Tlf and Tf are not closed subsets of T.

5.3.3. Truncated trees and distributional convergence. —

Definition 5.13 (Truncations of trees). — For any tree T ∈ T and any integer

m ≥ 1 we let T ⟨m⟩ denote the tree obtained by removing all vertices with height larger than

m. We also define the subset

V [m] =
m⋃
k=0

{1, . . . ,m}k ⊂ V∞

and let T [m] denote the tree with vertex set restricted to V (T ) ∩ V [m].

That is, the tree T ⟨m⟩ is obtained from T by truncating at height m. The tree T [m]

is obtained by additionally pruning so that all outdegrees are at most m. The following

result is an immediate consequence from the characterization of convergence in NV∞
0 :

Proposition 5.14. — Let (Tn)n≥1 be a sequence of trees in T and let T ∈ T.



RANDOM TREES 33

1) The sequence converges to T if and only if for each m ≥ 1 there is a constant

n(m) ≥ 1 such that for all n ≥ n(m)

T [m]
n = T [m].

2) Suppose that T ∈ Tlf . Then the sequence converges to T if and only if for each m ≥ 1

there is a constant n(m) ≥ 1 such that for all n ≥ n(m)

T<m>
n = T<m>.

Proposition 5.15. — We equip NV∞
0 with its Borel σ-algebra. A sequence of random

points x1,x2, . . . ∈ NV∞
0 converges in distribution to a random point x ∈ NV∞

0 , if and only

if for each integer m ≥ 1

(πv(xn))v∈V [m]
d−→ (πv(x))v∈V [m] .

Proof. — Necessity follows from the mapping theorem. Turning to sufficiency, define for

each m ≥ 1 the projection

pm : NV∞
0 → NV [m]

0 , (xv)v∈V∞ 7→ (xv)v∈V [m] .

The finite dimensional marginals are measure-determining: If x and y are two random

elements with pm(x)
d
= pm(y) for all m ≥ 1, then x

d
= y. This follows from the usual

π-λ-Lemma.

Now, suppose that xn is a sequence of random elements of NV∞
0 such that the finite

dimensional marginals convergence in distribution. Our space is a compact Polish space,

hence so this the corresponding space of Borel probability measures. Hence any sequence

of random elements is tight and thus has a convergent subsequence. In order to verify

distributional convergence of xn it suffices to show that the distribution of the limit along

a subsequence does not depend on the choice of subsequence. But this is clear, since

any two distributional limits along subsequences must have the same finite dimensional

marginal distributions.

Proposition 5.15 allows us to verify the following convergence criteria in a straight-

forward way.

Proposition 5.16. — Let (Tn)n≥1 be a sequence of random trees in T.

1) For a random tree T in T it holds that

Tn
d−→T

if and only if

T[m]
n

d−→T[m]

for each m ≥ 1.
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2) For a random tree T that almost surely lies in Tlf it holds that

Tn
d−→T

if and only if

T⟨m⟩
n

d−→T⟨m⟩

for each m ≥ 1.
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5.4. Size-biased Galton–Watson trees. — Recall that our assumptions on the offspring

distribution ξ entail µ > 0. Suppose that µ < ∞. Let us define the size-biased random

variable ξ∗ with distribution given by

P(ξ∗ = k) =
1

µ
kP(ξ = k), k ≥ 0.(5.5)

Definition 5.17 (Size-biased Galton–Watson tree). — Suppose that µ < ∞.

We let T ∗ denote a size-biased Galton–Watson tree where there are two types of vertices,

normal and special. Normal vertices receive offspring according to independent copies of ξ,

all of which are declared normal. The root is declared special. Any special vertex receives

offspring according to an independent copy of ξ∗, and among these a uniformly selected

vertex is declared special again, whereas the rest is declared normal.

Definition / Proposition 5.18 (Spine of the size-biased Galton–Watson

tree)

The special vertices of the size-biased Galton–Watson tree T ∗ form a one-sided infinite

path that starts at the root vertex. This path is called the spine of T ∗.

Definition 5.19 (Level sets). — For any rooted tree T and any integer n ≥ 0 we let

Ln(T ) the number of vertices with height n.

