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Abstract. The study of inner models was initiated by Gödel’s analysis
of the constructible universe. Later, the study of canonical inner mod-
els with large cardinals, e.g., measurable cardinals, strong cardinals or
Woodin cardinals, was pioneered by Jensen, Mitchell, Steel, and others.
Around the same time, the study of infinite two-player games was driven
forward by Martin’s proof of analytic determinacy from a measurable
cardinal, Borel determinacy from ZFC, and Martin and Steel’s proof
of levels of projective determinacy from Woodin cardinals with a mea-
surable cardinal on top. First Woodin and later Neeman improved the
result in the projective hierarchy by showing that in fact the existence of
a countable iterable model, a mouse, with Woodin cardinals and a top
measure suffices to prove determinacy in the projective hierarchy. This
opened up the possibility for an optimal result stating the equivalence
between local determinacy hypotheses and the existence of mice in the
projective hierarchy. This article outlines the main concepts and results
connecting determinacy hypotheses with the existence of mice with large
cardinals as well as recent progress in the area.
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1 Introduction

The standard axioms of set theory, Zermelo-Fraenkel set theory with Choice
(ZFC), do not suffice to answer all questions in mathematics. While this fol-
lows abstractly from Kurt Gödel’s famous incompleteness theorems, we nowa-
days know numerous concrete examples for such questions. A large number of
problems in set theory, for example, regularity properties such as Lebesgue mea-
surability and the Baire property are not decided – for even rather simple (for
example, projective) sets of reals – by ZFC. Even many problems outside of
set theory have been showed to be unsolvable, meaning neither their truth nor
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their failure can be proven from ZFC. This includes the Whitehead Problem
(group theory, [49]), the Borel Conjecture (measure theory, [22]), Kaplansky’s
Conjecture on Banach algebras (analysis, [8]), and the Brown-Douglas-Fillmore
Problem (operator algebras, [11]). A major part of set theory is devoted to at-
tacking this problem by studying various extensions of ZFC and their properties.
One of the main goals of current research in set theory is to identify the “right”
axioms for mathematics that settle these problems. This, in part philosophical,
problem is attacked with technical mathematical methods by analyzing vari-
ous extensions of ZFC and their properties. Determinacy assumptions are
canonical extensions of ZFC that postulate the existence of winning strategies in
natural two-player games. Such assumptions are known to imply regularity prop-
erties, and enhance sets of real numbers with a great deal of canonical structure.
Other natural and well-studied extensions of ZFC are given by the hierarchy of
large cardinal axioms. Determinacy assumptions, large cardinal axioms, and
their consequences are widely used and have many fruitful implications in set
theory and even in other areas of mathematics such as algebraic topology [7],
topology [38,13,6], algebra [10], and operator algebras [11]. Many applications,
in particular, proofs of consistency strength lower bounds, exploit the interplay
of large cardinals and determinacy axioms. Thus, understanding the connections
between determinacy assumptions and the hierarchy of large cardinals is vital
to answer questions left open by ZFC itself. The results outlined in this
article are closely related to this overall goal.

To explore the connections between large cardinals and determinacy at higher
levels, the study of other hierarchies, for example, with more complex inner mod-
els called hybrid mice, has been very fruitful. Translation procedures are
needed to translate these hybrid models, whose strength comes from descriptive
set theoretic features, back to standard inner models while making use of their
hybrid nature to obtain stronger large cardinals in the translated model. They
are therefore a key method connecting descriptive set theory with inner
model theory. One of the results surveyed in this article is a new translation
procedure extending work of Sargsyan [41], Steel [53], and Zhu [61]. This new
translation procedure yields a countably iterable inner model with a cardinal
λ that is both a limit of Woodin cardinals and a limit of strong cardinals [30].
So it improves Sargsyan’s construction in [41] in two ways: It can be used to
obtain infinitely many instead of finitely many strong cardinals and the models
it yields are countably iterable – a crucial property of mice. This translation
procedure can be applied to prove a conjecture of Sargsyan on the consis-
tency strength of the Axiom of Determinacy when all sets are universally Baire
[30], a central and widely used property of sets of reals introduced implicitly in
[47] and explicitly in [12]. In fact, the new translation procedure can be applied
in a much broader context. Moreover, it provides the basis for translation pro-
cedures resulting in more complex patterns of strong cardinals, for example, a
strong cardinal that is a limit of strong cardinals.

