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Abstract

Mice are sufficiently iterable canonical models of set theory. Martin and
Steel showed in the 1980s that for every natural number n the existence of
n Woodin cardinals with a measurable cardinal above them all implies that
boldface Π1

n+1 determinacy holds, where Π1
n+1 is a pointclass in the projec-

tive hierarchy. Neeman and Woodin later proved an exact correspondence
between mice and projective determinacy. They showed that boldface Π1

n+1

determinacy is equivalent to the fact that the mouse M#
n (x) exists and is

ω1-iterable for all reals x.

We prove one implication of this result, that is boldface Π1
n+1 determinacy

implies that M#
n (x) exists and is ω1-iterable for all reals x, which is an old,

so far unpublished result by W. Hugh Woodin. As a consequence, we can
obtain the Determinacy Transfer Theorem for all levels n.

Following this, we will consider pointclasses in the L(R)-hierarchy and show
that determinacy for them implies the existence and ω1-iterability of cer-

tain hybrid mice with finitely many Woodin cardinals, which we call MΣ,#
k .

These hybrid mice are like ordinary mice, but equipped with an iteration
strategy for a mouse they are containing, and they naturally appear in the
core model induction technique.
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Preface

The research area of Set Theory goes back to Georg Cantor, who phrased
many essential questions and provided a framework for further research in
a series of papers in the late 19th century. During the beginning of the
20th century Ernst Zermelo and Abraham Fraenkel developed an axiomatic
system for Set Theory called ZF, that is still fundamental today. Together
with the Axiom of Choice it constitutes ZFC, the central background theory
for modern Mathematics and Set Theory.

Already in 1878 Georg Cantor asked the very natural question of whether
there is a set of size strictly between that of the natural numbers and that of
the continuum. This question, known as the Continuum Problem, motivated
lots of research in Set Theory since then and continues to do so, for example
in cardinal arithmetic. It was proved to be independent of ZFC by work
of Kurt Gödel on his model L in 1940 and Paul Cohen’s development of
forcing in 1963 and hence is an example which shows that the axiomatic
system ZFC is not sufficient to solve all interesting questions about sets.

Therefore one of the main goals of research in Set Theory can be phrased as
the search for the “right” axioms for mathematics. This means in particular
studying various extensions of ZFC and their properties. The work in this
thesis is related to this overall goal, because we study different extensions
of ZFC and their relationships.

In 1953 David Gale and Frank M. Stewart developed a basic theory of infinite
games in [GS53]. For every set of reals, that means set of sequences of
natural numbers, A they considered a two-player game G(A) of length ω,
where player I and player II alternately play natural numbers. They defined
that player I wins the game G(A) if and only if the sequence of natural
numbers produced during a run of the game G(A) is contained in A and
otherwise player II wins. Moreover the game G(A) or the set A itself is called
determined if and only if one of the two players has a winning strategy, that
means a method by which they can win, no matter what their opponent
does, in the game described above.

Already in [GS53] the authors were able to prove that every open and every
closed set of reals is determined using ZFC. But furthermore they proved
that determinacy for all sets of reals contradicts the Axiom of Choice. This
leads to the natural question of what the picture looks like for definable
sets of reals which are more complicated than open and closed sets. After
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x PREFACE

some partial results by Philip Wolfe in [Wo55] and Morton Davis in [Da64],
Donald A. Martin was finally able to prove in [Ma75] from ZFC that every
Borel set of reals is determined.

In the meantime the development of so called Large Cardinal Axioms was
proceeding in Set Theory. In 1930 Stanis law Ulam first defined measurable
cardinals and at the beginning of the 1960’s H. Jerome Keisler [Kei62] and
Dana S. Scott [Sc61] found a way of making them more useful in Set Theory
by reformulating the statements using elementary embeddings.

About the same time, other set theorists were able to prove that Determi-
nacy Axioms imply regularity properties for sets of reals. More precisely
Banach and Mazur showed that under the Axiom of Determinacy (that
means every set of reals is determined), every set of reals has the Baire
property. Mycielski and Swierczkowski proved in [MySw64] that under the
same hypothesis every set of reals is Lebesgue measurable. Furthermore
Davis showed in [Da64] that under this hypothesis every set of reals has
the perfect set property. Moreover all three results also hold if the De-
terminacy Axioms and regularity properties are only considered for sets of
reals in certain pointclasses. This shows that Determinacy Axioms have a
large influence on the structure of sets of reals and therefore have a lot of
applications in Set Theory.

In 1965 Robert M. Solovay was able to prove these regularity properties
for a specific pointclass, namely Σ1

2, assuming the existence of a measurable
cardinal instead of a Determinacy Axiom (see for example [So69] for the per-
fect set property). Then finally Donald A. Martin was able to prove a direct
connection between Large Cardinals and Determinacy Axioms: he showed
in 1970 that the existence of a measurable cardinal implies determinacy for
every analytic set of reals (see [Ma70]).

Eight years later Leo A. Harrington established that this result is in some
sense optimal. In [Ha78] he proved that determinacy for all analytic sets
implies that 0#, a countable active mouse which can be obtained from a mea-
surable cardinal, exists. Here a mouse is a fine structural, iterable model.
Together with Martin’s result mentioned above this yields that the two state-
ments are in fact equivalent.

This of course motivates the question of whether a similar result can be
obtained for larger sets of reals, so especially for determinacy in the projec-
tive hierarchy. The right large cardinal notion to consider for these sets of
reals was introduced by W. Hugh Woodin in 1984 and is nowadays called
a Woodin cardinal. Building on this, Donald A. Martin and John R. Steel
were able to prove in [MaSt89] almost twenty years after Martin’s result
about analytic determinacy that, assuming the existence of n Woodin car-
dinals and a measurable cardinal above them all, every Σ1

n+1-definable set
of reals is determined.

In the meantime the theory of mice was further developed. At the level
of strong cardinals it goes back to Ronald B. Jensen, Robert M. Solovay,
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Tony Dodd and Ronald B. Jensen, and William J. Mitchell. Then it was
further extended to the level of Woodin cardinals by Donald A. Martin
and John R. Steel in [MaSt94] and William J. Mitchell and John R. Steel
in [MS94], where some errors were later repaired by Ralf Schindler, John
R. Steel and Martin Zeman in [SchStZe02]. Moreover Ronald B. Jensen
developed another approach to the theory of mice at the level of Woodin
cardinals in [Je97].

In 1995 Itay Neeman was able to improve the result from [MaSt89] in [Ne95].

He showed that the existence and ω1-iterability of M#
n , the minimal count-

able active mouse at the level of n Woodin cardinals, is enough to obtain
that every an(< ω2 − Π1

1)-definable set of reals is determined. Here “a” is
a quantifier which is defined by a game. Neeman’s result implies that if for

all reals x the premouse M#
n (x) exists and is ω1-iterable, then in particular

every Σ1
n+1-definable set of reals is determined. For odd n this latter result

was previously known by Woodin. The converse of this latter result was
announced by W. Hugh Woodin in the 1980’s but a proof has never been
published. The goal of the first part of this thesis will be to finally provide
a complete proof of his result.

The next obvious question is if these results can be lifted to even bigger
pointclasses. Natural candidates for these bigger pointclasses are point-
classes within the L(R)-hierarchy. Building on work of Kechris, Martin,
Moschovakis and Solovay and on his own prior work, John R. Steel pro-
vided in [St83] the first detailed analysis of the scale property at levels of
the L(R)-hierarchy using the fine structure of that hierarchy.

Starting from this, W. Hugh Woodin discovered in 1991 a method called
the core model induction where he was able to produce mice with finitely
many Woodin cardinals from different hypotheses. The idea is to prove at
successor steps that the universe is closed under certain mouse operators, for

example x 7→M#
n (x). It turns out that during such a core model induction

at levels in the L(R)-hierarchy beyond the projective hierarchy certain hybrid
mice appear. Here a hybrid mouse is a mouse which contains another mouse
and also an iteration strategy for that mouse.

Using this method it is proved in Section 6.2 of [SchSt] that, assuming
determinacy for all sets of reals in L(R), certain hybrid mice with finitely
many Woodin cardinals exist. But this result is not local: that means to
prove the existence of a particular hybrid mouse it uses the hypothesis that
every set of reals in L(R) is determined instead of a determinacy hypothesis
for a level of the L(R)-hierarchy.

The second part of this thesis is devoted to a generalization of arguments
from the first part to the context of hybrid mice to obtain a more local
version of the result mentioned in the previous paragraph. We will show
that assuming determinacy for sets of reals at a certain level of the L(R)-
hierarchy is enough to obtain hybrid mice which capture sets of reals from
a lower level of the L(R)-hierarchy. More precisely, the hybrid mice we
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are going to construct will be of the form MΣ,#
k , that means they will be

ω1-iterable hybrid mice with finitely many Woodin cardinals.

This motivates further research in this direction to analyze the inner model
theory at the individual levels of the L(R)-hierarchy in more detail to pos-
sibly obtain an exact correspondence between the existence of mice and
determinacy for sets of reals at levels of the L(R)-hierarchy.
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Part 1

The Projective Case





Overview

The purpose of this first part of the thesis is to give a proof of the following
theorem, which connects inner models with Woodin cardinals and descrip-
tive set theory at projective levels in a direct level-wise way. This theorem is
due to W. Hugh Woodin and announced for example in the addendum (§5)
of [KW08] and in Theorem 5.3 of [Sch10], but so far a proof of this result
has never been published.

Theorem 2.1.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

The converse of Theorem 2.1.1 also holds true and is for odd n due to W.
Hugh Woodin (unpublished) and for even n due to Itay Neeman (see [Ne95]).
From this we can obtain the following corollary, which is Theorem 1.10 in
[KW08] for odd n. We will present a proof of the Determinacy Transfer
Theorem for the even levels n as a corollary of Theorem 2.1.1 in Section 4.1,
using Theorem 2.5 in [Ne95] due to Itay Neeman.

Corollary 4.1.1 (Determinacy Transfer Theorem). Let n ≥ 1. Then

Π1
n+1 determinacy is equivalent to a(n)(< ω2 −Π1

1) determinacy.

In fact we are going to prove the following theorem which will imply Theorem
2.1.1.

Theorem 3.3.2. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
n determinacy

and Π1
n+1 determinacy hold. Then M#

n exists and is ω1-iterable.

This is a part of the following theorem.

Theorem 3.3.1. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,

(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

Here the direction (3) implies (1) follows from Theorem 2.14 in [Ne02] and
is due to W. Hugh Woodin for odd n (unpublished) and due to Itay Neeman

3



4 OVERVIEW

for even n. Moreover the direction (2) implies (1) and the equivalence of
(2) and (3) as proven in [Ne02] do not need the background hypothesis that
there is no Σ1

n+2-definable ω1-sequence of pairwise distinct reals.

Furthermore we get the following relativized version of Theorem 3.3.1.

Corollary 2.1.2. Let n ≥ 1. Then the following are equivalent.

(1) Π1
n+1 determinacy, and

(2) for all x ∈ ωω, M#
n (x) exists and is ω1-iterable.

This gives that Π1
n+1 determinacy is an optimal hypothesis for proving the

existence and ω1-iterability of M#
n (x) for all x ∈ ωω.

Remark. In contrast to the statement of Theorem 1.4 in [Ne02] it is open
if Π1

n determinacy and Π1
n+1 determinacy alone imply the existence of an

ω1-iterable M#
n for n > 1 (see also Section 4.2). Whenever we are citing

[Ne02] in this thesis we make no use of any consequence of this result stated
there.

Outline. This part of the thesis is organized as follows. In Chapter 1 we
give a short introduction to determinacy and inner model theory. In partic-
ular we state some known results concerning the connection of determinacy
for certain sets of reals and the existence of mice with large cardinals.

In Chapter 2 we will construct a proper class inner model with n Woodin
cardinals from Π1

n determinacy and Π1
n+1 determinacy. For that purpose we

will prove in Lemma 2.1.3 from the same determinacy hypothesis that for
a cone of reals x the premouse Mn−1(x)|δx is a model of OD-determinacy,
where δx denotes the least Woodin cardinal in Mn−1(x). This generalizes a
theorem of Kechris and Solovay to the context of mice (see Theorem 3.1 in
[KS85]).

Afterwards we will prove in Chapter 3 that, assuming Π1
n+1 determinacy,

there is in fact an ω1-iterable model which has n Woodin cardinals. More
precisely, we will prove under this hypothesis that M#

n (x) exists and is ω1-
iterable for all reals x. The proof of this result divides into different steps.
In Sections 3.1 and 3.2 we will introduce the concept of n-suitable premice
and show that if n is odd, using the results in Chapter 2, such n-suitable
premice exist assuming Π1

n determinacy and Π1
n+1 determinacy. The rest of

Chapter 3 will also be divided into different cases depending if n is even or
odd.

Section 3.4 serves as a “warm up” for the rest of the chapter. There we

will prove that the premouse M#
2n−1 exists and is ω1-iterable from a slightly

stonger hypothesis than necessary. Namely we will assume that there is no
Σ1

2n+2-definable ω1-sequence of pairwise distinct reals in addition to Π1
2n−1

determinacy and Π1
2n determinacy to prove that M#

2n−1 exists and is ω1-

iterable. In Section 3.5 we will show that Π1
n+1 determinacy already implies

that every Σ1
n+2-definable sequence of pairwise distinct reals is countable.
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Then we will show in Section 3.6 that the hypothesis that there is no Σ1
2n+1-

definable ω1-sequence of pairwise distinct reals in addition to Π1
2n−1 deter-

minacy and Π1
2n determinacy suffices to prove that M#

2n−1 exists and is
ω1-iterable. This finishes the proof of Theorem 2.1.1 for odd n.

In Section 3.7 we will finally prove the analogous result for even n, that
means we will show that if every Σ1

2n+2-definable sequence of pairwise dis-

tinct reals is countable and Π1
2n determinacy and Π1

2n+1 determinacy hold,

then M#
2n exists and is ω1-iterable. The proof is different for the odd and

even levels of the projective hierarchy because of the periodicity in terms of
uniformization and correctness, but we will prove the odd and even levels
simultaneously by an induction.

We close this part of this thesis with proving the Determinacy Transfer
Theorem for even n as an application and mentioning related open questions
in Chapter 4.





CHAPTER 1

Introduction

In this chapter we will introduce some relevant notions such as games and
mice and their basic properties. In particular we will summarize some known
results about the connection between large cardinals and the determinacy
of certain games. Then we will have a closer look at mice with finitely many

Woodin cardinals and introduce the premouse M#
n .

1.1. Games and Determinacy

Throughout this thesis we will consider games in the sense of [GS53] if not
specified otherwise. We will always identifiy ω2, ωω, and R with each other,
so that we can define Gale-Stewart games as follows.

Definition 1.1.1 (Gale, Stewart). Let A ⊆ R. By G(A) we denote the
following game.

I i0 i2 . . .
II i1 i3 . . .

for in ∈ {0, 1} and n ∈ ω.

We say player I wins the game G(A) iff (in)n<ω ∈ A. Otherwise we say
player II wins.

Definition 1.1.2. Let A ⊆ R. We say G(A) (or the set A itself) is deter-
mined iff one of the players has a winning strategy in the game G(A) (in
the obvious sense).

Some famous results concerning the question which sets of reals are deter-
mined are the following. The first three theorems can be proven in ZFC.

Theorem 1.1.3 (Gale, Stewart in [GS53]). Let A ⊂ R be open or closed and
assume the Axiom of Choice. Then G(A) is determined.

Theorem 1.1.4 (Gale, Stewart in [GS53]). Assuming the Axiom of Choice
there is a set of reals which is not determined.

Theorem 1.1.5 (Martin in [Ma75]). Let A ⊂ R be a Borel set and assume
the Axiom of Choice. Then G(A) is determined.

To prove stronger forms of determinacy we need to assume for example large
cardinal axioms.

7



8 1. INTRODUCTION

Theorem 1.1.6 (Martin in [Ma70]). Assume ZFC and that there is a mea-
surable cardinal. Let A ⊆ R be an analytic, i.e. Σ1

1-definable, set. Then
G(A) is determined.

Determinacy in the projective hierarchy can be obtained from finitely many
Woodin cardinals which were introduced by W. Hugh Woodin in 1984 and
are defined as follows.

Definition 1.1.7. Let κ < δ be cardinals and A ⊆ δ. Then κ is called A-
reflecting in δ iff for every λ < δ there exists a transitive model of set theory
M and an elementary embedding π : V →M with critical point κ, such that
π(κ) > λ and

π(A) ∩ λ = A ∩ λ.

Definition 1.1.8. A cardinal δ is called a Woodin cardinal iff for all A ⊆ δ
there is a cardinal κ < δ which is A-reflecting in δ.

Theorem 1.1.9 (Martin, Steel in [MaSt89]). Let n ≥ 1. Assume ZFC and
that there are n Woodin cardinals with a measurable cardinal above them all.
Then every Σ1

n+1-definable set of reals is determined.

See for example Chapter 13 in [Sch14] or Section 5 in [Ne10] for modern
write-ups of the proof of Theorem 1.1.9.

The existence of infinitely many Woodin cardinals with a measurable cardi-
nal above them all yields a much stronger form of determinacy.

Theorem 1.1.10 (Woodin in [KW10]). Assume ZFC and that there are ω
Woodin cardinals with a measurable cardinal above them all. Then every set
of reals in L(R) is determined.

For a definition of the model L(R) see Definition 8.1.1 in the second part of
this thesis.

The goal of this thesis is to prove results in the converse direction. That
means we want to obtain large cardinal strength from determinacy axioms.
This is done using inner model theoretic concepts which we start to introduce
in the next section.

1.2. Inner Model Theory

The most important concept in inner model theory is a mouse. Therefore
we briefly review the definition of mice in this section and mention some
relevant properties without proving them. The reader who is interested in
a more detailed introduction to mice is referred to Section 2 of [St10].

We assume that the reader is familiar with some fine structure theory as
expounded for example in [MS94] or [SchZe10].

In general the models we are interested in are of the form L[ ~E] for some

coherent sequence of extenders ~E. This notion goes back to Ronald B.
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Jensen and William J. Mitchell and is made more precise in the following
definition.

Definition 1.2.1. We say M is a potential premouse iff

M = (J
~E
η ,∈, ~E � η,Eη)

for some fine extender sequence ~E and some ordinal η. We say that such a
potential premouse M is active iff Eη 6= ∅.
Moreover if κ ≤ η, we write

M |κ = (J
~E
κ ,∈, ~E � κ,Eκ).

Here fine extender sequence is in the sense of Definition 2.4 in [St10]. This
definition of a fine extender sequence goes back to Section 1 in [MS94] and
[SchStZe02].

Definition 1.2.2. Let M be a potential premouse. Then we say M is a
premouse iff every proper initial segment of M is ω-sound.

We informally say that a mouse is an iterable premouse, but since there
are several different notions of iterability we try to avoid to use the word
“mouse” in formal context, especially if it is not obvious what sort of iterabil-
ity is meant. Nevertheless whenever it is not specified otherwise “iterable”
in this thesis always means “ω1-iterable” as defined below and therefore a
“mouse” will be an ω1-iterable premouse.

Definition 1.2.3. We say a premouse M is ω1-iterable iff player II has a
winning strategy in the iteration game Gω(M,ω1) as described in Section 3.1
of [St10].

The iteration trees which are considered in Section 3 in [St10] are called
normal iteration trees.

Whenever not specified otherwise we will assume throughout this thesis
that all iteration trees are normal to simplify the notation. Since normal
iteration trees do not suffice to prove for example the Dodd-Jensen Lemma
(see Section 4.2 in [St10]) it is necessary to consider stacks of normal trees.
See Definition 4.4 in [St10] for a formal definition of iterability for stacks of
normal trees.

All arguments to follow easily generalize to countable stacks of normal trees
of length < ω1 instead of just normal trees of length < ω1. The reason for
this is that the iterability we will prove in this thesis for different kinds of
premice will in fact always be obtained from the sort of iterability for the
model Kc which is proven in Chapter 9 in [St96].

Throughout this thesis we will use the notation from [St10] for iteration
trees.
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1.3. Mice with Finitely Many Woodin Cardinals

We first fix some notation and give a short background on the mouse M#
n .

Throughout this thesis we always assume M#
n to be ω1-iterable if not spec-

ified otherwise.

The premice we are going to consider in this part of this thesis will mostly
have the following form.

Definition 1.3.1. Let n ≥ 1. A premouse M is called n-small iff for every
critical point κ of an extender on the M -sequence

M |κ 2 “there are n Woodin cardinals”.

Moreover we say that a premouse M is 0-small iff M is an initial segment
of Gödel’s constructible universe L.

Moreover ω-small premice are defined analogously.

Definition 1.3.2. Let n ≥ 1 and x ∈ ωω. Then M#
n (x) denotes the unique

countable, sound, ω1-iterable x-premouse which is not n-small, but all of
whose proper initial segments are n-small, if it exists and is unique.

Definition 1.3.3. Let n ≥ 1, x ∈ ωω and assume that M#
n (x) exists. Then

Mn(x) is the unique x-premouse which is obtained from M#
n (x) by iterating

its top measure out of the universe.

Remark. We denote M#
n (0) and Mn(0) by M#

n and Mn for n ≥ 0.

Remark. We say that M#
0 (x) = x# for all x ∈ ωω, where x# denotes

the least active ω1-iterable premouse if it exists. Moreover we say that
M0(x) = L[x] is Gödel’s constructible universe above x.

The two correctness facts due to W. Hugh Woodin about the premouse

M#
n (x) which are stated in the following lemma are going to be useful later,

because they help transferring projective statements from M#
n (x) to V or

the other way around.

Lemma 1.3.4. Let n ≥ 0 and assume that M#
n (x) exists and is ω1-iterable

for all x ∈ ωω. Let ϕ be a Σ1
n+2-formula.

(1) Assume n is even and let x ∈ ωω. Then we have for every real a in

M#
n (x),

ϕ(a) ↔ M#
n (x) � ϕ(a).

That means M#
n (x) is Σ1

n+2-correct in V .
(2) Assume n is odd, so in particular n ≥ 1, and let x ∈ ωω. Then we have

for every real a in M#
n (x),

ϕ(a) ↔ 
M
#
n (x)

Col(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M#
n (x). Furthermore we

have that M#
n (x) is Σ1

n+1-correct in V .
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For notational simplicity we sometimes just write a for the standard name

ǎ for a real a in M#
n (x).

Proof of Lemma 1.3.4. For n = 0 this lemma holds by Shoenfield’s
Absoluteness Theorem (see for example Theorem 13.15 in [Ka08]) applied
to the model we obtain by iterating the top measure of the active premouse

M#
0 (x) and its images until we obtain a model of height ≥ ωV1 , because this

model has the same reals as M#
0 (x).

We simultaneously prove that (1) and (2) hold for all n ≥ 1 inductively.
In fact we are proving a more general statement: We will show inductively
that both (1) and (2) hold for all n-iterable x-premice for all reals x in
the sense of Definition 1.1 in [Ne95] which have n Woodin cardinals which

are countable in V instead of the concrete x-premouse M#
n (x) as in the

statement of Lemma 1.3.4. Therefore notice that we could replace the z-

premouse M#
n (z) in the following argument by any z-premouse N which is

n-iterable and has n Woodin cardinals which are countable in V .

Proof of (2): We start with proving (2) in the statement of Lemma 1.3.4
for n, assuming inductively that (1) and (2) hold for all m < n. For the
downward implication assume that n is odd and let ϕ be a Σ1

n+2-formula

such that ϕ(a) holds in V for a parameter a ∈ M#
n (z) ∩ ωω for a z ∈ ωω.

That means

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
n-formula ψ(x, y, a). Now fix a real x̄ in V such that

V � ∀y ψ(x̄, y, a).

We aim to show that


M
#
n (z)

Col(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M#
n (z).

We first use Corollary 1.8 in [Ne95] to make x̄ generic over an iterate M∗

of M#
n (z) for the collapse of the image of the bottom Woodin cardinal δ0

in M#
n (z). That means there is an iteration tree T on the n-iterable z-

premouse M#
n (z) of limit length and a non-dropping branch b through T

such that if

i : M#
n (z)→M∗

denotes the corresponding iteration embedding we have that M∗ is (n− 1)-
iterable and if g is Col(ω, i(δ0))-generic over M∗, then x̄ ∈M∗[g].

We have that M∗[g] can be construed as an (z⊕ x̄)-premouse satisfying the
inductive hypothesis and if we construe M∗[g] as an (z ⊕ x̄)-premouse we

have that in fact M∗[g] = M#
n−1(z ⊕ x̄) (see for example [SchSt09] for the

fine structural details). Therefore we have inductively that the premouse
M∗[g] is Σ1

n-correct in V (in fact it is even Σ1
n+1-correct in V , but this is
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not necessary here) and using downwards absoluteness for the Π1
n+1-formula

“∀yψ(x̄, y, a)” it follows that

M∗[g] � ∀y ψ(x̄, y, a),

because x̄, a ∈ M∗[g]. Since the forcing Col(ω, i(δ0)) is homogeneous, we
have that


M
∗

Col(ω,i(δ0)) ∃x∀y ψ(x, y, a),

and by elementarity of the iteration embedding i : M#
n (z) → M∗ it follows

that


M
#
n (z)

Col(ω,δ0) ∃x∀y ψ(x, y, a),

as desired.

For the upward implication of (2) in the statement of Lemma 1.3.4 let n
again be odd, let z be a real and assume that


M
#
n (z)

Col(ω,δ0) ϕ(a),

where as above ϕ(a) ≡ ∃x∀y ψ(x, y, a) is a Σ1
n+2-formula, ψ(x, y, a) is a Σ1

n-

formula and a is a real such that a ∈ M#
n (z). Let g be Col(ω, δ0)-generic

over M#
n (z) and pick a real x̄ such that

M#
n (z)[g] � ∀y ψ(x̄, y, a).

Since M#
n (z)|(δ+

0 )M
#
n (z) is countable in V , we can in fact pick the generic

g such that we have g ∈ V . Then we have that x̄ ∈ V . Similar as above

M#
n (z)[g] can be construed as a z∗-premouse for some real z∗ which satifies

the inductive hypothesis for n − 1, in fact we again have that M#
n (z)[g] =

M#
n−1(z∗) if M#

n (z)[g] is construed as a z∗-premouse. Since n − 1 is even
and we inductively assume that (1) in the statement of Lemma 1.3.4 holds
for all m < n, it follows from (1) applied to the Π1

n+1-formula “∀yψ(x̄, y, a)”

and the premouse M#
n (z)[g] that

V � ∀y ψ(x̄, y, a),

and therefore

V � ∃x∀y ψ(x, y, a),

as desired.

The fact that in this situation M#
n (z) is Σ1

n+1-correct in V also follows from
the inductive hypothesis, because n−1 is even and the inductive hypothesis

for n− 1 can be applied to the premouse M#
n (z).

Proof of (1): Now we turn to the proof of (1) in the statement of Lemma
1.3.4. Let n be even and assume inductively that (1) and (2) hold for all
m < n. We again start with the proof of the downward implication, that
means we want to prove that

M#
n (z) � ϕ(a),
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where as above ϕ is a Σ1
n+2-formula which holds in V for a ∈ M#

n (z) ∩ ωω
and z ∈ ωω. That means we again have

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
n-formula ψ(x, y, a). Since n is even, it follows from Moschovakis’ Sec-

ond Periodicity Theorem that the pointclass Π1
n+1(a) has the uniformization

property (see Theorem 6C.5 in [Mo09]), because Theorem 2.14 in [Ne02] (see
also Corollary 2.1.2) yields that Π1

n determinacy holds from the hypothesis

that M#
n−1(z) exists for all reals z. Consider the Π1

n+1(a)-definable set

{x | ∀y ψ(x, y, a)}.
The uniformization property yields the existence of a real x̄ such that we
have {x̄} ∈ Π1

n+1(a) and
V � ∀y ψ(x̄, y, a).

So let ρ be a Π1
n+1-formula such that

x = x̄↔ ρ(x, a)

for all x ∈ ωω. That means we have

V � ρ(x̄, a) ∧ ∀y ψ(x̄, y, a).

Now we use, as in the proof of (2) above, the n-iterability of M#
n (z) and

Corollary 1.8 in [Ne95] to make x̄ generic over an iterate M∗ of M#
n (z) for

the collapse of the image of the bottom Woodin cardinal δ0 in M#
n (z). As

in the proof of (2) this means that in fact there is an iteration embedding

i : M#
n (z)→M∗

such that M∗ is (n − 1)-iterable and if g ∈ V is Col(ω, i(δ0))-generic over

M∗ then x̄ ∈M∗[g]. Since a is a real in M#
n (z) we have that


M
∗[g]

Col(ω,δ̄)
ρ(x̄, a) ∧ ∀y ψ(x̄, y, a),

where δ̄ denotes the least Woodin cardinal inside M∗[g], by the inductive
hypothesis applied to the premouse M∗[g], construed as an (z⊕x̄)-premouse,
and the Π1

n+1-formula “ρ(x̄, a)∧∀y ψ(x̄, y, a)”, because n−1 is odd. As above
we have that M∗[g], construed as a (z⊕ x̄)-premouse, satisfies the inductive
hypothesis. Moreover we have as above that the inductive hypothesis applied
to the model M∗[g] and the Π1

n+1-formula “ρ(x, a)∧∀y ψ(x, y, a)” yields that
in fact for all x∗ ∈M∗[g]


M
∗[g]

Col(ω,δ̄)
ρ(x∗, a) ∧ ∀y ψ(x∗, y, a) iff V � ρ(x∗, a) ∧ ∀y ψ(x∗, y, a).

By the homogeneity of the forcing Col(ω, i(δ0)) this implies that the witness
x̄ for x with ρ(x, a) already exists in the ground model M∗, since a ∈M∗ and

x̄ is still the unique witness to the fact that the statement “
M
∗[g]

Col(ω,δ̄)
ρ(x̄, a)∧

∀y ψ(x̄, y, a)” holds true. Therefore it follows by downward absoluteness that

M∗ � ρ(x̄, a) ∧ ∀y ψ(x̄, y, a).
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This implies that in particular

M∗ � ∃x∀y ψ(x, y, a).

Using the elementarity of the iteration embedding we finally get that

M#
n (z) � ∃x∀y ψ(x, y, a).

For the proof of the upward implication in (1) let n again be even and

assume that M#
n (z) � ∃x∀y ψ(x, y, a) for z ∈ ωω and a fixed real a ∈M#

n (z).

Furthermore fix a real x̄ ∈M#
n (z) such that

M#
n (z) � ∀y ψ(x̄, y, a).

Then we obviously have that x̄ ∈ V . We want to show that V � ∀y ψ(x̄, y, a).
Assume not. That means

V � ∃y ¬ψ(x̄, y, a),

where “∃y ¬ψ(x̄, y, a)” is a Σ1
n+1-formula. Therefore the downward impli-

cation we already proved applied to the formula “∃y ¬ψ(x̄, y, a)” and the

parameters x̄, a ∈M#
n (z) yields that

M#
n (z) � ∃y ¬ψ(x̄, y, a),

which is a contradiction. �

The proof of Lemma 1.3.4 with Shoenfield absoluteness replaced by Σ1
1 ab-

soluteness immediately gives the following lemma.

Lemma 1.3.5. Let n ≥ 0 and let M be a countable x-premouse with n Woodin
cardinals for some x ∈ ωω such that M � ZFC− and M is ω1-iterable. Let
ϕ be a Σ1

n+1-formula.

(1) Assume n is even. Then we have for every real a in M ,

ϕ(a) ↔ M � ϕ(a).

That means M is Σ1
n+1-correct in V .

(2) Assume n is odd, so in particular n ≥ 1. Then we have for every real a
in M ,

ϕ(a) ↔ 
MCol(ω,δ0) ϕ(a),

where δ0 denotes the least Woodin cardinal in M . Furthermore we have
that M is Σ1

n-correct in V .

The following lemma shows that Lemma 1.3.4 (1) does not hold if n is
odd. Therefore the periodicity in the statement of Lemma 1.3.4 is necessary
indeed.

Lemma 1.3.6. Let n ≥ 1 be odd and assume that M#
n (x) exists and is

ω1-iterable for all x ∈ ωω. Then M#
n (x) is not Σ1

n+2-correct in V .
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Proof sketch. Consider for example the following Σ1
n+2-formula ϕ,

where Π1
n+1-iterability is defined in Definition 1.6 in [St95] (see also Section

2.2 in this thesis for some results related to Π1
n+1-iterability).

ϕ(x) ≡ ∃N such that N is a countable x-premouse

which is Π1
n+1-iterable and not n-small.

The statement “N is Π1
n+1-iterable” is Π1

n+1-definable uniformly in any code

for N (see Lemma 1.7 in [St95]). Therefore ϕ is a Σ1
n+2-formula.

We have that ϕ(x) holds in V for all reals x as witnessed by the x-premouse

M#
n (x), because ω1-iterability implies Π1

n+1-iterability, since we assumed

that M#
n (x) exists for all x ∈ ωω (see Lemma 2.2.9 (2) which uses Lemma

2.2 in [St95]).

Assume toward a contradiction that ϕ(x) holds in M#
n (x) as witnessed by

some x-premouse N in M#
n (x) which is Π1

n+1-iterable and not n-small. Since
n is odd, Lemma 3.1 in [St95] implies that R ∩Mn(x) ⊆ R ∩N , which is a

contradiction as N ∈M#
n (x).

Therefore ϕ(x) cannot hold in M#
n (x) and thus M#

n (x) is not Σ1
n+2-correct

in V . �

See for example [St95] for further information on the premouse M#
n .

1.4. Mice and Determinacy

Some of the results mentioned in Section 1.1 can be improved using the
existence of certain mice instead of large cardinals in V as an hypothesis. In
this section we will list results of that form and mention some things known
about the converse direction.

In the context of analytic determinacy Harrington was able to prove the
converse of Martin’s result from [Ma70] and therefore obtained the following
theorem.

Theorem 1.4.1 (Harrington in [Ha78], Martin in [Ma70]). The following
are equivalent over ZFC.

(i) The mouse 0# exists, and
(ii) every Π1

1-definable set of reals is determined.

In the projective hierarchy Neeman improved the result of [MaSt89] as fol-
lows. Here “a” denotes the game quantifier as also used in Section 3.4 later
(see Section 6D in [Mo09] for a definition and some basic facts about the
game quantifier “a”).

Theorem 1.4.2 (Neeman in [Ne02]). Let n ≥ 1 and assume that M#
n exists

and is ω1-iterable. Then every a(n)(< ω2−Π1
1)-definable set of reals is deter-

mined and thus in particular every Π1
n+1-definable set of reals is determined.



16 1. INTRODUCTION

In the first part of this thesis we will present a proof of the boldface version of
a converse direction of this theorem due to Woodin which is only assuming
that every Π1

n+1-definable set of reals is determined, see Corollary 2.1.2.
The lightface version of the analogous converse direction of Theorem 1.4.2
is still open for n > 1 (see also Section 4.2). For n = 1 it is due to W. H.
Woodin, who proved the following theorem (see Corollary 4.17 in [StW16]).

Theorem 1.4.3 (Woodin in [StW16] and unpublished). The following are
equivalent over ZFC.

(i) M#
1 exists and is ω1-iterable, and

(ii) every Π1
1-definable and every ∆1

2-definable set of reals is determined.

Here the implication (i) ⇒ (ii), which also follows from Theorem 2.14 in
[Ne02] (see Theorem 1.4.2 above), was first shown by Woodin in unpublished
work.

At the level of infinitely many Woodin cardinals we have that the following
equivalence, which is also due to W. H. Woodin, holds true (see Theorem
8.4 in [KW10]).

Theorem 1.4.4 (Woodin in [KW10]). The following are equivalent over
ZFC.

(i) M#
ω exists and is countably iterable, and

(ii) ADL(R) holds and R# exists.

Here we mean by “ADL(R) holds” that every set of reals in L(R) is deter-
mined.



CHAPTER 2

A Model with Woodin Cardinals from
Determinacy Hypotheses

In this chapter we are going to construct a proper class model with n Woodin
cardinals from Π1

n determinacy together with Π1
n+1 determinacy, but the

model constructed in this chapter need not be iterable. We will treat it-
erability issues for models like the one constructed in this chapter later in
Chapter 3.

2.1. Introduction

The main goal of Chapters 2 and 3 is to give a proof of the following theorem
due to W. Hugh Woodin.

Theorem 2.1.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

The converse of Theorem 2.1.1 also holds true. For odd n it is due to
W. Hugh Woodin in never-published work and for even n it is due to Itay
Neeman in [Ne95]. This yields the following corollary, where the case n = 0
is due to D. A. Martin (see [Ma70]) and L. Harrington (see [Ha78]).

Corollary 2.1.2. Let n ≥ 0. Then the following are equivalent.

(1) Π1
n+1 determinacy, and

(2) for all x ∈ ωω, M#
n (x) exists and is ω1-iterable.

The proof of Theorem 2.1.1 is organized inductively. Thereby Harrington’s
result that analytic determinacy yields the existence of 0# (see [Ha78]) is
the base step of our induction. So we will assume throughout the proof of
Theorem 2.1.1 at the n’th level, that Theorem 2.1.1 holds true at the level
n− 1. In fact by Theorem 2.14 in [Ne02] we can assume during the proof at

the level n that the existence and ω1-iterability of M#
n−1(x) for all x ∈ ωω is

equivalent to Π1
n determinacy (see Corollary 2.1.2, for odd n this result is

due to W. Hugh Woodin). We will use this in what follows without further
notice.

We first fix some notation we are going to use for the rest of this part of the
thesis.

If M is a premouse let δM denote the least Woodin cardinal in M , if it exists.
For n ≥ 2 and x ∈ ωω let δx = δMn−1(x) denote the least Woodin cardinal

17
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in Mn−1(x), whenever this does not lead to confusion. Moreover in case we
are considering L[x] = M0(x) and a confusion is not possible let δx denote
the least x-indiscernible in L[x].

Remark. Recall that a real x ∈ ωω is Turing reducible to a real y ∈ ωω
(write “x ≤T y”) iff x is recursive in y or equivalently iff there exists an
oracle Turing machine that computes x using y as an oracle. Moreover we
write x ≡T y iff x ≤T y and y ≤T x and say in this case that x and y are
Turing equivalent.

The following lemma generalizes a theorem of Kechris and Solovay (see The-
orem 3.1 in [KS85]) to the context of mice with finitely many Woodin car-
dinals. It is one key ingredient for building inner models with finitely many
Woodin cardinals from determinacy hypotheses and therefore in particular
for proving Theorem 2.1.1. The following two sections will be devoted to
the proof of this lemma.

Lemma 2.1.3. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable for

all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

there exists a real y0 such that for all reals x ≥T y0,

Mn−1(x)|δx � OD-determinacy.

The main difficulty in proving Lemma 2.1.3 in our context is the fact that for
n > 1 the premouse Mn−1(x)|δx has lots of total extenders on its sequence.
This is the main reason why we cannot generalize the proof of Theorem 3.1
in [KS85] straightforwardly. Therefore we need to prove some preliminary
lemmas concerning comparisons and L[E]-constructions in our context in
the following section. Some of this could have been avoided, if we would
only want to prove Lemma 2.1.3 for models like for example lower part
models (see Definition 3.7.2), which do not contain total extenders on their
sequence.

2.2. Preliminaries

In this section we prove a few general lemmas about (n− 1)-small premice
which we are going to need for the proof of Lemma 2.1.3 and which are also
going to be helpful later on.

The following models, called Q-structures, can serve as witnesses for iter-
ability by guiding an iteration strategy as in Definition 2.2.2. See also for
example the proof of Lemma 2.2.8 for an application of this iteration strat-
egy.

Informally a Q-structure for a cofinal well-founded branch b through T is
the longest initial segment ofMTb at which δ(T ) is still seen to be a Woodin
cardinal. Such Q-structures are also introduced for example in Definition
6.11 in [St10].
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Definition 2.2.1. Let N be an arbitrary premouse and let T be an iteration
tree on N of limit length.

(1) We say Q = Q(T ) is a Q-structure for T iff M(T ) E Q, δ(T ) is a
cutpoint of Q, Q is ω1-iterable above δ(T ),

Q � “δ(T ) is a Woodin cardinal”,

if Q 6=M(T ) and either
(i) over Q there exists an rΣn-definable set A ⊂ δ(T ) such that there

is no κ < δ(T ) such that κ is strong up to δ(T ) with respect to
A as being witnessed by extenders on the sequence of Q for some
n < ω, or

(ii) ρn(Q) < δ(T ) for some n < ω.
(2) Let b be a cofinal well-founded branch through T . Then we say Q =
Q(b, T ) is a Q-structure for b in T iff Q =MTb |γ, where γ ≤MTb ∩Ord
is the least ordinal such that either

γ <MTb ∩Ord and MTb |(γ + 1) � “δ(T ) is not Woodin”,

or
γ =MTb ∩Ord and ρn(MTb ) < δ(T )

for some n < ω or over MTb there exists an rΣn-definable set A ⊂ δ(T )
such that there is no κ < δ(T ) such that κ is strong up to δ(T ) with
respect to A as being witnessed by extenders on the sequence of MTb for
some n < ω.
If no such ordinal γ ≤MTb ∩Ord exists, we let Q(b, T ) be undefined.

For the notion of an rΣn-definable set see for example §2 in [MS94].

Remark. We are also going to use the notion of a Π1
n-iterable Q-structure

Q(T ), meaning that Q(T ) is Π1
n-iterable above δ(T ), δ(T )-solid and that

Q(T ) satisfies all properties in (1) except for the ω1-iterability above δ(T ).
It will be clear from the context if we include ω1-iterability in the definition
of Q-structure or not. Here Π1

n-iterability is defined as in Definitions 1.4
and 1.6 in [St95] (see also the explanations before Lemma 2.2.9).

Remark. In Case (1)(i) in Definition 2.2.1 we have that in particular
ρn(Q) ≤ δ and if Q CM for a premouse M and if we let γ = Q ∩ Ord,
then we have that δ(T ) is not Woodin in JMγ+1. The same thing for M as

above holds true in Case (1)(ii) in Definition 2.2.1, because in this case δ(T )
is not even a cardinal in JMγ+1.

Remark. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable for

all reals x. Then any Q-structure Q for an iteration tree T on an n-small
premouse is unique by a comparison argument as the one we will see in the
proof of Lemma 2.2.8.

Definition 2.2.2. Let N be a premouse. Then a possibly partial iteration
strategy Σ for N is the Q-structure iteration strategy for N or we say that
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Σ is guided by Q-structures, iff Σ is defined as follows. For a tree U on N
of limit length and a branch b through U we let

Σ(U) = b iff Q(U) exists and Q(b,U) = Q(U),

if such a branch b exists and is unique. If no such unique branch b through
U exists, we let Σ(U) be undefined.

Lemma 2.2.3. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable

for all reals x. Let N be an n-small premouse and let T be an iteration tree
on N . Then the branch b through T which satisfies Q(b, T ) = Q(T ) as in
the definition of the Q-structure iteration strategy Σ is in fact unique.

This lemma holds true because for two branches b and c through an iteration
tree T as above, we have that Q(b, T ) = Q(c, T ) implies that b = c by the
Branch Uniqueness Theorem (see Theorem 6.10 in [St10]). This is proven
in Corollary 6 in §6 of [Je97] (written by Martin Zeman).

Remark. Let n ≥ 1 and assume that M#
n (x) exists and is ω1-iterable for

all reals x. Let N be an n-small premouse and let T be an iteration tree on
N . Then the branch b = Σ(T ) given by the Q-structure iteration strategy
is in fact cofinal.

The following notion will be important in what follows to ensure that Q-
structures exist.

Definition 2.2.4. Let M be a premouse and let δ be a cardinal in M or
δ = M ∩Ord. We say that δ is not definably Woodin over M iff there exists
an ordinal γ ≤M ∩Ord such that γ ≥ δ and either

(i) over JMγ there exists an rΣn-definable set A ⊂ δ such that there is no
κ < δ such that κ is strong up to δ with respect to A as witnessed by
extenders on the sequence of M for some n < ω, or

(ii) ρn(JMγ ) < δ for some n < ω.

For several iterability arguments to follow we need our premice to satisfy the
following property. By a fine structural argument this property is preserved
during an iteration and will therefore ensure that Q-structures exist in an
iteration of a premouse M satisfying this property.

Definition 2.2.5. Let M be a premouse. We say M has no definable
Woodin cardinals iff for all δ ≤ M ∩ Ord we have that δ is not definably
Woodin over M .

Remark. Let M be a premouse which has no definable Woodin cardinals.
Note that M might still have Woodin cardinals. Consider for example the

premouse M#
1 , which by definition has a Woodin cardinal, but no definable

Woodin cardinals since ρω(M#
1 ) = ω.
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In what follows we sometimes want to consider premice which are obtained

from M#
n “constructed on top” of a premouse N . The following definition

makes precise what we mean by that.

Definition 2.2.6. Let n ≥ 1 and assume that M#
n (x) exists for all reals x.

Let N be a countable x-premouse for some x ∈ ωω. Then we say M#
n (N) is

the smallest x-premouse M DN with

ρω(M) ≤ N ∩Ord

which is ω1-iterable above N ∩ Ord, sound above N ∩ Ord and such that
either M is not fully sound, or M is not n-small above N ∩Ord.

In the first case, i.e. if M is not fully sound, we sometimes say that the

construction of M#
n (N) breaks down.

Remark. We can define a premouseMn(N) in a similar fashion, by iterating

the top extender of M = M#
n (N) out of the universe in the case that M is

not n-small above N ∩Ord. In the case that M is not fully sound, we just
let Mn(N) = M . So in particular Mn(N) is a proper class model in the first
case and a set in the latter case.

In what follows we will point out if M#
n (N) denotes the premouse con-

structed in the sense of Definition 2.2.6 or if it denotes the premouse M#
n (x)

in the usual sense, where x is for example a real coding the countable pre-
mouse N . Note that these two notions are different since extenders on the
N -sequence are included in the M#

n (N)-sequence if M#
n (N) is constructed

in the sense of Definition 2.2.6.

We will need the following notation.

Definition 2.2.7. (1) Let x, y ∈ ωω be such that x = (xn | n < ω) for
xn ∈ ω and y = (yn | n < ω) for yn ∈ ω. Then we let x ⊕ y =
(x0, y0, x1, y1, . . . ) ∈ ωω.

(2) Let M and N be countable premice. We say a real x codes M ⊕ N iff
x ≥T xM ⊕ xN for a real xM coding M and a real xN coding N .

The following lemma proves that under the right hypothesis comparison
works for certain ω1-iterable premice instead of (ω1 + 1)-iterable premice as
in the usual Comparison Lemma (see Theorem 3.11 in [St10]). Moreover the
proof of this lemma will use arguments that are explained here in full detail
and will show up in several different proofs throughout this thesis again with
possibly less details given.

Recall that δx denotes the least Woodin cardinal in M#
n−1(x) for n ≥ 2.

Lemma 2.2.8. Let n ≥ 1 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice, such that M and N have
a common cutpoint δ. Assume that M and N both do not have definable
Woodin cardinals above δ and that every proper initial segment of M and N
is (n− 1)-small above δ.



22 2. WOODIN CARDINALS FROM DETERMINACY HYPOTHESES

(1) Let x be an arbitrary real and let n ≥ 2. Then H
M#
n−1(x)

δx
is closed under

the operation

a 7→M#
n−2(a)

and moreover this operation a 7→M#
n−2(a) for a ∈ HM#

n−1(x)

δx
is contained

in M#
n−1(x)|δx.

(2) Let x be a real coding M and assume that the premouse M is ω1-iterable
above δ. If Σ denotes the ω1-iteration strategy for M above δ, then

Σ � H
M#
n−1(x)

δx
∈M#

n−1(x)|δx.

(3) Let x be a real coding M ⊕ N and assume that the premice M and N
are both ω1-iterable above δ. Moreover assume that

M |δ = N |δ.

Then we can successfully coiterate M and N above δ inside the model

M#
n−1(x). That means there are iterates M∗ of M and N∗ of N above

δ such that we have

(a) M∗ EN∗ and the iteration from M to M∗ does not drop, or

(b) N∗ EM∗ and the iteration from N to N∗ does not drop.
In particular the coiteration is successful in V in the same sense.

(4) Let x be a real coding M ⊕ N and assume that the premice M and N
are both ω1-iterable above δ. Moreover assume that

M |δ = N |δ,

M and N are δ-sound, ρω(M) ≤ δ and ρω(N) ≤ δ. Then we have

M EN or N EM.

Remark. This lemma holds in particular for δ = ω. That means if we

assume that M#
n−1(x) exists and is ω1-iterable for all reals x and M and

N are ω1-iterable countable premice such that both do not have definable
Woodin cardinals and such that every proper initial segment of M and N
is (n − 1)-small, then we can successfully compare M and N as in Lemma
2.2.8 (3).