For example, Ln(T ) = Zn for all n ≥ 0.

Proposition 5.20. — For each integer k ≥ 0,

P(Ln(T ∗) = k) = kP(Zn = k)µ−n.

For each finite plane tree T ,

P(T ∗⟨n⟩ = T ) = µ−nLn(T )P(T ⟨n⟩ = T ).

Proof. — We may mark the finite trimmed tree T ∗⟨n⟩ at the unique special vertex un

with height n. For finite plane tree T with height n and any vertex v of T with height

hT (v) = n it holds that

P((T ∗⟨n⟩, un) = (T, v)) = µ−nP(T ⟨n⟩ = T ).(5.6)

To see this, note that the event (T ∗⟨n⟩, un) = (T, v) corresponds to a unique choice of

outdegrees and selections of special vertices. The probability that an independent copy of

ξ∗ assumes a given outdegree d ≥ 1 and that a given child is declared special is given by

P(ξ∗ = d)
1

d
= P(ξ = d)

1

µ
.
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As there are n choices to be made for selecting special children in T ∗⟨n⟩, Equation (5.6)

follows. The event T ∗⟨n⟩ = T corresponds to Ln(T ) equally likely outcomes for (T ∗⟨n⟩, un),

hence

P(T ∗⟨n⟩ = T ) = µ−nLn(T )P(T ⟨n⟩ = T ).(5.7)

Summing over all T with Ln(T ) = k, this readily implies

P(Ln(T ∗) = k) = µ−nkP(Zn = k).

Definition / Proposition 5.21. — For any ℓ ≥ 0 we may consider the size-biased tree

T ∗(ℓ) that is constructed like T ∗, with the only difference being that the ℓth special vertex

uℓ is declared normal instead, and hence receives offspring according to an independent

copy of ξ, all of which are declared normal again. Thus, T ∗(ℓ) has a spine of length ℓ.

Proposition 5.22. — For any finite plane tree T and any vertex v of T with height ℓ

it holds that

P((T ∗(ℓ), uℓ) = (T, v)) = µ−ℓP(T = T ).

The proof is by identical arguments as for Equation (5.6). Note that if µ > 1, then

T ∗(ℓ) and T may be infinite. The Equation in Proposition 5.22 still holds for infinite trees

T , but in this case both sides of the Equation equal zero.
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5.5. The Kesten–Stigum theorem. — We observed that the population of a super-critical

Galton–Watson process has a positive chance of survival. Our aim in this section is to

describe the growth of population in case of survival.

Lemma 5.23. — Suppose that µ < ∞. Then

Wn =
Zn

µn
.(5.8)

is a martingale with respect to the natural filtration.

Proof. — It holds that E[Wn] = 1 for all n ≥ 1 and

E[Wn+1 | Wn] =
1

µn+1
E

[
Zn∑
i=1

ξ
(n)
i

∣∣∣∣∣Wn

]

=
1

µn+1

Zn∑
i=1

E

[
ξ
(n)
i

∣∣∣∣∣Wn

]

=
Zn

µn
.

Definition / Proposition 5.24. — Suppose that µ < ∞. As E[Wn] = 1 for all n ≥ 1,

it follows from the martingale convergence theorem that

W := lim
n→∞

Wn

exists almost surely. Fatou’s lemma implies

E[W ] ≤ 1.

Proposition 5.25. — Suppose that µ < ∞. Then

P(W = 0) ∈ {1,P(|T | < ∞)}.

Proof. — The (n + 1)th generation of T may be partitioned into the nth generations

Z
(1)
n , . . . , Z

(Z1)
n of the Z1 fringe subtrees dangling from the root of T . Thus

Zn+1 =

Z1∑
i=1

Z
(n)
i .

The generations (Z
(n)
i )i≥1 are i.i.d., each distributed and constructed like the nth genera-

tion of a ξ-Galton–Watson process. Furthermore, they are independent from Z1.