Recent seminal results of Sargsyan and Trang [46,45,44], see also the review
[29], as well as Larson and Sargsyan [20,42] suggest that we are at a turning point
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in the search for natural constructions of canonical models with a Woodin limit
of Woodin cardinals and thereby for proving better lower bounds for natural set
theoretic hypotheses.

2 Determinacy for games of length ω and large cardinals

In 1953, Gale and Stewart [14] developed a basic theory of infinite games. For
notational simplicity, we identify reals in R with ω-sequences of natural numbers
in ωω. Gale and Stewart considered, for every set of reals A, a two-player game
G(A) of length ω, where player I and player II alternate playing natural numbers
n0, n1, . . . , as follows:

I n0 n2 . . .
II n1 n3 . . .

They defined that player I wins the game G(A) if and only if the sequence
x = (n0, n1, . . . ) of natural numbers produced during a run of the game G(A)
is an element of A; otherwise, player II wins. We call A the payoff set of G(A).
The game G(A) (or the set A itself) is called determined if and only if one of the
two players has a winning strategy, meaning that there is a method by which
they can win in the game described above, no matter what their opponent does.
The Axiom of Determinacy (AD) is the statement that all sets of reals are
determined.

Already in [14], the authors were able to prove that every open and every
closed set of reals is determined under ZFC. But they also proved that deter-
minacy for all sets of reals contradicts the Axiom of Choice. This leads to the
natural question as to how the picture looks for definable sets of reals which are
more complicated than open and closed sets. After some partial results by Wolfe
[59] and Davis [9], Martin was able to prove in 1975 [24] that every Borel set of
reals is determined (again using ZFC).

In the meantime, the development of so-called large cardinal axioms was
proceeding in set theory, and Solovay was able to prove regularity properties, a
known consequence of determinacy, for a specific pointclass, assuming the exis-
tence of a measurable cardinal, instead of a determinacy axiom. Finally, Martin
was able to prove a direct connection between large cardinals and determinacy
axioms: He showed, in 1970, that the existence of a measurable cardinal implies
determinacy for every analytic set of reals [23]. Eight years later, Harrington es-
tablished that this result is, in some sense, optimal, by proving that determinacy
for all analytic sets of reals implies that 0#, a countable active iterable canoni-
cal inner model which can be obtained from a measurable cardinal, exists [15].
Here, an iterable canonical inner model, ormouse, is a fine structural model
that is, in some sense, iterable. This notion goes back to Jensen [16]. Together
with Martin’s argument mentioned above, this yields an equivalence between the
two statements. The construction of such canonical inner models and their con-
nection with determinacy was later extended in work of Dodd, Jensen, Martin,
Mitchell, Neeman, Schimmerling, Schindler, Solovay, Steel, Woodin, Zeman, and
others (see, e.g., [25,26,48,55,60]; see the preface of [32] or Larson’s history of
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determinacy [19] for a more detailed overview). In the projective hierarchy, this

led to the following fundamental theorem. Here, M#
0 (x) denotes x#, a version

of 0# relativized to a real x, and M#
n (x) denotes a minimal countable active

mouse with n Woodin cardinals constructed above x.

Theorem 1 (Harrington, Martin, Neeman, Woodin [15,23,33,36,32]).
Let n be a natural number. Then the following are equivalent:

1. All Π1
n+1 sets are determined, and

2. for all x ∈ ωω, M#
n (x) exists and is ω1-iterable.

The proof that the determinacy of sets in the projective hierarchy implies
the existence of mice with finitely many Woodin cardinals in this exact level-by-
level correspondence first appeared in [27,32] and is originally due to Woodin. As
shown in [27], the underlying methods can be used to obtain similar results for
certain hybrid mice in the L(R)-hierarchy. These tight connections are, at first,
very surprising, as they show that two ostensibly completely different notions,
from distinct areas of set theory – determinacy from descriptive set theory, and
inner models with large cardinals from inner model theory – are, in fact, the
same.