Proof of Lemma 2.2.8. Proof of (1): Let a ∈ HM#
n−1(x)

δx
be arbitrary

and perform a fully backgrounded extender construction L[E](a)M
#
n−1(x)|κ

in the sense of [MS94] (with the smallness hypothesis weakened to allow

ω-small premice in the construction) above a inside the model M#
n−1(x)|κ,

where κ denotes the critical point of the top measure of the active premouse

M#
n−1(x). Then we have that the premouse L[E](a)M

#
n−1(x)|κ has n − 1

Woodin cardinals by a generalization of Theorem 11.3 in [MS94]. So in

particular it follows that L[E](a)M
#
n−1(x)|κ is not (n − 2)-small. Moreover



2.2. PRELIMINARIES 23

the premouse L[E](a)M
#
n−1(x)|κ inherits the iterability from M#

n−1(x) and
therefore we have that

M#
n−2(a)C L[E](a)M

#
n−1(x)|κ.

In fact the operation a 7→ M#
n−2(a) for a ∈ H

M#
n−1(x)

δx
is contained in

M#
n−1(x)|δx, because M#

n−2(a) can be obtained from an L[E]-construction
above a.

Proof of (2) + (3) + (4): We prove (2),(3) and (4) simultaneously by an
inductive argument. For n = 1 there is nothing to show, because we defined
M to be 0-small iff M is an initial segment of Gödel’s constructible universe
L. That means if M and N are such that every proper initial segment of
M or N is 0-small above some common cutpoint δ as in the statement of
Lemma 2.2.8, then every iteration tree on M or N above δ is linear and
there is nothing to show for (2). Moreover we easily get that one is an
initial segment of the other since every proper initial segment of M or N is
above δ as an initial segment of L. Therefore (3) and (4) hold.

So let n ≥ 2 and assume that (2),(3) and (4) hold for n−2. We first want to
show that (2) holds for n− 1. Let us assume for notational simplicity that
δ = ω and let M be an ω1-iterable premouse, such that every proper initial
segment of M is (n − 1)-small and such that M has no definable Woodin

cardinals. Let x be a real coding the premouse M and assume that M#
n−1(x)

exists and is ω1-iterable. Further let Σ be the ω1-iteration strategy for M
and let T be an iteration tree on M in V of length λ + 1 for some limit
ordinal λ < ωV1 such that T is according to Σ and

T � λ ∈ HM#
n−1(x)

δx
.

By assumption the premouse M is ω1-iterable in V and has no definable
Woodin cardinals. Therefore Σ is the Q-structure iteration strategy (see
Definition 2.2.2) and there exists a Q-structure QEMTλ for T � λ which is
ω1-iterable in V . We first want to show that such an ω1-iterable Q-structure
already exists in the model M#

n−1(x)|δx.

First consider the case

Q =M(T � λ),

where the latter denotes the common part model of T � λ. In this case

Q is also a Q-structure for T � λ inside the model M#
n−1(x)|δx for trivial

reasons, because the condition that Q needs to be ω1-iterable above δ(T �
λ) =M(T � λ) ∩Ord is empty here and therefore Q can be isolated as the

Q-structure for T � λ in M#
n−1(x)|δx.

So we can assume now that

M(T � λ)CQ.
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That means δ(T � λ) ∈ Q and therefore Q is by definition the longest initial
segment of MTλ in V such that

Q � “δ(T � λ) is Woodin”.

Every proper initial segment of MTλ is (n − 1)-small since the same holds
for M . Thus every proper initial segment of Q is (n − 1)-small. Together
with the fact that

Q � “δ(T � λ) is Woodin”,

this implies that every proper initial segment of Q in fact has to be (n− 2)-
small above δ(T � λ).

Now consider the premouse M#
n−2(M(T � λ)) in the sense of Definition

2.2.6, which exists inside M#
n−1(x)|δx because of (1), since we have that

T � λ ∈ HM#
n−1(x)

δx
. Note that all proper initial segments of M#

n−2(M(T � λ))

are (n− 2)-small above

δ(T � λ) =M(T � λ) ∩Ord,

regardless of whether the case that M#
n−2(M(T � λ)) is not fully sound or

the case that M#
n−2(M(T � λ)) is not (n − 2)-small above δ(T � λ) in the

definition of M#
n−2(M(T � λ)) (see Definition 2.2.6) holds. Moreover we

have by definition that

Q | δ(T � λ) =M(T � λ) = M#
n−2(M(T � λ)) | δ(T � λ).

Thus a coiteration of Q and M#
n−2(M(T � λ)) would take place above

δ(T � λ). Moreover M#
n−2(M(T � λ)) and Q are both δ(T � λ)-sound and

project to δ(T � λ), so in particular they both do not have definable Woodin
cardinals above δ(T � λ). This implies by the inductive hypothesis (4) that

the comparison of Q and M#
n−2(M(T � λ)) is successful in V , because all

proper initial segments of both Q and M#
n−2(M(T � λ)) are (n − 2)-small

above δ(T � λ). Moreover both sides do not move in the comparison as in
(4) and therefore we can distinguish two cases as follows.

Case 1. Assume that

M#
n−2(M(T � λ))CQ.

Then we have that

M#
n−2(M(T � λ)) � “δ(T � λ) is Woodin”,

because we have by definition of the Q-structure Q (see Definition 2.2.1)
that

Q � “δ(T � λ) is Woodin”.
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Case 1.1. Assume that the premouse M#
n−2(M(T � λ)) is not (n−2)-small

above M(T � λ) ∩Ord.

That means we were able to construct the full premouse M#
n−2 on top of

M(T � λ) as in the sense of Definition 2.2.6. In this case M#
n−2(M(T � λ)) is

not (n−1)-small, because δ(T � λ) is a Woodin cardinal inM#
n−2(M(T � λ)).

But we argued earlier that every proper initial segment of Q is (n−1)-small,

which contradicts M#
n−2(M(T � λ))CQ.

Case 1.2. Assume now that we are in the other case of Definition 2.2.6.
That means we have that M#

n−2(M(T � λ)) is not fully sound.

So ρm(M#
n−2(M(T � λ))) < δ(T � λ) for some m < ω. This implies that

M#
n−2(M(T � λ)) is already a Q-structure for T � λ inside the model

M#
n−1(x)|δx, because M#

n−2(M(T � λ)) exists inside M#
n−1(x)|δx by part

(1) of this lemma as argued earlier and is by definition ω1-iterable above
δ(T � λ), which finishes the argument for this case.

Case 2. Assume that

QEM#
n−2(M(T � λ)).

This implies that Q is in M#
n−1(x)|δx and furthermore is ω1-iterable above

δ(T � λ) in M#
n−1(x)|δx since the same holds for M#

n−2(M(T � λ)) by part
(1) of this lemma.

So we showed that in both cases there exists an ω1-iterable Q-structure Q
for T � λ in M#

n−1(x)|δx. We now aim to show that the cofinal well-founded
branch through T in V which is given by the Q-structure iteration strategy
Σ, that means the branch b for which we have

Q(b, T � λ) = Q,

is also contained in M#
n−1(x)|δx.

Consider the statement

φ(T � λ,Q) ≡ “there is a cofinal branch b through T � λ such that

there is a Q∗ EMTb with Q∗ ∼= Q”.

This statement is Σ1
1-definable uniformly in codes for T � λ and Q and obvi-

ously true in V as witnessed by the branch b given by the ω1-iterability of the

premouse M . Since the iteration tree T � λ ∈ HM#
n−1(x)

δx
need not be count-

able in the model M#
n−1(x)|δx, we consider the model (M#

n−1(x)|δx)Col(ω,γ)

instead, where γ < δx is an ordinal such that

T � λ,Q ∈ (M#
n−1(x)|δx)Col(ω,γ)



26 2. WOODIN CARDINALS FROM DETERMINACY HYPOTHESES

are countable inside the model (M#
n−1(x)|δx)Col(ω,γ), where with the model

(M#
n−1(x)|δx)Col(ω,γ) we denote an arbitrary Col(ω, γ)-generic extension of

the model M#
n−1(x)|δx.

Then it follows by Σ1
1-absoluteness that the statement φ(T � λ,Q) holds in

(M#
n−1(x)|δx)Col(ω,γ) as witnessed by some branch b̄ and some model Q̄.

Since by the argument above Q is a Q-structure for T in M#
n−1(x)|δx, we

have that Q = Q̄ and it follows that b̄ is the unique cofinal branch through
T with Q(b̄, T � λ) = Q by Lemma 2.2.3.

Since the branch b̄ is uniquely definable from T � λ and Q, and we have that

T � λ,Q ∈ M#
n−1(x)|δx, it follows by homogeneity of the forcing Col(ω, γ)

that actually b̄ ∈M#
n−1(x)|δx.

Thus we have that Σ(T ) = b̄ ∈ M#
n−1(x)|δx and our argument shows that

in fact the operation T 7→ Σ(T ) for iteration trees T ∈ HM#
n−1(x)

δx
on M of

limit length is in the model M#
n−1(x)|δx for the following reason. Let T be

an iteration tree on M of limit length such that T ∈ HM#
n−1(x)

δx
. Then we

showed in the first part of this proof that M#
n−1(x)|δx can find a Q-structure

Q for T . Now M#
n−1(x)|δx can compute Σ(T ) from T , because Σ(T ) is the

unique cofinal branch b through T such that Q(b, T ) = Q and we showed

that this branch b exists inside M#
n−1(x)|δx. Therefore we proved that (2)

holds.

To show (3) assume now in addition that N is an ω1-iterable premouse such
that every proper initial segment of N is (n−1)-small and N has no definable
Woodin cardinals. Moreover let x be a real coding M⊕N . We again assume
that δ = ω for notational simplicity.

By our hypothesis we have that M#
n−1(x) exists, so we work inside the model

M#
n−1(x). Moreover it follows from (2) that M and N are iterable inside

M#
n−1(x), particularly with respect to trees in H

M#
n−1(x)

ω2 , since M#
n−1(x) is

countable in V and thus

ω
M#
n−1(x)

2 < ωV1 .

In particular M and N are (ω1 + 1)-iterable in M#
n−1(x) and the coiteration

of M and N terminates successfully inside the model M#
n−1(x) by the usual

Comparison Lemma (see Theorem 3.11 in [St10]) applied inside M#
n−1(x).

This shows that (3) holds.

To prove (4) we assume that we moreover have that M and N are ω-sound
and that ρω(M) = ω and ρω(N) = ω. Then it follows as in Corollary 3.12
in [St10] that we have M EN or N EM . �
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Remark. As in the previous lemma let n ≥ 1 and assume that M#
n−1(x)

exists and is ω1-iterable for all reals x. Then we can also successfully coit-
erate countable ω1-iterable premice M and N which agree up to a common
cutpoint δ and are (n− 1)-small above δ in the sense of Lemma 2.2.8 (3), if
we only assume that M and N both do not have Woodin cardinals, for the
following reason.

Let x be a real coding M ⊕ N . If M ∩ Ord and N ∩ Ord are both not
definably Woodin over M and N respectively, then this implies together
with the assumption that M and N both do not have Woodin cardinals
that M and N both do not have definable Woodin cardinals and we can
apply Lemma 2.2.8. So assume now for example that M ∩Ord is definably
Woodin over M . By the proof of Lemma 2.2.8 the coiteration of M and
N can only fail on the M -side because of the lack of a Q-structure for an

iteration tree T of limit length on M inside M#
n−1(x)|δx. But in this case

we must have that
M(T ) =MTλ ,

whereMTλ is the limit model for T which exists in V . This implies that the
coiteration on the M -side already finished because the M -side can no longer
be iterated and by the same argument for N we have that the coiteration
is successful, even if M ∩Ord and N ∩Ord are both definably Woodin over
M and N respectively.

In what follows we also want to consider premice which are not fully ω1-
iterable but only Π1

n-iterable for some n ∈ ω. This notion was defined by
John Steel in [St95] and he proved that for a premouse M the statement “M
is Π1

n-iterable” is Π1
n-definable uniformly in any code for M . See Definitions

1.4 and 1.6 in [St95] for a precise definition of Π1
n-iterability. He proves in

Lemma 2.2 in [St95] that for an (n− 1)-small premouse N which is ω-sound
and such that ρω(N) = ω, Π1

n-iterability is enough to perform the standard
comparison arguments with an (ω1 + 1)-iterable premouse which has the
same properties.

This implies that using Lemma 1.3.4 and Lemma 2.2.8 (2) the following
version of Lemma 2.2 proven in [St95] holds true for ω1-iterability (instead
of (ω1 + 1)-iterability as in [St95]).

Lemma 2.2.9. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice which have a common
cutpoint δ such that M and N are (n − 1)-small above δ. Assume that M
and N are δ-sound and that ρω(M) ≤ δ and ρω(N) ≤ δ.
(1) Assume that M is ω1-iterable above δ. Let T be a normal iteration tree

on M above δ of length λ for some limit ordinal λ < ω1 and let b be
the unique cofinal well-founded branch through T such that Q(b, T ) is
ω1-iterable above δ(T ). Then b is the unique cofinal branch c through
T such that MTc is well-founded and, if n ≥ 3, Q(c, T ) is Π1

n−1-iterable
above δ(T ).
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(2) Assume M is ω1-iterable above δ. Then M is Π1
n-iterable above δ.

(3) Assume M is ω1-iterable above δ and N is Π1
n-iterable above δ. Moreover

assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ, that means we
have that

M EN or N EM.

Proof. Apply Lemma 2.2 from [St95] inside the model M#
n−1(x), where

x is a real coding M⊕N . This immediately gives Lemma 2.2.9 using Lemma
2.2.8 (2), because we have that

ω
M#
n−1(x)

2 < ωV1

and therefore M is (ω1 + 1)-iterable inside M#
n−1(x) and by Lemma 1.3.4

we have that N is Π1
n-iterable inside the model M#

n−1(x) since M#
n−1(x) is

Σ1
n-correct in V . �

Remark. Similarly as for Lemma 2.2.8 this lemma also holds true in the
special case that δ = ω. More precisely in this case Lemma 2.2.9 (3) holds
true in the following sense. If M and N are ω-sound, ρω(M) = ω and
ρω(N) = ω, and if we assume ω1-iterability and Π1

n-iterability for M and N
respectively, then we have that

M EN or N EM.

In Chapter 3 we in fact need the following strengthening of Lemma 2.2.9
for odd n, which is proved in Lemma 3.3 in [St95]. That it holds for ω1-
iterability instead of (ω1 + 1)-iterability follows by the same argument as
the one we gave for Lemma 2.2.9 above. This lemma only holds for odd n
because of the periodicity in the projective hierarchy. For more details see
[St95].

Lemma 2.2.10. Let n ≥ 1 be odd and assume that M#
n−1(x) exists and is

ω1-iterable for all reals x. Let M and N be countable premice which agree
up to a common cutpoint δ such that M and N are δ-sound and such that
ρω(M) ≤ δ and ρω(N) ≤ δ. Assume that M is (n− 1)-small above δ and N
is not (n− 1)-small above δ. Moreover assume that M is Π1

n-iterable above
δ and that N is ω1-iterable above δ. Then we have that

M EN.

For the proof of Lemma 2.1.3 we need the following variant of Lemma 2.2.9
which is a straightforward consequence of the proof of Lemma 2.2 in [St95],
because the assumption that the premice M and N both do not have defin-
able Woodin cardinals yields that Q-structures exist in a coiteration of M
and N .
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We say that an iteration tree U is a putative iteration tree if U satisfies
all properties of an iteration tree, but we allow the last model of U to be
ill-founded, in case U has a last model.

Lemma 2.2.11. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-iterable

for all reals x. Let M and N be countable premice which have a common
cutpoint δ such that M and N are (n − 1)-small above δ and solid above
δ. Assume that M and N both do not have definable Woodin cardinals and
assume in addition that M is ω1-iterable above δ and that N is Π1

n-iterable
above δ. Moreover assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ in the analogous to
Lemma 2.2.8 (3), that means here that there is an iteration tree T on M
and a putative iteration tree U on N of length λ+ 1 for some ordinal λ such
that we have

MTλ EMUλ or MUλ EMTλ .
So in the first case MUλ need not be fully well-founded, but it is well-founded

up to MTλ ∩Ord. In the second case we have that MUλ is fully well-founded
and U is in fact an iteration tree.

Analogous to the remark after the proof of Lemma 2.2.8 we get that the
following strengthening of Lemma 2.2.11 holds true, where we replace “no
definable Woodin cardinals” by “no Woodin cardinals”.

Corollary 2.2.12. Let n ≥ 2 and assume that M#
n−1(x) exists and is ω1-

iterable for all reals x. Let M and N be countable premice which have a
common cutpoint δ such that M and N are (n− 1)-small above δ and solid
above δ. Assume that M and N both do not have Woodin cardinals and
assume in addition that M is ω1-iterable above δ and that N is Π1

n-iterable
above δ. Moreover assume that

M |δ = N |δ.
Then we can successfully coiterate M and N above δ in the analogous to
Lemma 2.2.8 (3), that means here that there is an iteration tree T on M
and a putative iteration tree U on N of length λ+ 1 for some ordinal λ such
that we have

MTλ EMUλ or MUλ EMTλ .
So we again have that in the first case MUλ need not be fully well-founded,

but it is well-founded up to MTλ ∩Ord, and in the second case we have that

MUλ is fully well-founded and U is in fact an iteration tree.

Proof. To simplify the notation we again assume that δ = ω. Analo-
gous to the remark after the proof of Lemma 2.2.8 we can just use Lemma
2.2.11 in the case that M ∩Ord and N ∩Ord are both not definably Woodin
over M and N respectively, because in this case M and N in fact do not
have definable Woodin cardinals.
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So assume for example that N ∩ Ord is definably Woodin over N . Let x
be a real coding M ⊕ N and consider the coiteration of M and N inside

M#
n−1(x). Let T and U be the resulting trees on M and N respectively.

Assume that the coiteration breaks down on the N -side, that means U is an
iteration tree of limit length λ such that there is no Q-structure Q(U) for U
in M#

n−1(x). Since N has no Woodin cardinals, this can only be the case if

M(U) =MUλ ,
whereMUλ is the limit model for U which exists in V since N is Π1

n-iterable
in V . Therefore we have as in the remark after the proof of Lemma 2.2.8
that the coiteration on the N -side already finished.

If we assume that M ∩ Ord is definably Woodin over M it follows by the
same argument that the coiteration on the M -side already finished if it
breaks down, because M is ω1-iterable in V .

Therefore the coiteration of M and N is successful in the sense of Corollary
2.2.12 even if M ∩ Ord or N ∩ Ord or both of them are definably Woodin
over M or N respectively. �

We now aim to fix an order on OD-sets. Therefore we first introduce the
following notion.

Definition 2.2.13. Let x ∈ OD. Then we say (n, (α0, . . . , αn), ϕ) is the
minimal triple defining x iff (n, (α0, . . . , αn), ϕ) is the minimal triple ac-
cording to the lexicographical order on triples (using the lexicographical order
on tuples of ordinals of length n + 1 and the order on Gödel numbers for
formulae) such that

x = {z | Vα0 � ϕ(z, α1, . . . , αn)}.

Definition 2.2.14. Let x, y ∈ OD. Moreover let (n, (α0, . . . , αn), ϕ) and
(m, (β0, . . . , βm), ψ) be the minimal triples defining x and y respectively as
in Definition 2.2.13. Then we say x is less than y in the order on the
OD-sets and write

x <OD y,

iff (n, (α0, . . . , αn), ϕ) is smaller than (m, (β0, . . . , βm), ψ) in the lexicograph-
ical order on triples, that means iff either

(a) n < m, or
(b) n = m and (α0, . . . , αn) <lex (β0, . . . , βm), where <lex denotes the lexi-

cographical order on tuples of ordinals of length n+ 1, or
(c) (α0, . . . , αn) = (β0, . . . , βm) and pϕq < pψq, where pϕq and pψq denote

the Gödel numbers of the formulae ϕ and ψ respectively.

Using this order on OD-sets we can prove the following lemma, which will
also be used in the proof of Lemma 2.1.3.

Lemma 2.2.15. Let n ≥ 2 and assume that M#
n−1(z) exists and is ω1-iterable

for all reals z. Moreover let x be a real. Then we have for all reals y ≥T x
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such that y ∈Mn−1(x), that the premice Mn−1(x) and L[E](y)Mn−1(x) have
the same sets of reals and the same OD-sets of reals in the same order.

Remark. With L[E](y)Mn−1(x) we denote the resulting model of a fully
backgrounded extender construction above the real y as in [MS94] performed
inside the model Mn−1(x), but with the smallness hypothesis weakened to
allow ω-small premice in the construction. For more details about such a
construction in a more general setting see also [St93].

Proof of Lemma 2.2.15. We start with some general remarks about
the premice we consider. The premouse L[E](y)Mn−1(x) still has n−1 Woodin
cardinals and is ω1-iterable via an iteration strategy which is induced by the
ω1-iteration strategy for Mn−1(x) by §11 and §12 in [MS94]. Therefore the
premouse

L[E](x)L[E](y)Mn−1(x)

,

which again denotes the fully backgrounded extender construction in the
sense of [MS94] with the smallness hypothesis weakened to allow not only

1-small premice, but now performed inside the model L[E](y)Mn−1(x), also
has n− 1 Woodin cardinals and is ω1-iterable.

Claim 1. The premice L[E](y)Mn−1(x) and L[E](x)L[E](y)Mn−1(x)
as defined

above are (n− 1)-small.

Proof. We first show that the y-premouse L[E](y)Mn−1(x) is (n − 1)-
small, using the (n− 1)-smallness of Mn−1(x). Then it follows by the same

argument that the x-premouse L[E](x)L[E](y)Mn−1(x)
is (n− 1)-small.

So assume toward a contradiction that the premouse L[E](y)Mn−1(x) is not

(n − 1)-small and let N#
y be the shortest initial segment of L[E](y)Mn−1(x)

which is not (n − 1)-small. That means we choose N#
y E L[E](y)Mn−1(x)

such that it is not (n− 1)-small, but every proper initial segment of N#
y is

(n − 1)-small. In particular N#
y is an active y-premouse, so let F be the

top extender of N#
y . Moreover let Ny be the model obtained from N#

y by
iterating the top extender F out of the universe inside the model Mn−1(x).

Now consider L[E](x)Ny and let N be the active x-premouse obtained by
adding F ∩L[E](x)Ny as a top extender to an initial segment of L[E](x)Ny ,
analogous to Section 2 in [FNS10] to ensure that N is a premouse. The main

result in [FNS10] yields that N is ω1-iterable in V , because L[E](y)Mn−1(x),

N#
y and L[E](x)Ny inherit the iterability from Mn−1(x) as is §11 and §12 in

[MS94]. Moreover N is not (n− 1)-small.

Let N#
x be the shortest initial segment of N which is not (n− 1)-small. By

Lemma 2.2.8 we can successfully compare the x-premice N#
x and M#

n−1(x),
because both premice are ω1-iterable in V and every proper initial segment of

one of them is (n− 1)-small. Therefore we have that in fact N#
x = M#

n−1(x)
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and thus
R ∩N#

x = R ∩M#
n−1(x) = R ∩Mn−1(x).

But N#
x is by construction a countable premouse in Mn−1(x), so this is a

contradiction. �

Now fix a real z which codes the x-premouse M#
n−1(x) and work inside the

model Mn−1(z) for a while.

We have that every proper initial segment of M#
n−1(x) is (n − 1)-small,

ρω(M#
n−1(x)) = ω, and M#

n−1(x) is ω-sound. Since

ω
M#
n−1(z)

2 < ωV1 ,

this yields that M#
n−1(x) is (ω1 +1)-iterable inside M#

n−1(z) by Lemma 2.2.8
(2). So in particular, working inside Mn−1(z), the x-premouse Mn−1(x),

obtained from M#
n−1(x) by iterating the top measure out of the universe, is

(ω1 + 1)-iterable.

Claim 2. The x-premice Mn−1(x) and L[E](x)L[E](y)Mn−1(x)
agree below the

least measurable cardinal in Mn−1(x).

Proof. The x-premouse L[E](x)L[E](y)Mn−1(x)
is (ω1 + 1)-iterable inside

Mn−1(z) via an iteration strategy which is induced by the iteration strat-
egy for Mn−1(x). In particular we can successfully compare the x-premice

Mn−1(x) and L[E](x)L[E](y)Mn−1(x)
inside the model Mn−1(z) using this it-

eration strategy and they coiterate to the same premouse. This yields the
claim. �

Now we can finally show the following claim, which will finish the proof of
Lemma 2.2.15.

Claim 3. Mn−1(x) and L[E](y)Mn−1(x) have the same sets of reals and the
same OD-sets of reals in the same order.

Proof. Claim 2 implies that if κ denotes the least measurable cardinal
in Mn−1(x), then we have that

VMn−1(x)
κ ⊇ V L[E](y)Mn−1(x)

κ ⊇ V L[E](x)L[E](y)
Mn−1(x)

κ = VMn−1(x)
κ ,

and therefore
VMn−1(x)
κ = V L[E](y)Mn−1(x)

κ .

Thus we can consider Mn−1(x) and L[E](y)Mn−1(x) as V
Mn−1(x)
κ -premice

and, still working in Mn−1(z), we can successfully compare them by the
same argument as in the proof of Claim 2, using the iteration strategy for
L[E](y)Mn−1(x) which is induced by the iteration strategy for Mn−1(x). As

V
Mn−1(x)
κ -premice Mn−1(x) and L[E](y)Mn−1(x) coiterate to the same model

and hence they have the same sets of reals and the same OD-sets of reals in
the same order. �
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This proves Lemma 2.2.15. �

Motivated by this lemma we introduce the following notation.

Definition 2.2.16. For premice M and N we write M ∼ N iff M and N
have the same sets of reals and the same OD-sets of reals in the same order.

In the proof of Lemma 2.1.3 we will also need the following lemma.

Lemma 2.2.17. Let M be an ω1-iterable premouse with a Woodin cardinal
and let δ = δM denote the least Woodin cardinal in M . Let

(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender con-
struction inside M in the sense of [MS94] but with the smallness hypothesis
weakened, such that

Mξ+1 = Cω(Nξ+1)

and let L[E] be the resulting model. Then we have for all ξ ≥ δ that

ρω(Mξ) ≥ δ,
and therefore

Mδ = L[E]|δ.

Remark. This lemma also holds true if we perform the fully backgrounded
extender construction to obtain the model L[E] relativized to a real x ∈M ,
which we then denote by L[E](x).

Proof of Lemma 2.2.17. Work in M . Assume not and letMξ be the
least model with ξ ≥ δ such that ρ = ρω(Mξ) < δ.

The background universe M |δ is generic over Mξ via the δ-version of the
Extender Algebra Qδ (see Lemma 1.3 in [SchSt09]), because all extenders
that are part of the fully backgrounded extender construction satisfy the
axioms of the Extender Algebra. We have that Qδ satisfies the δ-chain
condition by the same argument as in the proof that the “classical” version
of the Extender Algebra satisfies the δ-chain condition (see Theorem 7.14
in [St10] for the “classical” version and Lemma 1.3 in [SchSt09] for the
δ-version of the Extender Algebra).

By definition of ρ there exists an rΣn+1-formula φ for some n < ω and a
parameter b ∈Mξ such that

a
def
= {x < ρ | Mξ � φ(x, b)} /∈Mξ.

But we have that a ∈Mξ[M |δ] because a ⊆ ρ < δ and we are working inside
the model M . Moreover the set a is bounded in δ, so there exists a name
τ ∈Mδ such that τM |δ = a. Then there exists a condition p ∈ Qδ such that

p 

Mξ

Qδ “τ = {x < ρ̌ | Mξ � φ(x, b̌)}”.
Therefore

a = {x < ρ | p 
Mξ

Qδ “x̌ ∈ τ”}.
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Note that Qδ is definable over Mδ.

Claim 1. We have that

p 

Mξ

Qδ “x̌ ∈ τ” iff p 
Mδ
Qδ “x̌ ∈ τ”.

Proof. Suppose we have that p 

Mξ

Qδ “x̌ ∈ τ” and p 1Mδ
Qδ “x̌ ∈ τ”. Fix

a condition q ≤ p such that

q 
Mδ
Qδ “¬x̌ ∈ τ”.

Pick anMξ generic filter g such that q ∈ g. This contradicts p 

Mξ

Qδ “x̌ ∈ τ”,
because g is also generic over Mδ.

For the converse suppose that we have p 
Mδ
Qδ “x̌ ∈ τ” and p 1Mξ

Qδ “x̌ ∈ τ”.
Fix a q ≤ p such that

q 

Mξ

Qδ “¬x̌ ∈ τ”.

As above pick anMξ generic filter g such that q ∈ g. Then g is also generic

over Mδ again and so this contradicts p 
Mδ
Qδ “x̌ ∈ τ”. �

Therefore we have that

a = {x < ρ | p 
Mδ
Qδ “x̌ ∈ τ”}.

That means the set a is definable over Mδ and thus a ∈Mδ. Therefore we
have in particular that a ∈Mξ, a contradiction. �

2.3. OD-Determinacy for an Initial Segment of Mn−1

Now we can turn to the proof of Lemma 2.1.3. Recall

Lemma 2.1.3. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

there exists a real y0 such that for all reals x ≥T y0,

Mn−1(x)|δx � OD-determinacy,

where δx denotes the least Woodin cardinal in Mn−1(x) if n > 1 and δx
denotes the least x-indiscernible in M0(x) = L[x] if n = 1.

Proof of Lemma 2.1.3. For n = 1 we have that Lemma 2.1.3 imme-
diately follows from Theorem 3.1 in [KS85]. So assume that n > 1 and
assume further toward a contradiction that there is no such real y0 as in the
statement of Lemma 2.1.3.

Then there are cofinally (in the Turing degrees) many y ∈ ωω such that
there exists an M EMn−1(y)|δy with

M � ¬OD-determinacy.

We want to consider x-premice M for x ∈ ωω which have the following
properties:
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(1) M � ZFC, M is countable, and we have that the following formula holds
true:

for all k < ω and for all (xn | n < k) and (Mn | n ≤ k) such that

xn ∈Mn ∩ ωω, xn+1 ≥T xn ≥T x,
M0 = M, Mn+1 = L[E](xn)M

n
, and we have

for all n < k that Mn+1 ∼Mn and

Mn does not have a Woodin cardinal,

where the relation “∼” is as defined in Definition 2.2.16,
(2) M is (n− 1)-small, and

M � ¬OD-determinacy,

(3) for all ξ < M ∩Ord such that M |ξ satisfies property (1),

M |ξ � OD-determinacy,

and
(4) M is Π1

n-iterable.

If M is an x-premouse, then we have for every real y such that y ≥T x and
y ∈M , that

M � (1) ⇒ L[E](y)M � (1),

where L[E](y)M as above denotes the resulting model of a fully backgrounded
extender construction above the real y inside M as in [MS94] with the small-
ness hypothesis weakened as for example in the remark after Lemma 2.2.15.

We first show that there exists a Turing cone of reals x such that there exists
an x-premouse M satisfying properties (1) - (4) as above.

Claim 1. For cofinally many x ∈ ωω, Mn−1(x)|δx satisfies properties (1)
and (2).

Proof. By assumption there are cofinally many x ∈ ωω such that

Mn−1(x)|δx � ¬OD-determinacy.

Pick such an x ∈ ωω. Then Mn−1(x)|δx is obviously a countable ZFC
model without a Woodin cardinal. Moreover it is a proper initial segment
of Mn−1(x) and therefore (n− 1)-small. This already implies that property
(2) holds true for Mn−1(x)|δx. Lemma 2.2.15 yields that

Mn−1(x) ∼ L[E](y)Mn−1(x),

for all reals y ≥T x such that y ∈Mn−1(x). Then we have for such a real y
that

Mn−1(x)|δx ∼ L[E](y)Mn−1(x)|δx = L[E](y)Mn−1(x)|δx ,

where the ∼-equivalence follows from Lemma 2.2.15 and the equality is given
by Lemma 2.2.17. Therefore the formula in property (1) holds true for

Mn−1(x)|δx as we also have that L[E](y)Mn−1(x)|δx does not have a Woodin
cardinal. �
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By Claim 1 there are cofinally many x ∈ ωω such that there exists an
x-premouse M which satisfies properties (1) − (4) defined above. Such
x-premice M can be obtained by taking the smallest initial segment of
Mn−1(x)|δx which satisfies properties (1) − (4) defined above. Moreover
the set

A = {x ∈ ωω | there is an x-premouse M with (1)− (4)}
is Σ1

n+1-definable and Turing invariant. So by Σ1
n+1 (Turing-)determinacy

there exists a cone of such reals x ∈ A, because the set A cannot be com-
pletely disjoint from a cone of reals since there are cofinally many reals x ∈ A
as argued above. Let v be a base of this cone and consider a real x ≥T v in
the cone.

Claim 2. If there is an ω1-iterable x-premouse M with properties (1) and
(2), then every x-premouse N satisfying properties (1)−(4) is in fact already
ω1-iterable.

Proof. Assume there is such an x-premouse M and let N be an ar-
bitrary x-premouse satisfying properties (1) − (4). By Corollary 2.2.12 we
can successfully coiterate the x-premice M and N because they are both
(n − 1)-small, solid and without Woodin cardinals and moreover M is ω1-
iterable and N is Π1

n-iterable. Let T and U be the resulting trees of length
λ+ 1 for some ordinal λ on M and N respectively, in particular U might be
a putative iteration tree.

We consider three possible cases as follows.

Case 1. We have MUλ EMTλ and the iteration from N to MUλ is without
drops on the main branch.

That means we have that [0, λ]U ∩DU = ∅, where the set DU denotes the set
of drops in model or degree in the iteration tree U (see Section 3.1 in [St10]
for a formal definition of DU ). In this case we have that the model MUλ is
fully well-founded and N is elementary embedded into an ω1-iterable model
and thus ω1-iterable itself.

Case 2. We have MTλ CMUλ and the iteration from M to MTλ is without
drops on the main branch.

In this case MUλ need not be fully well-founded, but this will not affect

our argument to follow, because we have that MUλ is well-founded up to

MTλ ∩Ord. So there exists an ordinal α <MUλ ∩Ord such thatMUλ |α =MTλ
and we have by elementarity that

MTλ � ¬OD-determinacy,

since property (2) holds for M . Since α =MTλ ∩Ord it follows that

MUλ |α � ¬OD-determinacy.
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Moreover we have that MUλ |α � (1), because we have by elementarity that

MTλ � (1). If there is no drop in the iteration fromN toMUλ , this contradicts
the minimality property (3) for N by elementarity. But even if there is a
drop on the main branch in U this statement is transferred along the branch
to N by the following argument.

Assume there is a drop at stage β + 1 on the main branch through U ,
that means M∗β+1 is a proper initial segment of Mγ for γ = predU (β + 1),
where M∗β+1 is the model to which the next extender Fβ from the Mβ

sequence is applied in the iteration as introduced in Section 3.1 in [St10].
Since there can only be finitely many drops along the main branch through
the iteration tree U , we can assume further without loss of generality that
this is the only drop along the main branch through U . (If there is more
than one drop on the main branch through U , we repeat the argument to
follow for the remaining drops.) Then by elementarity there is an ordinal
α′ <M∗β+1 ∩Ord <Mγ ∩Ord such that

M∗β+1|α′ � (1) + ¬OD-determinacy.

But then also
Mγ |α′ � (1) + ¬OD-determinacy,

and therefore by elementarity there is an ordinal α′′ < N ∩Ord such that

N |α′′ � (1) + ¬OD-determinacy.

This now again contradicts the minimality property (3) for N .

Case 3. We have MTλ =MUλ , there is no drop on the main branch in the

iteration from M to MTλ , but there is a drop on the main branch in the

iteration from N to MUλ .

This immediately is a contradiction because it implies that we have MTλ �
ZFC, but at the same time ρω(MUλ ) <MUλ ∩Ord. �

Since by Claim 1 there are cofinally many reals x such that the ω1-iterable
x-premouse Mn−1(x)|δx satisfies properties (1) and (2), Claim 2 yields that
the following claim holds true.

Claim 3. There are cofinally many reals x such that every x-premouse sat-
isfying properties (1)− (4) is in fact ω1-iterable.

Consider the game G which is defined as follows.

I x⊕ a
II y ⊕ b for x, a, y, b ∈ ωω.

The players I and II alternate playing natural numbers and the game lasts
ω steps. Say player I produces a real x ⊕ a and player II produces a real
y ⊕ b. Then player I wins G iff there exists an (x ⊕ y)-premouse M which
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satisfies properties (1)− (4) and if AM denotes the least OD-set of reals in
M which is not determined, then a⊕ b ∈ AM .

This game is Σ1
n+1-definable and therefore determined. So say first player

I has a winning strategy τ for G. Recall that v denotes a base for a cone
of reals x such that there exists an x-premouse which satisfies properties
(1)− (4) and pick a real z∗ ≥T xτ ⊕ v, where xτ is a real coding the winning
strategy τ for player I, such that every z∗-premouse which satisfies properties
(1)− (4) is in fact ω1-iterable (using Claim 3).

We now aim to construct a real z ≥T z∗ such that there is a z-premouse N
which satisfies properties (1)− (4), is ω1-iterable, and satisfies the following
additional property (3∗).

(3∗) For all reals y ∈ N such that y ≥T z there exists no ordinal ξ < N∩Ord
such that

L[E](y)N |ξ � (1) + ¬OD-determinacy.

Let M0 be an arbitrary z∗-premouse satisfying properties (1) − (4), which
is therefore ω1-iterable. Assume that if we let N = M0 and z = z∗, then
property (3∗) is not satisfied. So there is a real y ∈ M0 with y ≥T z∗

witnessing the failure of property (3∗) in M0. Let y0 ∈ M0 with y0 ≥T z∗
be a witness for that fact such that the ordinal ξ0 < L[E](y0)M

0 ∩Ord with

L[E](y0)M
0 |ξ0 � (1) + ¬OD-determinacy

is minimal. Let M1 = L[E](y0)M
0 |ξ0 and assume that

M1 2 (3∗),

because otherwise we could pick N = M1 and z = y0 and the construction
would be finished. Then as before there is a real y1 ∈ M1 with y1 ≥T y0

and a minimal ordinal ξ1 < L[E](y1)M
1 ∩Ord = M1 ∩Ord = ξ0 such that

L[E](y1)M
1 |ξ1 � (1) + ¬OD-determinacy.

This construction has to stop at a finite stage, because otherwise we have
that ξ0 > ξ1 > . . . is an infinite descending chain of ordinals. Therefore
there is a natural number n < ω such that

Mn = L[E](yn−1)M
n−1 |ξn−1,

and
Mn � (3∗).

Let z = yn−1 and N = Mn. Then we have that z ≥T z∗ and N is a
z-premouse which satisfies properties (1) and (3∗). Moreover by minimal-
ity of the ordinal ξn−1 we have that N satisfies property (3). From the
construction we also get that

N � ¬OD-determinacy.

Furthermore N inherits properties (2) and (4) and the ω1-iterability from
M0 since it is obtained by performing multiple fully backgrounded extender
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constructions inside the ω1-iterable premouse M0. Here the fact that N is
(n − 1)-small follows from the (n − 1)-smallness of M0 by an argument we
already gave earlier in the proof of Lemma 2.2.15. Thus N and z are as
desired.

Let AN denote the least non-determined OD-set of reals in N . We define a
strategy τ∗ for player I in the usual Gale-Stewart game G(AN ) with payoff
set AN played inside the model N as follows. Assume player II produces
the real b ∈ N . Then we consider the following run of the original game G
defined above:

I x⊕ a = τ((z ⊕ b)⊕ b)
II (z ⊕ b)⊕ b

Player II plays the real (z⊕ b)⊕ b and player I responds with the real x⊕ a
according to his winning strategy τ in G. Note that this run of the game G
is in the model N . We define the strategy τ∗ such that in a run of the game
G(AN ) inside N according to τ∗ player I has to respond to the real b with
producing the real a.

I a = τ∗(b)
II b

Claim 4. τ∗ is a winning strategy for player I in the Gale-Stewart game
with payoff set AN played in N .

This claim implies that AN is determined in N , contradicting that AN was
assumed to be the least non-determined OD-set of reals in N .

Proof of Claim 4. Since τ is a winning strategy for player I in the
original game G, there exists an (x ⊕ (z ⊕ b))-premouse N ′ which satisfies
properties (1)− (4) such that

a⊕ b ∈ AN ′ ,
where AN ′ denotes the least non-determined OD-set of reals in N ′.

We want to show that
AN ′ = AN

in order to conclude that τ∗ is a winning strategy for player I in the Gale-
Stewart game with payoff set AN played in N .

Property (1) yields that

L[E](x⊕ (z ⊕ b))N ∼ N,
because x, z, b ∈ N and x⊕ (z⊕ b) ≥T z. Therefore L[E](x⊕ (z⊕ b))N is an
(x⊕ (z⊕ b))-premouse which satisfies property (2), because it has the same
sets of reals and the same OD-sets of reals as N and hence

L[E](x⊕ (z ⊕ b))N � ¬OD-determinacy.
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The (n−1)-smallness of L[E](x⊕(z⊕b))N follows from the (n−1)-smallness
of N by an argument we already gave earlier in the proof of Lemma 2.2.15.
Moreover L[E](x⊕ (z ⊕ b))N inherits property (1) from N .

Since L[E](x⊕ (z⊕ b))N is the result of a fully backgrounded extender con-
struction inside the ω1-iterable premouse N , it is ω1-iterable itself. There-
fore Claim 2 yields that in particular the (x⊕ (z ⊕ b))-premouse N ′ is also
ω1-iterable, because it was choosen such that it satisfies properties (1)− (4).

So we can coiterate L[E](x⊕ (z ⊕ b))N and N ′ by the remark after Lemma
2.2.8 since they are both (n−1)-small ω1-iterable (x⊕(z⊕b))-premice which
do not have Woodin cardinals. Thus by the minimality of N ′ from property
(3) and an argument analogous to the one we already gave in the proof of
Claim 2, we have that

L[E](x⊕ (z ⊕ b))N ≥∗ N ′,

where ≤∗ denotes the usual mouse order1. Moreover we have minimality for
the premouse L[E](x⊕ (z ⊕ b))N in the sense of property (3∗) for N . This
yields again by an argument analogous to the one we already gave in the
proof of Claim 2 that

L[E](x⊕ (z ⊕ b))N ≤∗ N ′.

Therefore we have that in fact

L[E](x⊕ (z ⊕ b))N =∗ N ′,

and hence

L[E](x⊕ (z ⊕ b))N ∼ N ′.
Using L[E](x⊕ (z ⊕ b))N ∼ N it follows that

N ∼ N ′,

and thus AN = AN ′ . �

Now suppose player II has a winning strategy σ in the game G introduced
above and recall that v is a base of a cone of reals x such that there exists an
x-premouse which satisfies properties (1)− (4). Analogous to the situation
when player I has a winning strategy, we pick a real z∗ ≥T xσ ⊕ v, where
xσ is a real coding the winning strategy σ for player II, such that every
z∗-premouse which satisfies properties (1) − (4) is already ω1-iterable (see
Claims 1 and 2).

As in the argument for player I we can construct a real z ≥T z∗ such that
there exists a z-premouseN which satisfies properties (1)−(4), is ω1-iterable,
and satisfies the additional property (3∗). As before we let AN denote the

1We say an ω1-iterable premouse M is smaller or equal in the mouse order than an ω1-
iterable premouse N and write “M ≤∗ N” iff M and N successfully coiterate to premice
M∗ and N∗ such that M∗ EN∗. Moreover we say that N and M are equal in the mouse
order and write “M =∗ N” iff M ≤∗ N and N ≤∗ M.
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least non-determined OD-set in N , which exists because the z-premouse N
satisfies property (2).

Now we define a strategy σ∗ for player II in the usual Gale-Stewart game
G(AN ) with payoff set AN played inside N as follows. Assume that player
I produces a real a ∈ N in a run of the game G(AN ) inside the model N .
Then we consider the following run of the game G:

I (z ⊕ a)⊕ a
II y ⊕ b = σ((z ⊕ a)⊕ a)

Player I plays a real (z ⊕ a) ⊕ a and player II responds with a real y ⊕ b
according to his winning strategy σ in G. We define the strategy σ∗ such
that in a run of the game G(AN ) inside the model N according to σ∗ player
II has to respond to the real a with producing the real b.

I a
II b = σ∗(a)

Claim 5. σ∗ is a winning strategy for player II in the Gale-Stewart game
with payoff set AN played in N .

This claim implies that AN is determined in N , again contradicting that
AN was assumed to be the least non-determined OD-set of reals in N .

Proof of Claim 5. We first want to show that the ((z ⊕ a) ⊕ y)-
premouse L[E]((z ⊕ a)⊕ y)N satifies properties (1)− (4).

First property (1) for N yields that

L[E]((z ⊕ a)⊕ y)N ∼ N,
because we have z, a, y ∈ N . Therefore L[E]((z⊕a)⊕ y)N is a ((z⊕a)⊕ y)-
premouse which satisfies property (2), because it has the same sets of reals
and the same OD-sets of reals as N and hence as before

L[E]((z ⊕ a)⊕ y)N � ¬OD-determinacy.

The (n − 1)-smallness of L[E]((z ⊕ a) ⊕ y)N again follows by an argument
we already gave in the proof of Lemma 2.2.15. Moreover L[E]((z⊕a)⊕ y)N

inherits condition (1) from N .

Since L[E]((z⊕a)⊕y)N is a fully backgrounded extender construction inside
the ω1-iterable mouse N it is ω1-iterable itself by §12 in [MS94]. Therefore
L[E]((z⊕ a)⊕ y)N satisfies properties (1), (2) and (4). By property (3∗) for
the z-premouse N we additionally have that L[E]((z⊕a)⊕y)N also satisfies
property (3).

Since σ is a winning strategy for player II in the original game G, we have
that if a, b, z and y are as above, then

a⊕ b /∈ AN ′ ,
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for all ((z ⊕ a) ⊕ y)-premice N ′ satisfying properties (1) − (4), where AN ′
denotes the least non-determined OD-set of reals in N ′. Now let

N ′ = L[E]((z ⊕ a)⊕ y)N ,

so we have that in particular N ′ is a ((z ⊕ a) ⊕ y)-premouse and satisfies
properties (1)− (4) as above.

As in the previous case where we assumed that player I has a winning
strategy in G, we want to show that

AN ′ = AN

in order to conclude that σ∗ is a winning strategy for player II in the Gale-
Stewart game with payoff set AN played inside N , using that N ′ satisfies
properties (1)− (4) as argued above.

Using L[E]((z ⊕ a)⊕ y)N ∼ N it follows that

N ∼ N ′,

and thus AN = AN ′ , as desired. �

This finishes the proof of Lemma 2.1.3. �

2.4. Applications

This section is devoted to two important corollaries of Lemma 2.1.3 which
are going to be used in Sections 2.5 and 3.7.

Corollary 2.4.1. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-

iterable for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are deter-

mined. Then

ω
Mn−1(x)
1 is measurable in HODMn−1(x)|δx ,

for a cone of reals x.

Proof. This follows from Lemma 2.1.3 with a generalized version of
Solovay’s theorem that, under the Axiom of Determinacy AD, ω1 is mea-
surable. For the readers convenience, we will present a proof of this result,
following the proof of the classical result as in Theorem 12.18 (b) in [Sch14]
or Lemma 6.2.2 in [SchSt].

Lemma 2.1.3 yields that

Mn−1(x)|δx � OD-determinacy,

for a cone of reals x. Let x ∈ ωω be an arbitrary element of this cone and
let us work inside Mn−1(x)|δx for the rest of the proof. We aim to define

a < ω1-complete ultrafilter U inside HODMn−1(x)|δx on ω1
def
= ω

Mn−1(x)|δx
1 =

ω
Mn−1(x)
1 , witnessing that ω1 is measurable in HODMn−1(x)|δx .
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Let n,m 7→ 〈n,m〉 be the Gödel pairing function for n,m < ω and recall
that

WO
def
= {x ∈ ωω | Rx is a well-ordering},

where we let (n,m) ∈ Rx iff x(〈n,m〉) = 1 for x ∈ ωω. For y ∈WO we write
||y|| for the order type of Ry and for x ∈ ωω we let

|x| = sup{||y|| | y ∈WO ∧ y ≡T x}.

Consider the set S = {|x| | x ∈ ωω} and let π : ω1 → S be an order
isomorphism. Now we define the filter U on ω1 as follows. For A ⊂ ω1 such
that A ∈ OD we let

A ∈ U iff {x ∈ ωω | |x| ∈ π ”A} contains a cone of reals.