Dividing both sides of the equation by µn and letting n → ∞, it follows that

µW =

Z1∑
i=1

W (i),
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with (W (i))i≥1 representing i.i.d. random variables, each distributed like W , that are also

independent from Z1. This entails

P(W = 0) =
∑
i≥0

P(ξ = i)P(W = 0)i = ϕ(P(W = 0)).

Consequently,

P(W = 0) ∈ {1,P(|T | < ∞)}.

Of course, in the case µ ≤ 1, we have W = 0 almost surely. The question is whether

W is also degenerate in the case µ > 1. The Kesten–Stigum theorem provides an answer:

Theorem 5.26 (Kesten, Stigum). — Suppose that 1 < µ < ∞. The following claims

are equivalent.

1) E[W ] = 1

2) P(W = 0) = P(|T | < ∞)

3) E[ξ logmax(1, ξ)] < ∞.

We are going to need some preliminary observations before we can proceed to prove

this.

5.5.1. Preliminaries 1: Properties of Radon–Nikodym derivatives. — Let (Ω,F) be a

measurable space. Let Q be a finite measure on F (with finite meaning Q(Ω) < ∞),

and let P be a probability measure on F . Let (Fn)n≥1 be a filtration of F such that

F = σ
(⋃

n≥1Fn

)
. Let Qn and Pn denote the restrictions of Q and P to Fn.

Suppose that Qn ≪ Pn for all n ≥ 1. Set Xn = dQn

dPn
and X = lim supn→∞Xn. We are

going to show:

Theorem 5.27. — The Lebesgue decomposition Q = Qr +Qs with Qr ≪ P and Qs ⊥ P

is given by

Qr(A) =

∫
A

X dP, and Qs(A) = Q(A ∩ {X = ∞})

for all A ∈ F .

The first part of the proof is the following observation:

Lemma 5.28. — (Xn)n defined on (Ω,F , P ) is a martingale with respect to the filtra-

tion (Fn)n.

Proof. — By definition, Xn = dQn

dPn
is Fn-measurable. As Pn is the restriction of P to Fn,

it follows that for any A ∈ Fn∫
A

Xn dP =

∫
A

Xn dPn = Qn(A) = Q(A).
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Since this holds for all n ≥ 1 and since Fn ⊂ Fn+1, it follows that∫
A

Xn+1 dP = Q(A) =

∫
A

Xn dP.

As this holds for all A ∈ Fn, it follows that

Xn = E[Xn+1 | Fn].

Lemma 5.28 and the martingale convergence theorem entail that X = limn→∞Xn < ∞
holds P -a.s.. In particular, the measure A 7→ Q(A ∩ {X = ∞}) is singular with respect

to P . Thus, verifying Theorem 5.27 reduces to showing

Q(A) =

∫
A

X dP +Q(A ∩ {X = ∞})(5.9)

for all A ∈ F .

Proof of Equation (5.9) and hence Theorem 5.27. — Dividing Q by Q(Ω) allows us as-

sume without loss of generality that Q is a probability measure.

We define the probability measures R = (P + Q)/2, so that Rn = (Pn + Qn)/2 is the

restriction of R to Fn. By standard properties of Radon–Nikodym derivatives,

dPn

dRn

+
dQn

dRn

= 2
dRn

dRn

= 2.

Using Lemma 5.28 and the martingale convergence theorem, it follows that the martingales
dPn

dRn
and dQn

dRn
are R-a.s. convergent with limits Y and Z. It holds that

Y =
dP

dR
, and Z =

dQ

dR
.

To see this, it suffices to show the first equality. By dominated convergence, for any

A ∈ Fn

P (A) = Pn(A) =

∫
A

dPn

dRn

dRn =

∫
A

dPn

dRn

dR →
∫
A

Y dR.

Hence,

P (A) =

∫
A

Y dR

for all A ∈
⋃

n≥1Fn. As we assumed that F = σ
(⋃

n≥1Fn

)
, and since

⋃
n≥1Fn is a π-

system, it follows from Dynkin’s π-λ-Lemma that P (A) =
∫
A
Y dR for all A ∈ F . Thus,

Y = dP
dR

.

Since Qn ≪ Rn ≪ Pn and Pn ≪ Rn, it holds that

Xn =
dQn

dPn

=
dQn

dRn

dRn

dPn

=
dQn

dRn

/
dPn

dRn

.