3 Determinacy for games longer than ω

It turns out that the correspondence between determinacy and inner models
with large cardinals does not stop at games of length ω. For every ordinal α and
set A ⊆ αω, we can define a game G(A) of length α with payoff set A, as follows:

I n0 n2 . . . nω . . .
II n1 n3 . . . nω+1 . . .

The players alternate playing natural numbers ni for i < α, and we again
say that player I wins the game if and only if the sequence x = (n0, n1, . . . ) of
length α they produce is an element of A; otherwise, player II wins. In landmark
results, Neeman [37] developed powerful techniques to prove the determinacy of
projective games longer than ω from large cardinals. A first step in this direction
is, for example, the following result:

Theorem 2 (Neeman, [37]). Let n ∈ ω and suppose that M#
ω+n(x) exists for

all reals x ∈ ωω. Then all games of length ω2 with Π1
n+1 payoff are determined.

This result in fact holds for games of fixed length α, for all countable ordinals
α, instead of games of length ω2. The following theorem complements Neeman’s
results for projective games of length ω2:

Theorem 3 (Aguilera, Müller, [2,28]). Let n be a natural number and sup-
pose that all games of length ω2 with Π1

n+1 payoff are determined. Then, for
every x ∈ ωω, there is a model M of ZFC, with ω + n Woodin cardinals, such
that x ∈ M.
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At this level, the interplay of determinacy and large cardinals is already un-
derstood quite well (see also [1,3]). For games of length ωα with analytic payoff,
for countable ordinals α, similar results have previously been established by
Trang [57], building on unpublished results of Woodin, using canonical models
of determinacy with a generalized Solovay measure. The Solovay measure is also
called a supercompact measure for ω1 as it witnesses a degree of supercom-
pactness for ω1.

When considering much stronger notions of determinacy, the picture is less
clear. For example, it was already shown by Mycielski in 1964 that determinacy
for all games of length ω1 is inconsistent with Zermelo–Fraenkel set theory (ZF).
Nevertheless, there are subclasses of games of length ω1 that are still known to
be determined under large cardinal assumptions.

An intermediate step are games that do not have a fixed countable length
but still end after countably many rounds. In 2004, Neeman showed in ground-
breaking work, from large cardinals, that certain games that are not of fixed
countable length are still determined. These so-called games of continuously
coded length, which go back to Steel [50], are defined as follows: For any set
A ⊂ (ωω)<ω1 and partial function ν : ωω ⇀ ω, the game Gcont(ν,A) is given by
the following rules:

I y0(0) y0(2) . . . yα(0) yα(2) . . .
II y0(1) y0(3) . . . yα(1) yα(3) . . .

We canonically identify segments of the game of length ω as mega-rounds,
and let yα denote the real that the two players together produce in mega-round
α. If ν(yα) is undefined, the game ends, and player I wins if and only if ⟨yξ | ξ ≤
α⟩ ∈ A. Otherwise, let nα = ν(yα). Then the game ends if nα ∈ {nξ | ξ < α},
and again, player I wins if and only if ⟨yξ | ξ ≤ α⟩ ∈ A. If neither of these
alternatives hold, the game continues.

Theorem 4 (Neeman, [37]). Suppose there is an iterable proper class model
M , with a Woodin cardinal δ and a cardinal κ < δ that is (δ + 1)-strong in M ,
such that V M

δ+1 is countable in V . Then the game Gcont(ν,A) is determined for

every ν in the class Σ0
2 and every A that is <ω2 −Π1

1 in the codes.

Here, being Γ in the codes for a pointclass Γ and a set A ⊂ (ωω)<ω1 is
defined via a natural coding of elements of A as reals; A is Γ in the codes if the
set of codes of elements of A belongs to Γ . It is not known whether Theorem 4
is optimal, but results of Neeman and Steel [34] show that it cannot be very far
away from optimal. I conjecture that it is indeed optimal in the following sense:

Conjecture 1. Suppose the game Gcont(ν,A) is determined for every ν in the
class Σ0

2 and every A that is <ω2 −Π1
1 in the codes. Then there is a model of

ZFC with a Woodin cardinal δ and a cardinal κ < δ that is (δ + 1)-strong.