Claim 1. U ∩HOD is a < ω
Mn−1(x)
1 -complete ultrafilter in HOD.

Proof. The set {x ∈ ωω | |x| ∈ π ”A} is Turing invariant. Therefore
we have that OD-Turing-determinacy implies that the set {x ∈ ωω | |x| ∈
π ”A} for A ∈ OD either contains a cone of reals or is completely disjoint
from a cone of reals. Hence we have that U ∩ HOD is an ultrafilter on
ω1 = ω

Mn−1(x)
1 in HOD. Moreover the following argument shows that this

ultrafilter U ∩HOD is < ω
Mn−1(x)
1 -complete in HOD.

Let {Aα | α < γ} ⊂ U ∩ HOD be such that {Aα | α < γ} ∈ HOD for an

ordinal γ < ω
Mn−1(x)
1 . Then there is a sequence (aα | α < γ) of reals such

that for each α < γ, the real aα is a base for a cone of reals contained in

{x ∈ ωω | |x| ∈ π ”Aα}. Since γ < ω
Mn−1(x)
1 , we can fix a bijection f : ω → γ

in Mn−1(x). But then
⊕

n<ω af(n) is a base for a cone of reals contained in⋂
α<γ

{x ∈ ωω | |x| ∈ π ”Aα} = {x ∈ ωω | |x| ∈ π ”
⋂
α<γ

Aα}.

So we have that
⋂
α<γ Aα ∈ U ∩ HOD and thus the filter U ∩ HOD is

< ω
Mn−1(x)
1 -complete. �

Therefore U∩HOD witnesses that ω
Mn−1(x)
1 is measurable in HODMn−1(x)|δx .

�

In what follows we will prove that in the same situation as above ω
Mn−1(x)
2

is strongly inaccessible in HODMn−1(x)|δx , which is another consequence of
Lemma 2.1.3. This is going to be used later in Section 3.7.

In fact the following theorem holds true. It is due to W. Hugh Woodin and
a consequence of the “Generation Theorems” in [KW10] (see Theorem 5.4
in [KW10]).

Theorem 2.4.2. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then
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for a cone of reals x,

ω
Mn−1(x)
2 is a Woodin cardinal in HODMn−1(x)|δx .

In order to make this thesis more self-contained, we shall not use Theorem
2.4.2 here, though, and we will give a proof of the following theorem, which
is essentially due to Moschovakis, and will be used in Section 3.7. A version
of it can also be found in [KW10] (see Theorem 3.9 in [KW10]).

Theorem 2.4.3. Let n ≥ 1. Assume that M#
n−1(x) exists and is ω1-iterable

for all x ∈ ωω and that all Σ1
n+1-definable sets of reals are determined. Then

for a cone of reals x,

ω
Mn−1(x)
2 is strongly inaccessible in HODMn−1(x)|δx .

Proof. Using Lemma 2.1.3 we have as above that there is a cone of
reals x such that

Mn−1(x)|δx � OD-determinacy.

Let x be an element of that cone.

Claim 1. We have that ω
Mn−1(x)
2 = (Θ0)Mn−1(x), where

Θ0 = sup{α | there exists an OD -surjection f : ωω → α}.

Proof. Work inside the model Mn−1(x). Since CH holds in Mn−1(x),
it follows that Θ0 ≤ ω2. For the other inequality let α < ω2 be arbitrary.
Then there exists an ODx-surjection g : ωω → α because by definability
(using the definability results from [St95]) we have that

Mn−1(x)|ωMn−1(x)
2 ⊆ HODMn−1(x)

x .

This implies that there is an OD-surjection f : ωω × ωω → α by varying x
and thus it follows that α ≤ Θ0. �

Work inside the model Mn−1(x)|δx from now on and note that it is trivial
that Θ0 = ω2 is a regular cardinal in HOD. So we focus on proving that ω2

is a strong limit. For this purpose we fix an arbitrary ordinal α < ω2 and
prove that |P(α)HOD| < ω2.

Since α < ω2 = Θ0, we can fix a surjection f : ωω → α such that f ∈ OD.
This surjection f induces a prewellordering ≤f∈ OD on ωω if we let

x ≤f y iff f(x) ≤ f(y)

for x, y ∈ ωω. Now consider the pointclass Σ1
1(≤f ) which is defined as

follows. For a set of reals A (or analogously for a set A ⊂ (ωω)k for some
k < ω) we say A ∈ Σ1

1(≤f ) iff there is a Σ0-formula ϕ and a real z ∈ ωω
such that

A = {y ∈ ωω | ∃x ∈ ωω ϕ(y, x,≤f , ωω\ ≤f , z)}.
The pointclass Σ1

1(≤f ) is defined analogous without the parameter z. We
have that there exists a universal Σ1

1(≤f )-definable set U ⊆ ωω× ωω for the
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pointclass Σ1
1(≤f ). So we have that for every Σ1

1(≤f )-definable set A there
exists a z ∈ ωω such that A = Uz = {x ∈ ωω | (z, x) ∈ U}. Now it suffices
to prove the following claim.

Claim 2. Let X ⊂ α with X ∈ OD be arbitrary. Then there exists a
Σ1

1(≤f )-definable set A ⊂ ωω such that X = f ”A.

Using Claim 2 we can define a surjection

g : ωω → P(α) ∩OD

such that g ∈ OD by letting g(z) = f ”Uz for z ∈ ωω. This yields that we
have |P(α)HOD| < ω2 as desired.

Therefore we are left with proving Claim 2 to finish the proof of Theorem
2.4.3. The proof of Claim 2 is mainly a special case of Moschovakis’ Coding
Lemma as in Theorem 3.2 in [KW10], so we will outline the proof in this
special case.

Proof of Claim 2. Let X ∈ P(α)∩OD be arbitrary. We aim to show
that there is a real z ∈ ωω such that X = f ”Uz. Let

B = {z ∈ ωω | f ”Uz ⊆ X}.

Moreover let αz for z ∈ B be the minimal ordinal β such that β ∈ X \f ”Uz,
if it exists. We aim to show that there exists a real z ∈ B such that αz does
not exist. So assume toward a contradiction that the ordinal αz exists for
all z ∈ B.

Now consider the following game G of length ω, where player I and player
II alternate playing natural numbers such that in the end player I plays a
real x and player II plays a real y.

I x
II y

for x, y ∈ ωω.

We define that player I wins the game G iff

x ∈ B ∧ (y ∈ B → αx ≥ αy).

Note that we have B ∈ OD since f, U,X ∈ OD. Therefore the game G is
OD and thus determined by our hypothesis.

Assume first that player I has a winning strategy σ in G. For a real y let
(σ∗y)I denote player I’s moves in a run of the game G, where player II plays
y and player I responds according to his winning strategy σ. Then there
exists a real z0 such that

Uz0 =
⋃
{U(σ∗y)I

| y ∈ ωω}

because the right hand side of this equation is Σ1
1(≤f )-definable by choice

of U . Since σ is a winning strategy for player I, we have that (σ ∗ y)I ∈ B
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for all y ∈ ωω and thus it follows that z0 ∈ B. Moreover we have that
α(σ∗y)I

≤ αz0 for all y ∈ ωω by definition of z0.

Now we aim to construct a play z∗ for player II defeating the strategy σ.
Since f : ωω → α is a surjection we can choose a ∈ ωω such that f(a) = αz0 .
Moreover we let z∗ ∈ ωω be such that Uz∗ = Uz0 ∪ {a}. Then we have that

f ”Uz∗ = f ”Uz0 ∪ {f(a)} = f ”Uz0 ∪ {αz0} ⊂ X,
since z0 ∈ B. Hence z∗ ∈ B. Moreover we have that

αz∗ > αz0 ≥ α(σ∗y)I

for all y ∈ ωω. Therefore player II can defeat σ by playing the real z∗,
contradicting the fact that σ is a winning strategy for player I.

Assume now that player II has a winning strategy τ in the game G. Let

h0 : ωω × ωω → ωω

be a Σ1
1(≤f )-definable function such that for all y, z ∈ ωω,

Uh0(z,y) = Uz ∩ {x ∈ ωω | f(x) < f(y)}.

Choose h1 : ωω → ωω such that h1 is Σ1
1(≤f )-definable and

Uh1(z) =
⋃
{U(h0(z,y)∗τ)II

∩ {x ∈ ωω | f(x) = f(y)} | y ∈ ωω},

where the notion (h0(z, y) ∗ τ)II is defined analogous to the corresponding
notion for player I introduced above. By Kleene’s Recursion Theorem (see
for example Theorem 3.1 in [KW10]) there exists a fixed point for h1 with
respect to the set U , that means there exists a real z∗ ∈ ωω such that we
have

Uz∗ = Uh1(z∗).

Now our first step is to prove that z∗ ∈ B. Assume toward a contradiction
that (f ”Uz∗) \X 6= ∅ and let γ0 ∈ (f ”Uz∗) \X be minimal. Moreover let
y0 ∈ Uz∗ be such that f(y0) = γ0. Then

γ0 ∈ f ”Uz∗ = f ”Uh1(z∗)

and by definition of the function h1 it follows that γ0 ∈ f ”U(h0(z∗,y0)∗τ)II
.

Since γ0 was picked to be minimal in (f ”Uz∗) \X, we have h0(z∗, y0) ∈ B
because we have by definition that

Uh0(z∗,y0) = Uz∗ ∩ {x ∈ ωω | f(x) < f(y0)} = Uz∗ ∩ {x ∈ ωω | f(x) < γ0}
and thus f ”Uh0(z∗,y0) ⊆ X. Since τ is a winning strategy for player II, we
have that (h0(z∗, y0) ∗ τ)II ∈ B. Taken all together it follows that

γ0 ∈ f ”U(h0(z∗,y0)∗τ)II
⊆ X.

This contradicts the fact that γ0 ∈ (f ”Uz∗) \X.

Recall that we assumed toward a contradiction that the ordinal αz∗ exists.
Let a∗ ∈ ωω be such that

f(a∗) = αz∗
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and note that such an a∗ exists since f : ωω → α is a surjection and αz∗ < α.
Then we have by definition of the function h0 that h0(z∗, a∗) ∈ B because
z∗ ∈ B. Moreover we have that αz∗ = αh0(z∗,a∗) holds by definition of αz∗

since f(a∗) = αz∗ . As τ is a winning strategy for player II in the game G,
we finally have that

α(h0(z∗,a∗)∗τ)II
> αh0(z∗,a∗) = αz∗ ,

because h0(z∗, a∗) ∈ B. This contradicts the fact that

U(h0(z∗,a∗)∗τ)II
⊂ Uh1(z∗) = Uz∗ ,

by definition of αz∗ and α(h0(z∗,a∗)∗τ)II
. Therefore the ordinal αz∗ does not

exist and thus we finally have that f ”Uz∗ = X, as desired. �

This finishes the proof of Theorem 2.4.3. �

2.5. A Proper Class Inner Model with n Woodin Cardinals

In this section we are now able to apply the results from the previous sections
to show the existence of a proper class inner model with n Woodin cardinals
from determinacy for Π1

n- and Π1
n+1-definable sets (if we assume inductively

that Π1
n determinacy implies that M#

n−1(x) exists and is ω1-iterable for all
x ∈ ωω). This is done in the following theorem, which is a generalization of
Theorem 7.7 in [St96] using Lemma 2.1.3 and Corollary 2.4.1.

Theorem 2.5.1. Let n ≥ 1. If M#
n−1(x) exists and is ω1-iterable for all

x ∈ ωω and all Σ1
n+1-definable sets of reals are determined, then there exists

a proper class inner model with n Woodin cardinals.

We are not claiming here that the model obtained in Theorem 2.5.1 is iter-
able in any sense. We will show how to construct an ω1-iterable premouse
with n Woodin cardinals using this model in the next chapter, but for that
we need to assume slightly more determinacy (namely a consequence of de-
terminacy for all Σ1

n+1-definable sets of reals).

Proof. As before let δx denote the least Woodin cardinal in Mn−1(x)
if n > 1 and let δx denote the least x-indiscernible in L[x] = M0(x) if n = 1.
Then we have that according to Lemma 2.1.3, there is a real x such that for
all reals y ≥T x,

Mn−1(y)|δy � OD-determinacy.

Fix such a real x.

In the case n = 1 we have that Theorem 2.5.1 immediately follows from
Theorem 7.7 in [St96], so assume n > 1.

Let (Kc)Mn−1(x)|δx denote the result of a Kc-construction in the sense of
Chapter 1 in [St96] performed inside the model Mn−1(x)|δx. Then we dis-
tinguish three cases as follows.
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Case 1. Assume that (Kc)Mn−1(x)|δx has no Woodin cardinals and is fully
iterable inside Mn−1(x)|δx via the iteration strategy Σ which is guided by
Q-structures as in Definition 2.2.2.

In this case we can isolate the core modelKMn−1(x)|δx below δx as in Theorem
1.1 in [JS13]. Then the core model KMn−1(x)|δx is absolute for all forcings of

size less than δx over Mn−1(x)|δx and moreover KMn−1(x)|δx satisfies weak
covering using [MSch95]. That means we have that Mn−1(x)|δx � “(α+)K =
α+” for all singular cardinals α.

Let α = ℵMn−1(x)
ω . Then α is singular in Mn−1(x), so we have in particular

that

Mn−1(x)|δx � “(α+)K = α+”.

Moreover we have that α is a cutpoint of Mn−1(x). So let z ∈ ωω be generic
over Mn−1(x) for Col(ω, α). Then for y = x⊕ z we have that

Mn−1(x)[z] = Mn−1(y),

where we construe M#
n−1(x)[z] as a y-mouse and as a y-mouse M#

n−1(x)[z] is

sound and ρω(M#
n−1(x)[z]) = y (see [SchSt09] for the fine structural details).

Moreover we have that

Mn−1(y)|δy � OD-determinacy,

since y ≥T x. This implies that

Mn−1(x)[z]|δy � OD-determinacy.

Now work in the model Mn−1(x)[z]|δy. Then we have that OD-determinacy
implies that ω1 is measurable in HOD as in Corollary 2.4.1.

Since K ⊆ HOD and we have that ω1 = (α+)K , it follows that ω1 =
(α+)HOD. But HOD � AC, so in particular in HOD all measurable car-
dinals are inaccessible. This is a contradiction.

Case 2. Assume that there is a Woodin cardinal in (Kc)Mn−1(x)|δx .

In this case we aim to show that there exists a proper class inner model with
n Woodin cardinals, which is obtained by performing a fully backgrounded
extender construction inside Mn−1(x) on top of the model

(Kc)Mn−1(x)|δx | δ,

where δ denotes the largest Woodin cardinal in (Kc)Mn−1(x)|δx .

We can assume without loss of generality that there is a largest Woodin
cardinal in the model (Kc)Mn−1(x)|δx if it has a Woodin cardinal, because if

there is no largest one, then (Kc)Mn−1(x)|δx already yields a proper class inner
model with n Woodin cardinals by iterating some large enough extender
out of the universe. By the same argument we can in fact assume that
(Kc)Mn−1(x)|δx is (n− 1)-small above δ.
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Let
(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender
construction above (Kc)Mn−1(x)|δx | δ inside Mn−1(x) in the sense of [MS94]
but with the smallness hypothesis weakened where

Mξ+1 = Cω(Nξ+1)

and let
L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x)

denote the resulting model.

Case 2.1. There is no ξ ∈ Ord such that δ is not definably Woodin over
the model Mξ+1.

In this case δ is a Woodin cardinal inside L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x) and
it follows by a generalization of Theorem 11.3 in [MS94] that we have that

L[E]((Kc)Mn−1(x)|δx | δ)Mn−1(x) is a proper class inner model with n Woodin
cardinals, as desired.

Case 2.2. There exists a ξ ∈ Ord such that δ is not definably Woodin over
the model Mξ+1.

Let ξ be the minimal such ordinal. In this case the premouseMξ+1 is (n−1)-
small above δ (see the proof of Claim 1 in the proof of Lemma 2.2.15) and
we have that

Mξ+1 ∈Mn−1(x)|δx.
Consider the coiteration of Mξ+1 and (Kc)Mn−1(x)|δx inside Mn−1(x)|δx.

Claim 1. The coiteration ofMξ+1 and (Kc)Mn−1(x)|δx inside Mn−1(x)|δx is
successful.

Proof. First of all we have that the coiteration takes place above δ
and the premouse Mξ+1 is ω1-iterable above δ in V by construction (see
[MS94]). Therefore the proof of Lemma 2.2.8 (2) yields that in the model

Mn−1(x)|δx we have that Mξ+1 is iterable for iteration trees in H
Mn−1(x)
δx

which are above δ, since Mξ+1 ∈ Mn−1(x)|δx is (n − 1)-small above δ and
ρω(Mξ+1) ≤ δ.
Moreover we have that (Kc)Mn−1(x)|δx is countably iterable above δ inside
Mn−1(x)|δx by the iterability proof in Chapter 9 in [St96].

Assume now toward a contradiction that the coiteration of (Kc)Mn−1(x)|δx

withMξ+1 inside Mn−1(x)|δx is not successful. Since as argued aboveMξ+1

is iterable above δ inside Mn−1(x)|δx and the coiteration takes place above

δ this means that the coiteration has to fail on the (Kc)Mn−1(x)|δx-side.

The premouse (Kc)Mn−1(x)|δx is assumed to be (n − 1)-small above δ and

therefore the fact that the coiteration of (Kc)Mn−1(x)|δx and Mξ+1 fails on
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the (Kc)Mn−1(x)|δx-side, implies that there exists an iteration tree T on

(Kc)Mn−1(x)|δx of limit length such that there is no Q-structure Q(T ) for

T such that Q(T )EM#
n−2(M(T )) and hence

M#
n−2(M(T )) � “δ(T ) is Woodin”.

In particular we have that the premouse M#
n−2(M(T )) constructed in the

sense of Definition 2.2.6 is not (n − 2)-small above δ(T ) since otherwise it
would already provide a Q-structure Q(T ) for T which is (n−2)-small above
δ(T ).

Let M̄ be the Mostowski collapse of a countable substructure of Mn−1(x)|δx
containing the iteration tree T . That means for a large enough natural
number m we let M̄,X and σ be such that

M̄
σ∼= X ≺Σm Mn−1(x)|δx,

where

σ : M̄ →Mn−1(x)|δx
denotes the uncollapse map such that we have a model K̄ in M̄ with
σ(K̄|γ) = (Kc)Mn−1(x)|δx |σ(γ) for every ordinal γ < M̄ ∩Ord, and we have
an iteration tree T̄ on K̄ in M̄ with σ(T̄ ) = T . Moreover we let δ̄ ∈ M̄ be
such that σ(δ̄) = δ.

By the iterability proof of Chapter 9 in [St96] applied inside the model
Mn−1(x)|δx, there exists a cofinal well-founded branch b through the itera-
tion tree T̄ on K̄ above δ̄. Moreover we have that

M#
n−2(M(T̄ )) � “δ(T̄ ) is Woodin”

and M#
n−2(M(T̄ )) is not (n− 2)-small above δ(T̄ ).

Consider the coiteration of MT̄b with M#
n−2(M(T̄ )) and note that it takes

place above δ(T̄ ). Since M#
n−2(M(T̄ )) is ω1-iterable above δ(T̄ ) andMT̄b is

iterable above δ̄ < δ(T̄ ) by the iterability proof of Chapter 9 in [St96] ap-
plied inside Mn−1(x)|δx, the coiteration is successful using Lemma 2.2.8 (2).

We have that MT̄b cannot loose the coiteration by the following argument.

If there is no drop along the branch b, then MT̄b cannot loose the coitera-

tion, because then there is no definable Woodin cardinal inMT̄b above δ̄ by
elementarity, but at the same time we have that

M#
n−2(M(T̄ )) � “δ(T̄ ) > δ̄ is Woodin”.

If there is a drop along b, thenMT̄b also has to win the coiteration, because

we have that ρω(MT̄b ) < δ(T̄ ) and ρω(M#
n−2(M(T̄ ))) = δ(T̄ ).

That means there is an iterate R∗ of MT̄b and a non-dropping iterate M∗

of M#
n−2(M(T̄ )) such that M∗ E R∗. We have that M∗ is not (n − 1)-

small above δ̄, because M#
n−2(M(T̄ )) is not (n− 1)-small above δ̄ as argued
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above and the iteration from M#
n−2(M(T̄ )) to M∗ is non-dropping. There-

fore it follows that R∗ is not (n − 1)-small above δ̄ and thus MT̄b is not
(n− 1)-small above δ̄. By the iterability proof of Chapter 9 in [St96] we can

re-embed the model MT̄b into a model of the (Kc)Mn−1(x)|δx-construction

above (Kc)Mn−1(x)|δx | δ. This yields that (Kc)Mn−1(x)|δx is not n-small, con-
tradicting our assumption that it is (n− 1)-small above δ. �

From Claim 1 it now follows by universality of (Kc)Mn−1(x)|δx above δ (see

Corollary 3.6 in [St96]) that the (Kc)Mn−1(x)|δx-side has to win the compari-

son. That means there is an iterate K∗ of (Kc)Mn−1(x)|δx and an iterate N∗

of Mξ+1 which is non-dropping on the main branch such that

N∗ EK∗.

But this is a contradiction, because we assumed that δ is not definably
Woodin over Mξ+1 and at the same time we have that

(Kc)Mn−1(x)|δx � “δ is a Woodin cardinal”.

This finishes the case that there is a Woodin cardinal in (Kc)Mn−1(x)|δx .

Case 3. Assume that there is no Woodin cardinal in (Kc)Mn−1(x)|δx and

that the premouse (Kc)Mn−1(x)|δx is not fully iterable inside Mn−1(x)|δx via
the iteration strategy Σ.

The failure of the attempt to iterate (Kc)Mn−1(x)|δx via the Q-structure
iteration strategy Σ implies that there exists an iteration tree T of limit
length on (Kc)Mn−1(x)|δx in Mn−1(x)|δx such that there exists noQ-structure
for T inside the model Mn−1(x)|δx.

Let
(Mξ,Nξ | ξ ∈ Ord)

be the sequence of models obtained from a fully backgrounded extender
construction above M(T ) inside Mn−1(x) in the sense of [MS94] but with
the smallness hypothesis weakened where

Mξ+1 = Cω(Nξ+1)

and let
L[E](M(T ))Mn−1(x)

denote the resulting model.

Case 3.1. There is no ξ ∈ Ord such that δ(T ) is not definably Woodin over
the model Mξ+1.

In this case δ(T ) is a Woodin cardinal inside L[E](M(T ))Mn−1(x) and it
follows as in Case 2.1 by a generalization of Theorem 11.3 in [MS94] that

L[E](M(T ))Mn−1(x) is a proper class inner model with n Woodin cardinals,
as desired.
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Case 3.2. There exists a ξ ∈ Ord such that δ(T ) is not definably Woodin
over the model Mξ+1.

Let ξ be the minimal such ordinal. In this case the premouse Mξ+1 is
(n− 1)-small above δ(T ) and we have that

Mξ+1 ∈Mn−1(x)|δx.
But then Mξ+1 BM(T ) already provides a Q-structure for T inside the
model Mn−1(x)|δx because δ(T ) is not definably Woodin over Mξ+1. This
is a contradiction. �

Note that all results we proved in this chapter under a lightface determinacy
hypothesis relativize to all x ∈ ωω if we assume the analogous boldface
determinacy hypothesis. We just decided to present the results without
additional parameters to simplify the notation.



CHAPTER 3

Proving Iterability

With Theorem 2.5.1 we found a candidate for Mn in the previous chapter,
but we still have to show its iterability. We will in fact not prove that this
candidate is iterable, but we will use it to construct an ω1-iterable premouse

M#
n in the case that n is odd. (Note here already that we will give a different

argument if n is even.)

We do parts of this in a slightly more general context and therefore introduce
the concept of an n-suitable premouse in Section 3.1, which will be a natural
candidate for the premouse Mn|(δ+

0 )Mn , where δ0 denotes the least Woodin
cardinal in Mn. Using n-suitable premice we will show under a determinacy

hypothesis that M#
n exists and is ω1-iterable if n is odd. Before we prove

this as Theorem 2.1.1 in Sections 3.5 and 3.6, we start with a “warm up” in
Section 3.4 to introduce some concepts of the proof which are going to be

reused later. We will show that M#
n exists and is ω1-iterable for even n in

Section 3.7.

In this chapter again all results we are going to prove under a lightface
determinacy hypothesis relativize to all x ∈ ωω under the analogous boldface
determinacy hypothesis.

3.1. Existence of n-suitable Premice

After introducing pre-n-suitable premice and proving their existence from
the results in the previous chapter, we aim to show in this section that
pre-(2n− 1)-suitable premice, which are premice with one Woodin cardinal
which satisfy certain fullness conditions, also satisfy a weak form of iterabil-
ity, namely short tree iterability. In fact we are going to show a slightly
stronger form of iterability which includes that fullness properties are pre-
served during non-dropping iterations. This will in particular enable us to
perform certain comparison arguments for (2n − 1)-small premice and will

therefore help us to conclude ω1-iterability for some candidate for M#
2n−1.

Recall that in what follows by “M#
n exists” we always mean that “M#

n exists
and is ω1-iterable”.

A lot of the results in this section only hold true for premice at the odd
levels of our argument, namely (2n− 1)-suitable premice. This results from
the periodicity in the projective hierarchy in terms of the uniformization

property (see Lemma 3.4.2) and the periodicity in the correctness of M#
n

53
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(see Lemmas 1.3.4 and 1.3.6). This behaviour forces us to give a different
proof for the even levels of our argument in Section 3.7.

We start by introducing pre-n-suitable and n-suitable premice. Our defini-
tion will generalize the notion of suitability from Definition 3.4 in [StW16]
to n > 1. For technical reasons our notion slightly differs from n-suitability
as defined in Definition 5.2 in [Sa13].

Definition 3.1.1. Let n ≥ 1 and assume that M#
n−1(x) exists for all x ∈ ωω.

Then we say a countable premouse N is pre-n-suitable iff there is an ordinal
δ < ωV1 such that

(1) N � “ ZFC−+ δ is the largest cardinal”,

N = Mn−1(N |δ) | (δ+)Mn−1(N |δ),

and for every γ < δ,

Mn−1(N |γ) | (γ+)Mn−1(N |γ) CN,

(2) Mn−1(N |δ) is a proper class model and

Mn−1(N |δ) � “δ is Woodin”,

(3) for every γ < δ, Mn−1(N |γ) is a set, or

Mn−1(N |γ) 2 “γ is Woodin”,

and
(4) for every η < δ, Mn−1(N |δ) � “N |δ is η-iterable”.

Recall the definition of the premouse Mn−1(N |δ) from Definition 2.2.6. If N
is a pre-n-suitable premouse, we denote the unique ordinal δ from Definition
3.1.1 by δN , analogous to the notation fixed in Section 2.1.

Whenever we assume that some premouse N is pre-n-suitable for some n ≥
1, we in fact tacitly assume in addition that the premouse M#

n−1(x) exists

for all x ∈ ωω (or at least that the premouse M#
n−1(N |δ) exists).

Remark. Clearly, if it exists, Mn|(δ+)Mn is a pre-n-suitable premouse for
n ≥ 1, whenever δ denotes the least Woodin cardinal in Mn.

Remark. We have that for n ≥ 1, if N is a pre-n-suitable premouse, then
N is n-small.

We first show that the proper class inner model with n Woodin cardinals we
constructed in the proof of Theorem 2.5.1 yields a pre-n-suitable premouse,
if we cut it off at the successor of its least Woodin cardinal and minimize it.

Lemma 3.1.2. Let n ≥ 1. Assume that M#
n−1(x) exists for all x ∈ ωω and

that all Σ1
n+1-definable sets of reals are determined. Then there exists a

pre-n-suitable premouse.
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Proof. Let W be the model constructed in Cases 2 and 3 in the proof of
Theorem 2.5.1. Cutting off at the successor of the bottom Woodin cardinal δ
yields a premouse N = W |(δ+)W which satisfies conditions (1) and (2) in the

definition of pre-n-suitability, in the case that the premouse (Kc)Mn−1(x)|δx

from the proof of Theorem 2.5.1 is (n − 1)-small above δ. Otherwise we

can easily consider an initial segment N of (Kc)Mn−1(x)|δx which satisfies
conditions (1) and (2). Let N ′ be the minimal initial segment of N which
satisfies conditions (1) and (2) and note that we then have that N ′ satisfies
condition (3).

Now the iterability proof from Chapter 9 in [St96] shows that this premouse
N ′|δ′ is countably iterable inside Mn−1(x), where x is a real as in the proof
of Theorem 2.5.1 such that the model W as above is constructed inside the
model Mn−1(x) and δ′ denotes the largest cardinal in N ′. The Q-structures
for iteration trees T on N ′|δ′ are (n − 1)-small above the common part
model and are therefore contained in the model Mn−1(N ′|δ′) by arguments
we already gave several times before. Thus it follows that N ′|δ′ is η-iterable
inside Mn−1(N ′|δ′) for all η < δ′. Therefore we have that condition (4) holds
as well for N ′. �

We can show that the following weak form of condensation holds for pre-n-
suitable premice.

Lemma 3.1.3 (Weak Condensation Lemma). Let N be a pre-n-suitable pre-
mouse for some n ≥ 1 and let δN denote the largest cardinal in N . Let γ be
a large enough countable ordinal in V and let H be the Mostowski collapse

of Hull
Mn−1(N |δN )|γ
m ({δN}) for some large enough natural number m. Then

H CMn−1(N |δN ).

Proof. Consider the coiteration of the premice N |δN and H inside the
model Mn−1(N |δN ). By condition (4) in the definition of pre-n-suitability
we have that N |δN is iterable enough for the comparison with H inside the
model Mn−1(N |δN ). Moreover H is also iterable enough for the comparison
via the realization strategy (see Section 4 in [MaSt94]). So the comparison is
successful and there are iterates N∗ of N |δN and H∗ of H such that H∗EN∗

or N∗ EH∗. The Weak Dodd-Jensen Lemma (see Theorem 4.10 in [St10])
yields that in fact H∗ EN∗ and that the iteration from H to H∗ does not
drop.

Assume toward a contradiction that H 6= H∗, that means there is at least
one extender used in the iteration from H to H∗. Since ρω(H) = ω, this
implies that H∗ is not sound and yields a contradiction to the fact that we
have H∗ E N∗. So it follows that H is not moved in the coiteration and
therefore H = H∗.

Assume now that the premouse N |δN moves in the coiteration, that means
we have that N∗ 6= N |δN . Let Eα for some ordinal α be the first extender
used in the iteration from N |δN to N∗. Then the index α of the extender
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Eα is a cardinal in N∗. Since we have ρω(H) = ω and H E N∗, it follows
that α > H ∩Ord. Therefore there was no need to iterate N |δN at all and
we have that

H EN |δN CMn−1(N |δN ),

as desired. �

Analogous to Definitions 3.6 and 3.9 in [StW16] we define a notion of short
tree iterability for pre-n-suitable premice. Informally a pre-n-suitable pre-
mouse is short tree iterable if it is iterable with respect to iteration trees for
which there are Q-structures (see Definition 2.2.1) which are not too com-

plicated. For this definition we again tacitly assume that M#
n−1(x) exists for

all reals x.

Definition 3.1.4. Let T be a normal iteration tree of length < ωV1 on a
pre-n-suitable premouse N for some n ≥ 1. We say T is short iff for all
limit ordinals λ < lh(T ) the Q-structure Q(T � λ) exists, is (n − 1)-small
above δ(T � λ) and we have that

Q(T � λ)EMTλ ,

and if T has limit length we in addition have that Q(T ) exists and

Q(T )EMn−1(M(T )).

Moreover we say T is maximal iff T is not short.

The premouse Mn−1(M(T )) in Definition 3.1.4 is defined as in Definition
2.2.6.

Definition 3.1.5. Let N be a pre-n-suitable premouse for some n ≥ 1. We
say N is short tree iterable iff whenever T is a short tree on N ,

(i) if T has a last model, then every putative1 iteration tree U extending
T such that lh(U) = lh(T ) + 1 has a well-founded last model, and

(ii) if T has limit length, then there exists a unique cofinal well-founded
branch b through T such that

Q(b, T ) = Q(T ).

Remark. At this point in contrast to the notion of short tree iterability
for 1-suitable premice in [StW16] we do not require the iterate of a pre-n-
suitable premouse via a short tree to be pre-n-suitable again. The reason for
this is that in the general case for n > 1 it is not obvious that this property
holds assuming only our notion of short tree iterability as defined above. We
will be able to prove later in Lemma 3.1.9 that this property in fact does
hold true.

1Recall that we say an iteration tree U is a putative iteration tree if U satisfies all properties
of an iteration tree, but we allow the last model of U to be ill-founded, in case U has a
last model.



3.1. EXISTENCE OF n-SUITABLE PREMICE 57

Because of the periodicity in the projective hierarchy (see also [St95] for
the periodicity in the definition of Π1

n-iterability) the proof of the following
lemma only works for odd levels of suitability.

Lemma 3.1.6. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω. Let

N be a pre-(2n+ 1)-suitable premouse. Then the statement “N is short tree
iterable” as in Definition 3.1.5 is Π1

2n+2-definable uniformly in any code for
the countable premouse N .

Proof. The statement “N is short tree iterable” can be phrased as
follows. We first consider trees of limit length.

∀T tree on N of limit length ∀ (Qλ | λ ≤ lh(T ) limit ordinal),

if for all limit ordinals λ ≤ lh(T ),

Qλ is Π1
2n+1-iterable above δ(T � λ), 2n-small above δ(T � λ),

solid above δ(T � λ) and a Q-structure for T � λ, and

if for all limit ordinals λ < lh(T ) we have Qλ EMTλ , then

∃b cofinal branch through T such that Qlh(T ) EMTb .

This statement is Π1
2n+2-definable uniformly in any code for N since Π1

2n+1-

iterability above δ(T � λ) for Qλ is Π1
2n+1-definable uniformly in any code

for Qλ. For trees of successor length we get a similar statement as follows.

∀T putative tree on N of successor length ∀ (Qλ | λ < lh(T ) limit ordinal),

if for all limit ordinals λ < lh(T ),

Qλ is Π1
2n+1-iterable above δ(T � λ), 2n-small above δ(T � λ),

solid above δ(T � λ) and a Q-structure for T � λ, and

if for all limit ordinals λ < lh(T ) we have Qλ EMTλ , then

the last model of T is well-founded.

As above this statement is also Π1
2n+2-definable uniformly in any code for

N . Moreover the conjunction of these two statements is equivalent to the
statement “N is short tree iterable”, because the relevant Q-structures Qλ
for limit ordinals λ ≤ lh(T ) are 2n-small above δ(T � λ) and thus Lemma
2.2.10 implies that for them it is enough to demand Π1

2n+1-iterability above
δ(T � λ) to identify them as a Q-structure for T � λ since we assumed that

M#
2n(x) exists for all x ∈ ωω. �

From this we can obtain the following corollary using Lemma 1.3.4.

Corollary 3.1.7. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω.

If N is a pre-(2n+ 1)-suitable premouse, then N is short tree iterable iff N

is short tree iterable inside the model M2n(N |δN )Col(ω,δN ), where δN again
denotes the largest cardinal in N .
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Proof. Let N be an arbitrary pre-(2n + 1)-suitable premouse. By
Lemma 3.1.6 we have that short tree iterability for N is a Π1

2n+2-definable
statement uniformly in any code for N . Therefore we have by Lemma 1.3.4
that N is short tree iterable inside the model M2n(N |δN )Col(ω,δN ) iff N is

short tree iterable in V , because the model M2n(N |δN )Col(ω,δN ) is Σ1
2n+2-

correct in V . �

In what follows we aim to show that every pre-(2n + 1)-suitable premouse
N is short tree iterable. In fact we are going to show a stronger form of
iterability for pre-(2n+ 1)-suitable premice, including for example fullness-
preservation for short trees. This means that for non-dropping short trees
T on N of length λ + 1 for some ordinal λ < ωV1 the resulting model of
the iteration MTλ is again pre-(2n + 1)-suitable. Here we mean by “non-
dropping” that the tree T does not drop on the main branch [0, λ]T . If this
property holds for a pre-(2n+ 1)-suitable premouse N we say that N has a
fullness preserving iteration strategy for short trees. Moreover we also want
to show some form of iterability including fullness-preservation for maximal
trees on N . Premice which satify all these kinds of iterability we will call
(2n+ 1)-suitable.

The exact form of iterability we are aiming for is introduced in the following
definition.

Definition 3.1.8. Assume that M#
n−1(x) exists for all x ∈ ωω and let N be

a pre-n-suitable premouse for some n ≥ 1. Then we say that the premouse
N is n-suitable iff

(i) N is short tree iterable and whenever T is a short tree on N of length
λ + 1 for some ordinal λ < ωV1 which is non-dropping on the main
branch [0, λ]T , then the final model MTλ is pre-n-suitable, and

(ii) whenever T is a maximal iteration tree on N of length λ for some
limit ordinal λ < ωV1 according to the Q-structure iteration strategy,
then there exists a cofinal well-founded branch b through T such that b
is non-dropping and the model MTb is pre-n-suitable. In fact we have
in this case that

MTb = Mn−1(M(T ))|(δ(T )+)Mn−1(M(T )).

Now we are ready to prove that every pre-(2n + 1)-suitable premouse is in
fact already (2n+1)-suitable, using the iterability we build into condition (4)
of Definition 3.1.1 in form of the Weak Condensation Lemma (see Lemma
3.1.3).

Lemma 3.1.9. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω.

Let N be an arbitrary pre-(2n+ 1)-suitable premouse. Then N is (2n+ 1)-
suitable.

Proof. Let N be an arbitrary pre-(2n + 1)-suitable premouse and let
W = M2n(N |δN ) be a premouse in the sense of Definition 2.2.6, where δN
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as usual denotes the largest cardinal in N . That means in particular that
N = W |(δ+

N )W .

We want to show that N is (2n + 1)-suitable. So we assume toward a
contradiction that this is not the case. Say this is witnessed by an iteration
tree T on N .

We want to reflect this statement down to a countable hull. Therefore let
m be a large enough natural number, let θ be a large enough ordinal such
that in particular

W |θ ≺Σm W

and

W |θ � ZFC−,

and let

W̄
σ∼= HullW |θm ({δN}) ≺W |θ,

where W̄ is the Mostowski collapse of Hull
W |θ
m ({δN}) and

σ : W̄ → HullW |θm ({δN})
denotes the uncollapse map such that δN ∈ ran(σ) and σ(δ̄) = δN for some
ordinal δ̄ in W̄ . Then we have that W̄ is sound, ρm+1(W̄ ) = ω, and the
Weak Condensation Lemma 3.1.3 yields that

W̄ CW.

Case 1. T is short and witnesses that N is not short tree iterable.

For simplicity assume in this case that T has limit length since the other
case is easier. Then T witnesses that the following statement φ1(N) holds
in V .

φ1(N) ≡ ∃T tree on N of length λ for some limit ordinal λ < ωV1

∃ (Qγ | γ ≤ λ limit ordinal), such that for all limit ordinals γ ≤ λ,
Qγ is Π1

2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ) and a Q-structure for T � γ, and

for all limit ordinals γ < λ we have Qγ EMTγ , but

there exists no cofinal branch b through T such that Qλ EMTb .

We have that φ1(N) is Σ1
2n+2-definable uniformly in any code for N as in

the proof of Lemma 3.1.6. See also the proof of Lemma 3.1.6 for the case
that T has successor length.

Case 2. T is a short tree on N of length λ + 1 for some ordinal λ < ωV1
which is non-dropping on the main branch such that the final modelMTλ is
not pre-(2n+ 1)-suitable.
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Assume that

M2n(MTλ |δMTλ ) 2 “δMTλ
is Woodin”,

where δMTλ
denotes the largest cardinal in MTλ . This means that we have

δMTλ
= iT0λ(δN ), where iT0λ : N → MTλ denotes the iteration embedding,

which exists since the iteration tree T is assumed to be non-dropping on the
main branch.

Then T witnesses that the following statement φ2(N) holds true in V .

φ2(N) ≡ ∃T tree on N of length λ+ 1 for some λ < ωV1 such that

T is non-dropping along [0, λ]T and

∀γ < lh(T ) limit ∃QEMTγ such that

Q is Π1
2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ), and a Q-structure for T � γ, and

∃P BMTλ |δMTλ such that P is Π1
2n+1-iterable above iT0λ(δN ),

2n-small above iT0λ(δN ), iT0λ(δN )-sound, ρω(P) ≤ iT0λ(δN ),

and iT0λ(δN ) is not definably Woodin over P,

where δN as above denotes the largest cardinal in N . Recall Definition 2.2.4
for the notion of a definable Woodin cardinal.

We have that φ2(N) is Σ1
2n+2-definable uniformly in any code for N .

Case 3. T is a maximal tree on N of length λ for some limit ordinal λ < ωV1
such that there is no cofinal well-founded branch b through T or for every
such branch b the premouse MTb is not pre-(2n+ 1)-suitable.

As T is maximal, we have that every such branch b is non-dropping and in
the case that for every such branch b the premouseMTb is not pre-(2n+ 1)-
suitable, assume that we have

M2n(MTb |δMTb ) 2 “δMTb
is Woodin”,

where δMTb
denotes the largest cardinal in MTb . Then the iteration tree T

witnesses that the following statement φ3(N) holds true in V .

φ3(N) ≡ ∃T tree on N of length λ for some limit ordinal λ < ωV1 such that

∀γ < λ limit ∃QEMTγ such that

Q is Π1
2n+1-iterable above δ(T � γ), 2n-small above δ(T � γ),

solid above δ(T � γ), and a Q-structure for T � γ, and
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∃P BM(T ) such that P is Π1
2n+1-iterable above δ(T ),

ρω(P) ≤ δ(T ),P is 2n-small above δ(T ), δ(T )-sound, and

P � “ ZFC−+ δ(T ) is the largest cardinal + δ(T ) is Woodin”,

and there is no branch b through T such that P EMTb .

We have that φ3(N) is Σ1
2n+2-definable uniformly in any code for N .

Now we consider all three cases together again and let

φ(N) = φ1(N) ∨ φ2(N) ∨ φ3(N).

As argued in the individual cases the iteration tree T witnesses that φ(N)
holds in V (still assuming for simplicity that T has limit length if T is as in
Case 1).

Since φ is a Σ1
2n+2-definable statement and W = M2n(N |δN ), we have by

Lemma 1.3.4 that

WCol(ω,δN ) φ(N).

So since we picked m and θ large enough we have that

W̄ [g] � φ(N̄),

if we let N̄ ∈ W̄ be such that σ(N̄) = N and if g is Col(ω, δ̄)-generic over
W̄ . Let T̄ be a tree on N̄ in W̄ [g] witnessing that φ(N̄) holds. Since N̄ is
countable in W , we can pick g ∈W and then have that T̄ ∈W .

We have that W̄ [g] is Σ1
2n+1-correct in V using Lemma 1.3.5, because it is a

countable model with 2n Woodin cardinals. Since T̄ witnesses the statement
φ(N̄) in W̄ [g], it follows that T̄ also witnesses φ(N̄) in V , because φ(N̄) is
Σ1

2n+2-definable in any code for N̄ . The Q-structures for T̄ in W̄ [g] in

the statement φ(N̄) are Π1
2n+1-iterable above δ(T̄ � γ) and 2n-small above

δ(T̄ � γ) for limit ordinals γ < lh(T̄ ) (and also for γ = lh(T̄ ) if T̄ witnesses
that φ1(N̄) holds in W̄ [g]).

Since this amount of iterability suffices to witnessQ-structures using Lemma
2.2.10 and since as mentioned above W̄ [g] is Σ1

2n+1-correct in V , the Q-

structures for T̄ in W̄ [g] are also Q-structures for T̄ inside V . Since W =
M2n(N |δN ) is also Σ1

2n+1-correct in V using Lemma 1.3.4 and N̄ and T̄ are

countable in W , it follows that the Q-structures for T̄ in W̄ [g] (which are
Π1

2n+1-iterable above δ(T̄ � γ) for γ as above) are also Q-structures for T̄
inside W . Therefore the branches choosen in the tree T̄ on N̄ inside W̄ [g] are
the same branches as the Q-structure iteration strategy Σ as in Definition
2.2.2 would choose inside the model W when iterating the premouse W̄ .
That means if T ∗ is the tree on W̄ obtained by considering T̄ as a tree on
W̄ B N̄ , then the iteration strategy Σ picks the same branches for the tree
T ∗ as it does for the tree T̄ .

Now we again distinguish three cases as before.

Case 1. T̄ witnesses that φ1(N̄) holds in W̄ [g].
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By the argument we gave above, T̄ is a short tree on N̄ in W .

Let b̄ denote the cofinal branch through T ∗ which exists inside W and is
defined as follows. We have that a branch through the iteration tree T ∗ can
be considered as a branch through T̄ , where the latter is a tree on N̄ , and
vice versa. Since by the Weak Condensation Lemma 3.1.3 we have that

N̄ = W̄ |(δ̄+)W̄ CW |ωW1 = M2n(N |δN )|ωM2n(N |δN )
1 = N |ωN1 ,

there exists a cofinal well-founded branch b̄ ∈W through T̄ by property (4)
in the definition of pre-n-suitability (see Definition 3.1.1). We also consider
this branch b̄ as a branch through T ∗.
Assume first that there is a drop along the branch b̄. Then there exists a

Q-structure Q(T̄ )EMT̄
b̄

. Consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

This statement ψ(T̄ ,Q(T̄ )) is Σ1
1-definable uniformly in any code for the

parameters T̄ and Q(T̄ ) and holds in the model W as witnessed by the
branch b̄. Now a Σ1

1-absoluteness argument as the one given in the proof
of Lemma 2.2.8 yields that this statement ψ(T̄ ,Q(T̄ )) also holds in W̄ [g],
which contradicts the fact that T̄ witnesses in W̄ [g] that N̄ is not short tree
iterable.

Therefore we can assume that b̄ does not drop.

Since T̄ witnesses that φ1(N̄) holds in W̄ [g], we have that there exists a
Q-structure Qλ for T̄ as in φ1(N̄). In particular Qλ is 2n-small above δ(T )
and Π1

2n+1-iterable above δ(T ) in W̄ [g].

Case 1.1. δ(T̄ ) = iT
∗

b̄
(δ̄).

Consider the comparison of Qλ with MT ∗
b̄

inside W .

This comparison takes place above iT
∗

b̄
(δ̄) = δ(T̄ ) and the premouseMT ∗

b̄
is

ω1-iterable above iT
∗

b̄
(δ̄) in W using property (4) in Definition 3.1.1 because

T ∗ is an iteration tree on W̄ C W |ωW1 = N |ωN1 (using the Weak Condensa-
tion Lemma 3.1.3 again). Furthermore we have that W̄ is 2n-small above δ̄
and therefore MT ∗

b̄
is 2n-small above iT

∗

b̄
(δ̄).

MoreoverQλ is Π1
2n+1-iterable above δ(T ) in W̄ [g] thus by Σ1

2n+1-correctness

also inside W . The statement φ1(N̄) yields that Qλ is 2n-small above iT
∗

b̄
(δ̄).

We have that W̄ is sound by construction and thus the non-dropping iterate
MT ∗

b̄
is sound above iT

∗

b̄
(δ̄). Moreover we have that ρω(MT ∗

b̄
) ≤ iT ∗

b̄
(δ̄). In

addition Qλ is also sound above iT
∗

b̄
(δ̄) and we have that ρω(Qλ) ≤ δ(T̄ ) =

iT
∗

b̄
(δ̄). Hence Lemma 2.2.9 implies that

Qλ CMT
∗

b̄ or MT ∗b̄ EQλ.
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So we again distinguish two different cases.

Case 1.1.1. Qλ CMT
∗

b̄
.

By assumption δ̄ is a Woodin cardinal in W̄ , because N is pre-(2n + 1)-
suitable and thus δN is a Woodin cardinal in W . Therefore we have by
elementarity that

MT ∗b̄ � “iT
∗

b̄ (δ̄) is Woodin”.

But since Qλ is a Q-structure for T , we have that δ(T ) = iT
∗

b̄
(δ̄) is not

definably Woodin over Qλ. This contradicts Qλ CMT
∗

b̄
.

Case 1.1.2. MT ∗
b̄
EQλ.

In this case we have that

Qλ ∩Ord < W̄ ∩Ord ≤MT ∗b̄ ∩Ord ≤ Qλ ∩Ord,

where the first inequality holds true since Qλ ∈ W̄ [g]. This contradiction
finishes Case 1.1.

Case 1.2. δ(T̄ ) < iT
∗

b̄
(δ̄).