Since dPn

dRn
+ dQn

dRn
= 2, it follows that Y + Z = 2 holds R-a.s., and hence

R(Y = 0, Z = 0) = 0.
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Thus,

Xn =
dQn

dRn

/
dPn

dRn

→ Z/Y

holds R-a.s.. As we defined X = lim supn→∞ Xn, it follows that

X = Z/Y

holds R-a.s.. Now, for any A ∈ F we have

Q(A) =

∫
A

Z dR

=

∫
A

Y Z/Y 1Y >0dR +

∫
A

Z1Y=0dR

=

∫
A

XY dR +

∫
A

Z1X=∞dR

=

∫
A

XdP +Q(A ∩ {X = ∞}).

Corollary 5.29. — In this setting,

Q ≪ P ⇔ X < ∞ Q-a.s. ⇔ EP [X] = 1

and

Q ⊥ P ⇔ X = ∞ Q-a.s. ⇔ EP [X] = 0.

5.5.2. Preliminaries 2: Seneta’s theorem. — Seneta’s theorem is stated in the general

context of Galton–Watson processes with immigration:

Definition 5.30 (Galton–Watson process with immigration)

Let ξ be an offspring distribution subject to our requirements (5.1). Let ζ be a random

non-negative integer with P(ζ > 0) > 0, which in this context will be called the immigration

distribution. The processes starts with no particles, say, and in each generation n ≥ 1

there is an immigration of Yn individuals, with (Yn)n≥1 being independent copies of the

immigration law. Each individual has, independently, a ξ-Galton–Watson descendant tree.

For example, we may view the non-spine vertices of the size-biased tree T ∗ as a Galton–

Watson process with offspring distribution ξ and immigration distribution ξ∗ − 1.

Theorem 5.31 (Seneta). — Let (Z∗
n)n≥1 denote the generation sizes of a Galton–

Watson process with offspring distribution ξ and immigration distribution ζ. Suppose

that µ = E[ξ] > 1. If E[logmax(ζ, 1)] < ∞, then limn→∞ Z∗
n/µ

n exists and is finite almost

surely. If E[logmax(ζ, 1)] = ∞, then lim supn→∞ Z∗
n/c

n = ∞ for every constant c > 0.

The first step of the proof is a small general observation that follows from the Borel–

Cantelli Lemma:
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Lemma 5.32. — Let X,X1, X2, . . . be non-negative i.i.d. random variables. Then

lim sup
n→∞

1

n
Xn =

0, E[X] < ∞
∞, E[X] = ∞

.

Proof. — Suppose that E[X] < ∞. Then for any ϵ > 0∑
n≥1

P(X > ϵn) ≤
∫ ∞

0

P(X/ϵ > x) dx = ϵ−1E[X] < ∞.

By the first Borel–Cantelli Lemma it follows that almost surely there is an N > 0 with

Xn < ϵn for all n > N . Since this holds for any ϵ > 0, it follows that lim supn→∞
1
n
Xn = 0.

Now, suppose that E[X] = ∞. Then for any ϵ > 0∑
n≥1

P(X > ϵn) ≥
∫ ∞

1

P(X/ϵ > x) dx ≥ ϵ−1E[X]− 1 = ∞.

Since (Xn)n≥1 are i.i.d., it follows from the second Borel–Cantelli Lemma that almost

surely Xn > ϵn for infinitely many n. Since this holds for each ϵ > 0, it follows that

lim supn→∞
1
n
Xn = ∞.

Proof of Theorem 5.31. — Assume first that E[logmax(ζ, 1)] = ∞. Then, by Lemma 5.32,

the number Yn of immigrants in generation n ≥ 1 satisfies

lim sup
n→∞

1

n
logmax(Yn, 1) = ∞

almost surely. As Z∗
n ≥ Yn, it follows that lim supn→∞ Z∗

n/c
n = ∞ for every constant

c > 0.