A similar conjecture at a higher level is moving toward a Holy Grail of current
inner model theory. More precisely, it concers the aim to prove the existence of
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an inner model with a Woodin cardinal that is a limit of Woodin cardinals
from the determinacy of certain long games. The natural games to consider at
this level have length ω1 and their payoff set is ordinal definable using reals as
parameters. The converse was shown by Woodin, using results of Neeman [37]
and ideas going back to Kechris and Solovay [18].

Theorem 5 (Neeman, Woodin, [37]). Suppose there is an iterable proper
class model with a Woodin cardinal that is a limit of Woodin cardinals and
countable in V . Then there is a model of ZFC in which all ordinal definable
games of length ω1 on natural numbers with real parameters are determined.

In fact, Woodin showed that determinacy of these games of length ω1 is
equiconsistent with a seemingly weaker statement: determinacy of certain games
that are constructibly uncountable in the play. These games are defined as
follows: For a payoff set A ⊂ (ωω)<ω1 , players I and II alternate playing natural
numbers to produce reals yα.

I y0(0) y0(2) . . . yα(0) yα(2) . . .
II y0(1) y0(3) . . . yα(1) yα(3) . . .

The game ends when its length reaches the first ordinal γ which is uncount-
able in L[yα | α < γ], and player I wins if and only if ⟨yα | α < γ⟩ ∈ A. Here
L[yα | α < γ] denotes Gödel’s Constructible Universe L relative to (yα | α < γ).

In this case γ = ω
L[yα|α<γ]
1 , so it makes sense to say that the game ends at ω1

in L of the play. We technically define that II wins if the game lasts ω1 (in V )
rounds, but mild large cardinal assumptions yield an ordinal γ, as above, that
is countable in V . Neeman proved that, for sufficiently definable payoff sets A,
these games are determined, via a sophisticated extension of the methods used
in the proof of Theorem 4.

Theorem 6 (Neeman, [37]). Suppose there is an iterable proper class model
with a Woodin cardinal that is a limit of Woodin cardinals and countable in V .
Then all games ending at ω1 in L of the play with payoff sets that are ⅁(<ω2 −
Π1

1 ) in the codes are determined.

Here, ⅁ denotes the game quantifier for games of length ω. In [35], Neeman
showed the consistency of the hypotheses of Theorems 5 and 6 from large cardi-
nals. In light of Theorem 6, Theorem 5 is a consequence of the following result
of Woodin’s:

Theorem 7 (Woodin, [37]). The following theories are equiconsistent:

1. ZFC+ all ordinal definable games of length ω1 on natural numbers with real
parameters are determined.

2. ZFC+ all games ending at ω1 in L of the play with payoff sets that are
⅁(<ω2 −Π1

1 ) in the codes are determined.

I conjecture that Theorem 5 is optimal, in the following sense:
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Conjecture 2. Suppose all ordinal definable games of length ω1 on natural num-
bers with real parameters are determined. Then there is a model of ZFC with a
Woodin cardinal that is a limit of Woodin cardinals.

This would be the first correspondence between a natural determinacy notion
and large cardinals at the level of a Woodin cardinal that is a limit of Woodin
cardinals. It cannot be achieved using current methods such as the core model
induction technique due to Woodin (see, for example, the review [29]), which
Sargsyan and Trang [46,44,45] have recently shown runs into serious issues before
reaching this level. In addition, by recent results of Larson and Sargsyan [20,42],
also the well-known liberal Kc construction in [4,17] can fail if there is a Woodin
cardinal that is a limit of Woodin cardinals.

Therefore, understanding the large cardinal strength of the determinacy of
such uncountable games might shed light on how to canonically obtain inner
models with a Woodin cardinal that is a limit of Woodin cardinals.

4 Strong models of determinacy for games of length ω

Another approach to strengthen determinacy is to keep playing games of length
ω and impose additional structural properties on the model. Examples of such
structural properties are “θ0 < Θ,” “Θ is regular,” or the Largest Suslin Axiom,
see, for example, [53,40,44]. Here Θ is given by

Θ = sup{α | there is a surjection f : R → α}

and we write θ0 for the least ordinal α such that there is no surjection of R onto
α which is ordinal definable from a real. While in models of the Axiom of Choice
Θ is simply equal to (2ℵ0)+, it has very interesting behaviour in models of the
Axiom of Determinacy.