In this case we have that

MT ∗b̄ � “δ(T̄ ) is not Woodin”,

because otherwise MT ∗
b̄

would not be (2n + 1)-small. This implies that

Qλ = Q(T̄ )CMT ∗
b̄

and therefore we have that

Q(T̄ )EMT̄b̄ .

Now we can again consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

Again ψ(T̄ ,Q(T̄ )) holds in the model W as witnessed by the branch b̄.
By an absoluteness argument as above we have that it also holds in W̄ [g],
which contradicts the fact that T̄ witnesses in W̄ [g] that N̄ is not short tree
iterable.

Case 2. T̄ witnesses that φ2(N̄) holds in W̄ [g].

In this case T̄ is a tree of length λ̄+ 1 for some ordinal λ̄.

Since φ2(N̄) holds true in W̄ [g], there exists a model P̄DMT ∗
λ̄
|iT ∗

0λ̄
(δ̄), which

is 2n-small above iT
∗

0λ̄
(δ̄), sound above iT

∗

0λ̄
(δ̄) and Π1

2n+1-iterable above iT
∗

0λ̄
(δ̄)

in W̄ [g]. Moreover iT
∗

0λ̄
(δ̄) is not definably Woodin over P̄ and we have that

ρω(P̄) ≤ iT ∗
0λ̄

(δ̄).
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Consider the comparison of P̄ with MT ∗
λ̄

inside the model W . The com-

parison takes place above iT
∗

0λ̄
(δ̄) and we have that MT ∗

λ̄
is 2n-small above

iT
∗

0λ̄
(δ̄) because W is 2n-small above δN . The premouse MT ∗

λ̄
is ω1-iterable

above iT
∗

0λ̄
(δ̄) in W by the same argument we gave above in Case 1 using

property (4) in Definition 3.1.1. Therefore the coiteration is successful using
Lemma 2.2.9 by the following argument.

We have that P̄ is Π1
2n+1-iterable inside the model W̄ [g] and thus by Σ1

2n+1-

correctness also inside W . The statement φ2(N̄) yields that P̄ is also 2n-
small above iT

∗

0λ̄
(δ̄). We have that W̄ is sound by construction and thus the

non-dropping iterate MT ∗
λ̄

is sound above iT
∗

0λ̄
(δ̄). Moreover we have that

ρω(MT ∗
λ̄

) ≤ iT
∗

0λ̄
(δ̄). In addition P̄ is also sound above iT

∗

0λ̄
(δ̄) and we have

that ρω(P̄) ≤ iT ∗
0λ̄

(δ̄) because of φ2(N̄). Hence Lemma 2.2.9 implies that

P̄ CMT ∗λ̄ or MT ∗λ̄ E P̄.

So we consider two different cases.

Case 2.1. P̄ CMT ∗
λ̄
.

By assumption δ̄ is a Woodin cardinal in W̄ , because N is pre-(2n + 1)-
suitable and thus δN is a Woodin cardinal in W . Therefore we have by
elementarity that

MT ∗λ̄ � “iT
∗

0λ̄ (δ̄) is Woodin”.

Moreover we have by the statement φ2(N̄) that iT
∗

0λ̄
(δ̄) is not definably

Woodin over P̄. This is a contradiction to P̄ CMT ∗
λ̄
.

Case 2.2. MT ∗
λ̄
E P̄.

In this case we have that

P̄ ∩Ord < W̄ ∩Ord ≤MT ∗λ̄ ∩Ord ≤ P̄ ∩Ord,

where the first inequality holds since P̄ ∈ W̄ [g]. This is a contradiction.

Therefore we proved that

M2n(MTλ |δMTλ ) � “δMTλ
is Woodin”,

if T is as in Case 2 above, that means if T is a short iteration tree on N of
length λ+ 1 which is non-dropping on the main branch.

This shows that there is an ordinal δ < ωV1 such that properties (1) and (2)
in Definition 3.1.1 hold for the premouse MTλ . That property (3) holds for

MTλ follows from property (3) for the pre-(2n+1)-suitable premouse N by a
similar argument and property (4) follows from the corresponding property
for N as well. Thus MTλ is pre-(2n+ 1)-suitable, as desired.

Case 3. T̄ witnesses that φ3(N̄) holds in W̄ [g].
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Let P̄ BM(T̄ ) witness that φ3(N̄) holds inside W̄ [g]. We have that inside
W there exists a cofinal well-founded branch b̄ through the iteration tree T ∗
by property (4) in the definition of pre-(2n + 1)-suitability for N as above
in Case 1.

Case 3.1. There is a drop along b̄.

Then we have as in Case 1 that there exists a Q-structure Q(T̄ )EMT̄
b̄

for

T̄ . Consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

Q(T̄ )EMT̄b ”.

This statement ψ(T̄ ,Q(T̄ )) is Σ1
1-definable from the parameters T̄ andQ(T̄ )

and holds in the model W as witnessed by the branch b̄. By an absoluteness
argument as above it follows that it also holds in W̄ [g], which contradicts
the fact that T̄ witnesses in W̄ [g] that φ3(N̄) holds.

Case 3.2. There is no drop along b̄.

Then we can consider the coiteration of P̄ and MT ∗
b̄

inside the model W .

We have that both premice are 2n-small above δ(T̄ ). Moreover this coit-
eration takes place above δ(T̄ ) since we have that P̄ BM(T̄ ). Therefore
the coiteration is successful inside W using Lemma 2.2.9 by the same argu-
ment as the one we gave in Cases 1 and 2, because in W we have that P̄ is
Π1

2n+1-iterable above δ(T̄ ) and MT ∗
b̄

is ω1-iterable above δ(T̄ ) in W using

property (4) in Definition 3.1.1. That means we have that

MT ∗b̄ E P̄ or P̄ EMT ∗b̄ .

Case 3.2.1. MT ∗
b̄
E P̄.

In this case we have that

P̄ ∩Ord < W̄ ∩Ord ≤MT ∗b̄ ∩Ord ≤ P̄ ∩Ord,

where the first inequality holds true since P̄ ∈ W̄ [g]. This is a contradiction.

Case 3.2.2. P̄ EMT ∗
b̄
.

Then we have that in fact

P̄ EMT̄b̄ ,
because δ(T̄ ) is the largest cardinal in P̄. This contradicts φ3(N̄).

Therefore it follows for an iteration tree T as in Case 3 that there exists a
cofinal well-founded branch through T and if there exists a non-dropping
such branch b, then the premouseMTb is pre-(2n+ 1)-suitable analogous to
the argument at the end of Case 2 above.
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Now the argument we just gave for Case 3 shows that in this case we have
that in fact

MTb = M2n(M(T ))|(δ(T )+)M2n(M(T )).

�

3.2. Correctness for n-suitable Premice

In the following lemmas we prove some correctness results for suitable pre-
mice in the sense of Definition 3.1.8. We are stating these lemmas only for
the levels (2n+ 1) at which we proved that there exists a (2n+ 1)-suitable
premouse (see Lemma 3.1.9).

Lemma 3.2.1. Let n ≥ 0 and z ∈ ωω. Assume that M#
2n(x) exists for all

x ∈ ωω and let N be a (2n + 1)-suitable z-premouse. Let ϕ be an arbitrary
Σ1

2n+3-formula and let a ∈ N ∩ ωω be arbitrary. Then we have

ϕ(a) ↔ 
NCol(ω,δN ) ϕ(a),

where δN as usual denotes the largest cardinal in N .

Here we again write a for the standard name ǎ for a real a ∈ N .

Proof. Let n ≥ 0 and z ∈ ωω be arbitrary and let N be a (2n + 1)-
suitable z-premouse. Let ϕ(a) be a Σ1

2n+3-formula for a parameter a ∈
N ∩ ωω. That means

ϕ(a) ≡ ∃x∀y ψ(x, y, a)

for a Σ1
2n+1-formula ψ(x, y, a). We first want to prove the downward impli-

cation, that means we want to prove that if ϕ(a) holds in V , then


NCol(ω,δN ) ϕ(a).

Let x∗ ∈ V be a witness for the fact that ϕ(a) holds in V . That means x∗

is a real such that
V � ∀y ψ(x∗, y, a).

Use Corollary 1.8 from [Ne95] to make the real x∗ generic over an iterate
of N for the collapse of the image of δN . Since N is (2n + 1)-suitable, we
have enough iterability to apply Corollary 1.8 from [Ne95], so there exists a
non-dropping iterate N∗ of N such that N∗ is 2n-iterable and whenever g
is Col(ω, δN∗)-generic over N∗, then x∗ ∈ N∗[g]. Moreover let i : N → N∗

denote the corresponding iteration embedding. Since N is (2n+ 1)-suitable
and the iteration from N to N∗ is non-dropping, we have that N∗ is pre-
(2n+ 1)-suitable.

Let g ∈ V be Col(ω, δN∗)-generic over N∗. Since we have that N∗ =

M2n(N∗|δN∗)|(δ+
N∗)

M2n(N∗|δN∗ ), it follows that g is also Col(ω, δN∗)-generic
over the proper class model M2n(N∗|δN∗). Moreover we can construe the
model M2n(N∗|δN∗)[g] as a y-premouse for some real y (in fact y = z⊕x∗, see
for example [SchSt09] for the fine structural details) which has 2n Woodin
cardinals. This yields by Lemma 1.3.4 that the premouse M2n(N∗|δN∗)[g]
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is Σ1
2n+2-correct in V , because M2n(N∗|δN∗)[g] construed as a y-premouse

is ω1-iterable above δN∗ . Thus we have that

M2n(N∗|δN∗)[g] � ∀yψ(x∗, y, a)

as x∗ ∈ M2n(N∗|δN∗)[g]. This in fact can be obtained using only Σ1
2n+1-

correctness of M2n(N∗|δN∗)[g] and downward absoluteness.

Since the premice M2n(N∗|δN∗)[g] and N∗[g] agree on their reals it follows
that

N∗[g] � ∀yψ(x∗, y, a).

By homogeneity of the forcing Col(ω, δN∗) we now obtain that


N
∗

Col(ω,δN∗ ) ∃x∀y ψ(x, y, a).

Since a is a real in N it follows by elementarity that


NCol(ω,δN ) ∃x∀y ψ(x, y, a),

as desired.

For the upward implication let ϕ(a) ≡ ∃x∀y ψ(x, y, a) again be a Σ1
2n+3-

formula for a real a in N and a Σ1
2n+1-formula ψ(x, y, a) and assume that

we have


NCol(ω,δN ) ∃x∀y ψ(x, y, a).

Let g be Col(ω, δN )-generic over the premouse M2n(N |δN ) and pick a real
x∗ ∈M2n(N |δN )[g] such that

M2n(N |δN )[g] � ∀y ψ(x∗, y, a).

Since M2n(N |δN )|(δ+
N )M2n(N |δN ) = N is countable in V , we can pick g ∈ V

and then get that x∗ ∈ V . As above we can consider M2n(N |δN )[g] as an
ω1-iterable y-premouse for some real y and therefore we have by Lemma
1.3.4 again that

M2n(N |δN )[g] ≺Σ1
2n+2

V.

Hence we have that

V � ∃x∀y ψ(x, y, a),

witnessed by the real x∗, because “∀y ψ(x∗, y, a)” is a Π1
2n+2-formula. �

Lemma 3.2.2. Let n ≥ 0 and assume that M#
2n(x) exists for all x ∈ ωω. Let

N be a (2n+ 1)-suitable z-premouse for some z ∈ ωω. Then N |δN is closed
under the operation

A 7→M#
2n(A).

Proof. It is enough to consider sets A of the form N |ξ for some ordinal
ξ < δN for the following reason. Let A ∈ N |δN be arbitrary. Then there
exists an ordinal ξ < δN such that A ∈ N |ξ. Assume first that the ordinal
ξ is not overlapped by an extender on the N -sequence, that means there is
no extender E on the N -sequence such that crit(E) ≤ ξ < lh(E). We will
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consider the case that ξ is overlapped by an extender on the N -sequence
later. Moreover assume that we already proved that

M#
2n(N |ξ)CN |δN .

Then we also have that M#
2n(A) ∈ N |δN by the following argument. Con-

sider the model M2n(N |ξ). Let L[E](A)M2n(N |ξ) denote the result of a
fully backgrounded extender construction above A in the sense of [MS94]
with the smallness hypothesis weakened inside the model M2n(N |ξ). Then

add the top measure of the active premouse M#
2n(N |ξ) (intersected with

L[E](A)M2n(N |ξ)) to an initial segment of L[E](A)M2n(N |ξ) as described in
Section 2 of [FNS10]. The main result in [FNS10] yields that the model
we obtain from this construction is again ω1-iterable and not 2n-small.

Thus it follows that the ω1-iterable premouse M#
2n(A) exists inside N |δN

as M#
2n(N |ξ)CN |δN .

So let ξ < δN be an ordinal and assume as above first that ξ is not over-
lapped by an extender on the N -sequence. Then we consider the premouse

M#
2n(N |ξ), which exists in V by assumption and is not 2n-small above ξ

because ξ is countable in V . In this case we are left with showing that

M#
2n(N |ξ)CN |δN .

Let x be a real in V which codes the countable premice M#
2n(N |ξ) and N |δN .

Work inside the model M#
2n(x) and coiterate M#

2n(N |ξ) with N |δN . We have

that N |δN is short tree iterable inside M#
2n(x), because for a pre-(2n + 1)-

suitable premouse short tree iterability is a Π1
2n+2-definable statement by

Lemma 3.1.6 and the model M#
2n(x) is Σ1

2n+2-correct in V by Lemma 1.3.4.
In fact Lemma 1.3.4 implies that N has an iteration strategy which is fullness

preserving in the sense of Definition 3.1.8 inside the model M#
2n(x) by the

proof of Lemma 3.1.9.

Note that the coiteration takes place above N |ξ and that M#
2n(N |ξ) is ω1-

iterable above N |ξ in V by definition. Therefore Lemma 2.2.8 (2) implies

that the comparison inside M#
2n(x) cannot fail on this side of the coiteration.

Say that the coiteration yields an iteration tree T on M#
2n(N |ξ) and an

iteration tree U on N |δN .

We have that U is a short tree on N |δN , because the M#
2n(N |ξ)-side of the

coiteration provides Q-structures. So the coiteration terminates successfully

and there is an iterate M∗ of M#
2n(N |ξ) via T and an iterate R of N |δN via

U .

Claim 1. The M#
2n(N |ξ)-side does not move in the coiteration with N |δN .

Proof. Assume toward a contradiction that the M#
2n(N |ξ)-side moves

in the coiteration. Then we have that M∗ is not sound as the coiteration
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takes place above ξ and thus

M∗ DR.

Furthermore we can consider U as a tree on the premouse N B N |δN with
final model N∗ such that there is an ordinal δ∗ with

N∗|δ∗ = R.

Then U is a short tree of length λ + 1 for some ordinal λ and there is no
drop on the main branch on the N |δN -side of the coiteration. So we have
that

δ∗ = iU0λ(δN ),

where iU0λ : N → N∗ denotes the corresponding iteration embedding. More-
over recall that N is (2n+1)-suitable and so U is obtained using the iteration
strategy for N which is fullness preserving for short trees which do not drop
on their main branch in the sense of Definition 3.1.8. Therefore we have
that M#

2n(N∗|δ∗) is not 2n-small above δ∗ and

M#
2n(N∗|δ∗) � “δ∗ is Woodin”.

We have for the other side of the coiteration that ρω(M∗) < δ∗, because

ρω(M#
2n(N |ξ)) ≤ ξ < δ∗. Let Q be the least initial segment of M∗ such that

δ∗ is not definably Woodin over Q. Recall that this means that QEM∗ is
such that

Q � “δ∗ is Woodin”,

but if Q = JM
∗

α for some α < M∗ ∩Ord then

JM
∗

α+1 � “δ∗ is not Woodin”,

and if Q = M∗ then ρω(Q) < δ∗ or there exists an m < ω and an rΣm-
definable set A ⊂ δ∗ such that there is no κ < δ∗ such that κ is strong up to
δ∗ with respect to A as witnessed by extenders on the sequence of Q. In the
latter case we have that in particular ρω(Q) ≤ δ∗. Moreover Q is 2n-small
above δ∗, because we have QEM∗ and

Q � “δ∗ is Woodin”.

Furthermore Q is ω1-iterable above δ∗.

By construction we have that the premouse M#
2n(N∗|δ∗) is ω1-iterable above

δ∗. Consider the coiteration of Q and M#
2n(N∗|δ∗) inside the model M#

2n(y),

where y is a real coding the countable premice Q and M#
2n(N∗|δ∗). Since

N∗|δ∗ = REM∗

this coiteration takes place above δ∗. We have that ρω(Q) ≤ δ∗ and

ρω(M#
2n(N∗|δ∗)) ≤ δ∗.
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Moreover Q and M#
2n(N∗|δ∗) are both sound above δ∗. Thus the comparison

is successful by Lemma 2.2.8 and we have that

QEM#
2n(N∗|δ∗) or M#

2n(N∗|δ∗)EQ.

The premouse M#
2n(N∗|δ∗) is not 2n-small above δ∗ because N∗ is pre-

(2n+ 1)-suitable. Since Q is 2n-small above δ∗ we have in fact that

QCM#
2n(N∗|δ∗).

But this implies by our choice of the premouse Q that δ∗ is not Woodin in

M#
2n(N∗|δ∗), which is a contradiction because by fullness preservation we

have that δ∗ is a Woodin cardinal in M#
2n(N∗|δ∗).

Therefore we have that the M#
2n(N |ξ)-side does not move in the coiteration

with N |δN . �

Note that the proof of Claim 1 also shows that the M#
2n(N |ξ)-side cannot

win the comparison with N |δN .

Claim 2. The N |δN -side does not move in the coiteration with M#
2n(N |ξ).

Proof. Assume toward a contradiction that the N |δN -side moves in
this coiteration. Since the coiteration takes place above ξ this means that
there is an ordinal γ > ξ such that there is an extender ENγ indexed at γ on
the N -sequence which is used in the coiteration. In particular γ is a cardinal
in the iterate R of N |δN . This implies regardless of whether the iteration

from N |δN to R drops or not, that γ is a cardinal in M#
2n(N |ξ) since we have

that M#
2n(N |ξ)CR using Claim 1. In fact we have, regardless of whether the

iteration from N |δN to R drops or not, that there is a model N ′ such that

γ is a cardinal in N ′ and M#
2n(N |ξ)CN ′. This is a contradiction because

ρω(M#
2n(N |ξ)) ≤ ξ < γ.

Therefore the N |δN -side also does not move in the comparison. �

By Claims 1 and 2 we finally have that

M#
2n(N |ξ)CN |δN .

We now have to consider the case that A ∈ N |ξ for an ordinal ξ < δN such
that ξ is overlapped by an extender E on the N -sequence. That means
there is an extender E on the N -sequence such that crit(E) ≤ ξ < lh(E).
Let E be the least such extender, that means the index of E is minimal
among all critical points of extenders on the N -sequence overlapping ξ. By
the definition of a “fine extender sequence” (see Definition 2.4 in [St10]) we
have that A ∈ Ult(N ;E) and that the ordinal ξ is no longer overlapped by an
extender on the Ult(N ;E)-sequence. Let M = Ult(N ;E) and consider the
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premouse M |ξ, so we have in particular that A ∈M |ξ. The same argument
as above for N |ξ replaced by M |ξ proves that

M#
2n(M |ξ)CN |δN

and therefore we finally have that M#
2n(A) ∈ N |δN by repeating the argu-

ment we already gave at the beginning of this proof. �

From Lemma 3.2.2 we can obtain the following lemma as a corollary.

Lemma 3.2.3. Let n ≥ 0 and z ∈ ωω. Assume that M#
2n(x) exists for all

x ∈ ωω and let N be a (2n + 1)-suitable z-premouse. Then N is Σ1
2n+2-

correct in V for real parameters in N and we write

N ≺Σ1
2n+2

V.

Proof. Let a be a real in N . By Lemma 3.2.2 we have that

M#
2n(a) ∈ N.

Moreover we have by Lemma 1.3.4 that M#
2n(a) is Σ1

2n+2-correct in V .

Therefore it follows that N is Σ1
2n+2-correct in V . �

Note that we could have also proven Lemma 3.2.3 by an argument similar
to the one we gave in the proof of Lemma 3.2.1 but with additionally using
the uniformization property as in the proof of Lemma 1.3.4 (1).

3.3. Outline of the Proof

Our main goal for the rest of this chapter is to give a proof of the following
theorem.

Theorem 3.3.1. Let n ≥ 0 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,

(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

For n = 0 this is due to L. Harrington (see [Ha78]) and D. A. Martin (see
[Ma70]).

The results that (3) implies (2) and that (2) implies (1) for ω1-iterable

premice M#
n are due to Woodin for odd n (unpublished) and due to Neeman

for even n > 0 (see Theorem 2.14 in [Ne02]), building on work of Martin
and Steel (see [MaSt89]). Moreover the results that (3) implies (2) and that
(2) implies (1) hold without the background hypothesis that every Σ1

n+2-
definable sequence of pairwise distinct reals is countable.

We will focus on the proof of the following theorem, which is the implication
“(1)⇒ (3)” in Theorem 3.3.1 and due to W. Hugh Woodin (unpublished).
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Theorem 3.3.2. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
n determinacy

and Π1
n+1 determinacy hold. Then M#

n exists and is ω1-iterable.

Remark. Let n ≥ 0. Then we say that there exists a Σ1
n+2-definable ω1-

sequence of pairwise distinct reals iff there exists a well-order ≤∗ of ordertype
ω1 for reals such that if we let X≤∗ = field(≤∗), that means if we have for
all y ∈ ωω that

y ∈ X≤∗ ⇔ ∃x (x ≤∗ y ∨ y ≤∗ x),

then there exists a Σ1
n+2-definable relation R1 such that we have for all

x, y ∈ ωω,

R1(x, y) ⇔ x, y ∈ X≤∗ ∧ x ≤∗ y,
and there exists a Σ1

n+2-definable relation R2 such that we have for all
x,w ∈ ωω,

R2(x,w) ⇔ w ∈WO ∧x is the ||w|| − th element according to ≤∗,

where WO = {w ∈ ωω | w codes a well-ordering on N}.

In fact it is not necessary to demand the existence of R1 above as it follows
from the existence of R2. We decided to explicitly phrase it here to be able
to emphasize later what exactly is needed in a specific argument.

In the next section we will first prove Theorem 3.3.1 for odd levels, i.e. for

the case where we construct an ω1-iterable premouse M#
2n−1 which is not

(2n − 1)-small, under a slightly stronger hypothesis (see Theorem 3.4.1).
Then we will show in Section 3.5 how boldface determinacy for a level of the
projective hierarchy can be used to prove that every sequence of pairwise
distinct reals which is projective at the next level of the projective hierarchy
is in fact countable.

This will enable us to conclude Theorem 2.1.1 from Theorem 3.3.2, that
means from the results shown in Sections 3.6 and 3.7. The odd levels of
Theorem 3.3.2 will finally be proven in Section 3.6 and the even levels in
Section 3.7. As mentioned before the proof for the odd and the even levels
of the projective hierarchy will be different because of the periodicity in the
projective hierarchy in terms of uniformization and correctness.

The proof of Theorem 3.3.2 in Sections 3.6 and 3.7 will be performed simul-
taneously by an induction on n. That means during the proof of Theorem
3.3.2 for n we will assume that Theorem 3.3.2 holds for all m < n.

3.4. M#
2n−1(x) from a Slightly Stronger Hypothesis

In this section we will give a proof of the following theorem, which is slightly
weaker than Theorem 3.3.2 for odd levels n. We are assuming for the con-

struction of the ω1-iterable premouse M#
n for an odd natural number n that

there is no Σ1
n+3-definable ω1-sequence of pairwise distinct reals instead of
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just assuming that there is no Σ1
n+2-definable ω1-sequence of pairwise dis-

tinct reals as in the statement of Theorem 3.3.2. The proof of this theorem
will serve as a “warm up” for the proof of Theorem 3.3.2 since many of the
techniques used in the proof are also important in Sections 3.6 and 3.7 for
the proof of Theorem 3.3.2. Moreover some of the arguments given in this
section are going to be reused there. In particular Theorem 3.6.1 will be a
refinement of the implication “(1)⇒ (3)” in Theorem 3.4.1.

Theorem 3.4.1. Let n ≥ 1 and assume there is no Σ1
2n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
2n−1 determinacy and Π1

2n determinacy,

(2) for all x ∈ ωω, M#
2n−2(x) exists and is ω1-iterable, and M#

2n−1 exists
and is ω1-iterable,

(3) M#
2n−1 exists and is ω1-iterable.

Remark. We will prove in Section 3.5 that Π1
2n+1-determinacy implies our

background hypothesis that there is no Σ1
2n+2-definable ω1-sequence of pair-

wise distinct reals.

Before we are ready to give a proof of Theorem 3.4.1 we need the following
preliminary lemma about the uniformization property.

Lemma 3.4.2. Let n < ω.

(1) Assume that M#
2n−1(x) exists for all x ∈ ωω if n ≥ 1. Then the point-

class Π1
2n+1 has the uniformization property, that means every Π1

2n+1-

definable set can be uniformized by a Π1
2n+1-definable set.

(2) Assume that M#
2n(x) exists for all x ∈ ωω. Then every Π1

2n+2-definable

set can be uniformized by a Π1
2n+3-definable set.

Proof. The odd case (part (1) of Lemma 3.4.2) follows from Theorem
6C.5 in [Mo09] together with the implication “(3)⇒ (1)” in Theorem 3.4.1.
The implication “(3) ⇒ (1)” in Theorem 3.4.1, which is due to Woodin for
odd n, follows for example also from [Ne95] (see also the proof of Theorem
3.4.1 below).

The even case (part (2) of Lemma 3.4.2) follows from Moschovakis’ Second
Periodicity Theorem (see Theorem 6C.3 in [Mo09]) and the results in [Ne95]
by the following argument. We thank Itay Neeman for telling us the proof
of part (2) of Lemma 3.4.2.

Consider the pointclass

Γ = a(2n)(< ω2 −Π1
1),
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where a denotes the game quantifier2. By Theorem 2.5 in [Ne95] we have

that (boldface) Γ-determinacy holds, because M#
2n(x) exists for all reals

x. The Second Periodicity Theorem (see Theorem 6C.3 in [Mo09]) implies
inductively that ∀RΓ-definable sets admit ∀R∃RΓ-definable scales. Moreover
we have the following basic facts about the game quantifier (see Theorem
6D.2 in [Mo09]).

(1) ∃RΓ ⊆ aΓ,
(2) ∀RΓ ⊆ aΓ,
(3) aΓ ⊆ ∃R∀RΓ, and
(4) aΓ ⊆ ∀R∃RΓ, since Γ is determined.

Therefore we have that

Σ1
2n+1 ⊆ a(2n)(< ω2 −Π1

1) ⊆ a(2n)∆1
2 ⊆ Σ1

2n+2.

This implies that in particular every Π1
2n+2-definable set admits a Π1

2n+3-

definable scale, because Π1
2n+2 ⊆ ∀RΓ and ∀R∃RΓ ⊆ Π1

2n+3. Using the

Uniformization Lemma (see Lemma 4E.3 in [Mo09]) it follows that Π1
2n+2-

definable sets can be uniformized by Π1
2n+3-definable sets. �

In the proof of Theorem 3.4.1 we aim to construct models by expanding
the usual definition of Gödels constructible universe L by adding additional
elements at the successor steps of the construction. Therefore recall the
following definition which is used in the definition of Jensens J-hierarchy for
L (see §1 and §2 in [Je72]).

Definition 3.4.3. Let X be an arbitrary set. Then TC(X) denotes the
transitive closure of X and rud(X) denotes the closure of TC(X)∪{TC(X)}
under rudimentary functions (see for example Definition 1.1 in [SchZe10]
for the definition of a rudimentary function).

Proof of theorem 3.4.1. The proof is organized by induction on n.
We first give a direct argument for (3) implies (2) using our background
hypothesis that there is no Σ1

2n+2-definable ω1-sequence of pairwise distinct
reals as an example how this background hypothesis can be used. The
proof for this direction works for both odd and even levels, i.e. assuming

that M#
2n−1 or M#

2n exists, under the appropriate background hypothesis.
Moreover we will in fact only use the weaker background hypothesis that
every Σ1

2n+1-definable sequence of pairwise distinct reals is countable.

Using Neeman’s genericity iteration (see Corollary 1.8 in [Ne95]) it is pos-
sible to show that (3) implies (2) by a similar argument without using the
background hypothesis that there is no Σ1

2n+1-definable ω1-sequence of pair-
wise distinct reals, because his methods only use the (2n− 1)-iterability of

2See Section 6D in [Mo09] for a definition and some basic facts about the game quantifier

“a ”. We let “a(n) ” denote n successive applications of the game quantifier a. For the
definition of the difference hierarchy and in particular of the pointclass α − Π1

1 for an
ordinal α < ω1 see for example Section 31 in [Ka08].
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M#
2n−1 to make a real x generic over an iterate of M#

2n−1 (see for example
the proof of Lemma 1.3.4 where this kind of genericity iteration was already
used).

We will present the direct proof for (3) implies (2) using the background
hypothesis that there is no Σ1

2n+1-definable ω1-sequence of pairwise distinct
reals here, because it serves as a warm up for the proof of (1) implies (3).

(3) ⇒ (2): So assume that the premouse M#
2n−1 exists and is ω1-iterable

and let x ∈ ωω be arbitrary. Let Σ be the ω1-iteration strategy for M#
2n−1

which is guided by Q-structures (see Definiton 2.2.2). Here we also have
that the branch b = Σ(T ) with Q(b, T ) = Q(T ) is unique, because T is an

iteration tree on M#
2n−1 and thereforeQ-structures for T are in fact not more

complicated than active premice Q such that every proper initial segment
of Q is (2n − 2)-small above δ(T ). Thus the uniqueness follows as argued
in the remark after Definition 2.2.2.

With LωV1
[x,M#

2n−1,Σ] we denote the model of height ωV1 which is closed

under Σ and constructed as follows above x and a fixed real x
M#

2n−1
coding

the countable premouse M#
2n−1. During the construction we will also define

the order of construction for elements of the model LωV1
[x,M#

2n−1,Σ].

Successor steps: At each successor step Lα+1[x,M#
2n−1,Σ] for an ordinal

α < ωV1 we add the pair (T ,Σ(T )) to the model Lα[x,M#
2n−1,Σ] for all

iteration trees T ∈ Lα[x,M#
2n−1,Σ] on M#

2n−1 of limit length. Note that T
is an iteration tree of length < ωV1 and so Σ(T ) exists in V .

Afterwards we close the new model under rudimentary functions as in the
usual construction of L. That means we let

Lα+1[x,M#
2n−1,Σ] = rud(Lα[x,M#

2n−1,Σ] ∪ {(T ,Σ(T )) |

T ∈ Lα[x,M#
2n−1,Σ] is an iteration tree

of limit length on M#
2n−1}),

where the operation X 7→ rud(X) is as defined in Definition 3.4.3.

Order of construction: For two iteration trees T ,U ∈ Lα[x,M#
2n−1,Σ]

we assume inductively that we already defined the order of construction for

elements of Lα[x,M#
2n−1,Σ] and say that (T ,Σ(T )) is constructed before

(U ,Σ(U)) if T is constructed before U .

For elements added by the closure under rudimentary functions we define
the order of construction analogous to the order of construction for L (see
Lemma 5.26 in [Sch14]).

Limit steps: At a limit step λ ≤ ωV1 of the construction we let

Lλ[x,M#
2n−1,Σ] =

⋃
α<λ

Lα[x,M#
2n−1,Σ].
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Order of construction: The order of construction at the limit steps is
defined analogous to the order of construction for L (see Lemma 5.26 in
[Sch14]).

Now the construction of the model LωV1
[x,M#

2n−1,Σ] immediatly gives the

following claim.

Claim 1. The model LωV1
[x,M#

2n−1,Σ] as constructed above is closed under

the operation

T 7→ Σ(T )

for all iteration trees T on M#
2n−1 of limit length < ωV1 .

The background hypothesis that there is no Σ1
2n+1-definable ω1-sequence of

pairwise distinct reals enables us to prove the following claim.

Claim 2. LωV1
[x,M#

2n−1,Σ] � ZFC.

Proof. Assume not. Then the power set axiom has to fail. So let γ be
a countable ordinal such that

P(γ) ∩ LωV1 [x,M#
2n−1,Σ] /∈ LωV1 [x,M#

2n−1,Σ].

Then the set P(γ) ∩ LωV1 [x,M#
2n−1,Σ] has size ℵ1.

Fix a real a in V which codes the countable set Lγ [x,M#
2n−1,Σ]. That

means a ∈ ωω codes a set E ⊂ ω × ω such that there is an isomorphism

π : (ω,E)→ (Lγ [x,M#
2n−1,Σ],∈).

If it exists, we let Aξ for γ < ξ < ωV1 be the smallest subset of γ in

Lξ+1[x,M#
2n−1,Σ] \ Lξ[x,M#

2n−1,Σ] according to the order of construction.

Moreover we let X be the set of all ξ with γ < ξ < ωV1 such that Aξ exists.

Then X is cofinal in ωV1 .

Finally we let aξ be a real codingAξ relative to the code a for Lγ [x,M#
2n−1,Σ].

For ξ ∈ X we have that Aξ ∈ P(γ) ∩ LωV1 [x,M#
2n−1,Σ] and thus Aξ ⊆

Lγ [x,M#
2n−1,Σ], so the canonical code aξ for Aξ relative to a exists. That

means aξ ∈ ωω codes the real a together with some set a′ ⊂ ω such that
b ∈ a′ iff π(b) ∈ Aξ, where π is the isomorphism given by a as above.

Now consider the following ωV1 -sequence of reals

A = (aξ ∈ ωω | ξ ∈ X).

We aim to show that A is a Σ1
2n+1-definable ωV1 -sequence of reals as defined

in the remark after the statement of Theorem 3.3.2.

As the construction of the model LωV1
[x,M#

2n−1,Σ] is defined in a unique

way, we have that for some ξ < ωV1 a real z codes an element of the model

Lξ+1[x,M#
2n−1,Σ]\Lξ[x,M#

2n−1,Σ] iff there is a sequence of countable models
(Mβ | β ≤ ξ + 1) and an element Z ∈Mξ+1 such that
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(1) M0 = {x, x
M#

2n−1
},

(2) Mβ+1 is constructed from Mβ as described in the construction above for
all β ≤ ξ,

(3) Mλ =
⋃
β<λMβ for all limit ordinals λ ≤ ξ,

(4) z does not code an element of Mξ, and
(5) z codes Z.

We can compute the branch Σ(T ) from an iteration tree T of limit length

< ωV1 on M#
2n−1 in V as in the successor steps of the construction defined

above in a Σ1
2n+1-definable way in the codes because the iteration strategy

Σ is guided by Q-structures which are Π1
2n-iterable above δ(T ). We have

that Π1
2n-iterability suffices here to identify the Q-structures, because for an

iteration tree T of limit length on M#
2n−1 the Q-structure Q(T ) is in fact

not more complicated than an active premouse which satisfies that every
proper initial segment is (2n− 2)-small above δ(T ).

So this argument shows that for γ < ξ < ωV1 the statement “aξ is a real

coding the smallest subset of γ in Lξ+1[x,M#
2n−1,Σ]\Lξ[x,M#

2n−1,Σ] relative

to the real a” is Σ1
2n+1-definable in the parameters a, x, x

M#
2n−1

and reals

coding the countable ordinals ξ and γ.

Therefore the sequence A = (aξ ∈ ωω | ξ ∈ X) as defined above is Σ1
2n+1-

definable in the parameters a, x and x
M#

2n−1
, i.e. there are Σ1

2n+1-definable

binary relations R1 and R2 as in the remark after the statement of Theorem
3.3.2. Hence this sequence A contradicts the assumption that every Σ1

2n+1-
definable sequence of pairwise distinct reals is countable. �

Claim 2 yields that in particular ω
L
ωV1

[x,M#
2n−1,Σ]

1 exists and we have that

ω
L
ωV1

[x,M#
2n−1,Σ]

1 < ωV1 .

Work inside the model LωV1
[x,M#

2n−1,Σ]. Then we can use the extender

algebra to make the real x generic over an iterate N of M#
2n−1 using Woodin’s

genericity iteration (see Theorem 7.14 in [St10]), iterating below the least

Woodin cardinal of M#
2n−1. Since we have that ω

L
ωV1

[x,M#
2n−1,Σ]

1 < ωV1 , the

ωV1 -iterability of M#
2n−1, which is witnessed by Σ, is enough to show that

this genericity iteration terminates inside the model LωV1
[x,M#

2n−1,Σ]. So

we have that x ∈ N [g] where g is generic for the image of the extender
algebra under the iteration embedding and N [g] is an active premouse with
2n−2 Woodin cardinals. LetN∗ denote the premouse which is obtained from
N [g] by iterating the top measure out of the universe. A fully backgrounded
extender construction L[E](x)N

∗
inside the model N∗ above x in the sense

of [MS94] with the smallness hypothesis weakened gives an ω1-iterable x-
premouse which is not (2n − 2)-small by adding the top measure of N [g]
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(intersected with L[E](x)N
∗
) to an initial segment of L[E](x)N

∗
as described

in Section 2 of [FNS10]. Therefore the premouse M#
2n−2(x) exists and is ω1-

iterable, using the main result in [FNS10].

This finishes the proof of (3)⇒ (2).

(1)⇒ (3): Let n ≥ 1 and assume that every Π1
2n−1- and every Π1

2n-definable
set of reals is determined. Let N be a (2n− 1)-suitable premouse with N ∩
Ord < ωV1 . Such a premouseN exists under our hypotheses by Lemmas 3.1.2
and 3.1.9 because we inductively assume that Π1

2n−1 determinacy implies

that M#
2n−2(x) exists for all reals x.

Let z ∈ ωω be arbitrary. Using Lemma 3.4.2 and the inductive existence of

M#
2n−2(x) in V for every real x we can alternately close under Skolem func-

tions for Σ1
2n+1-formulas (obtained from uniformization) and the operation

a 7→ M#
2n−2(a) to construct a transitive model Mz of height ωV1 over the

countable premouse N and the real z. Moreover we will define the order of
construction for elements of the model Mz along the way. The construction
is done in the following way.

We construct a sequence of models

(Wα | α < ωV1 )

and the model Mz = WωV1
level-by-level in a construction of length ωV1 ,

starting from the premouse N and the real z and taking unions at limit
steps of the construction. So we let W0 = {N, z}.
Before we are describing this construction in more detail, we fix a Π1

2n-
definable set U which is universal for the pointclass Π1

2n. We pick the
universal set U such that we have Upϕq_a = Aϕ,a for every Π1

2n-formula ϕ
and every a ∈ ωω, where pϕq denotes the Gödel number of the formula ϕ
and

Aϕ,a = {x | ϕ(x, a)}.
By Lemma 3.4.2 (2) we can uniformize the set U with a Π1

2n+1-definable
function F . So we have for all x ∈ dom(F ) that

(x, F (x)) ∈ U,
where dom(F ) = {x | ∃y (x, y) ∈ U}.
Odd successor steps: Now let α < ωV1 be an even successor ordinal,
α = 0, or let α be a limit ordinal and assume that we already constructed
the model Wα together with an order of construction. Let a ∈ Wα be such

that M#
2n−2(a) does not exist in Wα. The a-premouse M#

2n−2(a) exists in V
and is (2n− 1)-small and ω1-iterable there, because we inductively assume
that this follows from our hypothesis that Π1

2n−1 determinacy holds, i.e.
we inductively assume that Theorem 3.3.1 holds. Let M be a countable
a-premouse in V with the following properties.

(i) M is (2n− 1)-small, but not (2n− 2)-small,
(ii) all proper initial segments of M are (2n− 2)-small,
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(iii) M is a-sound and ρω(M) = a, and
(iv) M is Π1

2n-iterable.

These properties uniquely determine the a-premouse M#
2n−2(a) in V . We

let Wα+1 be the model obtained by taking the closure under rudimentary
functions of Wα together with all such a-premiceM as above for all a ∈Wα.

Order of construction: For an a-premouse Ma and a b-premouse Mb

satifying properties (i) − (iv) for a, b ∈ Wα, we say that Ma is defined
before Mb if a is defined before b in the order of construction for elements
of Wα, which exists inductively. For elements added by the closure under
rudimentary functions we define the order of construction analogous to the
order of construction for L.

Even successor steps: For the even successor levels of the construction let
β < ωV1 be an odd successor ordinal and assume that we already constructed
the model Wβ together with an order of construction. We aim to close the
model Wβ under Skolem functions for Σ1

2n+1-formulas. That means if ϕ is

a Π1
2n-formula with a real parameter a from Wβ such that ∃xϕ(x, a) holds

in V but not in Wβ, then we uniformly want to add a real xϕ,a to Wβ+1

such that ϕ(xϕ,a, a) holds. Afterwards we again close the new model under
rudimentary functions as in the usual construction of L. In fact we want
to perform this construction uniformly, that means we do not add the reals
xϕ,a individually, but we close under the function F we fixed above.

Therefore we add F (x) for all x ∈ dom(F ) ∩Wβ to the current model Wβ.
We will show in Claim 4 that this procedure adds reals xϕ,a as described
above in a Π1

2n+1-definable way from a to the model Wβ+1.

So let ϕF be a Π1
2n+1-formula such that for all x, y ∈ ωω,

F (x) = y iff ϕF (x, y).

Then we let

Wβ+1 = rud(Wβ ∪ {y ∈ ωω | ∃x ∈Wβ ∩ ωω ϕF (x, y)}).

Order of construction: We inductively define the order of construction
for elements of Wβ+1 as follows. First we say for F (x) 6= F (x′) with x, x′ ∈
dom(F ) ∩ Wβ that F (x) is constructed before F (x′) iff x is constructed
before x′ in the order of construction for elements of Wβ where x and x′ are
the minimal (according to the order of construction in Wβ) reals y and y′

in dom(F )∩Wβ such that F (y) = F (x) and F (y′) = F (x′). Then we define
for elements added by the closure under rudimentary functions the order of
construction analogous to the order of construction for L.

Limit steps: At a limit step of the construction we let

Wλ =
⋃
α<λ

Wα
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for all limit ordinals λ < ωV1 and we finally let

Mz = WωV1
=

⋃
α<ωV1

Wα.

Order of construction: The order of construction at the limit steps is
defined analogous to the order of construction for L.

This finishes the construction of the model Mz.

Now we can prove analogous to Claim 2 that Mz is a model of ZFC from
the background hypothesis that there is no Σ1

2n+2-definable ω1-sequence of
pairwise distinct reals by the following argument.

Claim 3. Mz � ZFC.

Proof. Assume not. Then the power set axiom has to fail. So let γ be
a countable ordinal such that

P(γ) ∩Mz /∈Mz.

As in the proof of Claim 2 this yields that the set P(γ) ∩Mz has size ℵ1.

Let Wγ = Mz|γ be the γ-th level in the construction of Mz. Then we can
fix a real a in V which codes the countable set Wγ .

If it exists, we let Aξ for γ < ξ < ωV1 be the smallest subset of γ in

Mz|(ξ + 1) \ Mz|ξ
according to the order of construction. Moreover we let X be the set of all
ξ with γ < ξ < ωV1 such that Aξ exists. Then X is cofinal in ωV1 .

Finally we let aξ again be a real coding the set Aξ relative to the code a for
Wγ . For ξ ∈ X we have that Aξ ∈ P(γ) ∩Mz and thus Aξ ⊆ Wγ , so the
canonical code aξ for Aξ relative to a exists.

Now consider the following ωV1 -sequence of reals

A = (aξ ∈ ωω | ξ ∈ X).

As in the proof of Claim 2 we have that a real y codes an element of the
model Mz|(ξ+1) \Mz|ξ for some ξ < ωV1 iff there is a sequence of countable
models (Wβ | β ≤ ξ + 1) and an element Y ∈Wξ+1 such that

(1) W0 = {z,N},
(2) Wβ+1 is constructed from Wβ as described in the construction above for

all β ≤ ξ,
(3) Wλ =

⋃
β<λWβ for all limit ordinals λ ≤ ξ,

(4) y does not code an element of Wξ, and
(5) y codes Y .

This states that the real y codes an element of the model Mz|(ξ+ 1) \ Mz|ξ
as the construction of the levels of the model Mz is defined in a unique
way. Now we have to argue that this statement is definable enough for our
purposes.
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For the odd successor levels of the construction we have that the properties
(i)− (iv) as in the construction are Π1

2n-definable uniformly in any code for
the countable premouse M.

For the even successor levels let β < ωV1 be an odd successor ordinal. Recall
that U is a Π1

2n+1-definable set and that F is a Π1
2n+1-definable function

uniformizing U . Hence the even successor levels Wα+1 can be computed in
a Σ1

2n+2-definable way from Wα.

This argument shows that the statement “aξ codes the smallest subset of γ
in Mz|(ξ+ 1) \ Mz|ξ” is Σ1

2n+2-definable uniformly in a, z and any code for
N, ξ and γ.

Therefore the ω1-sequence A as defined above is Σ1
2n+2-definable uniformly

in a, z and any code for N in the sense of the remark after the statement
of Theorem 3.3.2. Thus A contradicts the assumption that every Σ1

2n+2-
definable sequence of pairwise distinct reals is countable. �

From the construction we also get the following claim.

Claim 4. The model Mz as constructed above has the following properties.

(1) Mz ∩Ord = ωV1 , z,N ∈Mz,
(2) Mz ≺Σ1

2n+1
V ,

(3) Mz is closed under the operation

a 7→M#
2n−2(a),

and moreover M#
2n−2(a) is ω1-iterable in Mz for all a ∈Mz.

If we write “Mz ≺Σ1
2n+1

V ” we always mean that Mz is correct in V with

respect to Σ1
2n+1-formulas with parameters from Mz ∩ ωω.

Proof. Property (1) immediately follows from the construction.

Proof of (2): The proof is organized as an induction on m < 2n + 1. We
have that Mz is Σ1

2-correct in V using Shoenfield’s Absoluteness Theorem
(see for example Theorem 13.15 in [Ka08]). We assume inductively that
Mz is Σ1

m-correct in V and prove that Mz is Σ1
m+1-correct in V . Since the

upward implication follows easily as in the proof of Lemma 1.3.4, we focus
on the proof of the downward implication.

So let ψ be a Σ1
m+1-formula and let a ∈Mz ∩ ωω be such that ψ(a) holds in

V . Say

ψ(a) ≡ ∃xϕ(x, a)

for a Π1
m-formula ϕ.

Let y = pϕq_a ∈ ωω. Then we have that y ∈ dom(F ) since ψ(a) holds
in V and m + 1 ≤ 2n + 1. Therefore ϕF (y, F (y)) holds and F (y) is added
to the model Mz at an even successor level of the construction because we
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have that y ∈Mz. Recall that F (y) is choosen such that (y, F (y)) ∈ U , that
means we have that

F (y) ∈ Uy = Upϕq_a = {x | ϕ(x, a)},
by our choice of U . Now the inductive hypothesis implies that

Mz � ϕ(F (y), a)

and therefore it follows that Mz � ψ(a), as desired.

Proof of (3): Let a ∈Mz be arbitrary. Then we have that a ∈Wα for some
ordinal α < ωV1 . Recall that by our assumptions the ω1-iterable a-premouse

M#
2n−2(a) exists in V as a is countable in V . Moreover it satisfies properties

(i)− (iv) from the construction, i.e.

(i) M#
2n−2(a) is (2n− 1)-small, but not (2n− 2)-small,

(ii) all proper initial segments of M#
2n−2(a) are (2n− 2)-small,

(iii) M#
2n−2(a) is a-sound and ρω(M#

2n−2(a)) = a, and

(iv) M#
2n−2(a) is Π1

2n-iterable.

Therefore the a-premouse M = M#
2n−2(a), which is ω1-iterable in V , has

been added to the model Mz at some odd successor level of the construction.
We want to show that this a-premouse M is ω1-iterable inside Mz via the
iteration strategy Σ which is guided by Q-structures (see Definition 2.2.2).

Let T be an iteration tree of length λ on the a-premouse M for some limit
ordinal λ < ω1 in Mz such that T is according to the iteration strategy Σ.
Then T is guided by Q-structures which are (2n− 2)-small above δ(T � γ),
ω1-iterable above δ(T � γ) and thus also Π1

2n−1-iterable above δ(T � γ) in
Mz for all limit ordinals γ ≤ λ.

By (2) we have that Mz is Σ1
2n+1-correct in V for real parameters in Mz.