Now, assume instead that E[logmax(ζ, 1)] < ∞. Let Y denote the σ-field generated by

(Yn)n≥1. For all integers n ≥ k ≥ 1 let Z∗
n,k denote the number of descendants at level n

of the individuals who immigrated in generation k. Thus, the total population at level n

is given by

Z∗
n =

n∑
k=1

Z∗
k,n.

Thus,

E
[
µ−nZ∗

n | Y
]
= E

[
µ−n

n∑
k=1

Z∗
n,k

∣∣∣∣∣Y
]
=

n∑
k=1

µ−kE
[
Z∗

n,kµ
−(n−k) | Y

]
.

Given Yk, the size Z∗
n,k is distributed like the population in generation n − k of Yk inde-

pendent ξ-Galton–Watson processes. Thus, E[Z∗
n,k | Yk] = Ykµ

n−k and hence

E
[
µ−nZ∗

n | Y
]
=

n∑
k=1

µ−kYk.
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Since we assumed E[logmax(ζ, 1)] < ∞, it follows from Lemma 5.32 that almost surely

lim sup
n→∞

1

n
logmax(Yn, 1) = 0.

Hence
∑∞

k=1 µ
−kYk converges almost surely, providing a bound

E
[
µ−nZ∗

n | Y
]
≤

∞∑
k=1

µ−kYk

that is uniform in n ≥ 1. Furthermore, note that

E
[
µ−(n+1)Z∗

n+1 | Y , Z∗
n

]
= µ−nZ∗

n + µ−(n+1)Yn+1 ≥ µ−nZ∗
n.

Thus, µ−nZ∗
n is a submartingale when conditioned on Y with bounded expectation (given

Y). Hence µ−nZ∗
n converges almost surely to a finite limit.

5.5.3. Proof of the Kesten–Stigum theorem. — Having done all preparations, the Kesten–

Stigum theorem may now be verified in a short and elegant way.

Proof of Theorem 5.26. — Consider the space Tlf of locally finite plane trees, equipped

with its Borel σ-algebra F . For each integer n ≥ 1 let Fn ⊂ F denote the σ-algebra

generated by the projection T 7→ T ⟨n⟩ to the first n levels. Then F = σ(
⋃

n≥1Fn). Let

Q and P be the probability measures on F corresponding to the laws of the size-biased

tree T ∗ and the Galton–Watson tree T . We let Qn and Pn denote the corresponding

restrictions to Fn. Recall that by Proposition 5.20

P(T ∗⟨n⟩ = T ) = µ−nLn(T )P(T ⟨n⟩ = T ).

for any finite plane tree T and any integer n ≥ 1. In other words, Qn ≪ Pn with

dQn

dPn

=
Ln(·)
µn

.

We know that X = lim supn→∞
Ln(·)
µn is P -a.s. finite by Lemma 5.28. By Corollary 5.29,

Q ≪ P ⇔ X < ∞ Q-a.s. ⇔ EP [X] = 1

and

Q ⊥ P ⇔ X = ∞ Q-a.s. ⇔ EP [X] = 0.

The generation size Ln(T ∗) may be interpreted as 1 plus the size of the n-th generation

in a Galton–Watson process with immigration, with the immigration law given by ξ∗ − 1.

Hence by Theorem 5.31,

X < ∞ Q-a.s. ⇔ E[logmax(ξ∗ − 1, 1)] < ∞.

Note that the definition of ξ∗ implies

E[logmax(ξ∗ − 1, 1)] = µ−1
∑
k≥1

P(ξ = k)k log k.
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Hence the previous condition is also equivalent to

E[ξ log ξ, ξ ≥ 1] < ∞.

Summing up,

EP [X] = 1 ⇔ E[ξ log ξ, ξ ≥ 1] < ∞.

We know that W = X P -a.s. and P(W = 0) ∈ {1,P(|T | < ∞)} by Proposition 5.25. As

EP [X] = 0 if and only if X = ∞ Q-a.s., it follows that

EP [X] = 1 ⇔ P(W = 0) = P(|T | < ∞).

This completes the proof of the Kesten–Stigum theorem.
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5.6. The total population. — The total population of the Galton–Watson process is given

by the number of vertices

|T | =
∑
n≥0

Zn

of the associated Galton–Watson tree. We observed in (5.5) that E[Zn] = µn. Hence:

Proposition 5.33. —

1) If µ = 1, then E[|T |] = ∞.