Other examples of properties that can be used to obtain strong models of
determinacy are “all sets of reals are Suslin” or “all sets of reals are universally
Baire.” Being Suslin is a generalization of being analytic. More precisely, a set of
reals is Suslin if it is the projection of a tree on ω×κ for some ordinal κ. Woodin
and Steel determined the exact large cardinal strength of the theory “AD + all
sets of reals are Suslin” [54,52]:

Theorem 8 (Steel, Woodin, [54,52]). The following theories are equiconsis-
tent (over ZF):

1. AD + all sets of reals are Suslin,
2. ZFC+ there is a cardinal λ that is a limit of Woodin cardinals and a limit

of <λ-strong cardinals.

By results of Martin and Woodin, see [54, Theorems 9.1 and 9.2], assuming
AD, the statement “all sets of reals are Suslin” is equivalent to the Axiom of
Determinacy for games on reals (ADR). Being universally Baire is a strengthening
of being Suslin that was introduced implicitly in [47] and explicitly by Feng,
Magidor and Woodin [12].
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Definition 1 (Feng, Magidor, Woodin [12]). A subset A of a topological
space Y is universally Baire if f−1(A) has the property of Baire in any topological
space X, where f : X → Y is continuous.

The exact consistency strength of the statement that all sets of reals are
universally Baire under determinacy was conjectured by Sargsyan, in 2014, after
he was able to obtain an upper bound with Larson and Wilson [21] via an
extension of Woodin’s famous derived model theorem. One fact that makes their
argument particularly interesting is that no model of the form L(P(R)) is a
model of “AD+ all sets of reals are universally Baire.” Universal Baireness is not
only widely used across set theory but a crucial property in inner model theory:
Universally Baire iteration strategies (canonically coded as a set of reals) can be
extended from countable to uncountable iterations (see, for example, [39]). The
following theorem proves Sargsyan’s conjecture by showing that the upper
bound Larson, Sargsyan, and Wilson obtained is optimal:

Theorem 9 (Larson, Sargsyan, Wilson, [21], Müller, [30]). The following
theories are equiconsistent (over ZF):

1. AD + all sets of reals are universally Baire,

2. ZFC+ there is a cardinal that is a limit of Woodin cardinals and a limit of
strong cardinals.

To construct and analyze the relevant models to prove the direction Con(1.) ⇒
Con(2.) in this theorem, instead of just considering two hierarchies – determi-
nacy axioms and inner models with large cardinals – a third hierarchy is used to
reach higher levels in the other two. These three hierarchies together form what
Steel calls the triple helix of inner model theory. The new hierarchy goes back
to Woodin and Sargsyan and consists of canonical models called hybrid mice,
or hod mice. These models are not only enhanced by large cardinals witnessed
by extenders on their sequence, but also equipped with partial iteration strate-
gies for themselves, see [40]. The strength of these models intuitively comes from
the descriptive set theoretic complexity of these partial iteration strategies.

The name hod mouse comes from the fact that these mice naturally occur
as the result of analyses of HOD, the hereditarily ordinal definable sets, in various
models of determinacy. This analysis was pioneered by Steel and Woodin [51,56]
in the model L(R), as well as in L[x][g] for a cone of reals x, where g is generic for
Lévy collapsing the least inaccessible cardinal in L[x] (both under a determinacy
hypothesis). It was extended to larger models of determinacy by Sargsyan, Trang,
and others [40,58,5,43]. In [31] we showed how to analyze HOD in Mn(x)[g], for
a cone of reals x, where g is generic for Lévy collapsing the least inaccessible
cardinal in Mn(x) (under a determinacy hypothesis).

The technical innovation behind the direction Con(1.) ⇒ Con(2.) in Theo-
rem 9 is a new translation procedure to translate hybrid mice into mice with a
limit of Woodin and strong cardinals [30]. This required an iterability proof for
models obtained via a novel backgrounded construction. In [30] it is shown that
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the resulting models are countably iterably, meaning that countable substruc-
tures are iterable, and, in fact, a bit more. But the following natural question is
left open:

Question 1. Is there a translation procedure that yields fully iterable mice with
a limit of Woodin and strong cardinals (when applied to suitable hybrid mice)?
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