Therefore it follows that the Q-structures Q(T � γ) which are (2n−2)-small
above δ(T � γ) and guiding the iteration tree T in Mz are Π1

2n−1-iterable

above δ(T � γ) for all limit ordinals γ ≤ λ in V . Since M#
2n−2(x) exists in

V for all x ∈ ωω by our assumptions and in particular M#
2n−2(a) exists in

V , we have by Lemma 2.2.10 that these Q-structures also witness that T
is according to the Q-structure iteration strategy Σ in V . Therefore there
exists a unique cofinal well-founded branch b through T in V such that we
have Q(b, T ) = Q(T ). By an absoluteness argument as given several times
before (see for example the proof of Lemma 2.2.8), it follows that the unique
cofinal well-founded branch b through T in V for which Q(b, T ) = Q(T )
holds, is also contained in Mz since we have that T ,Q(T ) ∈Mz.

Therefore M = M#
2n−2(a) exists and is ω1-iterable in Mz via the iteration

strategy Σ. �

Now we aim to show that a Kc-construction in Mz reaches M#
2n−1, meaning

that the premouse (Kc)Mz is not (2n − 1)-small. Here and in what follows
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we consider a Kc-construction in the sense of [MSch04] as this construction
does not assume any large cardinals in the background model. The following
claim is also going to be used in the proof of Theorem 3.6.1 later.

Claim 5. (Kc)Mz is not (2n− 1)-small.

Proof. We work inside the model Mz and distinguish numerous dif-
ferent cases. Moreover we assume toward a contradiction that (Kc)Mz is
(2n− 1)-small.

First we show the following subclaim.

Subclaim 1. Let δ be a cutpoint in (Kc)Mz . If (Kc)Mz does not have a
Woodin cardinal above δ, then (Kc)Mz is fully iterable above δ in Mz.

We allow δ = ω, i.e. the case that (Kc)Mz has no Woodin cardinals, in the
statement of Subclaim 1.

Proof of Subclaim 1. (Kc)Mz is iterated via the Q-structure itera-
tion strategy Σ (see Definition 2.2.2). That means for an iteration tree U of
limit length on (Kc)Mz we let

Σ(U) = b iff Q(b,U) = Q(U) and Q(U)EM#
2n−2(M(U)),

since (Kc)Mz is assumed to be (2n− 1)-small.

It is enough to show that (Kc)Mz is ω1-iterable above δ inside Mz, because
then an absoluteness argument as the one we gave in the proof of Lemma
2.2.8 yields that (Kc)Mz is fully iterable above δ inside Mz as the iteration
strategy for (Kc)Mz is guided by Q-structures.

Assume toward a contradiction that (Kc)Mz is not ω1-iterable above δ in
Mz. Then there exists an iteration tree T on (Kc)Mz above δ of limit length
< ω1 inside Mz such that there exists no Q-structure Q(T ) for T with

Q(T )EM#
2n−2(M(T )) and hence

M#
2n−2(M(T )) � “δ(T ) is Woodin”.

The premouse M#
2n−2(M(T )), constructed in the sense of Definition 2.2.6,

exists in Mz and is not (2n−2)-small above δ(T ), because otherwise it would
already provide a Q-structure for T .

Let M̄ be the Mostowski collapse of a countable substructure of Mz con-
taining the iteration tree T . That means we choose a large enough natural
number m and let M̄,X and σ be such that

M̄
σ∼= X ≺Σm Mz,

where

σ : M̄ →Mz

denotes the uncollapse map such that we have a model K̄ in M̄ with
σ(K̄|γ) = (Kc)Mz |σ(γ) for every ordinal γ < M̄ ∩ Ord, and we have an
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iteration tree T̄ on K̄ above an ordinal δ̄ in M̄ with σ(T̄ ) = T and σ(δ̄) = δ.
Moreover we have that

M#
2n−2(M(T̄ )) � “δ(T̄ ) is Woodin”.

By the iterability proof of Chapter 9 in [St96] (adapted as in [MSch04])
applied inside Mz, there exists a cofinal well-founded branch b through the

iteration tree T̄ on K̄ in Mz such that we have a final model MT̄b .

Consider the coiteration of MT̄b with M#
2n−2(M(T̄ )) and note that it takes

place above δ(T̄ ). Since M#
2n−2(M(T̄ )) is ω1-iterable above δ(T̄ ) inside Mz

by definition andMT̄b is iterable inMz by the iterability proof of Chapter 9 in
[St96] (adapted as in [MSch04]) applied inside the model Mz, the coiteration
is successful using Lemma 2.2.8 (2).

If there is no drop along the branch b, thenMT̄b cannot loose the coiteration,

because otherwise there exists a non-dropping iterate R∗ of MT̄b and an

iterateM∗ of M#
2n−2(M(T̄ )) such that R∗EM∗. But we have that there is

no Woodin cardinal in MT̄b above δ̄ by elementarity and at the same time
we have that δ̄ < δ(T̄ ) and

M#
2n−2(M(T̄ )) � “δ(T̄ ) is Woodin”.

If there is a drop along b, thenMT̄b also has to win the coiteration, because

we have ρω(MT̄b ) < δ(T̄ ) and ρω(M#
2n−2(M(T̄ ))) = δ(T̄ ).

That means in both cases there is an iterate R∗ ofMT̄b and a non-dropping

iterate M∗ of M#
2n−2(M(T̄ )) such that M∗ ER∗. We have that M∗ is not

(2n−1)-small, because M#
2n−2(M(T̄ )) is not (2n−1)-small as argued above

and the iteration from M#
2n−2(M(T̄ )) to M∗ is non-dropping. Therefore it

follows that R∗ is not (2n−1)-small and thusMT̄b is not (2n−1)-small. By
the iterability proof of Chapter 9 in [St96] (adapted as in [MSch04]) applied

inside Mz we can re-embed the model MT̄b into a model of the (Kc)Mz -

construction. This yields that (Kc)Mz is not (2n − 1)-small, contradicting
our assumption that it is (2n− 1)-small. �

Now we distinguish the following cases.

Case 1. Assume that

(Kc)Mz � “there is a Woodin cardinal”.

Then we can assume that there is a largest Woodin cardinal in (Kc)Mz , be-
cause otherwise (Kc)Mz has infinitely many Woodin cardinals and is there-
fore not (2n − 1)-small. So let δ denote the largest Woodin cardinal in
(Kc)Mz .
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Consider the premouse M = M#
2n−2((Kc)Mz |δ) in the sense of Definition

2.2.6 and note that M exists inside Mz by Claim 4. Now try to coiterate
(Kc)Mz with M inside Mz.

Since the comparison takes place above δ and the premouse

M = M#
2n−2((Kc)Mz |δ)

is ω1-iterable above δ, the coiteration is successful, using Lemma 2.2.8 (2)
and Subclaim 1 since the iteration strategies for the premice (Kc)Mz and

M#
2n−2((Kc)Mz |δ) above δ are guided by Q-structures which are (2n − 2)-

small above δ(T ) for any iteration tree T of limit length.

So there is an iterate R of (Kc)Mz and an iterate M∗ of M such that the
coiteration terminates with REM∗ orM∗ER. By universality of the model
(Kc)Mz inside Mz (see Section 3 in [MSch04]) we have that M∗ E R and
that there is no drop on the M-side of the coiteration. This implies that

the premouse M = M#
2n−2((Kc)Mz |δ) in the sense of Definition 2.2.6 is not

(2n− 2)-small above δ, as otherwise we have thatM is not fully sound and
since M∗ ER this yields a contradiction because of soundness.

Therefore M is not (2n− 1)-small and thus M∗ is also not (2n− 1)-small.
That means R and thereby (Kc)Mz is not (2n−1)-small, which is the desired
contradiction.

This finishes the proof of Claim 5 in the case that there is a Woodin cardinal
in (Kc)Mz .

Case 2. Assume that

(Kc)Mz 2 “there is a Woodin cardinal”.

Recall that we fixed N to be a (2n−1)-suitable premouse and try to coiterate
(Kc)Mz with N inside Mz. We again iterate (Kc)Mz via the Q-structure
iteration strategy Σ as in Subclaim 1.

Using Subclaim 1 the coiteration cannot fail on the (Kc)Mz -side.

Recall that the premouse N is (2n − 1)-suitable in V . Since the statement
“N is pre-(2n − 1)-suitable” is Π1

2n-definable uniformly in any code for N ,
it follows that N is pre-(2n − 1)-suitable inside Mz, because Mz is Σ1

2n+1-

correct in V and closed under the operation a 7→ M#
2n−2(a). Therefore

Lemma 3.1.9 implies that N is (2n − 1)-suitable inside Mz. In particular
N has an iteration strategy which is fullness preserving for non-dropping
iteration trees.

So we have that the coiteration of (Kc)Mz with N is successful. Let T and
U be the resulting trees on (Kc)Mz and N of length λ+1 for some ordinal λ.
It follows that (Kc)Mz wins the comparison by universality of the premouse
(Kc)Mz inside Mz (see Section 3 in [MSch04]). So we have that there exists
an iterate R = MTλ of (Kc)Mz and an iterate N∗ = MUλ of N such that
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N∗ER. Moreover there is no drop on the main branch on the N -side of the
coiteration.

Since N is (2n − 1)-suitable we have that M#
2n−2(N∗|δN∗) is a premouse

with 2n − 1 Woodin cardinals, which is ω1-iterable above δN∗ and not
(2n − 2)-small above δN∗ . So we can consider the coiteration of R with

M#
2n−2(N∗|δN∗). This coiteration is successful using Lemma 2.2.8 (2) be-

cause we have

N∗|δN∗ = R|δN∗

and R and M#
2n−2(N∗|δN∗) are both iterable above δN∗ , using Subclaim 1

for the iterate R of (Kc)Mz . If there is no drop on the main branch in T ,
then R = MTλ wins the comparison by universality of (Kc)Mz inside Mz

(again see Section 3 in [MSch04]). If there is a drop on the main branch in
T , then R also wins the comparison, because in this case we have that

ρω(R) < δN∗ and ρω(M#
2n−2(N∗|δN∗)) = δN∗ .

Therefore we have that there exists an iterate R∗ of R and an iterate M∗ of
M#

2n−2(N∗|δN∗) such that we have M∗ ER∗ in both cases and the iteration

from M#
2n−2(N∗|δN∗) to M∗ is non-dropping. Since M#

2n−2(N∗|δN∗) is not
(2n−1)-small, we have that M∗ and therefore R∗ is not (2n−1)-small. Thus
R is not (2n − 1)-small. But R is an iterate of (Kc)Mz and therefore this
implies that (Kc)Mz is not (2n− 1)-small, contradicting our assumption.

This finishes the proof of Claim 5. �

Claim 5 now implies that M#
2n−1 exists in Mz as the minimal ω1-iterable

premouse which is not (2n− 1)-small.

Work in V now and let z ∈ ωω be arbitrary. Then

Mz � “(M#
2n−1)Mz is ω1-iterable”.

Hence

Mz � “(M#
2n−1)Mz is Π1

2n+1-iterable”.

Since Mz is Σ1
2n+1-correct in V we have that

V � “(M#
2n−1)Mz is Π1

2n+1-iterable”.

By Σ1
2n+1-correctness again we get for every real y such that (M#

2n−1)Mz is
a countable premouse in My that

My � “(M#
2n−1)Mz is Π1

2n+1-iterable”.

By Lemma 2.2.9 we have that the comparison of two countable 2n-small
premice which are sound and project to ω terminates successfully, if one of
the premice is Π1

2n+1-iterable and the other one is ω1-iterable. Thus the

comparison of (M#
2n−1)Mz and (M#

2n−1)My inside the model My is successful

by Lemma 2.2.9 for all reals y as above, since (M#
2n−1)My is ω1-iterable inside
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My and both premice (M#
2n−1)Mz and (M#

2n−1)My are sound and project to
ω.

Therefore (M#
2n−1)Mz and (M#

2n−1)My coiterate to the same model inside
My and are in fact equal. This yields that all these premice of the form

(M#
2n−1)Mx for reals x are equal in V . Call this unique model M#

2n−1.

We now finally show that this premouse M#
2n−1 is ω1-iterable in V via the

iteration strategy Σ which is guided by Q-structures as introduced in Defi-
nition 2.2.2.

So let T be an iteration tree on M#
2n−1 via the iteration strategy Σ in V

of limit length λ < ωV1 . Choose z ∈ ωω such that M#
2n−1, T ∈ Mz and

lh(T ) < ωMz
1 .

Since T is an iteration tree on M#
2n−1, all Q-structures for T � λ for limit

ordinals λ ≤ lh(T ) are (2n − 1)-small above δ(T � λ). In fact these Q-
structures are not more complicated than the least active premice which are
not (2n − 2)-small above δ(T � λ) and Π1

2n-iterability above δ(T � λ) for
them is enough to determine a cofinal well-founded branch b through T .
Therefore we have by correctness of Mz in V that T is an iteration tree on

M#
2n−1 which is guided by Q-structures in Mz. Since

Mz � “M#
2n−1 is ω1-iterable via the iteration strategy Σ”,

it follows that Mz can find a cofinal well-founded branch b through T which
is determined by Q-structures. That means we have that Q(b, T ) = Q(T )
and we have in particular that Q(T ) is ω1-iterable and thus Π1

2n-iterable
inside Mz. So Q(T ) is also Π1

2n-iterable in V and it follows that b is also
the unique cofinal well-founded branch through T in V determined by the
same Q-structures as in Mz. Therefore we finally have that

V � “M#
2n−1 is ω1-iterable”.

�

3.5. Getting the Right Hypothesis

In this section we will provide one ingredient for the proof of Theorem
2.1.1. We will see that the results from Sections 3.6 and 3.7, which are
a strengthening of Theorem 3.4.1, can actually be obtained from boldface
determinacy at the right level of the projective hierarchy. The following
lemma makes this precise.

Lemma 3.5.1. Let n ≥ 0. Then Π1
n+1 determinacy implies that every Σ1

n+2-
definable sequence of pairwise distinct reals is countable.

Proof. Again for periodicity reasons we give a completely different
proof for the even and the odd levels of the projective hierarchy. We start
with the even levels, for which we will give an inner model theoretic argu-
ment using the results in Sections 3.1 and 3.2.
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So let n ≥ 1 and assume that every Π1
2n-definable set of reals is determined.

Assume further toward a contradiction that

(zα | α < ω1)

is a Σ1
2n+1-definable ω1-sequence of pairwise distinct reals as defined in the

remark after the statement of Theorem 3.3.2. So in particular there are
Σ1

2n+1-definable relations R1 and R2 as defined in the remark after the

statement of Theorem 3.3.2. The following proof will generalize to Σ1
2n+1(x)-

definable sequences of pairwise distinct reals for x ∈ ωω, but we will assume
that x = 0 to simplify the notation.

By Lemmas 3.1.2 and 3.1.9 there exists a countable (2n − 1)-suitable pre-
mouse N . We aim to show that zα ∈ N for all α < ωV1 to derive a contra-
diction.

For this purpose we fix an arbitrary ordinal α < ωV1 and let N∗ be the model
which is obtained from N by iterating the least measure in N and its images
(α+)N times.

Claim 1. zα ∈ N∗.

Proof. Since N is (2n− 1)-suitable and thus has a fullness preserving
iteration strategy for non-dropping iteration trees, the same holds for the
premouse N∗, and we have by Lemma 3.2.1 that for any Σ1

2n+1-formula ϕ
with a parameter a ∈ N∗ ∩ ωω,

ϕ(a) ↔ 
N
∗

Col(ω,δN∗ ) ϕ(a).

Pick mutual generics g and h for Col(ω, α) over N∗ such that

N∗[g] ∩N∗[h] = N∗.

Since α < δN∗ we still have by Lemma 3.2.1 that for any Σ1
2n+1-formula ϕ

and any parameter b ∈ N∗[g] ∩ ωω,

ϕ(b) ↔ 
N
∗[g]

Col(ω,δN∗ ) ϕ(b)

and similarly for N∗[h].

In N∗[g], the ordinal α < ωV1 can be coded by a real a ∈ WO such that
||a|| = α. This yields that zα ∈ N∗[g], because the sequence (zα | α < ωV1 )
is Σ1

2n+1-definable and thus zα is a Σ1
2n+1(a)-singleton, i.e. {zα} is Σ1

2n+1-
definable from the parameter a ∈ N∗[g] ∩ ωω using the binary relation R2

as defined in the remark after the statement of Theorem 3.3.2. Analogously
we have that zα ∈ N∗[h].

Therefore it follows that zα ∈ N∗[g] ∩N∗[h] = N∗, as desired. �

The premice N and N∗ have the same reals since the iteration from N to
N∗ was obtained by iterating the least measure in N and its images (α+)N

times and therefore does not drop. This yields that in fact

zα ∈ N.
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Since α < ωV1 was arbitrary and the zα are pairwise distinct reals this is a
contradiction to the fact that N is countable. This finishes the proof for the
even levels of the projective hierarchy.

Note that we in fact proved an effective version of Lemma 3.5.1 for the
even levels of the projective hierarchy. That means for any n ≥ 1 and
x ∈ ωω, under the hypothesis that every Π1

2n−1-definable set of reals is

determined and every Π1
2n(x)-definable set of reals is determined, there exists

no Σ1
2n+1(x)-definable ω1-sequence of pairwise distinct reals.

Now assume for the odd levels of the projective hierarchy that every Π1
2n+1-

definable set of reals is determined. The following proof for the odd levels
is completely descriptive set theoretic and uses uniformization and determi-
nacy for the Davis game. Assume toward a contradiction that there exists
a Σ1

2n+2-definable ω1-sequence of pairwise distinct reals. That means in
particular that there exists a well-order ≤∗ of ordertype ω1 for reals as
in the remark after the statement of Theorem 3.3.2 such that if we let
X≤∗ = field(≤∗), i.e. if we have for all y ∈ ωω,

y ∈ X≤∗ ⇔ ∃x (x ≤∗ y ∨ y ≤∗ x),

then there exists a Σ1
2n+2-definable relation R1 such that we have for all

x, y ∈ ωω,

R1(x, y) ⇔ x, y ∈ X≤∗ ∧ x ≤∗ y.
Let A be a Π1

2n+1-definable relation such that we have for all x, y ∈ ωω,

R1(x, y) ⇔ ∃z A(z, x, y).

Moreover consider the relation A2 such that for all u ∈ (ωω)2 and for all
y ∈ ωω,

A2(y, u) ⇔ A((u)0, (u)1, y).

By Π1
2n+1-uniformization (see Theorem 6C.5 in [Mo09] or Lemma 3.4.2 (1)

in this thesis) there exists a Π1
2n+1-definable function F which uniformizes

the set A2, that means we have

(y, F (y)) ∈ A2

for all y ∈ dom(F ), where dom(F ) = {x ∈ ωω | ∃z (y, z) ∈ A2}. We have
that X≤∗ ⊆ dom(F ). So the relation A∗ defined by

A∗(z, x, y, u) ⇔ A(z, x, y) ∧ z = (u)0 ∧ x = (u)1 ∧ u = F (y)

is Π1
2n+1-definable. Let A∗ denote the set of all tuples (z, x, y, u) such that

A∗(z, x, y, u) holds.

Consider the following game Gp(A∗) which is due to M. Davis (see [Da64]
or Theorem 12.11 in [Sch14]). Here we as usual identify reals (or elements
of the Baire space ωω), in particular elements of the set A∗, with elements
of the Cantor space ω2.
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I s0 s1 . . .
II n0 n1 . . .

Player I plays finite 0 − 1-sequences si ∈ <ω2 (allowing si = ∅), player II
responds with ni ∈ {0, 1} and the game lasts ω steps. We say that player I
wins the game Gp(A∗) iff

s0
_n0

_s1
_n1

_ · · · ∈ A∗.

Otherwise player II wins. We may code the game Gp(A∗) into a “usual”
Gale-Stewart game G(A′) as in Definition 1.1.1 for some A′ ⊂ ωω such that
A′ is Π1

2n+1-definable. So we have by assumption that the game G(A′) is
determined and thus the same holds for the Davis game Gp(A∗).

As the set A∗ is uncountable, the proof of Theorem 12.11 in [Sch14] gives
that the set A∗ has a perfect subset. Since by definition of A∗ we have that
if A∗(z, x, y, u) holds, the real y uniquely determines the reals u, z and x, we
immediately have the following claim.

Claim 2. The set

B = {y ∈ ωω | ∃z∃x∃u A∗(z, x, y, u)}

has a perfect subset.

For y ∈ B we have that there exists a real x such that R1(x, y) holds. So
we have in particular that y ∈ X≤∗ = field(≤∗).
Therefore there exists a continuous function f : R → B such that we can
consider the following order ≤ on the reals. We say for two reals x and y
that

x ≤ y ⇔ f(x) ≤∗ f(y).

Then we immediately get that the following claim holds.

Claim 3. The order ≤ is a Σ1
2n+2-definable well-order of the reals.

Now we can obtain the following claim using Bernstein’s argument.

Claim 4. There are two disjoint Σ1
2n+2-definable sets D and D′ of size ℵ1

without perfect subsets.

In fact we only need one of the sets D and D′ in what follows.

Proof of Claim 4. We have that CH holds, i.e. we have 2ℵ0 = ℵ1, so
there are ℵ1-many perfect sets of reals, and let

(Pα | α < ω1)

enumerate all perfect sets of reals using the well-ordering of the reals ≤ as
defined above. Using Claim 3 we can now pick sequences (xα | α < ω1) and
(yα | α < ω1) of pairwise distinct reals in a Σ1

2n+2-definable way following
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Bernstein’s argument such that for all α < ω1 the real xα is picked such that
xα ∈ Pα is least according to the well-order ≤ with

xα /∈ {yβ | β < α} ∪ {xβ | β < α}.

Similarly we pick yα ∈ Pα for all α < ω1 such that yα is least according to
the well-order ≤ with

yα /∈ {xβ | β ≤ α} ∪ {yβ | β < α}.

Now let

D = {xα | α < ω1},
and

D′ = {yα | α < ω1}.
Then it is easy to see that D and D′ are disjoint and both do not contain
a perfect subset. Moreover we have by construction that they are both
Σ1

2n+2-definable by Claim 3. �

Let E be a Π1
2n+1-definable set such that

x ∈ D ⇔ ∃y (x, y) ∈ E.

By Π1
2n+1-uniformization (see Theorem 6C.5 in [Mo09] or Lemma 3.4.2 (1)

in this thesis) there exists a Π1
2n+1-definable partial function C : R → R

uniformizing E, that means we have that

∃y (x, y) ∈ E ⇔ (x,C(x)) ∈ E.

The set C ′ which is defined as

C ′ = {(x,C(x)) | x ∈ D} = C ∩ E

is Π1
2n+1-definable and consider the Davis game Gp(C ′). Since we can as be-

fore “code” this game into a Gale-Stewart game G(C0) for a Π1
2n+1-definable

set of reals C0, the games G(C0) and Gp(C ′) are determined by assumption.

As above this yields that C ′ has a perfect subset P ⊂ C ′, because D and
thus also C ′ is uncountable. Since P is a perfect set and D does not contain
a perfect subset, there are reals x, y and y′ such that y 6= y′ and (x, y) ∈ P
and (x, y′) ∈ P . But we have y = C(x) = y′. This is a contradiction. �

3.6. M#
2n−1(x) from Boldface Π1

2n Determinacy

The goal of this section is to prove Theorem 3.3.2 in the case that n is
odd. The proof which is presented in the following argument only works
if n is odd because of the periodicity in the projective hierarchy in terms
of uniformization (see Lemma 3.4.2). The even levels in the statement of
Theorem 3.3.2 have to be treated differently (see Section 3.7). So we are
going to prove the following theorem.
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Theorem 3.6.1. Let n ≥ 1 and assume that every Π1
2n−1-definable set of

reals and every Π1
2n-definable set of reals is determined. Moreover assume

that there is no Σ1
2n+1-definable ω1-sequence of pairwise distinct reals. Then

the premouse M#
2n−1 exists and is ω1-iterable.

The proof of Theorem 3.6.1 uses the following Determinacy Transfer The-
orem, which is due to A. S. Kechris and W. H. Woodin (see [KW08]). In
the version as stated below it follows from [KW08] using [Ne95] and that
Theorem 3.3.1 holds below 2n− 1 inductively.

Theorem 3.6.2 (Determinacy Transfer Theorem). Let n ≥ 1. Assume de-
terminacy for every Π1

2n−1- and every Π1
2n-definable set of reals. Then we

have determinacy for all a(2n−1)(< ω2 −Π1
1)-definable sets of reals.

Proof. The lightface version of Theorem 1.10 in [KW08] (see p. 369 in
[KW08]) gives that for all n ≥ 1,

Det(a(2n−2)(< ω2 −Π1
1))→ [Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1))].

As in the addendum §5 in [KW08] we need to argue that Π1
2n−1 determinacy

implies a(2n−2)(< ω2 −Π1
1) determinacy to obtain that it implies the right-

hand side of the implication, i.e. “Det(∆1
2n)↔ Det(a(2n−1)(< ω2 −Π1

1))”.

Recall that we assume inductively that Theorem 3.3.1 holds for all m <

2n−1. Together with Lemma 3.5.1 this implies that the premouse M#
2n−2(x)

exists and is ω1-iterable for all x ∈ ωω from Π1
2n−1 determinacy. By Theorem

2.5 in [Ne95] this yields a(2n−2)(< ω2−Π1
1) determinacy. Therefore we have

that

Det(Π1
2n−1)→ [Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1))].

We have

Det(∆1
2n)↔ Det(Π1

2n)

by Theorem 5.1 in [KS85] which is due to Martin (see [Ma73]). So in
particular Π1

2n−1 determinacy and Π1
2n determinacy together imply that

a(2n−1)(< ω2 −Π1
1) determinacy holds. �

Martin proves in [Ma08] that under the assumption that x# exists for every
real x,

A ∈ a(< ω2 −Π1
1)

iff there is a formula φ such that for all x ∈ ωω

x ∈ A iff L[x] � φ[x, γ1, . . . , γk],

where γ1, . . . , γk are Silver indiscernibles for x. In the light of this result
(see also Definition 2.7 in [Ne02] for the general case) we can obtain the
following corollary of the Determinacy Transfer Theorem 3.6.2.
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Corollary 3.6.3. Let n ≥ 1. Assume that Π1
2n−1 determinacy and Π1

2n

determinacy hold. Suppose Q is a set of reals such that there is an m < ω
and a formula φ such that for all x ∈ ωω

x ∈ Q iff M2n−2(x) � φ(x,E, γ1, . . . , γm),

where E is the extender sequence of M2n−2(x) and γ1, . . . , γm are the first
m indiscernibles of M2n−2(x). Then Q is determined.

This follows from the Determinacy Transfer Theorem 3.6.2 as the set Q
defined in Corollary 3.6.3 is a(2n−1)(< ω2−Π1

1)-definable. Moreover note in
the statement of Corollary 3.6.3 that Π1

2n−1 determinacy inductively implies

that the premouse M#
2n−2(x) exists for every real x.

Now we are ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Let n ≥ 1. We assume inductively that
Theorem 3.3.2 holds for 2n− 2, that means we assume that Π1

2n−1 determi-

nacy implies that M#
2n−2(x) exists and is ω1-iterable for all reals x. These

even levels will be proven in Theorem 3.7.1. Recall that then our hypothe-
sis implies by Lemmas 3.1.2 and 3.1.9 that there exists a (2n − 1)-suitable
premouse.

Let x ∈ ωω and consider the simultaneous comparison of all (2n−1)-suitable
premice N such that N is coded by a real yN ≤T x, using the iterability
stated in Definition 3.1.8. That means analogous to a usual comparison as
in Theorem 3.14 in [St10] we iterate away the least disagreement that exists
between any two of the models we are considering.

These premice successfully coiterate to a common model since they are all
(2n−1)-suitable and call this common iterate Nx. We could have performed
this simultaneous comparison inside an inner model of V of height ωV1 which

contains x and is closed under the operation a 7→ M#
2n−2(a) and therefore

the resulting premouse Nx is countable in V .

Since Nx results from a successful comparison using iterability in the sense
of Definition 3.1.8, there either exists a (2n − 1)-suitable premouse N and
a non-dropping iteration from N to Nx via a short iteration tree or there
exists a maximal iteration tree T on a (2n− 1)-suitable premouse such that

Nx = M2n−2(M(T )) | (δ(T )+)M2n−2(M(T )).

Let δNx as usual denote the largest cardinal in Nx. Then we have that in the
first case Nx is a (2n − 1)-suitable premouse again by fullness preservation
and so in particular the model M2n−2(Nx|δNx) constructed in the sense of
Definition 2.2.6 is a well-defined proper class premouse with 2n− 1 Woodin
cardinals. In the second case we have by maximality of T that

M2n−2(Nx|δNx) � “δ(T ) is Woodin”,

with δNx = δ(T ), and M2n−2(Nx|δNx) is again a well-defined premouse with
2n− 1 Woodin cardinals.
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For each formula φ and each m < ω let Qφm be the set of all x ∈ ωω such
that

M2n−2(Nx|δNx) � φ(E, γ1, . . . , γm),

where E is the extender sequence of M2n−2(Nx|δNx) and γ1, . . . , γm are
indiscernibles of M2n−2(Nx|δNx).

Claim 1. For all formulas φ and for all m < ω the set Qφm is determined.

Proof. We aim to reduce determinacy for the set Qφm to determinacy
for a set Q as in Corollary 3.6.3.

Recall that by Lemma 3.1.9 we have that a premouse N is (2n− 1)-suitable
iff it is pre-(2n−1)-suitable, that means iff it satisfies the following properties
for an ordinal δ0.

(1) N � “ ZFC−+ δ0 is the largest cardinal”,

N = M2n−2(N |δ0) | (δ+
0 )M2n−2(N |δ0),

and for every γ < δ0,

M2n−2(N |γ) | (γ+)M2n−2(N |γ) CN,

(2) M2n−2(N |δ0) is a proper class model and

M2n−2(N |δ0) � “δ0 is Woodin”,

(3) for every γ < δ0, M2n−2(N |γ) is a set, or

M2n−2(N |γ) 2 “γ is Woodin”,

and
(4) for every η < δ0, M2n−2(N |δ0) � “N |δ0 is η-iterable”.

Formally the definition of pre-(2n− 1)-suitability requires that in the back-

ground universe the premouse M#
2n−2(z) exists for all z ∈ ωω. But for a

premouse N which is coded by a real yN ≤T x, the model M2n−2(x) can
compute if N is pre-n-suitable in V , i.e. if N satisfies properties (1) - (4)
above in V , by considering a fully backgrounded extender construction in
the sense of [MS94] above N |δ0, where δ0 denotes the largest cardinal in
N . Therefore we can make sense of these (2n − 1)-suitable premice inside
the model M2n−2(x). For the same reason the simultaneous comparison of
all such (2n − 1)-suitable premice which are coded by a real yN ≤T x as
introduced above can be computed inside M2n−2(x) and therefore we have
that Nx ∈M2n−2(x).
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Now consider the following formula ψφ, where φ as above is an arbitrary
formula.

ψφ(x,E, γ1, . . . , γm) ≡ “Write Nx for the result of the simultaneous

comparison of all (2n− 1)-suitable premice N

which are coded by a real yN ≤T x and

δNx for the largest cardinal in Nx, then

L[Ē](Nx|δNx) � φ(E∗, γ1, . . . , γm),

where E∗ denotes the extender sequence

of L[Ē](Nx|δNx),which in turn is computed from E

via a fully backgrounded extender construction

over Nx|δNx as in [MS94].”

Now let E denote the extender sequence of the x-premouse M2n−2(x) and
let γ1, . . . , γm denote indiscernibles of the model L[M2n−2(x)|δ] = M2n−2(x),
where δ is the largest Woodin cardinal in M2n−2(x). Then we have in par-
ticular that γ1, . . . , γm are indiscernibles of the model L[Ē](Nx|δNx), con-
structed via a fully backgrounded extender construction inside M2n−2(x) as
defined in the formula ψφ(x,E, γ1, . . . , γm) above.

Therefore we have that

x ∈ Qφm ⇔M2n−2(x) � ψφ(x,E, γ1, . . . , γm),

because the premice L[Ē](Nx|δNx) as defined above and M2n−2(Nx|δNx) as

in the definition of the set Qφm coiterate to the same model.

Thus Corollary 3.6.3 implies that Qφm is determined for any formula φ and
any m < ω. �

The sets Qφm are Turing invariant, since the premouse Nx by definition only
depends on the Turing degree of x.

Let ThM2n−2(Nx|δNx ) denote the theory of M2n−2(Nx|δNx) with indiscernibles
(computed in V ). That means

ThM2n−2(Nx|δNx ) = {φ |M2n−2(Nx|δNx) � φ(E, γ1, . . . , γm),

m < ω, φ formula},
where as above E denotes the extender sequence of M2n−2(Nx|δNx) and
γ1, . . . , γm are indiscernibles of M2n−2(Nx|δNx). Then we have that the
theory of M2n−2(Nx|δNx) stabilizes on a cone of reals x as in the following
claim.

Claim 2. There exists a real x0 ≥T x such that for all reals y ≥T x0,

ThM2n−2(Nx0 |δNx0
) = ThM2n−2(Ny |δNy ).

Proof. By Claim 1 the set Qφm is determined and as argued above it is
also Turing invariant for all formulas φ and all m < ω. That means the set
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Qφm either contains a cone of reals or is completely disjoint from a cone of
reals.

For each formula φ and each natural number m let xφm ∈ ωω be such that

either y ∈ Qφm for all y ≥T xφm or else y /∈ Qφm for all y ≥T xφm. Let

x0 =
⊕
{xφm | φ formula,m < ω}.

Then we have by construction for all y ≥T x0 that

ThM2n−2(Nx0 |δNx0
) = ThM2n−2(Ny |δNy ),

as desired. �

Let x0 ∈ ωω be as in Claim 2. We want to show that the unique theory
T = ThM2n−2(Nx|δNx ) of M2n−2(Nx|δNx) with indiscernibles as defined above

for x ≥T x0 in fact gives a candidate for the theory of the premouse M#
2n−1

in V to conclude that M#
2n−1 exists and is ω1-iterable in V . By coding a

formula φ by its unique Gödel number pφq we can code the theory T by a
real xT .

Fix a real z such that z ≥T x0 ⊕ xT . Moreover we can pick the real z such
that it in addition codes a (2n − 1)-suitable premouse using Lemmas 3.1.2
and 3.1.9.

Using the uniformization property of the pointclass Π1
2n−1 (see Theorem

6C.5 in [Mo09] or Lemma 3.4.2 (1) in this thesis) and the existence of the

premouse M#
2n−2(x) in V for every real x, we can as described below alter-

nately close under Skolem functions for Σ1
2n-formulas (obtained from Π1

2n−1-
uniformization) and the operation

a 7→M#
2n−2(a)

to construct a transitive model Mz from z similar as in the proof of Theorem
3.4.1 we gave earlier.

The fact that the model Mz is closed under a 7→ M#
2n−2(x) directly yields

that Mz is Σ1
2n-correct. Therefore there is no need to close under Skolem

functions for Σ1
2n-formulas manually. We only include this in the construc-

tion because it simplifies the discussion a bit and like this the construction
is analogous to the one in the proof of Theorem 3.4.1 (where the closure
under Skolem functions was necessary).

Here we only aim for a model Mz which is Σ1
2n-correct in V with parameters

from Mz (instead of Σ1
2n+1-correct as in the proof of Theorem 3.4.1). This

is the reason why we can reduce the hypothesis that every Σ1
2n+2-definable

sequence of pairwise distinct reals is countable from Theorem 3.4.1 to the
hypothesis that every Σ1

2n+1-definable sequence of pairwise distinct reals is
countable as in the statement of Theorem 3.6.1.
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We construct the model Mz = WωV1
level-by-level in a construction of length

ωV1 , starting from z and taking unions at limit steps of the construction. So
we let W0 = {z}.
The order of construction for elements of the model Mz is defined exactly
as in the proof of Theorem 3.4.1, so we do not give the details here again.

Before we are describing this construction in more detail, we fix a Π1
2n−1-

definable set U which is universal for the pointclass Π1
2n−1. Pick U such

that we have Upϕq_a = Aϕ,a for every Π1
2n−1-formula ϕ and every a ∈ ωω,

where pϕq denotes the Gödel number of the formula ϕ and

Aϕ,a = {x | ϕ(x, a)}.

Then the uniformization property (see Theorem 6C.5 in [Mo09] or Lemma
3.4.2 (1) in this thesis) yields that there exists a Π1

2n−1-definable function F
uniformizing the universal set U . So we have for all x ∈ dom(F ) that

(x, F (x)) ∈ U,

where dom(F ) = {x | ∃y (x, y) ∈ U}.
Odd successor steps: At an odd successor level α + 1 of the construc-

tion we close the previous model Wα under the operation a 7→ M#
2n−2(a)

before closing under rudimentary functions. More precisely let α be an even
successor ordinal, α = 0, or let α be a limit ordinal and assume that we
already constructed Wα. Let a ∈ Wα be arbitrary. Then the a-premouse

M#
2n−2(a) exists in V because we again inductively assume that Theorem

3.3.1 holds for 2n−2. As in the proof of Theorem 3.4.1 letM be a countable
a-premouse in V with the following properties.

(i) M is (2n− 1)-small, but not (2n− 2)-small,
(ii) all proper initial segments of M are (2n− 2)-small,

(iii) M is a-sound and ρω(M) = a, and
(iv) M is Π1

2n-iterable.

As in the proof of Theorem 3.4.1 these properties again uniquely determine

the a-premouse M#
2n−2(a) in V .

We add such a-premice M for all a ∈ Wα to Wα+1 before closing under
rudimentary functions as in the usual construction of L.

Even successor steps: At an even successor level β+1 of the construction,
we close Wβ under Skolem functions for Σ1

2n-formulas. So assume that β is
an odd successor ordinal and that we already constructed Wβ. Whenever ϕ
is a Π1

2n−1-formula with a fixed parameter a from Wβ ∩ ωω such that

∃xϕ(x, a)

holds in V but not in Wβ, we add a real xϕ,a such that ϕ(xϕ,a, a) holds,
obtained as described below, to the model Wβ+1. Afterwards we again close
the model under rudimentary functions as in the usual construction of L
to obtain Wβ+1. In fact we want to perform this construction uniformly,
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that means we do not add the reals xϕ,a individually, but we close under the
function F which uniformizes the set U we fixed above.

Therefore we add F (x) for all x ∈ dom(F ) ∩Wβ to the current model Wβ.
We will see in Claims 3 and 4 that this procedure adds reals xϕ,a as above
in a Π1

2n−1-definable way from a to the model Mz.

So let ϕF be a Π1
2n−1-formula such that for all x, y ∈ ωω,

F (x) = y iff ϕF (x, y).

Then we let

Wβ+1 = rud(Wβ ∪ {y ∈ ωω | ∃x ∈Wβ ∩ ωω ϕF (x, y)}).

Limit steps: At a limit step of the construction we let as usual

Wλ =
⋃
α<λ

Wα

for all limit ordinals λ < ωV1 and we finally let

Mz = WωV1
=

⋃
α<ωV1

Wα.

As before we get that Mz is a model of ZFC from the background hypothesis
that there is no Σ1

2n+1-definable ω1-sequence of pairwise distinct reals as in
the following claim.

Claim 3. Mz � ZFC.

Proof. This claim follows with the same argument as the one we gave
for Claim 3 in the proof of Theorem 3.4.1. In this case the background
hypothesis that there is no Σ1

2n+1-definable ω1-sequence of pairwise distinct
reals suffices, because we closed the model Mz at the even successor levels of
the construction under the function F which uniformizes the universal set U
and is Π1

2n−1-definable. Moreover properties (i)− (iv) at the odd successor

levels are again Π1
2n-definable uniformly in any code for the countable a-

premouse M. �

Now we have the following claim.

Claim 4. The resulting model Mz has the following properties.

(1) Mz ∩Ord = ωV1 , z ∈Mz,
(2) Mz ≺Σ1

2n
V ,

(3) Mz is closed under the operation

a 7→M#
2n−2(a),

and moreover M#
2n−2(a) is ω1-iterable in Mz for all a ∈Mz.
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Proof. Property (1) immediately follows from the construction of Mz.
Furthermore property (2) follows from the even successor levels of the con-
struction exactly as it does in the proof of Claim 4 in the proof of Theorem
3.4.1. Finally property (3) follows from the proof of Claim 4 in the proof
of Theorem 3.4.1, because Mz ≺Σ1

2n
V is sufficient for the proof of property

(3) given there. �

Now we can show exactly as in Claim 5 of the proof of Theorem 3.4.1 that
a Kc-construction (in the sense of [MSch04]) inside the model Mz reaches

the premouse M#
2n−1, meaning that the premouse (Kc)Mz is not (2n − 1)-

small. This uses the fact that, by our choice of the real z, there exists a
(2n− 1)-suitable premouse in Mz (which is coded by z). Thus we omit the
proof here and have the following claim.

Claim 5. Mz � “M#
2n−1 exists and is ω1-iterable”.

Work inside the model Mz and let x ∈ Mz be a real which codes x0, the

theory T and the premouse (M#
2n−1)Mz . Let

N∗ = (M#
2n−1|(δ

+
0 )M

#
2n−1)Mz

denote the suitable initial segment of (M#
2n−1)Mz , where δ0 denotes the least

Woodin cardinal in (M#
2n−1)Mz . Then we have in particular that N∗ is a

(2n− 1)-suitable premouse (in Mz).

Recall that by Lemma 3.1.9 we have that N∗ is a (2n−1)-suitable premouse
iff it is pre-(2n − 1)-suitable, that means iff it satisfies properties (1) − (4)
listed in the proof of Claim 1. Therefore the statement “N∗ is a (2n − 1)-
suitable premouse” is Π1

2n-definable uniformly in any code for N∗. Hence
by Σ1

2n-correctness of Mz in V it follows that N∗ is also a (2n− 1)-suitable
premouse in V .

Recall that Nx is the common iterate of all (2n − 1)-suitable premice N
which are coded by a real yN recursive in x. Since Mz is Σ1

2n-correct in V
it follows that the premouse Nx is the same computed in Mz or in V . This

yields by correctness of Mz in V again that the premouse M#
2n−2(Nx|δNx)

is the same computed in Mz or in V by the following argument. The pre-

mouse (M#
2n−2(Nx|δNx))Mz is Π1

2n-iterable above δNx in Mz and by Σ1
2n-

correctness of Mz also in V . Therefore we can successfully coiterate the pre-

mice (M#
2n−2(Nx|δNx))Mz and (M#

2n−2(Nx|δNx))V inside V by Lemma 2.2.9
since the latter premouse is ω1-iterable in V above δNx and the comparison
takes place above δNx . It follows that in fact

(M#
2n−2(Nx|δNx))Mz = (M#

2n−2(Nx|δNx))V .

As mentioned before, we have that N∗ = (M#
2n−1|(δ

+
0 )M

#
2n−1)Mz is a (2n −

1)-suitable premouse in Mz and in V and since x codes the premouse

(M#
2n−1)Mz , the premouse N∗ is coded by a real recursive in x.
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Consider the comparison of N∗ with Nx = (Nx)Mz inside an inner model of

Mz of height ωMz
1 which is closed under the operation a 7→ M#

2n−2(a). The

premouse (M#
2n−1)Mz is ω1-iterable in Mz and therefore it follows that N∗

is ω1-iterable in Mz. Thus arguments as in the proof of Lemma 2.2.8 yield
that Nx is in fact a non-dropping iterate of N∗, because N∗ is one of the
models giving rise to Nx.

The same argument shows that Nx does not move in the comparison with

(M#
2n−1)Mz . So in fact there is a non-dropping iterate M of (M#

2n−1)Mz

below (δ+
0 )(M#

2n−1)Mz such that NxEM . Since the iteration from (M#
2n−1)Mz

to M is fullness preserving in the sense of Definition 3.1.8 and it takes place

below (δ+
0 )(M#

2n−1)Mz in Mz, we have that in fact

M = M#
2n−2(Nx|δNx),

because (M#
2n−1)Mz = M#

2n−2(N∗|δ0). Therefore we have thatM#
2n−2(Nx|δNx)

is a non-dropping iterate of M#
2n−2(N∗|δ0) and hence

ThM2n−2(Nx|δNx ) = ThM2n−2(N∗|δ0).

Recall that by Claim 2 we picked the real x0 such that ThM2n−2(Nx|δNx ) and
thus ThM2n−2(N∗|δ0) is constant for all x ≥T x0. This now implies that the

theory of (M#
2n−1)Mz is constant for all z ≥T x0 ⊕ xT , where xT is as above

a real coding the theory T .

Thus if we now work in V and let N = (M#
2n−1)Mz for z ≥T x0 ⊕ xT , then

we have

(M#
2n−1)Mz = N = (M#

2n−1)My

for all y ≥T x0 ⊕ xT . We aim to show that

(M#
2n−1)V = N,

so in particular that (M#
2n−1)V exists.

For this reason we inductively show that the premouse N is ω1-iterable in
V via the Q-structure iteration strategy Σ (see Definition 2.2.2). So assume
that T is an iteration tree via Σ of limit length < ω1 on N (in V ). So we have
that the branch b through the iteration tree T � λ is given by Q-structures,
i.e. Q(b, T � λ) = Q(T � λ), for every limit ordinal λ < lh(T ).

Pick z ∈ ωω with z ≥T x0⊕xT such that T ∈Mz and lh(T ) < ωMz
1 . Since T

is an iteration tree on N = (M#
2n−1)Mz according to the iteration strategy Σ

in V , we have that for all limit ordinals λ < lh(T ) the Q-structure Q(T � λ)
exists in V and is (2n − 1)-small above δ(T � λ). In fact Q(T � λ) is not
more complicated than the least active premouse which is not (2n−2)-small
above δ(T � λ). So in this case we have that Π1

2n-iterability for these Q-
structures is enough to determine a unique cofinal well-founded branch b
through T . Since Mz is Σ1

2n-correct in V it follows that T is also according
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to the Q-structure iteration strategy Σ inside Mz. Moreover recall that

(M#
2n−1)Mz = N.

Therefore there exists a cofinal well-founded branch b through T in Mz.
As above this branch is determined by Q-structures Q(T � λ) which are
ω1-iterable above δ(T � λ) and therefore Π1

2n-iterable above δ(T � λ) in Mz

for all limit ordinals λ ≤ lh(T ). That means in particular that we have
Q(b, T ) = Q(T ). Moreover Q(T ) is also Π1

2n-iterable in V and therefore it
follows that b is the unique cofinal well-founded branch determined by these
Q-structures in V as well. So N is ω1-iterable in V via the Q-structure
iteration strategy Σ.

Thus we now finally have that

V � “M#
2n−1 exists and is ω1-iterable”.

This finishes the proof of Theorem 3.3.2 for odd n < ω. �

3.7. M#
2n(x) from Boldface Π1

2n+1 Determinacy

In this section we will finish the proof of Theorem 2.1.1 by proving Theorem
3.7.1 which will yield Theorem 3.3.2 and finally Theorem 2.1.1 for even levels
n in the projective hierarchy (using Lemma 3.5.1). Therefore together with
the previous section we will have Theorem 2.1.1 for arbitrary levels n.

Theorem 3.7.1. Let n ≥ 1 and assume that there is no Σ1
2n+2-definable ω1-

sequence of pairwise distinct reals. Moreover assume that Π1
2n determinacy

and Π1
2n+1 determinacy hold. Then M#

2n exists and is ω1-iterable.

Recall that Lemma 3.5.1 gives that Π1
2n+1 determinacy suffices to prove that

every Σ1
2n+2-definable sequence of pairwise distinct reals is countable.

In order to prove Theorem 3.7.1 we are considering slightly different premice
than before. The main advantage of these models is that they only contain
partial extenders on their extender sequence and therefore behave nicer in
some arguments to follow. The premice we want to consider are defined as
follows.

Definition 3.7.2. Let A be an arbitrary countable transitive swo’d 3 set.
With Lpn(A) we denote the unique model of height ωV1 called lower part
model above A which is given by the following recursive definition. We
start with N0 = A. Assume that we already constructed Nα. Then we let
Nα+1 be the model theoretic union of all countable A-premice M DNα such
that

(1) M is n-small above Nα ∩Ord,
(2) ρω(M) ≤ Nα ∩Ord,
(3) M is sound above Nα ∩Ord,

3i.e. self-wellordered as for example defined in Definition 3.1 in [SchT].
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(4) Nα ∩Ord is a cutpoint of M , and
(5) M is ω1-iterable above Nα ∩Ord.

For the limit step let λ be a limit ordinal and assume that we already defined
Nα for all α < λ. Then we let Nλ be the model theoretic union of all
A-premice Nα for α < λ.

We finally let Lpn(A) = NωV1
.