2) If µ < 1, then E[|T |] = 1
1−E[ξ] .

Proposition 5.34. — Suppose that µ ≤ 1. Then the probability generating series

Z(z) = E[z|T |] of the total population and ϕ(z) = E[zξ] are related by the equation

Z(z) = zϕ(Z(z)).

Proof. — Letting (T i)i≥1 denote independent copies of T , it holds that

|T | d
=1 +

ξ∑
i=1

|T i|.

This readily implies Z(z) = zϕ(Z(z)).

Given integers k, n ≥ 1, let Tk,n denote the collection of sequences of k finite plane

trees, such that the total number of vertices of all trees equals n. Let Bn−k,n denote the

collection of sequences (di)1≤i≤n of n non-negative integers satisfying

n∑
i=1

di = n− k.

Recall that any finite plane tree has an outdegree sequence, obtained by listing the outde-

grees of its vertices in a depth-first-search order (starting with the root). The outdegree

sequence of a forest (Ti)1≤i≤k ∈ Tk,n is formed by concatenating the outdegree sequences

of the individual trees.

Lemma 5.35. — Consider the map

Tk,n × [n] → Bn−k,n

that maps a forest (Ti)1≤i≤k with outdegree sequence (di)1≤i≤n and an integer j ∈ [n] to

the cyclically shifted list

(di+j)1≤i≤n

with the index taken modulo n. Then any element of Bn−k,n has precisely k preimages.
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Proof. — By Lemma 4.10, for any integer ℓ ≥ 1 there is a bijection between the collection

Tℓ of plane trees with ℓ vertices and the collection of all sequences d′1, . . . , d
′
ℓ of non-negative

integers satisfying

ℓ∑
i=1

(d′i − 1) = −1

and
s∑

i=1

(d′i − 1) ≥ 0 for all 1 ≤ s < ℓ.

The bijection maps a tree to its outdegree sequence.

Consequently, mapping a forest from Tk,n to its outdegree sequence yields a bijection

from Tk,n to the collection of all sequences (di)1≤i≤n of non-negative integers satisfying

n∑
i=1

(di − 1) = −k(5.10)

and
s∑

i=1

(di − 1) > −k for all 1 ≤ s < n.(5.11)

By Lemma 5.10, any sequence (di)1≤i≤n of n non-negative integers satisfying (5.10)

admits precisely k integers j ∈ [n] such that shifting (di)1≤i≤n cyclically by j yields a

sequence satisfying (additionally) Equation (5.11). Hence the k pairs ((di+j)1≤i≤n,−j) for

these k choices of j, with the index i+j and the shift −j both taken modulo n, correspond

precisely to the preimages of (di)1≤i≤n under the mapping Tk,n × [n] → Bn−k,n.

Theorem 5.36 (Otter–Dwass formula). — Let (T i)i≥1 denote independent copies

of T , and let (ξi)i≥1 denote independent copies of ξ. Then, for all integers k, n ≥ 1,

P

(
k∑

i=1

|T i| = n

)
=

k

n
P

(
n∑

i=1

ξi = n− k

)
.

Proof. — If a forest (T i)1≤i≤k ∈ Tk,n has outdegree sequences (di)1≤i≤n, then

P((T i)1≤i≤k = (T i)1≤i≤k) =
n∏

i=1

P(ξ = di).

Using Equations (5.10) and (5.11), and Lemma 5.35 it follows that

P

(
k∑

i=1

|T i| = n

)
= P

(
n∑

i=1

(ξi − 1) = −k,
s∑

i=1

(ξi − 1) > −k for all 1 ≤ s < n

)

=
k

n
P

(
n∑

i=1

ξi = n− k

)
.
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The probability P (
∑n

i=1 ξi = n) may be approximated using many forms of local limit

theorems, thus providing precise asymptotic expressions for P
(∑k

i=1 |T i| = n
)
when k is

fixed and n → ∞.

Recall the classical Gnedenko local limit theorem for the lattice case:

Lemma 5.37 (Gnedenko local limit theorem). — Let (Xi)i≥1 denote independent

copies of a random integer X with finite first moment E[X] and finite non-zero variance

V[X]. Let d ≥ 1 denote the smallest positive integer such that the support {i ∈ Z | P(X =

i) > 0} is contained in a lattice of the form a+dZ for some a ∈ Z. Fix any such integer a.

Then the sum Sn = X1 + . . .+Xn satisfies P(Sn = x) = 0 for all x ∈ Z \ (na+ dZ) and

lim
n→∞

sup
x∈na+dZ

∣∣∣∣∣√nP(Sn = x)− d√
2πV[X]

exp

(
−(nE[X]− x)2

2nV[X]

)∣∣∣∣∣ = 0.

Applying this local limit theorem, we obtain:

Corollary 5.38. — Suppose that the offspring distribution ξ is critical and has finite

variance σ2. Let d ≥ 1 denote the greatest common divisor of all integers i ≥ 1 with

P(ξ = i) > 0. Then P(|T | = n) = 0 when n /∈ 1 + dN, and

P(|T | = n) ∼ d√
2πσ2

n−3/2

as n ∈ 1 + dN tends to infinity.

Note that this means P(|T | = n) > 0 at least for all large enough n ∈ 1 + dN.

Proof of Corollary 5.38. — By the Otter–Dwass formula, it holds that

P(|T | = n) =
1

n
P

(
n∑

i=1

(ξi − 1) = −1

)
.

The support of the shifted integer ξ − 1 is contained in −1 + dZ and in no lattice of the

form a + d′Z for a ∈ Z and 1 ≤ d′ < d. Hence this probability is equal to zero when

−1 /∈ −n+dZ, that is, when n /∈ 1+dN. By the Gnedenko local limit theorem for x = −1

and X = ξ − 1, we obtain

P

(
n∑

i=1

(ξi − 1) = −1

)
= (1 + o(1))

d√
2πσ2

n−1/2

when n ∈ 1 + dN tends to infinity.
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5.7. Local convergence. — For positive integers n the simply generated tree Tn is ob-

tained by conditioning the ξ- Galton-Watson tree T on having n vertices. That is, the

process is restarted over and over again until a realization with total population∑
k≥0

Zk = n

is generated.

The asymptotic behaviour of the tree Tn as n tends to infinity forms a vital part of the

asymptotic analysis of random trees.

Theorem 5.39. — Let d ≥ 1 denote the greatest common divisor of all integers i ≥ 1

with P(ξ = i) > 0. If T is critical and its offspring distribution ξ has finite variance, then

Tn
d−→T ∗

as n ∈ 1 + dN tends to infinity.

Proof. — Since T ∗ is locally finite and has infinite height, it suffices by Proposition 5.16

to show that for each integer h ≥ 1 and each finite plane tree T with height h and we

have

P(T ⟨h⟩
n = T ) → P(T ∗⟨h⟩ = T )

as n becomes large.

We let m ≥ 1 denote the number of vertices of T with height less than h. Let k ≥ 1

denote the number of vertices of T with height h. If T ⟨h⟩ = T then the total size of T
is given by m plus the sum of the sizes of the k fringe subtrees rooted at its vertices of

height h. Each of these is distributed like an independent copy T . Hence, with (T i)i≥1

denoting independent copies of T we have

P(|T | = n | T ⟨h⟩ = T ) = P

(
k∑

i=1

|T i| = m

)
.

By the Otter-Dwass formula and the local limit theorem, this simplifies to

P

(
k∑

i=1

|T i| = m

)
=

k

n
P

(
n∑

i=1

ξi = n− k

)

∼ kd√
2πσ2

n−3/2.

This is precisely k times the asymptotic expression for P(|T | = n) we obtained in Corol-

lary 5.38. Hence

P(T ⟨h⟩
n = T ) =

P(|T | = n, T ⟨h⟩ = T )

P(|T | = n)
→ kP(T ⟨h⟩

n = T ).

By Proposition 5.20 this equals P(T ∗⟨h⟩ = T ) and the proof is complete.
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