A special case of this is Lpn(x) for x ∈ ωω.

Remark. We have that every lower part model as defined above does not
contain total extenders.

We will state the following lemmas for lower part models constructed above
reals x instead of swo’d sets A as this will be our main application. But they
also hold (with the same proofs) if we replace x with a countable transitive
swo’d set A as in Definition 3.7.2.

Lemma 3.7.3. Let n ≥ 1 and assume that Π1
2n determinacy holds. Moreover

let x ∈ ωω be arbitrary. Then the lower part model above x, Lp2n−1(x), is
well-defined, that means Lp2n−1(x) is an x-premouse.

Proof. Recall that we assume inductively that Theorem 3.6.1 holds.

That means Π1
2n determinacy implies that M#

2n−1(x) exists for all x ∈ ωω.
Therefore we have by Lemma 2.2.8 that whenever M and M ′ are two x-
premice extending some x-premouse Nα (as in Definition 3.7.2) and satis-
fying properties (1)-(5) in Definition 3.7.2 for some x ∈ ωω, then we have
that in fact M E M ′ or M ′ E M . Therefore Lp2n−1(x) is a well-defined
x-premouse. �

Lemma 3.7.4. Let n ≥ 1 and assume that Π1
2n determinacy holds. Moreover

let x ∈ ωω be arbitrary. Let M denote the ωV1 -th iterate of M#
2n−1(x) by its

least measure and its images. Then

M |ωV1 = Lp2n−1(x).

Proof. Let x ∈ ωω and let (Nα | α ≤ ωV1 ) be the sequence of models
from the definition of Lp2n−1(x) (see Definition 3.7.2). We aim to show
inductively that

Nα EM

for all α < ωV1 , where M denotes the ωV1 -th iterate of M#
2n−1(x) by its least

measure and its images as in the statement of Lemma 3.7.4. Fix an α < ωV1
and assume inductively that

Nβ EM

for all β ≤ α. Let z be a real which codes the countable premice Nα+1 and

M#
2n−1(x).

Since M#
2n−1(x) is ω1-iterable in V and has no definable Woodin cardinals,

we have by Lemma 2.2.8 (2) that it is (ω1 + 1)-iterable inside the model
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M2n−1(z). Therefore we have in particular that M is (ω1 +1)-iterable inside
M2n−1(z).

Recall that Nα+1 is by definition the model theoretic union of all countable
x-premice N DNα such that

(1) N is (2n− 1)-small above Nα ∩Ord,
(2) ρω(N) ≤ Nα ∩Ord,
(3) N is sound above Nα ∩Ord,
(4) Nα ∩Ord is a cutpoint of N , and
(5) N is ω1-iterable above Nα ∩Ord.

In particular Lemma 2.2.8 (2) implies that all these x-premice N D Nα

satisfying properties (1) − (5) are (ω1 + 1)-iterable above Nα ∩ Ord inside
the model M2n−1(z) since they have no definable Woodin cardinals above
Nα∩Ord. In particular Nα+1 is well-defined as in Lemma 3.7.3 and it follows
that Nα+1 is (ω1 + 1)-iterable above Nα ∩Ord inside M2n−1(z).

Hence we can consider the comparison of the x-premice M and Nα+1 inside
the model M2n−1(z). This comparison is successful because by our inductive
hypothesis it takes place above Nα ∩Ord. Now we distinguish the following
cases.

Case 1. Both sides of the comparison move.

In this case both sides of the comparison have to drop since we have that
ρω(N) ≤ Nα ∩Ord for all x-premice N occurring in the definition of Nα+1,
Nα+1 ∩Ord < ωV1 and M only has partial extenders on its sequence below
ωV1 . Let T and U be iteration trees of length λ+ 1 for some ordinal λ on M
and Nα+1 respectively resulting from the comparison. Moreover let Eβ and
Fγ be the first extenders used in the coiteration after the last drop along
[0, λ]T and [0, λ]U respectively. Then by the proof of the Comparison Lemma
(see Theorem 3.11 in [St10]) the extenders Eβ and Fγ are compatible. Again
by the proof of the Comparison Lemma this is a contradiction, so only one
side of the coiteration can move.

Case 2. Only the M -side of the comparison moves.

As above we have in this case that the M -side drops. So there is an iterate
M∗ of M such that Nα+1 is an initial segment of M∗. Let Eβ for some
ordinal β be the first extender used on the M -side in the coiteration of M
with Nα+1. In particular Eβ is an extender indexed on the M -sequence

above Nα ∩Ord and below ωV1 . Since Eβ has to be a partial extender, there
exists a (2n− 1)-small sound countable x-premouse N CM such that Eβ is
a total extender on the N -sequence and ρm(N) ≤ crit(Eβ) for some natural
number m. Moreover we have that N is ω1-iterable by the iterability of
M . Furthermore we have that crit(Eβ) is a cardinal in Nα+1, because the
extender Eβ is used in the coiteration and we have that

Nα+1 EM
∗.
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Therefore the premouse N is contained in Nα+1 by the definition of a lower
part model. But this contradicts the assumption that Eβ was used in the
coiteration, because then we have that there is no disagreement between M
and Nα+1 at Eβ.

Case 3. Only the Nα+1-side of the comparison moves.

In this case there is an iterate N∗ of Nα+1 above Nα ∩ Ord such that the
iteration from Nα+1 to N∗ drops and we have that

M EN∗.

Recall that M denotes the ωV1 -th iterate of M#
2n−1(x) by its least measure

and its images and is therefore in particular not (2n − 1)-small above ωV1 .
But then the same holds for N∗ and thus it follows that Nα+1 is not (2n−1)-
small above Nα ∩Ord, which is a contradiction, because Nα+1 is the model
theoretic union of premice which are (2n− 1)-small above Nα ∩Ord.

This proves that
Nα+1 EM

for all α < ωV1 and since Lp2n−1(x) ∩ Ord = NωV1
∩ Ord = ωV1 we finally

have that
Lp2n−1(x) = M |ωV1 .

�

Remark. Lemma 3.7.4 also implies that the lower part model Lp2n−1(x)

is closed under the operation a 7→ M#
2n−2(a) by the proof of Lemma 2.2.8

(1) as this holds for M |ωV1 , where M again denotes the ωV1 -th iterate of

M#
2n−1(x) by its least measure and its images.

Using this representation of lower part models we can also prove the following
lemma.

Lemma 3.7.5. Let n ≥ 1 and assume that Π1
2n determinacy holds. Let

x, y ∈ ωω be such that x ∈ Lp2n−1(y). Then we have that

Lp2n−1(x) ⊆ Lp2n−1(y).

If we moreover have that y ≤T x, then

Lp2n−1(x) = (Lp2n−1(x))Lp
2n−1(y).

Here (Lp2n−1(x))Lp
2n−1(y) denotes the model of height ωV1 which is con-

structed analogous to Definition 3.7.2, but with models M which are ω1-
iterable above Nα ∩Ord inside Lp2n−1(y) instead of inside V .

Proof. Let x, y ∈ ωω be such that x ∈ Lp2n−1(y). We first prove that

Lp2n−1(x) ⊆ Lp2n−1(y).

By Lemma 3.7.4 we have that Lp2n−1(x) = M(x)|ωV1 , where M(x) denotes

the ωV1 -th iterate of M#
2n−1(x) by its least measure and its images. Moreover
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we have that Lp2n−1(y) = M(y)|ωV1 , where M(y) denotes the ωV1 -th iterate

of M#
2n−1(y) by its least measure and its images. Let M∗(y) denote the

result of iterating the top measure of M(y) out of the universe.

Consider the result of a fully backgrounded extender construction (in the
sense of [MS94] but with the smallness hypothesis weakened) above x inside
the model M∗(y), which we denote by

L[E](x)M
∗(y).

Moreover let M#
x denote the model obtained from L[E](x)M

∗(y) by adding

the top measure (intersected with L[E](x)M
∗(y)) of the active premouse

M(y) to an initial segment of L[E](x)M
∗(y) as in Section 2 of [FNS10].

We can successfully compare the active x-premice M#
x and M(x) inside the

model M2n−1(z), where z is a real coding M#
2n−1(y) and M#

2n−1(x), by an
argument using Lemma 2.2.8 as in the proof of Lemma 2.2.15. Therefore it

follows that M#
x = M(x) and thus we have that in fact

L[E](x)M
∗(y)|ωV1 = M#

x |ωV1 = M(x)|ωV1 .

Since L[E](x)M
∗(y) ⊆M∗(y) it follows that

Lp2n−1(x) = M(x)|ωV1 = L[E](x)M
∗(y)|ωV1 ⊆M∗(y)|ωV1 = Lp2n−1(y).

Now we prove the “moreover” part of Lemma 3.7.5, so assume that we
in addition have that y ≤T x. Let (Nα | α ≤ ωV1 ) be the sequence of
models from the definition of Lp2n−1(x) in V (see Definition 3.7.2) and let

(N
Lp2n−1(y)
α | α ≤ ωV1 ) denote the corresponding sequence of models from the

definition of (Lp2n−1(x))Lp
2n−1(y). Let α < ωV1 be such that Nα = N

Lp2n−1(y)
α

and let N D Nα be an x-premouse which satisfies properties (1) − (5) in
Definition 3.7.2 in V . So in particular we have that N ∈ Lp2n−1(x) and N is
(2n−1)-small above Nα∩Ord. As argued above we have that N ∈ Lp2n−1(y)
and we first want to show that as N is ω1-iterable above Nα ∩ Ord in V it
follows that N is ω1-iterable above Nα ∩Ord inside Lp2n−1(y).

So assume that N is ω1-iterable above Nα ∩ Ord in V and recall that the
model Lp2n−1(y) is closed under the operation a 7→ M#

2n−2(a). Since N
is (2n − 1)-small above Nα ∩ Ord and has no definable Woodin cardinal
above Nα∩Ord, we have that for an iteration tree T on N of length < ω1 in
Lp2n−1(y) above Nα∩Ord the iteration strategy Σ is guided by Q-structures
which are (2n − 2)-small above δ(T � λ) for every limit ordinal λ ≤ lh(T ).
Therefore the Q-structures for T are contained in the model Lp2n−1(y) and
we have that N is ω1-iterable inside Lp2n−1(y) above Nα ∩Ord if we argue
analogous to the proof of Lemma 2.2.8 (2).

Assume now toward a contradiction that Lp2n−1(x) 6= (Lp2n−1(x))Lp
2n−1(y).

That means there is an ordinal α < ωV1 such that Nα = N
Lp2n−1(y)
α and there

exists a premouse NBNα which satifies properties (1)−(5) in the definition
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of (Lp2n−1(x))Lp
2n−1(y), so in particular N is ω1-iterable above Nα ∩ Ord

inside Lp2n−1(y), but N is not ω1-iterable above Nα ∩Ord in V .

Recall the model M∗(y) from the first part of this proof. We have that

Lp2n−1(x) = L[E](x)M
∗(y)|ωV1 and N are both sufficiently iterable in M∗(y),

so we can consider the coiteration of Lp2n−1(x) and N inside M∗(y) and
distinguish the following cases.

Case 1. Both sides of the comparison move.

In this case both sides of the comparison have to drop since we have that
ρω(N) ≤ Nα∩Ord and Lp2n−1(x) only has partial extenders on its sequence.
As in Case 1 in the proof of Lemma 3.7.4 this yields a contradiction.

Case 2. Only the Lp2n−1(x)-side of the comparison moves.

Then the Lp2n−1(x)-side drops and we have that there is an iterate M of
Lp2n−1(x) such that N EM . But this would imply that N is ω1-iterable in
V , contradicting our choice of N .

Case 3. Only the N -side of the comparison moves.

In this case there exists an iterate N∗ of N such that Lp2n−1(x) E N∗. In
fact the iteration from N to N∗ only uses measures of Mitchell order 0 as
the iteration cannot leave any total measures behind. Since there are only
finitely many drops along the main branch of an iteration tree, this implies
that the whole iteration from N to N∗ can be defined over the model N .
As N C (Lp2n−1(x))Lp

2n−1(y) we therefore have that

Lp2n−1(x) ( (Lp2n−1(x))Lp
2n−1(y) ⊆ Lp2n−1(y).

This contradicts the following claim.

Claim 1. For reals x, y such that x ∈ Lp2n−1(y) and y ≤T x we have that

Lp2n−1(x) = Lp2n−1(y).

Proof. As x ∈ Lp2n−1(y) we have that x ∈ M(y) and thus x ∈
M#

2n−1(y), because M(y) is obtained from M#
2n−1(y) by iterating its least

measure and its images.

As in the proof of Lemma 2.2.15 we can consider the premice L[E](x)M2n−1(y)

and L[E](y)L[E](x)M2n−1(y)
and if we let κ denote the least measurable cardi-

nal in M2n−1(y), then we get as in the proof of Lemma 2.2.15 that

VM2n−1(y)
κ = V L[E](x)M2n−1(y)

κ .

Moreover if we let (L[E](x)M2n−1(y))# denote the premouse obtained by

adding the restriction of the top extender of M#
2n−1(y) to an initial segment
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of the premouse L[E](x)M2n−1(y) as in [FNS10], then another comparison ar-

gument analogous to Lemma 2.2.15 yields thatM#
2n−1(x) = (L[E](x)M2n−1(y))#.

Therefore we have that

VM2n−1(y)
κ = V L[E](x)M2n−1(y)

κ = VM2n−1(x)
κ .

This implies that Lp2n−1(x) = Lp2n−1(y), as desired. �

�

We also have a version of Lemma 2.1.3 for lower part models Lp2n−1(x) as
follows.

Lemma 3.7.6. Let n ≥ 1 and assume that Π1
2n determinacy and Π1

2n+1

determinacy hold. Then there exists a real x such that we have for all reals
y ≥T x that

Lp2n−1(y) � OD-determinacy.

Proof. Recall that we assume inductively that Π1
2n determinacy im-

plies that M#
2n−1(x) exists for all x ∈ ωω. Then Lemma 3.7.6 follows from

Lemma 2.1.3 by the following argument. For x ∈ ωω we have that

M2n−1(x)|δx � OD-determinacy

implies that

M2n−1(x)|κ � OD-determinacy,

where κ is the least measurable cardinal in M2n−1(x), because whenever
a set of reals A is ordinal definable in M2n−1(x)|κ, then it is also ordinal
definable in M2n−1(x)|δx, since M2n−1(x)|κ and M2n−1(x)|δx have the same
sets of reals. This yields by elementarity that

M |ωV1 � OD-determinacy,

where M denotes the ωV1 -th iterate of M2n−1(x) by its least measure and
its images. By Lemma 3.7.4 we have that M |ωV1 = Lp2n−1(x), so it follows
that

Lp2n−1(x) � OD-determinacy.

�

This immediately yields that we have the following variant of Theorem 2.4.3.

Theorem 3.7.7. Let n ≥ 1 and assume that Π1
2n determinacy and Π1

2n+1

determinacy hold. Then there exists a real x such that we have for all reals
y ≥T x that

HODLp2n−1(y) � “ω
Lp2n−1(y)
2 is inaccessible”.

Now we can turn to the proof of Theorem 3.7.1, which is going to yield
Theorem 3.3.2 in the case that n is even.
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Proof of Theorem 3.7.1. We start with constructing a ZFC model
Mx of height ωV1 for some x ∈ ωω such that Mx is Σ1

2n+2-correct in V for

real parameters in Mx and closed under the operation a 7→ M#
2n−1(a). To

prove that this construction yields a model of ZFC, we are as before going to
use the hypothesis that there is no Σ1

2n+2-definable ω1-sequence of pairwise
distinct reals. The construction will be similar to the constructions we gave
in Sections 3.4 and 3.6.

Fix an arbitrary x ∈ ωω and construct a sequence of models (Wα | α ≤ ωV1 ).
So the model Mx = WωV1

is build level-by-level in a construction of length

ωV1 . We are starting from W0 = {x} and are taking unions at limit steps of
the construction. At an odd successor level α+1 we will close the model Wα

under Skolem functions for Σ1
2n+2-formulas. At the same time we will use

the even successor levels α + 2 to ensure that Mx will be closed under the
operation a 7→ M#

2n−1(a). As before the order of construction for elements
of the model Mx can be defined along the way analogous to the construction
in the proof of Theorem 3.4.1, so we omit the details here.

Before we are describing this construction in more detail, we fix a Π1
2n+1-

definable set U which is universal for the pointclass Π1
2n+1. Pick the set

U such that we have Upϕq_a = Aϕ,a for every Π1
2n+1-formula ϕ and every

a ∈ ωω, where pϕq denotes the Gödel number of the formula ϕ and

Aϕ,a = {x | ϕ(x, a)}.

Then the uniformization property (see Theorem 6C.5 in [Mo09] or Lemma
3.4.2 (1) in this thesis) yields that there exists a Π1

2n+1-definable function F
uniformizing the universal set U . So we have for all z ∈ dom(F ) that

(z, F (z)) ∈ U,
where dom(F ) = {z | ∃y (z, y) ∈ U}.
Odd successor steps: For the odd successor steps of the construction
assume now that we already constructed the model Wα such that α + 1 is
odd and that there exists a Π1

2n+1-formula ϕ with a real parameter a from
Wα such that ∃xϕ(x, a) holds in V but not in the model Wα. In this case
we aim to add a real xϕ,a constructed as described below to Wα+1 such that
ϕ(xϕ,a, a) holds, analogous to the proof of Theorem 3.4.1. This real will
witness that ∃xϕ(x, a) holds true inside Wα+1.

We aim to build these levels of Mx in a Σ1
2n+2-definable way, so we choose

reals xϕ,a carefully. Therefore we add F (z) for all z ∈ dom(F ) ∩Wα to the
current model Wα. We will see in Claims 1 and 2 that this procedure adds
reals xϕ,a as above in a Π1

2n+1-definable way to the model Mx.

So let ϕF be a Π1
2n+1-formula such that for all x, y ∈ ωω,

F (x) = y iff ϕF (x, y).

Then we let

Wα+1 = rud(Wα ∪ {y ∈ ωω | ∃x ∈Wα ∩ ωω ϕF (x, y)}).
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Even successor steps: At an even successor level α+2 of the construction

we close the previous model Wα+1 under the operation a 7→M#
2n−1(a) before

closing under rudimentary functions. Assume that we already constructed

Wα+1 and let a ∈Wα+1 be arbitrary. The a-premouse M#
2n−1(a) exists in V

because we as usual inductively assume that Theorem 3.3.1 holds for 2n−1.
Analogous to the proof of Theorem 3.6.1 let M be a countable a-premouse
in V with the following properties.

(i) M is 2n-small, but not (2n− 1)-small,
(ii) all proper initial segments of M are (2n− 1)-small,

(iii) M is a-sound and ρω(M) = a, and
(iv) M is Π1

2n+1-iterable.

We have that these properties (i)− (iv) uniquely determine the a-premouse

M#
2n−1(a) in V .

We add such a-premice M for all a ∈ Wα+1 to Wα+2 before closing under
rudimentary functions as in the usual construction of L.

Limit steps: Finally we let

Wλ =
⋃
α<λ

Wα

for limit ordinals λ < ωV1 and

Mx = WωV1
=

⋃
α<ωV1

Wα.

As in Sections 3.4 and 3.6 we are now able to show that this model Mx

satisfies ZFC, using the background hypothesis that every Σ1
2n+2-definable

sequence of pairwise distinct reals is countable. As the proof is analogous
to the proof of Claim 3 in the proof of Theorem 3.4.1 we omit it here.

Claim 1. Mx � ZFC .

Moreover we can prove the following claim. The proof is similar to the proof
of Claim 4 in the proof of Theorem 3.4.1 so we also omit it here.

Claim 2. The model Mx as constructed above has the following properties.

(1) Mx ∩Ord = ωV1 ,
(2) x ∈Mx,
(3) Mx is Σ1

2n+2-correct in V for real parameters in Mx, that means we
have that

Mx ≺Σ1
2n+2

V,

(4) Mx is closed under the operation

a 7→M#
2n−1(a),

and moreover M#
2n−1(a) is ω1-iterable in Mx for all a ∈Mx.
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The following additional property of the model Mx is a key point in proving

that M#
2n exists and is ω1-iterable in V .

Claim 3. For all x ∈ ωω in the cone of reals given in Theorem 3.7.7,

Mx � “M#
2n exists and is ω1-iterable.”

The proof of this claim is now different from the proof of the analogous
claim in the previous section. The reason for this is that at the even levels
we cannot assume that we have a 2n-suitable premouse to compare the
model Kc with (which at the odd levels was given by Lemmas 3.1.2 and
3.1.9). This is why we have to give a different argument here.

Proof of Claim 3. Assume this is not the case. Then (Kc)Mx is fully
iterable inside Mx by a generalization of Theorem 2.11 in [St96], since Mx

is closed under the operation a 7→M#
2n−1(a). This yields that we can build

the core model KMx inside Mx by a generalization of Theorem 1.1 in [JS13]
due to Jensen and Steel. The core model KMx has to be 2n-small, because
otherwise we would have that

Mx � “There exists a model which is fully iterable and not 2n-small”.

This would already imply that M#
2n exists and is fully iterable inside Mx, so

then there is nothing left to show.

Subclaim 1. KMx is closed under the operation

a 7→M#
2n−1(a).

Proof. We start with considering sets of the form a = KMx |ξ where
ξ < KMx∩Ord is not overlapped by an extender on the KMx-sequence. That
means there is no extender E on the KMx-sequence such that crit(E) ≤ ξ <
lh(E). We aim to prove that in fact

M#
2n−1(KMx |ξ)CKMx .

We have that the premouse M#
2n−1(KMx |ξ) exists inside the model Mx since

we have that ξ < KMx ∩ Ord = Mx ∩ Ord and Mx is closed under the
operation

a 7→M#
2n−1(a)

by property (4) in Claim 2. Consider the coiteration of the premice KMx

and M#
2n−1(KMx |ξ) inside Mx. This coiteration takes place above ξ and thus

both premice are iterable enough such that the comparison is successful

by Lemma 2.2.8 since M#
2n−1(KMx |ξ) is ω1-iterable above ξ in Mx. By

universality of KMx inside Mx (by Lemma 3.5 in [St96] applied inside Mx),

we have that there is an iterate M∗ of M#
2n−1(KMx |ξ) and an iterate K∗ of
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KMx such that M∗ E K∗ and the iteration from M#
2n−1(KMx |ξ) to M∗ is

non-dropping on the main branch. Since

ρω(M#
2n−1(KMx |ξ)) ≤ ξ

and since the coiteration takes place above ξ, we have that the iterate M∗

of M#
2n−1(KMx |ξ) is not sound, if any extender is used on this side of the

coiteration. Therefore it follows that in fact

M#
2n−1(KMx |ξ)CK∗.

Assume that the KMx-side moves in the coiteration, that means we have
that KMx 6= K∗. Let α be an ordinal such that Eα is the first extender
on the KMx-sequence which is used in the coiteration. Then we have that
α > ξ. We have in particular that α is a cardinal in K∗. But then since

we have that ρω(M#
2n−1(KMx |ξ)) ≤ ξ < α and M#

2n−1(KMx |ξ) C K∗, this
already implies that

α > M#
2n−1(KMx |ξ) ∩Ord .

Therefore there was no need to iterate KMx at all and we have that

M#
2n−1(KMx |ξ)CKMx .

Now let a ∈ KMx be arbitrary. Then there exists an ordinal ξ < KMx ∩Ord
such that a ∈ KMx |ξ and ξ is not overlapped by an extender on the KMx-
sequence. We just proved that

M#
2n−1(KMx |ξ)CKMx .

As we argued several times before, by performing a fully backgrounded ex-

tender construction (denoted by L[E](a)M2n−1(KMx |ξ)) above a inside the
model M2n−1(KMx |ξ) in the sense of [MS94] (with the smallness hypothesis

weakened) and adding the top extender of the active premouseM#
2n−1(KMx |ξ)

(intersected with L[E](a)M2n−1(KMx |ξ)) to an initial segment of the model

L[E](a)M2n−1(KMx |ξ) as described in Section 2 in [FNS10] we obtain that

M#
2n−1(a) ∈ KMx ,

as desired. �

Using the Weak Covering Lemma from [MSch95] (see also Theorem 1.1 in
[JS13]) we can pick a cardinal γ ∈Mx such that γ is singular in Mx and γ+

is computed correctly by KMx inside Mx. That means we pick γ such that
we have

(γ+)K
Mx

= (γ+)Mx .

For later purposes we want to pick γ such that it additionally satisfies

cf(γ)Mx ≥ ωMx
1 .

Subclaim 2. There exists a real z ≥T x such that
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(1) (γ+)Mx = ω
Lp2n−1(z)
2 , and

(2) KMx |(γ+)Mx ∈ Lp2n−1(z).

Proof. We are going to produce the real z via a five step forcing using
an almost disjoint coding. For an introduction into this kind of forcing see
for example [FSS14] for a survey or [Sch00] where a similar argument is
given.

We force over the ground model

Lp2n−1(x,KMx |(γ+)Mx).

We have that Lp2n−1(x,KMx |(γ+)Mx) is a definable subset of Mx because
we have by property (4) in Claim 2 that

M#
2n−1(x,KMx |(γ+)Mx) ∈Mx

and by Lemma 3.7.4 the lower part model Lp2n−1(x,KMx |(γ+)Mx) is ob-

tained by iterating the least measure of M#
2n−1(x,KMx |(γ+)Mx) and its im-

ages ωV1 times and cutting off at ωV1 .

This implies that in particular

cf(γ)Lp
2n−1(x,KMx |(γ+)Mx ) ≥ ωMx

1 .

Step 1: Write V0 = Lp2n−1(x,KMx |(γ+)Mx) for the ground model. We

start with a preparatory forcing that collapses everything below ωMx
1 to ω.

Afterwards we collapse γ to ωMx
1 .

So let G0 ∈ V be Col(ω,< ωMx
1 )-generic over V0 and let

V ′0 = V0[G0].

Moreover let G′0 ∈ V be Col(ωMx
1 , γ)-generic over V ′0 and let

V1 = V ′0 [G′0].

So we have that ωMx
1 = ωV1

1 and by our choice of γ, i.e. cf(γ)V0 ≥ ωMx
1 ,

we moreover have that (γ+)Mx = (γ+)K
Mx

= ωV1
2 . We write ω1 = ωV1

1 and

ω2 = ωV1
2 .

Furthermore let A′ be a set of ordinals coding G0 and G′0, such that if we
let A ⊂ (γ+)Mx be a code for

x⊕ (KMx |(γ+)Mx)⊕A′,
then we have that G0, G

′
0 ∈ Lp2n−1(A) and KMx |(γ+)Mx ∈ Lp2n−1(A).

We can in fact pick the set A such that we have V1 = Lp2n−1(A) by the
following argument: Recall that

Lp2n−1(A) = M(A)|ωV1 ,

where M(A) denotes the ωV1 -th iterate of M#
2n−1(A) by its least measure

and its images for a set A as above. Then we can consider G0 as being
generic over the model M(x,KMx |(γ+)Mx) and G′0 as being generic over the
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model M(x,KMx |(γ+)Mx)[G0], where M(x,KMx |(γ+)Mx) denotes the ωV1 -

th iterate of M#
2n−1(x,KMx |(γ+)Mx) by its least measure and its images.

Since both forcings in Step 1 take place below (γ+)Mx < ωV1 , it follows as
in the proof of Theorem 2.5.1 that M(x,KMx |(γ+)Mx)[G0][G′0] = M(A) for
a set A ⊂ (γ+)Mx coding x,KMx |(γ+)Mx , G0 and G′0 and thus we have that
V1 = M(A)|ωV1 for this set A, as desired.

Step 2: Before we can perform the first coding using almost disjoint subsets
of ω1 = ωV1

1 we have to “reshape” the interval between (γ+)Mx = ωV1
2 and

ω1 to ensure that the coding we will perform in Step 3 exists. Moreover we
have to make sure that the reshaping forcing itself does not collapse ω1 and
(γ+)Mx . We are going to show this by proving that the reshaping forcing is
< (γ+)Mx-distributive.

We are going to use the following notion of reshaping.

Definition 3.7.8. Let η be a cardinal and let X ⊂ η+. We say a function
f is (X, η+)-reshaping iff f : α → 2 for some α ≤ η+ and moreover for all
ξ ≤ α with ξ < η+ we have that

(i) L[X ∩ ξ, f � ξ] � |ξ| ≤ η, or
(ii) there is a model N and a Σk-elementary embedding

j : N → Lp2n−1(X)|η++

for some large enough k < ω such that
(a) crit(j) = ξ, j(ξ) = η+,
(b) ρk+1(N) ≤ ξ, N is sound above ξ, and
(c) definably over N there exists a surjection g : η � ξ.

Now we denote with P1 the forcing that adds an (A, (γ+)Mx)-reshaping

function for (γ+)Mx = ωV1
2 , defined inside our new ground model V1 =

Lp2n−1(A).

We let p ∈ P1 iff p is an (A, (γ+)Mx)-reshaping function with dom(p) <
(γ+)Mx and we order two conditions p and q in P1 by reverse inclusion, that
means we let p ≤P1 q iff q ⊆ p.
First notice that the forcing P1 is extendable, that means for every ordinal
α < (γ+)Mx the set Dα = {p ∈ P1 | dom(p) ≥ α} is open and dense in P1.

We now want to show that P1 is < (γ+)Mx-distributive. For that we fix a
condition p ∈ P1 and open dense sets (Dβ | β < ω1). We aim to find a
condition q ≤P1 p such that q ∈ Dβ for all β < ω1.

Consider, for some large enough fixed natural number k, transitive Σk-
elementary substructures of the model Lp2n−1(A) = V1. More precisely
we want to pick a continuous sequence

(Nα, πα, ξα | α ≤ ω1)
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of transitive models Nα of size |ωV1
1 | together with Σk-elementary embed-

dings
πα : Nα → Lp2n−1(A)

and an increasing sequence of ordinals ξα such that we have p ∈ N0, and for
all α ≤ ω1

(1) crit(πα) = ξα with πα(ξα) = (γ+)Mx ,
(2) for all ordinals α < ω1 we have that ρk+1(Nα) ≤ ξα and Nα is sound

above ξα, and
(3) {p} ∪ {Dβ | β < ω1} ⊂ ran(πα).

We can obtain Nα and πα for all α ≤ ω1 with these properties inductively
as follows. Let M0 be the (uncollapsed) Σk-hull of

γ ∪ {p} ∪ {Dβ | β < ω1}
taken inside Lp2n−1(A). Then let N0 be the Mostowski collapse of M0 and
let

π0 : N0 →M0 ≺Σk Lp
2n−1(A)

be the inverse of the embedding obtained from the Mostowski collapse with
critical point ξ0.

Now assume we already constructed (Nα, πα, ξα) and Mα for some α < ω1.
Then we let Mα+1 be the (uncollapsed) Σk-hull of

γ ∪ {p} ∪ {Dβ | β < ω1} ∪Mα ∪ {Mα}
taken inside Lp2n−1(A). Further let Nα+1 be the Mostowski collapse of
Mα+1 and let

πα+1 : Nα+1 →Mα+1 ≺Σk Lp
2n−1(A)

be the inverse of the embedding obtained from the Mostowski collapse with
critical point ξα+1. Note that we have ξα+1 > ξα.

Moreover if we assume that (Nα, πα, ξα) is already constructed for all α < λ
for some limit ordinal λ ≤ ω1, then we let

Nλ =
⋃
α<λ

Nα,

πλ =
⋃
α<λ

πα,

and ξλ = crit(πλ).

Recall that we fixed open dense sets (Dβ | β < ω1). We are now going to
construct a sequence (pα | α ≤ ω1) of conditions such that pα+1 ≤P1 pα
and pα+1 ∈ Dα for all α < ω1. Moreover we are going to construct these
conditions such that we inductively maintain pα ∈ π−1

α (P1) ⊂ Nα.

We start with p0 = p ∈ N0. For the successor step suppose that we already
defined pα ∈ π−1

α (P1) ⊂ Nα for some α < ω1. Then we have that dom(pα) <
ξα and pα ∈ Nα+1 by the definition of the models and embeddings (Nα, πα |
α ≤ ω1). By extendibility of the forcing π−1

α+1(P1) and the density of the
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set π−1
α+1(Dα) ⊆ Dα, there exists a condition pα+1 ≤P1 pα such that we

have pα+1 ∈ π−1
α+1(P1) ⊂ Nα+1, pα+1 ∈ Dα and dom(pα+1) ≥ ξα since

π−1
α+1(P1) ⊆ P1.

For a limit ordinal λ ≤ ω1 we simply let pλ =
⋃
α<λ pα. We have that pλ

is a condition in the forcing P1 by the following argument. We have that
the sequence (ξα | α < λ) of critical points of (πα | α < λ) is definable over
Nλ since for α < λ the model Nα is equal to the transitive collapse of a
Σk-elementary submodel of Nλ which is constructed inside Nλ exactly as it
was constructed inside Lp2n−1(A) above. Therefore we have that

cfNλ(ξλ) ≤ λ ≤ ω1 = ωV1
1 .

This implies that

Nλ � |ξλ| ≤ ωV1
1 ,

for all limit ordinals λ ≤ ω1.

Now consider the function q = pω1 . Then we have by construction that
dom(q) =

⋃
α<ω1

ξα = ξω1 . Moreover we have as above that there exists

a model N as in (ii) in Definition 3.7.8 witnessing that q is (A, (γ+)Mx)-
reshaping and thus we have that q ∈ P1.

This finally proves that the reshaping forcing P1 is < (γ+)Mx-distributive
and therefore does not collapse ω1 and (γ+)Mx = ω2.

So let G1 be P1-generic over V1 and let V2 = V1[G1]. The extendability of
the forcing P1 yields that

⋃
G1 is an (A, (γ+)Mx)-reshaping function with

domain (γ+)Mx . Let B′ be a subset of (γ+)Mx which codes the function⋃
G1, for example the subset of (γ+)Mx which has

⋃
G1 as its characteristic

function. Finally let B ⊂ (γ+)Mx be a code for A⊕B′.
As at the end of Step 1 we can pick this code B ⊂ (γ+)Mx such that the
model V2 is of the form Lp2n−1(B) by the following argument: Recall that

Lp2n−1(B) = M(B)|ωV1 ,

where as above M(B) denotes the ωV1 -th iterate of M#
2n−1(B) by its least

measure and its images. Therefore we can consider G1 as being generic over
M(A). This yields analogous to the argument at the end of Step 1 that we
can pick B such that V2 = M(B)|ωV1 because the “reshaping forcing” P1

takes place below (γ+)Mx < ωV1 . Therefore we have that

V2 = Lp2n−1(B).

Step 3: Now we can perform the first coding using almost disjoint subsets
of ω1 = ωV2

1 = ωV1
1 . Since B is “reshaped” we can inductively construct a

sequence of almost disjoint subsets of ω1,

(Aξ | ξ < (γ+)Mx),

as follows. Let ξ < (γ+)Mx be such that we already constructed a sequence
(Aζ | ζ < ξ) of almost disjoint subsets of ω1.
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Case 1. L[B ∩ ξ] � |ξ| ≤ ωV2
1 .

Then we let Aξ be the least subset of ω1 in L[B ∩ ξ] which is almost disjoint
from any Aζ for ζ < ξ and which satisfies that

|ω1 \
⋃
ζ≤ξ

Aζ | = ℵ1.

Case 2. Otherwise.

Let N be the least initial segment of Lp2n−1(A ∩ ξ)Lp2n−1(B) such that
ρω(N) ≤ ξ, N is sound above ξ, ξ is the largest cardinal in N , and de-

finably over N there exists a surjection g : ωV2
1 � ξ. Now let Aξ be the

least subset of ωV2
1 which is definable over N , almost disjoint from any Aζ

for ζ < ξ and which satisfies that |ω1 \
⋃
ζ≤ξ Aζ | = ℵ1.

The existence of such a set Aξ follows from the fact that the set B ⊂ (γ+)Mx

is “reshaped” by the following argument. As B is “reshaped” we have in
Case 2 above that there exists a model N as in Definition 3.7.8 (ii). Then a
comparison argument yields that N CLp2n−1(A∩ ξ). In general it need not

be the case that Lp2n−1(A∩ξ)Lp2n−1(B) is equal to Lp2n−1(A∩ξ), but as ξ is

the largest cardinal in N , it follows that in fact N CLp2n−1(A∩ ξ)Lp2n−1(B).
Therefore we have that in Case 2 such a premouse N and thereby the set
Aξ exists.

Moreover the sequence (Aξ | ξ < (γ+)Mx) is definable in V2 = Lp2n−1(B).

Now let P2 be the forcing for coding B by a subset of ω1 using the almost
disjoint sets (Aξ | ξ < (γ+)Mx). That means a condition p ∈ P2 is a pair
(pl, pr) such that pl : α→ 2 for some α < ω1 and pr is a countable subset of
(γ+)Mx . We say p = (pl, pr) ≤P2 (ql, qr) = q iff ql ⊆ pl, qr ⊆ pr, and for all
ξ ∈ qr we have that if ξ ∈ B, then

{β ∈ dom(pl) \ dom(ql) | pl(β) = 1} ∩Aξ = ∅.

An easy argument shows that the (γ+)Mx-c.c. holds true for the forcing P2.
Moreover it is ω-closed and therefore no cardinals are collapsed.

Let G2 be P2-generic over V2 and let

C ′ =
⋃
p∈G2

{β ∈ dom(pl) | pl(β) = 1}.

Then C ′ ⊂ ω1 and we have that for all ξ < (γ+)Mx ,

ξ ∈ B iff |C ′ ∩Aξ| ≤ ℵ0.

Finally let V3 = V2[G2]. By the same argument as we gave at the end of
Step 2 we can obtain that

V3 = Lp2n−1(C)



3.7. M#
2n(x) FROM BOLDFACE Π1

2n+1 DETERMINACY 117

for some set C ⊂ ω1 coding C ′ and the real x, as the model Lp2n−1(C)
can successfully decode the set B ⊂ (γ+)Mx by the following argument. We
show inductively that for every ξ < (γ+)Mx , (Aζ | ζ < ξ) ∈ Lp2n−1(C) and
B ∩ ξ ∈ Lp2n−1(C). This yields that B ∈ Lp2n−1(C).

For the inductive step let ξ < (γ+)Mx be an ordinal and assume inductively
that we have

(Aζ | ζ < ξ) ∈ Lp2n−1(C).

Since for all ζ < ξ,

ζ ∈ B iff |C ′ ∩Aζ | ≤ ℵ0,

we have that B ∩ ξ ∈ Lp2n−1(C).

In Case 1, i.e. if L[B ∩ ξ] � |ξ| ≤ ωV2
1 , the set Aξ can easily be identified

inside Lp2n−1(C). In Case 2 let N be the least initial segment of Lp2n−1(A∩
ξ)Lp

2n−1(C) such that ρω(N) ≤ ξ, N is sound above ξ, ξ is the largest cardinal
in N , and definably over N there exists a surjection g : ω1 � ξ. Then we
have that in fact such an N with N C Lp2n−1(A ∩ ξ) and N C Lp2n−1(A ∩
ξ)Lp

2n−1(B). This yields that also in this case the set Aξ can be identified
inside Lp2n−1(C). Finally the uniform definition of the sets Aξ yields that

(Aζ | ζ ≤ ξ) ∈ Lp2n−1(C).

Step 4: Before we can “code down to a real”, that means before we can find
a real z such that KMx |(γ+)Mx ∈ Lp2n−1(z), we have to perform another
“reshaping” similar to the one in Step 2. So let P3 be the forcing for adding
a (C,ω1)-reshaping function working in V3 as the new ground model, where

ω1 = ωV3
1 = ωV2

1 . That means we let p ∈ P3 iff p is a (C,ω1)-reshaping
function with dom(p) < ω1. The order of two conditions p and q in P3 is
again by reverse inclusion, that means p ≤P3 q iff q ⊆ p.
The forcing P3 is extendable and < ω1-distributive by the same arguments
as we gave in Step 2 since we have that V3 = Lp2n−1(C). Therefore P3 does
not collapse ω1.

Let G3 be P3-generic over V3 and let V4 = V3[G3]. We again have that
⋃
G3

is a (C,ω1)-reshaping function with domain ω1, because P3 is extendable.
Let D′ be a subset of ω1 which codes

⋃
G3, for example the subset of ω1

which has
⋃
G3 as its characteristic function. Finally let D ⊂ ω1 code

C ⊕D′.
By the same argument as the one we gave at the end of Step 2 we can obtain
that in fact

V4 = Lp2n−1(D).

Step 5: Now we are ready to finally “code down to a real”. Since D is
“reshaped” we can consider a uniformly defined sequence

(Bξ | ξ < ω1)

of almost disjoint subsets of ω analogous to Step 3, where ω1 = ωV4
1 = ωV3

1 .
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Now we let P4 be the forcing for coding D by a subset of ω using the almost
disjoint sets (Bξ | ξ < ω1). That means a condition p ∈ P4 is a pair (pl, pr)
such that pl : α→ 2 for some α < ω and pr is a finite subset of ω1. We say
p = (pl, pr) ≤P4 (ql, qr) = q iff ql ⊆ pl, qr ⊆ pr, and for all ξ ∈ qr we have
that if ξ ∈ D, then

{β ∈ dom(pl) \ dom(ql) | pl(β) = 1} ∩Bξ = ∅.

As in Step 3 above an easy argument shows that the forcing P4 has the c.c.c.
and therefore no cardinals are collapsed.

Finally let G4 be P4-generic over V4 and let

E′ =
⋃
p∈G4

{β ∈ dom(pl) | pl(β) = 1}.

Then E′ ⊂ ω and we have that for all ξ < ω1,

ξ ∈ D iff |E′ ∩Bξ| < ℵ0.

Let V5 = V4[G4] and finally let z be a real coding E′ and the real x. Analo-
gous to the arguments given at the end of Step 3 we can pick the real z ≥T x
such that we have

V5 = Lp2n−1(z)

and the model Lp2n−1(z) is able to successfully decode the set D and thereby
also the set A.

This ultimately yields that we have a real z ≥T x such that

(γ+)Mx = ω
Lp2n−1(z)
2

and
KMx |(γ+)Mx ∈ Lp2n−1(z).

�

Subclaim 3. KMx |(γ+)Mx is fully iterable inside Lp2n−1(z).

Proof. It is enough to show that the 2n-small premouse KMx |(γ+)Mx

is ω1-iterable inside Lp2n−1(z) because once we showed this, an absolute-
ness argument, as for example similar to the one we already gave in the
proof of Lemma 3.1.9, yields that KMx |(γ+)Mx is in fact fully iterable in-
side Lp2n−1(z) since the iteration strategy for KMx |(γ+)Mx is given by Q-
structures Q(T ) for iteration trees T on KMx |(γ+)Mx which are (2n − 1)-
small above δ(T ) and such Q-structures Q(T ) are contained in every lower
part model at the level 2n − 1, as for example Lp2n−1(z), by definition of
the lower part model.

In a first step we show that there is a tree T such that p[T ] is a univer-
sal Π1

2n-set in Lp2n−1(x,KMx |(γ+)Mx) and moreover for every forcing P of
size at most (γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx) and every P-generic G over
Lp2n−1(x,KMx |(γ+)Mx) we have that

Lp2n−1(x,KMx |(γ+)Mx)[G] � “p[T ] is a universal Π1
2n-set”.
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Let ϕ be a Π1
2n-formula defining a universal Π1

2n-set, i.e. {y ∈ ωω | ϕ(y)} is
a universal Π1

2n-set. Then we let T ∈ Lp2n−1(x,KMx |(γ+)Mx) be a tree of
height ω searching for y,H,M, σ,Q and g such that

(1) y ∈ ωω,
(2) M is a countable (x,H)-premouse,
(3) σ : M → Lp2n−1(x,KMx |(γ+)Mx) is a sufficiently elementary embed-

ding,
(4) σ(H) = KMx |(γ+)Mx , and
(5) Q ∈M is a partial order of size at most H∩Ord inM and g is Q-generic

over M such that

M[g] � ϕ(y).

This tree T has the properties we claimed above by the following argu-
ment. The model Lp2n−1(x,KMx |(γ+)Mx) is closed under the operation

a 7→ M#
2n−2(a) and is therefore Σ1

2n-correct in V . The same holds for

the model Lp2n−1(x,KMx |(γ+)Mx)[G], where G is P-generic over the model
Lp2n−1(x,KMx |(γ+)Mx) for some forcing P of size at most (γ+)Mx in the
model Lp2n−1(x,KMx |(γ+)Mx). Moreover we have that if M, H, σ,Q and
g are as searched by the tree T , then the forcing Q ∈ M has size at most
H ∩ Ord in M and the embedding σ : M → Lp2n−1(x,KMx |(γ+)Mx) is
sufficiently elementary, so it follows that M[g] is Σ1

2n-correct in V . This
easily yields that p[T ] is a universal Π1

2n-set in Lp2n−1(x,KMx |(γ+)Mx)[G]
for every generic set G as above, in fact

p[T ] ∩ Lp2n−1(x,KMx |(γ+)Mx)[G] =

{y ∈ ωω | ϕ(y)} ∩ Lp2n−1(x,KMx |(γ+)Mx)[G].

In a second step we now define another tree U whose well-foundedness is
going to witness that KMx |(γ+)Mx is ω1-iterable. So we define the tree
U ∈ Lp2n−1(x,KMx |(γ+)Mx) such that U is searching for K̄, π, T ,N , σ and
a sequence (Qλ | λ ≤ lh(T ), λ limit) with the following properties.

(1) K̄ is a countable premouse,
(2) π : K̄ → KMx |(γ+)Mx is an elementary embedding,
(3) T is a countable putative4 iteration tree on K̄ such that for all limit

ordinals λ < lh(T ),

Qλ EMTλ ,
(4) for all limit ordinals λ ≤ lh(T ), Qλ is a Π1

2n-iterable (above δ(T � λ))
Q-structure for T � λ and Qλ is (2n − 1)-small above δ(T � λ) (where
this Π1

2n-statement is witnessed using the tree T defined above),
(5) N is a countable model of ZFC− such that either

N � “T has a last ill-founded model”,

4Recall that we say that a tree T is a putative iteration tree if T satisfies all properties of
an iteration tree, but we allow the last model of T to be ill-founded, in case T has a last
model.
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or else

N � “ lh(T ) is a limit ordinal and there is no cofinal branch b

through T such that Qlh(T ) EMTb ”,

and
(6) σ : N ∩Ord ↪→ ω1.

Here a code for the sequence (Qλ | λ ≤ lh(T ), λ limit) of Q-structures
satisfying property (4) can be read off from p[T ].

Recall that we have that the core model KMx is 2n-small and thereby fully
iterable in the model Mx via an iteration strategy which is guided by Q-
structures Q(T ) for iteration trees T on KMx of limit length which are
(2n− 1)-small above δ(T ). This implies that the premouse KMx |(γ+)Mx is
iterable inside the model Lp2n−1(x,KMx |(γ+)Mx) (which as argued earlier is
a definable subset of Mx) by an argument as in the proof of Lemma 2.2.8, be-
cause KMx |(γ+)Mx is a 2n-small premouse and the ω1-iterable Q-structures
Q(T ) for iteration trees T on KMx |(γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx) are
contained in the model Lp2n−1(x,KMx |(γ+)Mx) as they are (2n − 1)-small
above δ(T ).

We aim to show that the tree U defined above is well-founded inside the
model Lp2n−1(x,KMx |(γ+)Mx). So assume toward a contradiction that U is
ill-founded in Lp2n−1(x,KMx |(γ+)Mx) and let K̄, π, T ,N , σ and (Qλ | λ ≤
lh(T ), λ limit) be as above satisfying properties (1)− (6) in the definition of
the tree U .

Assume that the iteration tree T has limit length since the other case is eas-
ier. Since as argued above the premouse KMx |(γ+)Mx is countably iterable
inside Lp2n−1(x,KMx |(γ+)Mx), we have that in Lp2n−1(x,KMx |(γ+)Mx)
there exists a cofinal well-founded branch b through the iteration tree T
on K̄ and ω1-iterable Q-structures Q(T � λ) for all limit ordinals λ ≤ lh(T )
such that we have Q(T ) = Q(b, T ) by an argument analogous to the one
we gave in Case 1 in the proof of Lemma 3.1.9. Moreover every Q-structure
Q(T � λ) is (2n− 1)-small above δ(T � λ).

Since the model Lp2n−1(x,KMx |(γ+)Mx) is closed under the operation a 7→
M#

2n−2(a), the proofs of Lemmas 2.2.8 and 2.2.9 imply that we can success-
fully compare Q(T � λ) and Qλ for all limit ordinals λ ≤ lh(T ). This implies
that in fact

Q(T � λ) = Qλ.
Therefore it follows by an absoluteness argument as the one we already gave
in the proof of Lemma 2.2.8 that

N � “there exists a cofinal branch b through T such that

Qlh(T ) EMTb ”,

because we in particular have that Qlh(T ) = Q(b, T )EMTb .
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Therefore the tree U is well-founded in the model Lp2n−1(x,KMx |(γ+)Mx)
and by absoluteness of well-foundedness this implies that the tree U is also
well-founded inside Lp2n−1(z).

We have by construction of the tree T that a code for the sequence (Qλ | λ ≤
lh(T ), λ limit) can still be read off from p[T ] in Lp2n−1(z) because the forcing
we performed over the ground model Lp2n−1(x,KMx |(γ+)Mx) to obtain the
real z has size at most (γ+)Mx in Lp2n−1(x,KMx |(γ+)Mx). Therefore the
well-foundedness of the tree U in Lp2n−1(z) implies that KMx |(γ+)Mx is
ω1-iterable in Lp2n−1(z). �

Let

(Kc)Lp
2n−1(z)

be the model obtained from a Kc-construction as defined in [MSch04] per-
formed inside the model Lp2n−1(z) in the following sense. We aim to con-

struct the premouse (Kc)Lp
2n−1(z) such that it does not depend on the spe-

cific choice of the real z. Therefore we consider the Kc-construction of
[MSch04] inside the model Lp2n−1(z) with V = L[Az] for Az = z_Ez ⊂ Ord,
where we identify the real z with a set of ordinals and Ez codes the extender
sequence of Lp2n−1(z).

Subclaim 4. (Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z).

Proof. The definition of certified in the construction of the model Kc

in the sense of [MSch04] makes reference to some class of ordinals A such
that V = L[A]. Therefore the model Kc constructed in this sense is in
general not contained in HOD, because whether an extender is certified in
the sense of Definition 1.6 in [MSch04] may depend on the choice of A. This

is why we have to argue that in this situation the model (Kc)Lp
2n−1(z) as

defined above does not depend on the choice of the real z.

So let z′ ∈ Lp2n−1(z) be an arbitrary real with z ≤T z′. That means we
have Lp2n−1(z) = Lp2n−1(z′). Analogous as above let Az′ = z′_Ez′ ⊂ Ord,
where Ez′ codes the extender sequence of Lp2n−1(z′). Then we need to show
the following claim.

Claim 1. An extender E is certified with respect to L[Az] iff E is certified
with respect to L[Az′ ], in the sense of Definition 1.6 in [MSch04].

Proof. It follows from Lemma 3.7.5 that

Lp2n−1(z′) = (Lp2n−1(z′))Lp
2n−1(z)

and we even have that the set Az′ ∩ ω
Lp2n−1(z)
1 can be computed from Az ∩

ω
Lp2n−1(z)
1 . Similarly we have that the set Az ∩ ωLp

2n−1(z)
1 can be computed

from Az′ ∩ ω
Lp2n−1(z)
1 . Moreover the extender sequences of Lp2n−1(z) and

Lp2n−1(z′), coded into Ez and Ez′ , agree above ω
Lp2n−1(z)
1 . Therefore it
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follows inductively that an extender E is certified with respect to L[Az] iff
E is certified with respect to L[Az′ ]. �

This yields that the model (Kc)Lp
2n−1(z) does not depend on the specific

choice of the real z and thus it follows that

(Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z),

as desired. �

In what follows we will also need the following notion of iterability.

Definition 3.7.9. Let N be a countable premouse. Then we inductively
define an iteration strategy Λ for N as follows. Assume that T is a normal
iteration tree on N of limit length according to Λ such that there exists a
Q-structure Q DM(T ) for T which is fully iterable above δ(T ). Then we
define that Λ(T ) = b iff b is a cofinal branch through T such that either

(i) QEMTb , or

(ii) b does not drop (so in particular the iteration embedding iTb exists),

there exists an ordinal δ < N ∩Ord such that iTb (δ) = δ(T ) and

N � “δ is Woodin”,

and there exists a Q̃DN |δ such that

Q̃ � “δ is Woodin”,

but δ is not definably Woodin over Q̃ and if we lift the iteration tree
T on Q̃, call this iteration tree T ∗, then

iT
∗

b : Q̃ → Q.

Definition 3.7.10. Let N be a countable premouse. Then we say that N is
Q-structure iterable iff for every iteration tree T on N which is according
to the iteration strategy Λ from Definition 3.7.9 the following holds.

(i) If T has limit length and there exists a Q-structure Q DM(T ) for
T which is fully iterable above δ(T ), then there exists a cofinal well-
founded branch b through T such that Λ(T ) = b.

(ii) If T has a last model, then every putative iteration tree U extending T
such that lh(U) = lh(T ) + 1 has a well-founded last model.

The premouse

(Kc)Lp
2n−1(z)

is countably iterable in Lp2n−1(z) by the iterability proof of Chapter 9 in
[St96] adapted as in Section 2 in [MSch04].

Subclaim 5. In Lp2n−1(z),

(Kc)Lp
2n−1(z) is Q-structure iterable.
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Proof. Assume there exists an iteration tree T on (Kc)Lp
2n−1(z) which

witnesses that (Kc)Lp
2n−1(z) is not Q-structure iterable inside Lp2n−1(z).

Since the other case is easier assume that T has limit length. That means
in particular that there exists a Q-structure Q(T ) DM(T ) for T which
is fully iterable above δ(T ), but there is no cofinal well-founded branch b
through T in Lp2n−1(z) such that Λ(T ) = b.

For some large enough natural number m let H be the Mostowski collapse

of Hull
Lp2n−1(z)
m such that H is sound and ρω(H) = ρm+1(H) = ω. Further-

more let

π : H → Lp2n−1(z)

be the uncollapse map such that T ,Q(T ) ∈ ran(π). Moreover let T̄ , Q̄ ∈ H
be such that π(T̄ ) = T , π(Q̄) = Q(T ), and let K̄ ⊂ H be such that

π(K̄|γ) = (Kc)Lp
2n−1(z)|π(γ) for any γ < H∩Ord. That means in particular

that T̄ is an iteration tree on K̄.

As argued above we have that (Kc)Lp
2n−1(z) is countably iterable in Lp2n−1(z).

Therefore there exists a cofinal well-founded branch b̄ through T̄ in Lp2n−1(z).

Now we consider two different cases.

Case 1. There is a drop along the branch b̄.

In this case there exists a Q-structure Q∗ EMT̄
b̄

for T̄ , because there is a

drop along b̄. A standard comparison argument shows that Q∗ = Q̄ and

thus Q̄EMT̄
b̄

is a Q-structure for T̄ .

Now consider the statement

φ(T̄ , Q̄) ≡ “there is a cofinal branch b through T̄ such that

Q̄EMT̄b ”.

This statement φ(T̄ , Q̄) is Σ1
1-definable from the parameters T̄ and Q̄ and

holds in the model Lp2n−1(z) as witnessed by the branch b̄.

By Σ1
1-absoluteness the statement φ(T̄ , Q̄) also holds in the model HCol(ω,η)

as witnessed by some branch b, where η < H ∩Ord is a large enough ordinal
such that T̄ , Q̄ ∈ HCol(ω,η) are countable inside HCol(ω,η).

Since b is uniquely definable from T̄ and the Q-structure Q̄, and T̄ , Q̄ ∈ H,
we have by homogeneity of the forcing Col(ω, η) that actually b ∈ H. This
contradicts the fact that the iteration tree T witnesses that the premouse

(Kc)Lp
2n−1(z) is not Q-structure iterable inside Lp2n−1(z).

Case 2. There is no drop along the branch b̄.

In this case we consider two subcases as follows.

Case 2.1. There is no Woodin cardinal δ̄ in K̄ such that iT̄
b̄

(δ̄) = δ(T̄ ).
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In this case we have that δ(T̄ ) is not Woodin in MT̄
b̄

. Thus there exists an

initial segment Q∗ EMT̄
b̄

such that

Q∗ � “δ(T̄ ) is a Woodin cardinal”,

and definably over Q∗ there exists a witness for the fact that δ(T̄ ) is not

Woodin (in the sense of Definition 2.2.4). As (Kc)Lp
2n−1(z) is countably

iterable in Lp2n−1(z) we can successfully coiterate the premice Q∗ and Q̄.
Therefore we have that in fact Q∗ = Q̄ and thus as in Case 1 it follows that
Q̄EMT̄

b̄
is a Q-structure for T̄ and we can derive a contradiction from that

as above.

Case 2.2. There is a Woodin cardinal δ̄ in K̄ such that iT̄
b̄

(δ̄) = δ(T̄ ).

Let δ = π(δ̄) be the corresponding Woodin cardinal in (Kc)Lp
2n−1(z). Then

the real z is generic over the model (Kc)Lp
2n−1(z) for the extender algebra at

the Woodin cardinal δ since all extenders appearing in the Kc-construction
in the sense of [MSch04] satisfy the axioms of the extender algebra. In fact by

the same argument the model Lp2n−1(z)|δ is generic over (Kc)Lp
2n−1(z)|(δ+

ω) for the δ-version of the extender algebra Qδ (see the proof of Lemma 1.3
in [SchSt09] for a definition of the δ-version of the extender algebra).

Therefore we can perform a maximal P-construction, which is defined as

in [SchSt09], inside Lp2n−1(z) over (Kc)Lp
2n−1(z)|(δ + ω) to obtain a model

P. We have that P � “δ is Woodin” by the definition of a maximal P-
construction.

Let P̄ be the corresponding result of a maximal P-construction in H over
K̄|(δ̄ + ω). Moreover let T ∗ be the iteration tree obtained by considering
the tree T̄ based on K̄|δ̄ as an iteration tree on P̄ B K̄|δ̄. Let

iT
∗

b̄ : P̄ →MT ∗b̄
denote the corresponding iteration embedding, where the branch through
T ∗ we consider is induced by the branch b̄ through T̄ we fixed above, so we
call them both b̄. Then we have that

iT
∗

b̄ (δ̄) = iT̄b̄ (δ̄) = δ(T̄ ).

Case 2.2.1. We have that

P ∩Ord < Lp2n−1(z) ∩Ord .

Then we have in particular that P̄ ∩Ord < H ∩Ord and thus P̄ ∈ H.

Consider the coiteration ofMT ∗
b̄

with Q̄ inside Lp2n−1(z). By the definition

of a maximal P-construction (see [SchSt09]) we have that δ̄ is not definably
Woodin over P̄ since P̄∩Ord < H∩Ord. Since b̄ is non-dropping this implies



3.7. M#
2n(x) FROM BOLDFACE Π1

2n+1 DETERMINACY 125

that iT
∗

b̄
(δ̄) is not definably Woodin over MT ∗

b̄
. Furthermore we have that

MT ∗b̄ � “iT
∗

b̄ (δ̄) is Woodin”.

Concerning the other side of the coiteration we also have that iT
∗

b̄
(δ̄) = δ(T̄ )

is a Woodin cardinal in Q̄ but it is not definably Woodin over Q̄.

Since the coiteration of MT ∗
b̄

with Q̄ takes place above iT
∗

b̄
(δ̄) = δ(T̄ ) we

have that it is successful inside Lp2n−1(z) using that MT ∗
b̄

inherits the re-

alization strategy for H above iT
∗

b̄
(δ̄) and it follows that in fact

MT ∗b̄ = Q̄.

Consider the statement

ψ(T ∗, Q̄) ≡ “there is a cofinal branch b through T ∗ such that

Q̄ =MT ∗b ”.

This statement ψ(T ∗, Q̄) is Σ1
1-definable from the parameters T ∗ and Q̄ and

holds in the model Lp2n−1(z) as witnessed by the branch b̄. We have that
T̄ , P̄ ∈ H and thus T ∗ ∈ H.

Therefore an absoluteness argument exactly as in Case 1 yields that ψ(T ∗, Q̄)

holds in HCol(ω,η), where η < H ∩ Ord is an ordinal such that T ∗, Q̄ ∈
HCol(ω,η) are countable inside the model HCol(ω,η). Thus it follows as before
that b̄ ∈ H, which contradicts the fact that T̄ witnesses in H that K̄ is not
Q-structure iterable.

Case 2.2.2. We have that

P ∩Ord = Lp2n−1(z) ∩Ord .

Then it follows that P̄ ∩ Ord = H ∩ Ord and Lemma 1.5 in [SchSt09]
applied to the maximal P-construction inside H yields that δ̄ is not definably
Woodin over P̄ since we have that ρω(H) = ω. As b̄ is non-dropping, this
implies that iT

∗

b̄
(δ̄) is not definably Woodin over MT ∗

b̄
.

So as in Case 2.2.1 we can successfully coiterateMT ∗
b̄

and Q̄ inside Lp2n−1(z)
and obtain again that

MT ∗b̄ = Q̄.

Then it follows that

Q̄ ∩Ord < H ∩Ord = P̄ ∩Ord ≤MT ∗b̄ ∩Ord,

where the first inequality holds true since Q̄ ∈ H. This is a contradiction to
the fact that MT ∗

b̄
= Q̄.

This finishes the proof of Subclaim 5. �
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Working in Lp2n−1(z) we consider the coiteration of KMx |ωLp
2n−1(z)

2 with

(Kc|ω2)Lp
2n−1(z). From what we proved so far it easily follows that this

coiteration is successful as shown in the next subclaim.

Subclaim 6. The coiteration of KMx |ωLp
2n−1(z)

2 with (Kc|ω2)Lp
2n−1(z) in

Lp2n−1(z) is successful.

Proof. Write W = Lp2n−1(z). Then we can successfully coiterate
the premice KMx |ωW2 and Kc|ωW2 inside the model W since KMx |ωW2 =
KMx |(γ+)Mx is fully iterable in W by Subclaim 3 and Kc|ωW2 is Q-structure
iterable in W by Subclaim 5. In particular the KMx |ωW2 -side of the coitera-
tion provides Q-structures for the Kc|ωW2 -side and therefore the coiteration
is successful. �

In what follows we want to argue that the (Kc|ω2)Lp
2n−1(z)-side cannot lose

this coiteration. For that we want to use the following lemma, which we can
prove similar as Theorem 3.8 in [MSch04]. As the version we aim to use is
slightly stronger than what is shown in [MSch04], we will sketch a proof of
this lemma.

Lemma 3.7.11. Let κ ≥ ω2 be a regular cardinal such that κ is inaccessible
in Kc (constructed in the sense of [MSch04]). Then Kc|κ is universal with
respect to every premouse M with M∩Ord = κ to which it can be successfully
coiterated.

In [MSch04] the universality of the premouse Kc|κ is only proved with re-
spect to smaller premice, i.e. premice M such that M ∩Ord < κ, to which
Kc|κ can be successfully coiterated. As shown below, their argument can
easily be modified to yield Lemma 3.7.11.

Proof. Let κ ≥ ω2 be a regular cardinal such that κ is inaccessible in
Kc and write N = Kc|κ.

Analogous to the notation in [MSch04] we say that M iterates past N iff M
is a premouse with M ∩Ord = κ and there are iteration trees T on M and
U on N of length λ+ 1 arising from a successful comparsion such that there
is no drop along [0, λ]U and MUλ CMTλ or MUλ = MTλ and we in addition
have that there is a drop along [0, λ]T .

Assume toward a contradiction that there is a premouse M which iterates
past N and let T and U be iteration trees of length λ + 1 on M and N
respectively witnessing this. Let iU0λ : N → MUλ denote the corresponding
iteration embedding on the N -side, which exists as there is no drop on the
main branch through U .

We distinguish the following cases.
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Case 1. We have that for some ξ < κ,

iU0λ ”κ ⊂ κ and iTβλ(ξ) ≥ κ

for some ordinal β < λ such that the iteration embedding iTβλ is defined.

In this case we can derive a contradiction as in Section 3 in [MSch04] because
we can prove that the consequences of Lemma 3.5 in [MSch04] also hold in
this setting.

We assume that the reader is familiar with the argument for Lemma 3.5 in
[MSch04] and we use the notation from there. So we let

X ≺ Hκ+

be such that |X| < κ, X ∩ κ ∈ κ, {M,N, T ,U , β, ξ} ⊂ X, and X ∩ κ ∈
(0, κ)T ∩ (0, κ)U , as in this case λ = κ. We write α = X ∩ κ. Let

π : H̄ ∼= X ≺ Hκ+

be such that H̄ is transitive. Then we have that α = crit(π) and π(α) = κ.
Let T̄ , Ū ∈ H̄ be such that π(T̄ , Ū) = (T ,U).

As in the proof of Lemma 3.5 in [MSch04] we aim to show that P(α)∩N ⊂ H̄.

Exactly as in [MSch04] we get that

MTα ||(α+)M
T
α =MUα ||(α+)M

U
α .

The case assumption that iTβκ(ξ) ≥ κ for ordinals β, ξ < κ implies that there

are ordinals β̄, ξ̄ < α such that iT̄
β̄α

(ξ̄) ≥ α. As iT̄
β̄α
� α = iT

β̄α
� α and

MT̄α |α =MTα |α, this yields that P(α) ∩MTα = P(α) ∩MT̄α . Therefore we
have that

P(α) ∩MUα = P(α) ∩MTα = P(α) ∩MT̄α ∈ H̄.

Moreover we are assuming that iU0κ ”κ ⊂ κ and we have

iU0α � α = iŪ0α � α ∈ H̄.

Therefore we can again argue exactly as in the proof of Lemma 3.5 in
[MSch04] to get that P(α) ∩N ⊂ H̄. Following [MSch04] this now yields a
contradiction to the assumption that M iterates past N .

Case 2. We have that

iU0λ ”κ ⊂ κ and there are no ξ, β such that iTβλ(ξ) ≥ κ,
where ξ < κ and β < λ.

By assumption we have that κ is inaccessible in N . Assume first that M
has a largest cardinal η. In this case we have that there are no cardinals
between the image of η under the iteration embedding and κ in MTλ but
there are cardinals between the image of η under the iteration embedding
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and κ in MUλ . This contradicts the fact that T and U were obtained by a

successful comparison of M and N with MUλ EMTλ .

Now assume that M � ZFC. Then the case assumption implies that in
particularMTλ ∩Ord ≤ κ. This contradicts the assumption that M iterates
past N .

Case 3. We have that for some ζ < κ,

iU0λ(ζ) ≥ κ and there are no ξ, β such that iTβλ(ξ) ≥ κ,
where ξ < κ and β < λ.

This again easily contradicts the assumption that M iterates past N .

Case 4. We have that for some ζ < κ and for some ξ < κ,

iU0λ(ζ) ≥ κ and iTβλ(ξ) ≥ κ

for some ordinal β < λ such that the iteration embedding iTβλ is defined.

In this case we have that λ = κ. Let

X ≺ Hθ

for some large enough ordinal θ be such that |X| = κ and {M,N, T ,U} ⊂ X.
Let

π : H̄ ∼= X ≺ Hθ

be such that H̄ is transitive.

Then a reflection argument as in the proof of the Comparison Lemma (see
Theorem 3.11 in [St10]) yields that there is an ordinal γ < κ such that the
embeddings iTγκ and iUγκ agree. This implies that there are extenders ETα
used in T at stage α and EUα′ used in U at stage α′ which are compatible.
Again as in the proof of Theorem 3.11 in [St10] this yields a contradiction.

This finishes the proof of Lemma 3.7.11. �

Now we can use Lemma 3.7.11 to prove the following subclaim.

Subclaim 7. ω
Lp2n−1(z)
2 is a successor cardinal in (Kc)Lp

2n−1(z).

Proof. Work in W = Lp2n−1(z) and assume the converse. That means
we are assuming that ωW2 is inaccessible in Kc.

As above consider the successful coiteration of KMx |ωW2 with Kc|ωW2 and
let T and U be the resulting trees on KMx |ωW2 and Kc|ωW2 respectively of
length λ + 1 for some ordinal λ. Since we assume that ωW2 is inaccessible
in Kc, it follows by Lemma 3.7.11 that Kc|ωW2 is universal in W for the
coiteration with premice of height ≤ ωW2 . Therefore the Kc|ωW2 -side has
to win the comparison. That means we have that MTλ EMUλ and there

is no drop on the main branch through MTλ . In particular the iteration
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embedding

iT0λ : KMx |ωW2 →MTλ
exists. Now we distinguish the following cases.

Case 1. We have that
iT0λ ”ωW2 ⊂ ωW2 .

This means in particular that (γ+)K
Mx

= (γ+)Mx = ωW2 stays a successor

cardinal in the model MTλ . So say that we have (η+)M
T
λ = ωW2 for some

cardinal η < ωW2 in MTλ . In particular this means that there are no car-

dinals between η and ωW2 in MTλ . But by assumption we have that ωW2 is

inaccessible in Kc and thus also in MUλ . In particular there are cardinals

between η and ωW2 in MUλ . This contradicts the fact that MTλ and MUλ
were obtained by a successful comparison with MTλ EMUλ .

Case 2. We have that
iT0λ ”ωW2 6⊂ ωW2 .

In this case we distinguish two subcases as follows.

Case 2.1. We have that

sup iT0λ ”γ < ωW2 .

In this case we have that

(iT0λ(γ)+)M
T
λ = ωW2 ,

because we are also assuming that iT0λ ”ωW2 6⊂ ωW2 .

So in particular we again have that ωW2 is a successor cardinal in the model
MTλ and so there are no cardinals between iT0λ(γ) < ωW2 and ωW2 in MTλ .

From this we can derive the same contradiction as in Case 1, because ωW2 is
inaccessible in Kc.

Case 2.2. We have that

∃η < ωW2 such that iT0λ(η) ≥ ωW2 .

Let α < λ be the least ordinal such that the iteration embedding iUαλ is
defined. That means the last drop on the main branch in U is at stage α.
Since KMx |ωW2 has height ωW2 we have by universality of Kc|ωW2 in W (see
Lemma 3.7.11) that the case assumption implies that there exists an ordinal
ν < ωW2 such that

iUαλ(ν) ≥ ωW2 .

Moreover in this case we have in fact λ = ωW2 .



130 3. PROVING ITERABILITY

Let X ≺W |θ for some large ordinal θ be such that T ,U ∈ X and |X| = ωW2 .
Moreover let H be the Mostowski collapse of X and let π : H → W |θ be
the uncollapse map. Then a reflection argument as in the proof of the
Comparison Lemma (see Theorem 3.11 in [St10]) yields that there is an
ordinal ξ < λ such that the embeddings iTξλ and iUξλ agree. This implies that

there are extenders ETβ used in T at stage β and EUβ′ used in U at stage β′

which are compatible. Again as in the proof of Theorem 3.11 in [St10] this
yields a contradiction.

This finishes the proof of Subclaim 7. �

Recall that we have

HODLp2n−1(z) � “ω
Lp2n−1(z)
2 is inaccessible”

by Theorem 3.7.7 as z ≥T x. Since we have that

(Kc)Lp
2n−1(z) ⊂ HODLp2n−1(z)

by Subclaim 4, this contradicts Subclaim 7 and thereby finishes the proof
of Claim 3. �

Work in V now and let x ∈ ωω be arbitrary in the cone of reals from Theorem
3.7.7. Then by Claim 3 we have that

Mx � “(M#
2n)Mx is ω1-iterable”.

Hence
Mx � “(M#

2n)Mx is Π1
2n+2-iterable”.

Since Mx is Σ1
2n+2-correct in V we have that

V � “(M#
2n)Mx is Π1

2n+2-iterable”.

By Σ1
2n+2-correctness in V again we have for every real y ≥T x such that in

particular (M#
2n)Mx ∈My that

My � “(M#
2n)Mx is Π1

2n+2-iterable”.

Consider the comparison of the premice (M#
2n)Mx and (M#

2n)My inside the
model My. This comparison is successful by Lemma 2.2.9 for all reals y ≥T x
as above, since (M#

2n)My is ω1-iterable in My and (M#
2n)Mx is Π1

2n+2-iterable

inMy. Moreover both premice are ω-sound and we have that ρω((M#
2n)Mx) =

ρω((M#
2n)My) = ω. Thus the premice (M#

2n)Mx and (M#
2n)My are in fact

equal.

Therefore we have that all premice (M#
2n)Mx for x ∈ ωω in the cone of reals

from Theorem 3.7.7 are equal in V . Call this unique premouse M#
2n.

We now finally show that this premouse M#
2n is ω1-iterable in V via the Q-

structure iteration strategy (see Definition 2.2.2). So let T be an iteration

tree on M#
2n in V of limit length < ωV1 according to the Q-structure iteration

strategy. Pick z ∈ ωω such that M#
2n and T are in Mz and lh(T ) < ωMz

1 .
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Since Mz is Σ1
2n+2-correct in V we have that T is according to the Q-

structure iteration strategy in Mz, because Q(T � λ) is 2n-small above
δ(T � λ) for all limit ordinals λ < lh(T ) and therefore Π1

2n+1-iterability
above δ(T � λ) is enough for Q(T � λ) to determine a unique cofinal well-
founded branch b through T by Lemma 2.2.10. Moreover we have that

(M#
2n)Mz = M#

2n and therefore

Mz � “M#
2n is ω1-iterable”.

So in Mz there exists a cofinal well-founded branch b through T , which is
determined by Q-structures Q(T � λ) which are ω1-iterable above δ(T � λ)
and therefore also Π1

2n+1-iterable above δ(T � λ) in Mz for all limit ordinals
λ ≤ lh(T ). That means we in particular have that Q(b, T ) = Q(T ). Since
Mz is Σ1

2n+2-correct in V , it follows as above that b is also the unique cofinal
well-founded branch in V which is determined by the same Q-structures as
in Mz. Therefore

V � “M#
2n exists and is ω1-iterable”

and we finished the proof of Theorem 3.7.1. �





CHAPTER 4

Conclusion

By the results proved in Sections 3.6 and 3.7 together with some arguments
mentioned in Section 3.4 we have that the following theorem which is due
to Itay Neeman and W. Hugh Woodin and was announced in Section 3.3
holds true.

Theorem 3.3.1. Let n ≥ 1 and assume there is no Σ1
n+2-definable ω1-

sequence of pairwise distinct reals. Then the following are equivalent.

(1) Π1
n determinacy and Π1

n+1 determinacy,

(2) for all x ∈ ωω, M#
n−1(x) exists and is ω1-iterable, and M#

n exists and is
ω1-iterable,

(3) M#
n exists and is ω1-iterable.

Proof. This follows from Theorems 3.6.1 and 3.7.1 together with The-
orem 2.14 in [Ne02] as in the proof of Theorem 3.4.1. �

Moreover Theorems 3.6.1 and 3.7.1 together with Lemma 3.5.1 immediately
imply the following main theorem due to W. Hugh Woodin.

Theorem 2.1.1. Let n ≥ 1 and assume Π1
n+1 determinacy holds. Then

M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

4.1. Applications

From these results we can now obtain a boldface version of the Determinacy
Transfer Theorem as in Theorem 3.6.2 for all projective levels Π1

n+1 of de-
terminacy. The lightface version of the Determinacy Transfer Theorem for
even levels of projective determinacy Π1

2n (see Theorem 3.6.2) is used in the
proof of Theorem 3.6.1, and therefore in the proof of Theorem 2.1.1 for odd
levels n.

Corollary 4.1.1 (Determinacy Transfer Theorem). Let n ≥ 1. Then Π1
n+1

determinacy is equivalent to a(n)(< ω2 −Π1
1) determinacy.

Proof. By Theorem 1.10 in [KW08] we have for the even levels that

Det(Π1
2n)↔ Det(∆1

2n)↔ Det(a(2n−1)(< ω2 −Π1
1)).

Here the first equivalence is due to Martin (see [Ma73]) and proven in The-
orem 5.1 in [KS85]. The second equivalence due to Kechris and Woodin can

133



134 4. CONCLUSION

be proven using purely descriptive set theoretic methods (see Theorem 1.10
in [KW08]).

The results in this part of this thesis (using this version of the Determinacy
Transfer Theorem for even levels) together with results due to Itay Neeman
yield the Determinacy Transfer Theorem for all levels n as follows.

By basic facts about the game quantifier “a” (see the proof of Lemma 3.4.2)
we have that

Det(a(n)(< ω2 −Π1
1))

implies Π1
n+1 determinacy.

For the other direction assume that Π1
n+1 determinacy holds. Then Theorem

2.1.1 yields that the premouse M#
n (x) exists and is ω1-iterable for all x ∈ ωω.

This implies that
Det(a(n)(< ω2 −Π1

1))

holds true by Theorem 2.5 in [Ne95]. �

4.2. Open problems

We close Part 1 of this thesis with the following open problem, which is the
lightface version of Theorem 2.1.1.

Conjecture. Let n > 1 and assume that Π1
n determinacy and Π1

n+1 de-

terminacy hold. Then M#
n exists and is ω1-iterable.

This conjecture holds true for n = 0 which is due to L. Harrington (see
[Ha78]) and for n = 1 which is due to W. H. Woodin (see Corollary 4.17 in
[StW16]), but it is open for n > 1.
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Beyond Projective





Overview

In this second part of the thesis we want to prove a generalization of results
from Part 1 to certain sets of reals in L(R). The results we are going
to prove will in fact be more general, because they hold for an arbitrary
adequate pointclass Γ which is R-parametrized and has the scale property
and a premouse N which has an iteration strategy Σ ∈ ∀NΓ which condenses
well. We consider sets Ai ∈ P(R) for i < ω such that the pair (N ,Σ)
captures every individual Ai and show that the following theorem holds for
Γ and Σ as above, where the pointclass Π1

2k+1Γ is as defined in Definition
6.1.2.

Theorem 7.3.1. Let k < ω and assume that every Σ1
2k+2Γ-definable set

of reals is determined. Moreover assume that there is no Σ1
2k+4Γ-definable

ω1-sequence of pairwise distinct reals. Then the Σ-premouse MΣ,#
k exists

and is ω1-iterable.

From this we will obtain the following corollary.

Corollary 7.3.2. Let k < ω and assume that every Π1
2k+3Γ-definable set

of reals is determined. Then the Σ-premouse MΣ,#
k (x) exists and is ω1-

iterable for all reals x.

We want to apply these results to the following setting.

Let A be a set of reals such that A ∈ Σn(Jβ(R)), where [α, β] is a weak
Σ1-gap and n < ω is least such that ρn(Jβ(R)) = R. So we have that
A =

⋃
i<ω Ai for sets Ai ∈ Jβ(R) by [St08].

Then, by results of Chapter 5 in [SchSt] due to W. H. Woodin, we obtain
a premouse N and an iteration strategy Σ for N to which we can apply
Theorem 7.3.1. This will yield the following result in the L(R)-hierarchy.

Theorem 8.3.2. Let α < β be ordinals such that [α, β] is a weak Σ1-gap,
let k ≥ 0, and let

A ∈ Γ = Σn(Jβ(R)) ∩ P(R),

where n < ω is the least natural number such that ρn(Jβ(R)) = R. Moreover
assume that every Π1

2k+5Γ-definable set of reals is determined. Then there
exists an ω1-iterable hybrid Σ-premouse N which captures every set of reals
in the pointclass Σ1

k(A) or Π1
k(A).
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Here Σ1
n(A) and Π1

n(A) for n < ω and a set of reals A denote the set of
all reals which are definable over the model (Vω+1,∈, A) by a Σn- or a Πn-
formula respectively.

Outline. This second part of the thesis is organized as follows. Chapter
5 contains a short introduction to hybrid mice. In particular we introduce

the hybrid premouse MΣ,#
k and state some related results. In Section 5.3

we introduce capturing and show how hybrid mice can be used to capture
certain sets of reals.

The main result of this part is proven in Chapters 6 and 7. We will introduce
the necessary properties a pointclass needs to have for our argument in
Section 6.1 and then prove the main result (see Theorem 7.3.1) for such an
abstract pointclass Γ.

Chapter 6 is devoted to the construction of a model with Woodin cardinals
from determinacy hypotheses. The model we will construct there will be

used in Chapter 7 to construct the hybrid premouse MΣ,#
k from determinacy

hypotheses.

The main difference between Chapter 6 and Chapter 2 in the first part of
this thesis is the following: Recall that in Chapter 2 we proved (under a suit-
able determinacy hypothesis) that OD-determinacy holds in the premouse
Mn−1(x)|δx. Here we will first construct a non fine-structural model which
we call k-rich in Section 6.3 and prove in Section 6.5 (under a suitable deter-
minacy hypothesis) that OD-determinacy holds in this k-rich model. From
this we will afterwards provide the basis to construct a hybrid premouse
with one Woodin cardinal inside this k-rich model in Section 6.6.

In Chapter 7 we will then prove that the hybrid premouse MΣ,#
k exists and

is ω1-iterable from a suitable determinacy hypothesis. For this purpose we
will first introduce canonical hybrid premice in Section 7.1 which we call
(A, k)-suitable. Then we will use the results from Chapter 6 to show in Sec-
tion 7.2 that such canonical hybrid premice exist under certain determinacy
hypotheses. In Section 7.3 we will finally conclude, analogous to Section 3.4

in the first part of this thesis, that MΣ,#
k exists and is ω1-iterable under a

suitable determinacy hypothesis.

In Chapter 8 we will outline applications of our result to the setting of the
core model induction technique. In Section 8.1 we first give an introduction
to the L(R)-hierarchy and the relevant results concerning scales in L(R)
from [St08]. In Section 8.2 we will outline how the results in Chapter 5 in
[SchSt] due to W. H. Woodin can be connected to our setting. Finally we
join everything together in Section 8.3.

We close this thesis with mentioning some related open problems concerning
the connection between sets of reals in the L(R)-hierarchy and inner models
in Section 8.4.



CHAPTER 5

Hybrid Mice

This chapter is devoted to an introduction to hybrid mice and an outline of
their basic properties. In the projective hierarchy it was enough to consider
countable mice with finitely many Woodin cardinals, but at certain levels of
the L(R) hierarchy we will look at more complicated mice, namely hybrid
mice, to be able to capture more complicated sets of reals.

We will start with an introduction to hybrid mice and outline that a lot
of constructions using mice generalize to this hybrid context. Then we will
sketch how hybrid mice can be used to capture sets of reals.

5.1. Introduction

In this section we will introduce the concept of hybrid mice. The whole
presentation will be very sketchy and we will not provide any proofs, because
these details will mostly not be relevant in the following chapters. Most of
the details can for example be found in [SchSt] which our presentation will
follow or in the more recent revised write-up in [SchT].

Informally hybrid mice are like ordinary mice, but equipped with an iteration
strategy Σ for a countable premouse N inside them. To ensure that these
hybrid mice behave nicely for example in terms of fine structure, we have to
consider iteration strategies Σ which condense well. The following definitions
are reformulations of Definitions 5.3.6 and 5.3.7 in [SchSt].

Definition 5.1.1. Let T and U be iteration trees on a premouse N . We
say that U is a hull of T iff the following holds true. Let

σ : lh(U)→ lh(T )

be an order preserving map such that ran(σ) is support-closed. Then we
have that U is the unique iteration tree on N such that for all γ < lh(U)
there are maps

πγ :MUγ →MTσ(γ),

which are commuting with the tree embeddings such that π0 = id and for all
γ < lh(U), we have that

πγ(EUγ ) = ETσ(γ),

and the map πγ+1 is determined by the shift lemma.

139



140 5. HYBRID MICE

Definition 5.1.2. Let Σ be an iteration strategy for a premouse N . Then
we say that Σ condenses well iff for every iteration tree T on N according
to Σ, we have that whenever U is a hull of T then U is also according to the
iteration strategy Σ.

Let N be a countable premouse and assume that Σ is a possibly partial
iteration strategy for N which condenses well. We just informally define
that a (hybrid) Σ-premouse is a premouse M which is constructed above N
and while extenders are added to the extender sequence of M we are closing
the model additionally under the iteration strategy Σ for N in a way that
preserves the usual fine structural properties for premice. The exact way
this can be done is not relevant for our purposes so we refer the interested
reader to Section 5.6 in [SchSt] and Section 3 in [SchT].

In informal discussions and whenever it is clear from the context we might
omit the reference to the iteration strategy Σ when referring to hybrid Σ-
premice if this does not lead to any confusions. Moreover we will tacitly
assume that Σ is an iteration strategy which condenses well whenever we
consider hybrid Σ-premice.

Premice which are like the ones we considered in Part 1 of this thesis (so
which are in particular not hybrid) we call pure or ordinary premice.

An important reason why we restrict ourselves to iteration strategies Σ which
condense well is the following lemma, which is Lemma 5.6.5 in [SchSt].

Lemma 5.1.3. Let N be a countable premouse and let Σ be an iteration
strategy for N which condenses well. Moreover let M be a Σ-premouse.
Suppose that

π : M̄ →M

is a sufficiently elementary embedding such that π � (N ∪{N}) = id and M̄
is transitive. Then M̄ is a Σ-premouse.

A proof of this lemma can be found in [SchSt].

5.2. Kc,Σ and MΣ,#
k

We will use this section to generalize standard concepts like small premice
and core models to the context of hybrid mice, again without giving too
many details.

Definition 5.2.1. Let Σ be an iteration strategy for a countable premouse N
and let M be a hybrid Σ-premouse. Then for k < ω we say that M is (k,Σ)-
small iff whenever κ is the critical point of an extender on the M -sequence,
then

M |κ 2 “there are k Woodin cardinals”.

Analogous to the projective case we can now define the Σ-premice MΣ,#
k

and MΣ
k .
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Whenever we say that a Σ-premouse M is ω1-iterable, we mean that there
exists an iteration strategy for trees of length < ω1 on M such that every
iterate according to this iteration strategy is again a Σ-premouse.

Definition 5.2.2. Let k ≥ 1 and let Σ be an iteration strategy for a count-

able premouse N . Then we let MΣ,#
k denote the unique countable, sound,

ω1-iterable Σ-premouse (constructed above the premouse N ) which is not
(k,Σ)-small, but all of whose proper initial segments are (k,Σ)-small, if it
exists.

Definition 5.2.3. Let k ≥ 1 and assume that the Σ-premouse MΣ,#
k exists

for an iteration strategy Σ for a countable premouse N as above. Then MΣ
k

is the unique premouse which is obtained from MΣ,#
k by iterating its top

measure out of the universe.

We sometimes write MΣ,#
k (N ) and MΣ

k (N ) for MΣ,#
k and MΣ

k to visualize
the premouse N for which Σ is an iteration strategy.

For a real x the (Σ, x)-premice MΣ,#
k (x) and MΣ

k (x) relativized to x are

defined similarly. Sometimes we also write MΣ,#
k (N , x) and MΣ

k (N , x) for
them to again visualize the fixed premouse N for which Σ is an iteration
strategy.

Let Σ be an iteration strategy for a countable premouseN and let x be a real.
Then we can define a Kc,Σ(x)-construction above x and N as in Definition
1.3.10 in [SchSt] as a generalization of the standard Kc-construction from
[St96]. Moreover we remark without further proof that the results of Jensen
and Steel in [JS13] concerning the construction of a core model generalize
to the context of hybrid mice. Thus the following theorem and in particular
the subsequent remark follow from Theorem 1.3.20 in [SchSt] and Theorem
1.1 in [JS13].

Theorem 5.2.4 (Core Model Existence Dichotomy). Let k ≥ 1. Let Σ be
an iteration strategy for a countable premouse N and suppose that for all

x ∈ ωω the (Σ, x)-premouse MΣ,#
k (x) exists and is (ω1 + 1)-iterable. Then

exactly one of the following holds.

(1) For all x ∈ ωω the (Σ, x)-premouse MΣ,#
k+1 (x) exists and is (ω1 + 1)-

iterable, or
(2) for some x ∈ ωω, Kc,Σ(x) is (k,Σ)-small, has no Woodin cardinals, and

is (ω1 + 1)-iterable.

Remark. In alternative (2) of the Core Model Existence Dichotomy in fact
the hybrid core model KΣ(x) exists, where KΣ(x) is a generalization of
the core model K(x) at the level of finitely many Woodin cardinals in the
fashion of [St96] and [JS13] to the hybrid context. This follows from the
appropriate generalization of Theorem 1.1 in [JS13].

Definition 5.2.5. We define an LΣ(x)-construction as a special case of a
Kc,Σ(x)-construction where no extenders are added to the sequence.
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Moreover we let MΣ
0 (x) = LΣ(x) and we let MΣ,#

0 (x) denote the least active
(Σ, x)-premouse. In particular we say that a Σ-premouse is (0,Σ)-small iff
it is an initial segment of the model LΣ.

5.3. Capturing Sets of Reals with Hybrid Mice

Our main interest lies in hybrid mice which capture certain sets of reals.
We first define what we mean by “capturing” analogous to Section 1.4 in
[SchSt], starting with some preliminary definitions.

Definition 5.3.1. Let N be an ordinary or a hybrid premouse and let Σ be
an iteration strategy for N . Moreover let δ be a cardinal in N . Then we say
that the pair (N ,Σ) absorbs reals at δ iff for every ordinal η < δ and for
every real x, whenever T is an iteration tree based on N|η by the iteration
strategy Σ which does not drop on the main branch and i : N → N ∗ is
the corresponding iteration embedding, then there exists an iteration tree U
based on N ∗|i(δ) such that

(1) all critical points of extenders used in U are strictly above i(η),
(2) U gives rise to an iteration map j : N ∗ → N ∗∗, so in particular U does

not drop on the main branch, and
(3) x ∈ N ∗∗[g], for some Col(ω, j(i(δ)))-generic g over N ∗∗.

We have that premice do absorb reals at some cardinal δ if δ is a Woodin car-
dinal and they are sufficiently iterable, using Woodin’s or Neeman’s gener-
icity iteration (see Theorem 7.14 in [St10] or Corollary 1.8 in [Ne95]).

Definition 5.3.2. Let A be a set of reals and let N be an ordinary or a
hybrid premouse with an iteration strategy Σ for N . Moreover let δ be a
cardinal in N .

(1) Let τ ∈ N be a term. Then we say that τ is an (N ,Σ)-term for A
at δ iff whenever T is an iteration tree based on N|δ by the iteration
strategy Σ which does not drop on the main branch, i : N → N ∗ is
the corresponding iteration embedding and g is Col(ω, i(δ))-generic over
N ∗, then

i(τ)g = A ∩N ∗[g].

(2) We say that the pair (N ,Σ) understands A at δ iff there exists an
(N ,Σ)-term τ for A at δ.

Now we can finally define when a pair (N ,Σ) captures a set of reals A.

Definition 5.3.3. Let A be a set of reals and let N be an ordinary or a
hybrid premouse with an iteration strategy Σ for N . Moreover let δ be a
cardinal in N . Then we say that the pair (N ,Σ) captures A at δ iff there
is an (N ,Σ)-term τ for A at δ and (N ,Σ) absorbs reals at δ.

Remark. In case there exists a unique iteration strategy Σ for a premouse
N or if we already fixed an iteration strategy for N , we might omit the
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reference to the iteration strategy Σ in the definition of capturing as long as
this does not lead to any confusion, i.e. we will just say that N captures A
at δ.

The following lemma and its corollary now suggest why we are considering

the Σ-premouse MΣ,#
k if we are searching for mice capturing certain sets of

reals.

Lemma 5.3.4. Let A ⊂ R×R and let N be an ordinary or a hybrid premouse
with an iteration strategy Σ for N and cardinals η < δ in N . Suppose that
the pair (N ,Σ) captures the set A at δ. Then (N ,Σ) understands ∃RA and
∀RA at η.

This lemma is proven in [SchSt] as Lemma 1.4.18 and it yields the following
corollary.

Corollary 5.3.5. Let n ≥ 0 and let A =
⋃
k∈ω Ak be a set of reals. More-

over let N be an ordinary or a hybrid countable premouse with an iteration
strategy Σ for N (which condenses well) and a cardinal δ such that for
each k < ω the pair (N ,Σ) captures Ak at δ. Then the hybrid Σ-premouse

MΣ,#
n+1(N ) constructed above N captures every set of reals which is in the

pointclass Σ1
n(A) or Π1

n(A) at its bottom Woodin cardinal.

Here we denote by Σ1
n(A) and Π1

n(A) for n < ω and a set of reals A the set
of all reals which are definable over the model (Vω+1,∈, A) by a Σn- or a
Πn-formula respectively.

Proof of Corollary 5.3.5. The argument for Claim 2 in the proof

of Lemma 5.6.8 in [SchSt] shows that MΣ,#
n+1(N ) captures A at its top Woodin

cardinal. So Corollary 5.3.5 follows from Lemma 5.3.4. �

We will outline in Section 8.2 how such premice N as in the statement of
Corollary 5.3.5 can be obtained in the setting of the core model induction
technique, i.e. at the end of Σ1-gaps in the L(R)-hierarchy, from results in
Chapter 5 in [SchSt] due to W. Hugh Woodin.





CHAPTER 6

A Model with Woodin Cardinals from
Determinacy Hypotheses

In this chapter we will provide the basis to construct hybrid models with
finitely many Woodin cardinals from determinacy assumptions. The amount
of determinacy we are going to assume varies from section to section, so we
will always point out how much determinacy we need to assume to prove a
particular result.

6.1. Introduction

We aim to prove the results in this and the following chapter in a general
context such that they can be used for different applications. So we will
isolate properties for a pointclass Γ under which we are able to prove the
results. The reader can always imagine this pointclass to be for example
Γ = Σn(Jβ(R)) ∩ P(R) as defined in [St08] for a weak Σ1-gap [α, β] and
n < ω least such that ρn(Jβ(R)) = R, which is one of the pointclasses used
in the core model induction technique. In what follows we might confuse
Σn(Jβ(R)) ∩ P(R) with Σn(Jβ(R)) for example whenever we refer to “the
pointclass Σn(Jβ(R))”. We will explain the connection of our results to
these pointclasses and the core model induction technique in more detail in
Chapter 8.

We start with some preliminary definitions which introduce properties we
want the pointclass Γ to satisfy.

Definition 6.1.1. A pointclass Λ is called R-parametrized iff there exists
some set U ⊂ R×R, such that U ∈ Λ and U is universal for Λ. That means
we have U ∈ Λ and U satisfies that for all sets A ⊆ R,

A ∈ Λ iff ∃y ∈ R(A = Uy),

where Uy = {x ∈ R | (y, x) ∈ U}.

Definition 6.1.2. Let Γ be an R-parametrized pointclass and let n ≥ 1.
Then we say a set of reals A is in the pointclass Π1

nΓ iff there is a set of
reals B in Γ and a Π1

n-formula ϕ such that for all x ∈ ωω,

x ∈ A iff ϕ(x,B, ωω \B).

Here we mean by “ϕ(x,B, ωω \B)” that the parameter B is allowed to occur
positively and negatively in the formula ϕ.

145
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Furthermore we say a set of reals A is in the pointclass Π1
nΓ iff there is a

set of reals B in Γ, a real y and a Π1
n-formula ϕ such that for all x ∈ ωω,

x ∈ A iff ϕ(x, y,B, ωω \B).

The pointclasses Σ1
nΓ, Σ1

nΓ, ∆1
nΓ and ∆1

nΓ are defined in the same way.

We now define the notion of scale which was introduced by Moschovakis in
[Mo71]. A more detailed presentation of scales and their basic properties
can be found in Section 3 of [KM08].

Definition 6.1.3. A norm on a set of reals A is a function ϕ : A� γ from
A onto some ordinal γ, which we call the length of ϕ.

Definition 6.1.4. A scale on a set of reals A is a sequence of norms (ϕn |
n < ω) on A such that the following holds. For every sequence of reals
(xi | i < ω) such that for all i < ω, xi ∈ A and

lim
i<ω

xi = x,

and such that for each n < ω there exists an ordinal γn and a natural number
i0 such that for all i ≥ i0,

ϕn(xi) = γn,

we have x ∈ A and for each n, ϕn(x) ≤ γn.

Definition 6.1.5. Let Λ be a pointclass. We say a scale (ϕn | n < ω) on
a set of reals A is a Λ-scale iff there are relations R and R′ in Λ and ¬Λ
respectively such that for every a ∈ A we have that for every real x and every
n < ω,

[x ∈ A ∧ ϕn(x) ≤ ϕn(a)] iff R(n, x, a) iff R′(n, x, a).

Definition 6.1.6. We say a pointclass Λ has the scale property iff every
set A in Λ admits a Λ-scale.

We will join all properties we want a typical pointclass Γ we consider to
satisfy in the following definition.

Definition 6.1.7. Let N be a (possibly hybrid) countable premouse, which
is ω1-iterable as witnessed by an iteration strategy Σ which can be coded by
a set of reals. Futhermore assume that Σ condenses well. Then we say that
a pointclass Γ is (N ,Σ)-apt iff it satisfies the following properties.

(i) Σ ∈ ∀NΓ,
(ii) Γ is R-parametrized,

(iii) Γ is adequate in the sense of [Mo09],
(iv) Γ has the scale property.

Remark. Assume that the pointclass Γ is R-parametrized. This implies
that the pointclasses Π1

2k+1Γ, Π1
2k+1Γ, Σ1

2k+2Γ and Σ1
2k+2Γ for k < ω are all

R-parametrized (see Theorem 1D.2 in [Mo09]). Further note that this im-
plies the existence of a universal Π1

2k+1Γ-definable set (or Σ1
2k+2Γ-definable
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set) for the pointclass Π1
2k+1Γ(R) (or Σ1

2k+2Γ(R), respectively), where we
additionally allow real parameters.

Remark. Properties (iii) and (iv) in Definition 6.1.7 already imply that for
all k < ω assuming that every ∆1

2kΓ-definable set of reals is determined, the
pointclasses Π1

2k+1Γ, Π1
2k+1Γ, Σ1

2k+2Γ and Σ1
2k+2Γ all have the uniformiza-

tion property by Moschovakis’ Second Periodicity Theorem (see Theorem
6C.3 in [Mo09]).

Remark. We will show in Theorem 8.2.2 that for appropriate sets A we
can construct N and Σ as above with the property that there is a pointclass
Γ such that Γ is (N ,Σ)-apt and the pair (N ,Σ) captures the set A using
results in Chapter 5 in [SchSt] due to W. Hugh Woodin.

For the rest of this chapter fix for all i < ω sets Ai ∈ P(R), a pointclass Γ, a
(possibly hybrid) premouse N and an ω1-iteration strategy Σ for N which
condenses well and witnesses that (N ,Σ) captures every set Ai at the same
cardinal δ, such that the pointclass Γ is (N ,Σ)-apt.

The proof of Theorem 7.3.1 (see overview at the beginning of this part
of this thesis or Section 7.3) which we present in this and the following
chapter of this thesis will be organized inductively. Therefore we will assume
throughout the rest of this and the following chapter that Theorem 7.3.1
holds for k − 1.

6.2. A Consequence of Determinacy

In what follows we will need the following consequence of determinacy which
is an analogue of Lemma 3.5.1.

Theorem 6.2.1. Let k < ω and let N be a countable premouse and Σ
an ω1-iteration strategy for N which condenses well. Moreover let Γ be
a pointclass which is (N ,Σ)-apt. Assume that every Π1

2k+3Γ-definable set

of reals is determined. Then there exists no uncountable Σ1
2k+4Γ-definable

sequence of pairwise distinct reals.

Remark. The statement “there exists no uncountable Σ1
2k+4Γ-definable

sequence of pairwise distinct reals” is defined analogous to Part 1 (see remark
after the statement of Theorem 3.3.2).

Proof of Theorem 6.2.1. The proof of this theorem is analogous to
the descriptive set theoretic argument for the odd levels of the projective
hierarchy in the proof of Lemma 3.5.1. We will present it here to convince
the reader, that it also works in this setting with some minor adjustments.
Note that the inner model theoretic argument we gave for the even levels
of the projective hierarchy in the proof of Lemma 3.5.1 does not work here,
because at the moment we are not able to construct hybrid premice which
are suitable enough to apply this argument from the amount of determinacy
we are assuming.
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Assume toward a contradiction that there exists a Σ1
2k+4Γ-definable ω1-

sequence of pairwise distinct reals. That means in particular that there
exists a well-order ≤∗ of ordertype ω1 for reals such that if we let X≤∗ =
field(≤∗), that means if we have for all y ∈ ωω,

y ∈ X≤∗ ⇔ ∃x (x ≤∗ y ∨ y ≤∗ x),

then there exists a Σ1
2k+4Γ-definable relation R such that we have for all

x, y ∈ ωω,

R(x, y) ⇔ x, y ∈ X≤∗ ∧ x ≤∗ y.
Let A be a Π1

2k+3Γ-definable relation such that we have for all x, y ∈ ωω,

R(x, y) ⇔ ∃z A(z, x, y).

Moreover consider the relation A2 such that for all u ∈ (ωω)2 and for all
y ∈ ωω,

A2(y, u) ⇔ A((u)0, (u)1, y).

Recall that we fixed Γ such that the pointclass Π1
2k+3Γ has the uniformiza-

tion property. Therefore there exists a Π1
2k+3Γ-definable function F which

uniformizes the set A2, that means we have

(y, F (y)) ∈ A2

for all y ∈ dom(F ). We have that X≤∗ ⊆ dom(F ). So the relation A∗

defined by

A∗(z, x, y, u) ⇔ A(z, x, y) ∧ z = (u)0 ∧ x = (u)1 ∧ u = F (y)

is Π1
2k+3Γ-definable. Let A∗ denote the corresponding set of all tuples

(z, x, y, u) such that A∗(z, x, y, u) holds.

As before we now consider the following game Gp(A∗) which is due to M.
Davis (see [Da64] or Theorem 12.11 in [Sch14]). We again identify the
elements of the set A∗ with elements of the Cantor space ω2.

I s0 s1 . . .
II n0 n1 . . .

Player I plays finite 0 − 1-sequences si ∈ <ω2 (allowing si = ∅), player II
responds with ni ∈ {0, 1} and the game lasts ω steps. We say player I wins
the game Gp(A∗) iff

s0
_n0

_s1
_n1

_ · · · ∈ A∗.
Otherwise player II wins. As a consequence of our determinacy hypothesis
we have that the game Gp(A∗) is determined, because we may code Gp(A∗)
into a Gale-Stewart game G(A′) for some set of reals A′ which is Π1

2k+3Γ-
definable.

Then we can argue again as in the proof Theorem 12.11 in [Sch14] to obtain
that the set A∗ has a perfect subset, because A∗ is uncountable. As in the
proof of Lemma 3.5.1 this yields that we have the following claim.
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Claim 1. The set

B = {y | ∃z∃x∃u A∗(z, x, y, u)}
has a perfect subset.

Therefore there exists a continuous function f : R→ B and we can consider
the following order ≤ on the reals. We say for two reals x and y that

x ≤ y ⇔ f(x) ≤∗ f(y).

Then we again have the following claim.

Claim 2. The order ≤ is a Σ1
2k+4Γ-definable well-order of the reals.

We can now use this claim to prove the following claim exactly as in the
proof of Lemma 3.5.1 with Bernstein’s argument, so we omit the proof here.

Claim 3. There are two disjoint Σ1
2k+4Γ-definable sets D and D′ of size ℵ1

without perfect subsets.

Let E be a Π1
2k+3Γ-definable set such that

x ∈ D ⇔ ∃y (x, y) ∈ E.
Since we assumed that Π1

2k+3Γ-uniformization holds, there exists a Π1
2k+3Γ-

definable partial function C : R → R uniformizing E, that means we have
that

∃y (x, y) ∈ E ⇔ (x,C(x)) ∈ E.
The set C ′ which is defined as

C ′ = {(x,C(x)) | x ∈ D} = C ∩ E
is Π1

2k+3Γ-definable and consider the Davis game Gp(C ′), which is again
determined by assumption.

As above this yields that C ′ has a perfect subset P ⊂ C ′, because D and
thus C ′ is uncountable. Since P is a perfect set and D does not contain a
perfect subset, there are reals x, y and y′ such that y 6= y′ and (x, y) ∈ P
and (x, y′) ∈ P . But we have y = C(x) = y′. This is a contradiction. �

6.3. The Construction of a k-rich Model

In this section we are going to construct a model P k(x; Σ) for which we
can prove a version of Lemma 2.1.3. We will construct this model in a
way that makes it suitable for our later analysis. In particular we will be
able to obtain a hybrid premouse from it which is short tree iterable in
an adapted sense. Moreover the construction will enable us to construct
canonical hybrid premice with Woodin cardinals.

Fix an arbitrary real x and recall that we fixed a premouse N together with
the pointclass Γ. Fix a natural number k ≥ 1 and suppose in the following
construction of the model P k(x; Σ) that every ∆1

2kΓ-definable set of reals is
determined.
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The model P k(x; Σ) is build level-by-level in a construction of length ωV1 .
That means we build a chain of models (P ∗α | α ≤ ωV1 ) and let

P k(x; Σ) = P ∗
ωV1

=
⋃

α<ωV1

P ∗α.

We are starting from P ∗0 = {x,N} and are taking unions at limit steps of
the construction. That means for a limit ordinal λ ≤ ωV1 we let

P ∗λ =
⋃
α<λ

P ∗α.

For the construction of the successor steps we first introduce the following
notation.

Definition 6.3.1. Let n ≥ 1. Then we say that a model P is ΣΣ
n -correct in

V and write P ≺ΣΣ
n
V , if Σ is a predicate over P and for all Σ1

n-formulas
ψ and for all y ∈ P ∩ ωω,

P � ψ(y,Σ, ωω \ Σ) iff V � ψ(y,Σ, ωω \ Σ).

By this notation we mean that we identify the parameter Σ with a set of
reals and allow Σ to occur positively and negatively in the formula ψ.

For the successor steps α + n in the construction of P k(x; Σ) we consider
different cases for a limit ordinal α (or α = 0) and each natural number n.
At the first successor level α+1 we are going to ensure that P k(x; Σ) will be
closed under the iteration strategy Σ for N . In the next successor step α+2
we uniformly close P ∗α+2 under Skolem functions to obtain that P k(x; Σ) is

ΣΣ
2k+2-correct in V . Then we use the successor levels of the form α + 3 to

add witnesses for the fact that P k(x; Σ) will be ΣΣ
2k+2-absolute. That means

we ensure that P k(x; Σ)[g] will be ΣΣ
2k+2-correct in V for comeager many

Col(ω, η)-generic g ∈ V over P k(x; Σ) for any ordinal η < ωV1 .

Moreover we want to obtain the additional property that for a comeager set
of reals y ∈ V which are Col(ω, η)-generic over the model P k(x; Σ) for an
ordinal η < ωV1 , we have that

P k(x; Σ)[y] = P k(x⊕ y; Σ).

Here we mean by this equality that the two models have the same universe
(and not necessarily the same hierarchies).

To ensure this property we will use the other successor steps α+n for n ≥ 4
to recursively close P k(x; Σ) under “names for names” in a uniform way.
This will be done for names for reals which are added to levels like P ∗α+2

and for names for branches through iteration trees on N which are added
to levels like P ∗α+1.

We will also recursively define the order of construction for P k(x; Σ) along
the way. At limit steps of the construction we define the order of construction
analogous to the order of construction for L.
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Furthermore we are, analogously to the constructions in Chapter 3, going
to ensure during the construction that each level of the model P k(x; Σ) is
Σ1

2k+2Γ-definable uniformly in codes forN and the real x. This will enable us

to prove in Lemma 6.3.4 that P k(x; Σ) is a model of ZFC from a determinacy
hypothesis.

We have that P k(x; Σ) is a non fine structural model, but we define P k(x; Σ)
such that it will be closed under the iteration strategy Σ for the premouse
N ∈ P k(x; Σ).

Remark. The successor levels (α+1) and (α+2) in our construction are not
necessary, because they are also included in the level (α+ 3) if we consider
a trivial forcing. We added them to the construction as a warm up for the
construction at level (α+ 3) to illustrate what happens in this special case.

Before we are going to describe the construction at the successor levels in
more detail we fix a Π1

2k+1Γ-definable set U which is universal for Π1
2k+1Γ-

definable sets of reals in V . We can pick this set U such that we have

Upϕq_(a⊕b) = AΓ
ϕ,a,b

for every Π1
2k+1-formula ϕ and every a, b ∈ ωω, where pϕq denotes the Gödel

number of the formula ϕ,

AΓ
ϕ,a,b = {x | ϕ(x, a, UΓ

b ,
ωω \ UΓ

b )},

where as above this means that UΓ
b is allowed to occur positively and nega-

tively in ϕ, and UΓ ∈ Γ is a universal set for the pointclass Γ which exists
since we assume that Γ is R-parametrized.

Moreover we fix a Π1
2k+1Γ-definable uniformizing function F for U . That

means for all z ∈ dom(F ) we have that

(z, F (z)) ∈ U,

where dom(F ) = {z | ∃y (z, y) ∈ U}. We have that U and F as above exist
by our assumptions on Γ (see second remark after Definition 6.1.7).

We start the construction with letting P ∗0 = {x,N} and are now going to
describe the construction at the successor levels in more detail.

Level α + 1: Assume inductively that we already constructed the model
P ∗α for a limit ordinal α < ωV1 or α = 0. Then we first construct the level
(α+ 1) of P k(x; Σ), in which we close under the iteration strategy Σ for N .
Recall that we have N ∈ P ∗α for all α < ωV1 since we picked P ∗0 = {x,N}.
Assume now that there is an iteration tree T on N of limit length < ωV1
such that T ∈ P ∗α, but Σ(T ) is not in P ∗α. If there is no such tree we just
let P ∗α+1 = rud(P ∗α). If there exists such a tree T , we additionally add the
pair (T ,Σ(T )) to the model P ∗α+1 for all such trees T ∈ P ∗α before we close
under rudimentary functions.
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More precisely we add the set

(T , {(ξ, h) | h ∈ {0, 1}, ξ < lh(T ), and

h = 1 and ξ ∈ Σ(T ) or

h = 0 and ξ /∈ Σ(T )})

for all iteration trees T on N in P ∗α of limit length to the model P ∗α+1,
where we define Σ(T ) = ∅ if T is not an iteration tree on N of limit length
according to the iteration strategy Σ, before we close under rudimentary
functions.

Order of construction: For two iteration trees T and U on N of limit
length < ωV1 such that T ,U ∈ P ∗α and (T ,Σ(T )) 6= (U ,Σ(U)) are added
in the construction of P ∗α+1, we say that (T ,Σ(T )) is constructed before
(U ,Σ(U)) iff T is constructed before U in the order of construction for
elements of P ∗α. For elements which are added during the closure under
rudimentary functions we define the order of construction analogous to the
order of construction for L.

Level α + 2: Assume now that we already constructed the model P ∗α+1.
Then we close P ∗α+1 under the uniformizing function F we fixed above. That
means we let

P ∗α+2 = rud(P ∗α+1 ∪ {y ∈ ωω | ∃z ∈ P ∗α+1 ∩ ωω ϕF (z, y, UΓ
b ,

ωω \ UΓ
b )}),

where ϕF is a Π1
2k+1-formula and b is a fixed real such that for all z, y ∈ ωω

F (z) = y iff ϕF (z, y, UΓ
b ,

ωω \ UΓ
b ).

This will add witnesses to ensure that P k(x; Σ) is ΣΣ
2k+2-correct in V as

Σ ∈ ∀NΓ.

Order of construction: First we say that F (z) is constructed before F (z′)
for F (z) 6= F (z′) with z, z′ ∈ dom(F ) ∩ P ∗α+1 if z is constructed before z′

in the order of construction for elements of P ∗α+1 where z and z′ are the
minimal (according to the order of construction in P ∗α+1) reals y and y′ in
P ∗α+1 such that F (y) = F (z) and F (y′) = F (z′). Then we define the order of
construction for elements added by the closure under rudimentary functions
analogous to the order of construction for L.

Level α+3: Assume that we already constructed P ∗α+2. Let η be a countable
ordinal in V and let τ be a Col(ω, η)-name for a real in P ∗α+2. Then we define
the Col(ω, η)-name ση1(τ) as follows.

ση1(τ) = {( ˇ(n,m), p) | for comeager many g which are

Col(ω, η)-generic over P ∗α+2 such that p ∈ g
we have τ g ∈ ωω and F (τ g)(n) = m}.

We now add ση1(τ) for all ordinals η ∈ P ∗α+2 and for all such names τ to the
model P ∗α+3.
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Moreover we uniformly add names for branches through iteration trees on
N to P ∗α+3 as follows.

Recall that Σ is an iteration strategy for the premouse N and define as
above Σ(T ) = ∅ if T is not an iteration tree on N of limit length according
to Σ.

Now let η again be a countable ordinal in V and let Ṫ be a Col(ω, η)-name
for an iteration tree T of limit length on N in P ∗α+2. Then we define the

Col(ω, η)-name ση,∗1 (Ṫ ) for a branch through T as follows.

ση,∗1 (Ṫ ) = {( ˇ(ξ, h), p) | for comeager many g which are

Col(ω, η)-generic over P ∗α+2 such that p ∈ g

we have that h = 1 and ξ ∈ Σ(Ṫ g) or

we have that h = 0 and ξ /∈ Σ(Ṫ g)}.

We now also add ση,∗1 (Ṫ ) for all ordinals η ∈ P ∗α+2 and all such names Ṫ for
iteration trees T on N of limit length to the model P ∗α+3. That means we
let

P ∗α+3 = rud(P ∗α+2 ∪ {σ
η
1(τ) | τ is a Col(ω, η)-name for a real as above}∪

{ση,∗1 (Ṫ ) | Ṫ is a Col(ω, η)-name for an iteration tree T as above}).

Order of construction: Let σ and σ′ be two elements added to the model
P ∗α+3 during the construction. Then we say that σ is constructed before σ′

if σ 6= σ′ and

(i) there is a Col(ω, η)-name τ ∈ P ∗α+2 for a real and a Col(ω, η′)-name

Ṫ ∈ P ∗α+2 for an iteration tree on N for the largest such ordinals η, η′

in P ∗α+2 such that we have σ = ση1(τ) and σ′ = ση
′,∗

1 (Ṫ ) for minimal

such τ and Ṫ , or
(ii) there are Col(ω, η)- and Col(ω, η′)-names τ and τ ′ in P ∗α+2 for reals

for the largest such ordinals η, η′ in P ∗α+2 such that σ = ση1(τ) and

σ′ = ση
′

1 (τ ′) and η < η′ or η = η′ and τ is constructed before τ ′ in the
order of construction for elements of P ∗α+2 for minimal such τ and τ ′,
or

(iii) there are Col(ω, η)- and Col(ω, η′)-names Ṫ and U̇ in P ∗α+2 for iteration
trees on N of limit length for the largest such ordinals η, η′ in P ∗α+2

such that σ = ση,∗1 (Ṫ ) and σ′ = ση
′,∗

1 (U̇) and η < η′ or η = η′ and Ṫ is

constructed before U̇ in the order of construction for elements of P ∗α+2

for minimal such Ṫ and U̇ .

For elements added to the model P ∗α+3 by the closure under rudimentary
functions we define the order of construction analogous to the order of con-
struction for L.
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Level α + n: We now construct the other successor levels P ∗α+n for n > 3
as follows. To perform this construction in a uniform way we first make the
following definition.

Definition 6.3.2. We define n-names for n < ω recursively as follows.

(i) We say that τ is a 0-name iff τ is a branch b through an iteration tree
T on N as for example added to P ∗α+1 during the construction or τ is
a real F (z) as for example added to P ∗α+2 during the construction.

(ii) We say that τ is a 1-name iff τ is a Col(ω, η)-name for a real or a
Col(ω, η)-name for a branch for some ordinal η < ωV1 as for example
added to P ∗α+3 during the construction. That means

τ = ση1(τ ′)

for some Col(ω, η)-name τ ′ for a real or

τ = ση,∗1 (Ṫ )

for some Col(ω, η)-name Ṫ for an iteration tree T on N .
(iii) We recursively define that τ is an (n + 1)-name for some n ≥ 1 iff

τ is a Col(ω, η)-name for an n-name for some ordinal η < ωV1 as for
example added to P ∗α+n+3 during the construction. That means

τ = σηn+1(σ)

for some Col(ω, η)-name σ for an n-name, where the operation σ 7→
σηn+1(σ) is as defined below.

Assume now inductively that we already defined the model P ∗α+n+2 for some
n ≥ 1 and construct the next model P ∗α+n+3 as follows.

Let η be a countable ordinal in V and let τ be an n-name such that for non-
meager many g ∈ V ∩ ωω which are Col(ω, η)-generic over P ∗α+n+2 we have
that τ ∈ P ∗α+n+2(x⊕g), where P ∗α+n+2(x⊕g) is the model which is obtained
by the same construction as P ∗α+n+2, but starting with P ∗0 (x⊕g) = {x⊕g,N}
instead of P ∗0 = {x,N}. Let σ be a Col(ω, η)-name for τ in P ∗α+n+2(x⊕ g).
Then we define σηn+1(σ) to be a canonical Col(ω, η)-name for τ , that means

σηn+1(σ) = {(ǔ, p) | for comeager many g which are

Col(ω, η)-generic over P ∗α+n+2 such that p ∈ g
we have that u ∈ σg}.

We add all such Col(ω, η)-names σηn+1(σ) for ordinals η in P ∗α+n+2 to the
model P ∗α+n+3. That means we define

P ∗α+n+3 = rud(P ∗α+n+2 ∪ {σ
η
n+1(σ) | σ is a Col(ω, η)-name

for an n-name as above}).

Order of construction: We say that σηn+1(σ) is constructed before ση
′

n+1(σ′)

for σηn+1(σ) 6= ση
′

n+1(σ′) where σ and σ′ are Col(ω, η)- and Col(ω, η′)-names
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for n-names τ and τ ′ as above for the largest such ordinals η, η′ in P ∗α+n+2 iff
η < η′ or η = η′ and τ is constructed before τ ′ in the order of construction
for elements of the model P ∗α+n+2(x⊕ g) for non-meager many g ∈ V ∩ ωω
which are Col(ω, η)-generic over P ∗α+n+2 such that τ, τ ′ ∈ P ∗α+n+2(x ⊕ g)
for minimal such τ, τ ′. We define the order of construction for elements
added by the closure under rudimentary functions analogous to the order of
construction for L.

Limit steps: As mentioned before we take unions at limit steps of the
construction, so we let

P ∗λ =
⋃
γ<λ

P ∗γ

for every limit ordinal λ ≤ ωV1 and finally

P k(x; Σ) = P ∗
ωV1

=
⋃

α<ωV1

P ∗α.

Order of construction: The order of construction at the limit steps is
defined analogous to the order of construction for L at limit steps.

So we can finally make the following definition.

Definition 6.3.3. Let k ≥ 1, let x be a real and let P k(x; Σ) be the model
of height ωV1 constructed above. Then we say that P k(x; Σ) is the k-rich
L(x; Σ)-model above x.

These models are called k-rich L(x; Σ)-models since they are constructed
similar to the construction of L but we enrich them by additionally closing
them under Σ, under witnesses for Skolem functions and under names for
these objects at certain levels of the construction. The superscript k indi-
cates that P k(x; Σ) is the model we want to use for the construction of the

hybrid premouse MΣ,#
k later. More precisely we are going to use the k-rich

L(x; Σ)-model P k(x; Σ) for the construction of an (A, k)-suitable premouse
(see Section 7.2).

To prove that P k(x; Σ) is a model of ZFC we need a stronger determinacy
hypothesis as in the construction above, because we want to use Theorem
6.2.1. So in fact we only need to assume that there is no uncountable
Σ1

2k+2Γ-definable sequence of pairwise distinct reals in addition to Π1
2kΓ

determinacy to obtain the following lemma. For simplicity we state the
lemma under the slightly stonger assumption that every Π1

2k+1Γ-definable
set of reals is determined as we need to assume this much determinacy later
on anyway.

Lemma 6.3.4. Let k ≥ 1 and let x be a real. Assume that every Π1
2k+1Γ-

definable set of reals is determined and let P k(x; Σ) be the k-rich L(x; Σ)-
model as constructed above. Then

P k(x; Σ) � ZFC .
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Proof. Assume this is not the case. Then the power set axiom has to
fail. So let γ be a countable ordinal in V such that

P(γ) ∩ P k(x; Σ) /∈ P k(x; Σ).

This implies that the set P(γ) ∩ P k(x; Σ) has size ℵ1.

Let P ∗γ = P k(x; Σ)|γ be the γ-th level in the construction of P k(x; Σ). Then
we can fix a real a in V which codes the countable set P ∗γ .

If it exists, we let Aξ for γ < ξ < ωV1 be the smallest subset of γ in

P k(x; Σ) | (ξ + 1) \ P k(x; Σ) | ξ

according to the order of construction we defined above. Moreover we let X
be the set of all ordinals ξ with γ < ξ < ωV1 such that Aξ exists. Then X is

cofinal in ωV1 .

Finally we let aξ be a real coding the set Aξ ⊆ γ relative to the code a

we fixed for P ∗γ . For ξ ∈ X we have that Aξ ∈ P(γ) ∩ P k(x; Σ) and thus
Aξ ⊆ P ∗γ , so the canonical code aξ for Aξ relative to a exists.

Now consider the following ωV1 -sequence of reals

A = (aξ ∈ ωω | ξ ∈ X).

Analogous to the proof of Claim 3 in the proof of Theorem 3.4.1 we have
that a real y codes an element of the model P k(x; Σ) | (ξ + 1) \ P k(x; Σ) | ξ
for some ξ < ωV1 iff there is a sequence of countable models (Pβ | β ≤ ξ+ 1)
and an element Y ∈ Pξ+1 such that

(1) P0 = {x,N},
(2) Pβ+1 is constructed from Pβ as described in the construction above for

all β ≤ ξ,
(3) Pλ =

⋃
β<λ Pβ for all limit ordinals λ ≤ ξ,

(4) y does not code an element of Pξ, and
(5) y codes Y .

This shows that the levels P k(x; Σ) | (ξ + 1) \ P k(x; Σ) | ξ of the model
P k(x; Σ) can be constructed in a Σ1

2k+2Γ-definable way from the real x and
a code for the countable premouse N and the countable ordinal ξ by the
following argument.

Let α < ωV1 be a limit ordinal or let α = 0. For the successor levels of the
form α + 1 we can compute Σ(T ) from T in a ∀NΓ-definable way by our
choice of the pointclass Γ.

For the successor levels of the form α+2 recall that U is a Π1
2k+1Γ-definable

set and F is a Π1
2k+1Γ-definable function uniformizing U . So we have that

the elements of the model P ∗α+2 can be computed in a Π1
2k+1Γ-definable way

from P ∗α+1.
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For the P ∗α+3 levels of the construction, we have that for an ordinal η ∈ P ∗α+2

and a Col(ω, η)-name τ for a real, the Col(ω, η)-name

ση1(τ) = {( ˇ(n,m), p) | for comeager many g which are

Col(ω, η)-generic over P ∗α+2 such that p ∈ g
we have τ g ∈ ωω and F (τ g)(n) = m}

is Π1
2k+1Γ-definable from τ and P ∗α+2 for the following reason:

First recall that we chose F such that it is Π1
2k+1Γ-definable. Furthermore

we can replace every comeager set by a subset which is comeager and Gδ,
so in particular Borel. Hence ση1(τ) is Π1

2k+1Γ-definable from τ and P ∗α+2.

For a similar reason we have that the Col(ω, η)-name ση,∗1 (Ṫ ) for a branch
through T ,

ση,∗1 (Ṫ ) = {( ˇ(ξ, h), p) | for comeager many g which are

Col(ω, η)-generic over P ∗α+2 such that p ∈ g

we have that h = 1 and ξ ∈ Σ(Ṫ g) or

we have that h = 0 and ξ /∈ Σ(Ṫ g)},

is Π1
2k+1Γ-definable from Ṫ and P ∗α+2. It is in fact even Π1

1Γ-definable from

Ṫ and P ∗α+2, because as already mentioned above the branch Σ(T ) is ∀NΓ-
definable from T by our choice of the pointclass Γ.

Therefore we have that the elements of the (α+ 3)-levels of P k(x; Σ) can be
constructed in a Π1

2k+1Γ-definable way from the previous level.

Moreover we can define the level P ∗α+n+3 of P k(x; Σ) for a fixed n < ω in a

Σ1
2k+2Γ-definable way from P ∗α+n+2 by the following argument:

Let P ∗α+n+2(x⊕g) denote the level α+n+2 in the construction of the model

P k(x ⊕ g; Σ) which is constructed as above but starting from P ∗0 (x ⊕ g) =
{x⊕ g,N}. What we already showed gives in particular that this model is
∆1

2k+2Γ-definable from the real x⊕ g and a code for N as the construction

of the model P k(x⊕ g; Σ) is defined in a unique way.

Now a name σ is added to the model P ∗α+n+3 for some n < ω if for non-
meager many g ∈ V ∩ ωω which are Col(ω, η)-generic over P ∗α+n+2 for some
ordinal η ∈ P ∗α+n+2, there is a finite sequence of names (τi | 0 ≤ i ≤ n) and
a finite sequence of names (σi | 0 ≤ i ≤ n) such that τ0 is a 0-name, τ1 =
ση1

1 (σ0) or τ1 = ση1,∗
1 (σ0) for some ordinal η1 ∈ P ∗α+2 and a Col(ω, η1)-name

σ0, and for all 1 < i ≤ n we have that τi ∈ P ∗α+i+2(x⊕ g), σi is a Col(ω, ηi)-
name for τi in P ∗α+i+2(x⊕ g) for some ordinal ηi ∈ P ∗α+i+1(x⊕ g) ∩Ord,

τi = σηii (σi−1),

and

σ = σηn+1(σn).
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Therefore we have as above that P ∗α+n+3 is constructed in a ∆1
2k+2Γ-definable

way from the previous levels.

After all it follows that the sequence A as defined above is Σ1
2k+2Γ-definable

in the parameters a, x and a code for N . Moreover A has size ℵ1 because
the set P(γ) ∩ P k(x; Σ) has size ℵ1. Hence A contradicts Theorem 6.2.1
because A is an uncountable Σ1

2k+2Γ-definable sequence of pairwise distinct
reals. �

The following lemma summarizes some properties of the k-rich L(x; Σ)-
model P k(x; Σ) which follow from the construction.

Lemma 6.3.5. Let k ≥ 1 and let x be a real. Assume that every Π1
2k+1Γ-

definable set of reals is determined and let P k(x; Σ) be the k-rich model above
x as constructed above. Then P k(x; Σ) satisfies the following properties.

(i) P k(x; Σ) is ΣΣ
2k+2-correct in V for real parameters from P k(x; Σ), that

means
P k(x; Σ) ≺ΣΣ

2k+2
V,

(ii) P k(x; Σ)[g] is ΣΣ
2k+2-correct in V for real parameters from P k(x; Σ)[g]

for comeager many Col(ω, η)-generic g ∈ V over P k(x; Σ) for any
ordinal η < ωV1 , that means

P k(x; Σ)[g] ≺ΣΣ
2k+2

V,

(iii) for comeager many reals y in V which are Col(ω, η)-generic over P k(x; Σ)
for an ordinal η < ωV1 , we have that

P k(x; Σ)[y] = P k(x⊕ y; Σ),

and
(iv) P k(x; Σ) is Σ1

2k+2Γ-definable in the codes from x and N .

Moreover if P k(x; Σ) and P k(y; Σ) are both k-rich models for reals x ≤T y
such that y ∈ P k(x; Σ), then P k(x; Σ) = P k(y; Σ).

Remark. Again by the equality

P k(x; Σ)[y] = P k(x⊕ y; Σ)

in property (iii) in Lemma 6.3.5 we do not mean that the hierarchies of the
models P k(x; Σ)[y] and P k(x⊕y; Σ) are equal. We only want to express that
the two models have the same universes, which follows from our construction
since we inductively close the models P ∗α+n+2 under names for n-names for
every n < ω. This will suffice for our application in the proof of Theorem
6.6.2 later.

Proof of Lemma 6.3.5. Property (i) follows from the construction
exactly as in the proof of property (3) in Claim 2 in the proof of Theo-
rem 3.7.1. Moreover property (ii) can be obtained from the construction
of P k(x; Σ) at the successor levels α + 3 by a similar argument, as follows.
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First of all notice that every g ∈ V which is Col(ω, η)-generic over P k(x; Σ)
for an ordinal η < ωV1 , is also Col(ω, η)-generic over some level P ∗α+2 in

the construction of P k(x; Σ). Now the names of the form ση1(τ) which are
added to the model P ∗α+3 provide witnesses for comeager many g which are
Col(ω, η)-generic over P ∗α+2. Property (ii) follows from this using that the
intersection of countably many comeager sets is comeager again.

Property (iii) follows from the construction of P k(x; Σ) we described above,
because we added names for n-names at the levels α+n of the construction
for n ≥ 4. We easily have that P k(x; Σ)[y] ⊆ P k(x ⊕ y; Σ). The other
implication also holds true by the following argument.

For a comeager set of reals y we have that whenever for example a name τ
for a real is added to the model P k(x ⊕ y; Σ) during the construction (at
some level α+2), then in the construction of P k(x; Σ) a name for τ is added
at some other level. Therefore it follows that τ ∈ P k(x; Σ)[y]. The same
argument now applies to names for names for reals and so on, which are
added to the model P k(x⊕ y; Σ) during the construction.

Moreover we added branches Σ(T ) for iteration trees T on N at levels

α + 1 of the construction and names for branches Σ(Ṫ ) for a name Ṫ for
an iteration tree at levels α + 3. As above we also closed under names for
names for these branches and so on during the construction of the model
P k(x; Σ) at the levels α+ n for n ≥ 4.

Therefore it follows after all that the models P k(x; Σ)[y] and P k(x ⊕ y; Σ)
have the same universes, as claimed in property (iii).

Finally we have that property (iv) follows immediately from the proof of
Lemma 6.3.4. �

6.4. Definable Iterability and a Comparison Lemma

In this section we will prove that for certain (k,Σ)-small premice M the
statement “M is ω1-iterable” is ΠΣ

2k+1-definable uniformly in any code for
M . This will heavily be used in correctness arguments later. Moreover
we will show a version of the Comparison Lemma for certain ω1-iterable
(k,Σ)-small hybrid premice we can prove using some techniques from the
previous section. At the same time we prove that P k(x; Σ) is closed under

the operation a 7→MΣ,#
k−1 (a).

First we define the pointclasses ΠΣ
2k+1 and ΠΣ

2k+1 for an ω1-iteration strategy
Σ for a countable premouse N as fixed above.

Definition 6.4.1. Let k ≥ 1. Then we say a set of reals A is in the point-
class ΠΣ

k iff there is a Π1
k-formula ϕ such that for all x ∈ ωω,

x ∈ A iff ϕ(x,Σ, ωω \ Σ).

Here we identify the ω1-iteration strategy Σ for the countable premouse N
with a set of reals. Moreover we as before mean by the notation “ϕ(x,Σ, ωω\
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Σ)” that the parameter Σ is allowed to occur positively and negatively in the
formula ϕ.

Moreover we say a set of reals A is in the pointclass ΠΣ
k iff there is a real y

and a Π1
k-formula ϕ such that for all x ∈ ωω,

x ∈ A iff ϕ(x, y,Σ, ωω \ Σ).

The pointclasses ΣΣ
k and ΣΣ

k are defined in a similar fashion.

As in the projective hierarchy we have that ΣΣ
k and ΣΣ

k are the dual point-

classes of ΠΣ
k and ΠΣ

k respectively. We analogously define the pointclasses

∆Σ
k and ∆Σ

k .

Now we can prove the following lemma.

Lemma 6.4.2. Let k ≥ 0 and assume that every Π1
2k+1Γ-definable set of

reals is determined.

(i) Let M be a countable, N -sound, (k,Σ)-small Σ-premouse such that
ρω(M) = N , where N is the fixed countable premouse such that Σ is
an iteration strategy for N and M is constructed above N . Then the
statement “M is ω1-iterable” is ΠΣ

2k+1-definable uniformly in any code
for M (relative to Σ).

(ii) For k ≥ 1 and x ∈ ωω, the k-rich L(x; Σ)-model P k(x; Σ) is closed
under the operation

a 7→MΣ,#
k−1 (a).

(iii) Let M and N be countable Σ-premice which are ω1-iterable such that
every proper initial segment of M or N is (k,Σ)-small. Moreover
assume that M and N are N -sound and that ρω(M) = ρω(N) = N ,
where N is the fixed countable premouse such that Σ is an iteration
strategy for N and the Σ-premice M and N are constructed above N .
Then we have that

M EN or N EM.

Remark. Lemma 6.4.2 (i) generalizes to countable (k,Σ)-small Σ-premice
M such that M is γ-sound and ρω(M) = γ for some ordinal γ which is
a cutpoint of M , if we only consider ω1-iterability for M above γ, by the
same proof as the one we will give for the case that M is N -sound and
ρω(M) = N . A similar generalization holds for Lemma 6.4.2 (iii).

Proof of Lemma 6.4.2. We proof (i), (ii) and (iii) simultaneously by
an inductive argument using Lemma 6.3.5 (ii) and the inductive proof of
Lemma 2.2.8 in the first part of this thesis.

For k = 0 we easily get that (i) holds as then the statement “M is ω1-
iterable” is ΠΣ

1 -definable uniformly in any code forM (relative to Σ), because
in the case that M is (0,Σ)-small, we have that in fact M is ω1-iterable iff
M is a Σ-premouse and M is well-founded. Moreover we have that (ii) is
empty for k = 0 and (iii) also easily holds true as in this case every proper
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initial segment of M or N is (0,Σ)-small and thus by definition an initial
segment of LΣ.

So let k ≥ 1 be arbitrary and assume inductively that in particular (iii) holds
for countable Σ-premice M and N such that every proper initial segment of
M or N is (k − 1,Σ)-small. We aim to show that (i) holds. So let M be a
countable, N -sound, (k,Σ)-small Σ-premouse such that ρω(M) = N .

We iterate the Σ-premouse M via the Q-structure iteration strategy, which
is the straightforward generalization to the hybrid context of the iteration
strategy defined in Definition 2.2.2.

It now follows inductively that the statement “M is ω1-iterable” is ΠΣ
2k+1-

definable uniformly in any code for M (relative to Σ), because it can be
defined as follows. We first consider trees of limit length.

∀T iteration tree on M of limit length lh(T ) < ω1 such that

∀λ < lh(T ) limit, ∃QEMTλ such that

Q is (k − 1,Σ)-small above δ(T � λ), ω1-iterable above δ(T � λ),

and is a Q-structure for T � λ,
∃b branch through T such that

Q(b, T ) exists, is a Q-structure for T , is (k − 1,Σ)-small

above δ(T ) and ω1-iterable above δ(T ).

For trees of successor length we get a similar statement as follows.

∀T putative iteration tree on M of successor length lh(T ) < ω1 such that

∀λ < lh(T ) limit, ∃QEMTλ such that

Q is (k − 1,Σ)-small above δ(T � λ), ω1-iterable above δ(T � λ),

and is a Q-structure for T � λ,
the last model of T is a well-founded Σ-premouse.

Since for λ ≤ lh(T ) the relevant Q-structures for T � λ here are (k −
1,Σ)-small above δ(T � λ), ω1-iterability above δ(T � λ) for them is a
ΠΣ

2k−1-definable statement uniformly in any code by our inductive hypothesis
for (i). (Here we are using the slight generalization of Lemma 6.4.2 (i)
mentioned in the remark above.) Moreover these Q-structures identify a
unique cofinal well-founded branch through T using the inductive hypothesis
for (iii) and the standard arguments in the non-hybrid setting (see Section
2.2). Therefore ω1-iterability for M is ΠΣ

2k+1-definable in any code for M
(relative to Σ).

Note that this argument in fact shows that for (i) it suffices to assume
Π1

2k−1Γ determinacy as we are only using (iii) at the level k − 1.

Now we aim to prove (ii). So let k ≥ 1 be arbitrary and assume inductively
that in particular (iii) holds for countable Σ-premice M and N such that
every proper initial segment of M or N is (k − 1,Σ)-small and (i) holds for
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(k,Σ)-small countable Σ-premice M . We aim to show that this implies that
the model P k(x; Σ) is closed under the operation

a 7→MΣ,#
k−1 (a).

Recall that we inductively assume that Theorem 7.3.1 holds at the level
k− 1 and therefore we have from Π1

2k+1Γ determinacy that the Σ-premouse

MΣ,#
k−1 (a) exists in V as a is countable in V . Moreover we have that ω1-

iterability for the (k,Σ)-small premouse MΣ,#
k−1 (a) is ΠΣ

2k+1-definable uni-

formly in any code for MΣ,#
k−1 (a) (relative to Σ) by (i). So we can consider

the following ΣΣ
2k+2-formula ϕ(a).

ϕ(a) ≡ ∃N countable (Σ, a)-premouse such that

N is (k,Σ)-small, but not (k − 1,Σ)-small,

every proper initial segment of N is (k − 1,Σ)-small,

N is a-sound, ρω(N) = a, and

N is ω1-iterable.

As argued above we have that ϕ(a) holds in V as witnessed by the premouse

MΣ,#
k−1 (a). Let η < ωV1 be a large enough ordinal such that a is countable in

P k(x; Σ)Col(ω,η). Moreover let g ∈ V be Col(ω, η)-generic over P k(x; Σ) such
that P k(x; Σ)[g] is ΣΣ

2k+2-correct in V for parameters in P k(x; Σ)[g] ∩ ωω,
as in property (ii) in Lemma 6.3.5.

Then we have that ϕ(a) holds in P k(x; Σ)[g], say witnessed by a (Σ, a)-
premouse N . In this case N is the unique (Σ, a)-premouse in P k(x; Σ)[g]
which witnesses that ϕ(a) holds by the following argument. Assume that
M is another (Σ, a)-premouse in P k(x; Σ)[g] which witnesses ϕ(a). By our
inductive hypothesis for (iii) we can successfully compare N and M as both
only have proper initial segments which are (k − 1,Σ)-small. This yields
that in fact N = M .

Since N is uniquely definable from a ∈ P k(x; Σ) it follows by homogeneity
of the forcing Col(ω, η) that N ∈ P k(x; Σ). We in fact have that N is ωV1 -
iterable in P k(x; Σ) by the following argument. Let T be an iteration tree
on N in P k(x; Σ) of limit length λ. Let g be Col(ω, λ)-generic over P k(x; Σ)
such that P k(x; Σ)[g] is ΣΣ

2k+2-correct in V . Then we have in particular

that N is ω1-iterable in P k(x; Σ)[g] and therefore there exists a cofinal well-
founded branch b through T in P k(x; Σ)[g]. If we now argue as in the proof

of Lemma 2.2.8, using that (ii) holds for a 7→MΣ,#
k−2 (a) inductively, it follows

that b is given by a Q-structure in P k(x; Σ) and therefore b ∈ P k(x; Σ) by
homogeneity of the forcing Col(ω, λ), as already argued several times before.
This implies that P k(x; Σ) is closed under the operation

a 7→MΣ,#
k−1 (a).
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Now we prove (iii) for Σ-premice M and N such that every proper inital
segment of M or N is (k,Σ)-small.

Let z be a real coding the Σ-premice M and N relative to Σ. Then the
inductive proof of Lemma 2.2.8 in the first part of this thesis shows that we
can successfully coiterate M and N inside the k-rich L(z; Σ)-model P k(z; Σ)
if we make the following changes.

We have that the model P k(z; Σ) is closed under the operation a 7→MΣ,#
k−1 (a)

and we can in fact show that the operation a 7→ MΣ,#
k−1 (a) is contained in

the model P k(x; Σ). So the analogue of Lemma 2.2.8 (1) holds true in this
setting.

Then the proof of Lemma 2.2.8 (2) can be performed inside the model
P k(z; Σ) as before, but using Lemma 6.3.5 (ii) for the absoluteness argu-
ments as follows.

The following argument is the same for M and N , so we only present it for
M . If T is an iteration tree on M of length λ+1 in V for some limit ordinal
λ < ωV1 such that

T � λ ∈ P k(z; Σ),

then the proof of Lemma 2.2.8 (2) gives that there exists a Q-structure Q
for T � λ inside P k(z; Σ). Consider the statement

φ(T � λ,Q) ≡ “there is a cofinal branch b through T � λ such that

QEMTb and MTb is a Σ-premouse”.

This statement φ(T � λ,Q) is ΣΣ
1 -definable uniformly in any code for the

parameters T � λ and Q and holds true in V since we assumed that M is
ω1-iterable in V .

Let η < ωV1 be an ordinal such that T � λ and Q are countable inside

P k(z; Σ)Col(ω,η). Since the model P k(z; Σ) was constructed such that it is
ΣΣ

2k+2-absolute (see Lemma 6.3.5 (ii)) it follows that φ(T � λ,Q) holds

in P k(z; Σ)[g] for comeager many g ∈ V which are Col(ω, η)-generic over
P k(z; Σ).

Say φ(T � λ,Q) is witnessed by a branch b in P k(z; Σ)[g] for such a generic
g. Since this branch b is uniquely definable from the parameters T � λ and Q
and moreover we have that T � λ,Q ∈ P k(z; Σ), it follows by homogeneity
of the forcing Col(ω, η) that in fact b ∈ P k(z; Σ).

Therefore we have that the analogue of Lemma 2.2.8 (2) for M (and by the
same argument also for N) holds in this setting and in particular M and N
are iterable inside P k(z; Σ) with respect to iteration trees in P k(z; Σ).

Moreover we have that P k(z; Σ) � ZFC by Lemma 6.3.4 and

ω
Pk(z;Σ)
1 < ωV1 .
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Therefore the coiteration of M and N inside the model P k(z; Σ) terminates
successfully and we have as in the proof of Lemma 2.2.8 (3) and (4) that

M EN or N EM.

�

6.5. OD-Determinacy for a k-rich Model

In this section we will use the results from the previous sections to prove
a version of Lemma 2.1.3 for k-rich L(x; Σ)-models. The argument will
again be a generalization of the original proof due to Kechris and Solovay
in [KS85].

Lemma 6.5.1. Let k ≥ 1 and assume that every Σ1
2k+2Γ-definable set of reals

is determined. For all x ∈ ωω let P k(x; Σ) be the k-rich L(x; Σ)-model as
constructed in Section 6.3 above. Then there exists a real x0 such that for
all reals x ≥T x0,

P k(x; Σ) |= ODΣ-determinacy.

Remark. We say that a set of reals A is in ODΣ iff it is definable from some
finite sequence of ordinals and Σ as an additional parameter.

Proof of Lemma 6.5.1. Assume this is not the case. Then, for cofi-
nally many reals x, we have that

P k(x; Σ) � ¬ODΣ-determinacy.

Write P ∗η (x; Σ) = P k(x; Σ)|η for an ordinal η < ωV1 for the η-th level in the

construction of P k(x; Σ). Then we have that for all reals z there exists a
real y ≥T z and an ordinal η < ωV1 such that

P ∗η (y; Σ) � “¬ODΣ-determinacy + ZFC∗ ”,

where ZFC∗ denotes a large enough segment of ZFC to carry out the argu-
ments which follow. Furthermore we have that the set

{y ∈ ωω | ∃η < ωV1 (P ∗η (y; Σ) � “¬ODΣ-determinacy + ZFC∗ ”)}

is Turing-invariant and Σ1
2k+2Γ-definable by Lemma 6.3.5 (iv). Thus Σ1

2k+2Γ
Turing-determinacy yields that we can fix a real z0 such that

∀y ≥ z0∃η < ωV1 (P ∗η (y; Σ) � “¬ODΣ-determinacy + ZFC∗ ”).

Let η(y) denote the least ordinal η such that

P ∗η (y; Σ) � “¬ODΣ-determinacy + ZFC∗ ”,

if it exists. We have that

∀z∃z′ ≥T z∀y ≥T z′(η(y) ≥ η(z′)),

because otherwise there exists an infinite descending chain of ordinals. In
particular this real z′ ≥T z is such that the ordinal η(y) is defined for all
reals y ≥T z′.
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Now consider the game G which is defined as follows.

I x⊕ a
II y ⊕ b for x, a, y, b ∈ ωω.

As usual the players I and II alternate playing natural numbers and the game
lasts ω steps. Say player I produces a real x ⊕ a and player II produces a
real y⊕ b. Then player I wins the game G iff the ordinal η(x⊕ y) is defined
and

a⊕ b ∈ AP ∗
η(x⊕y)

(x⊕y;Σ),

whereAP ∗
η(x⊕y)

(x⊕y;Σ) denotes the least non-determined ODΣ-set in the model

P ∗η(x⊕y)(x⊕ y; Σ).

The winning condition for this game G is Σ1
2k+2Γ-definable, since the model

P k(x⊕y; Σ) is Σ1
2k+2Γ-definable from the parameter x⊕y and any real coding

the countable premouse N by Lemma 6.3.5. Therefore it follows from the
hypothesis that the game G is determined. Assume first that player I has
a winning strategy in G and call this winning strategy τ . Let xτ be a real
coding this strategy τ .

Pick a real z ≥T xτ such that for all reals x ≥T z, we have that the ordinal
η(x) is defined and η(x) ≥ η(z). We aim to prove that

P ∗η(z)(z; Σ) � “AP ∗
η(z)

(z;Σ) is determined”

to derive a contradiction.

For this purpose we work in the model P ∗η(z)(z; Σ) and consider the following

run of the game G defined above.

I x⊕ a = τ((z ⊕ b)⊕ b)
II (z ⊕ b)⊕ b

Assume player II plays the real (z⊕ b)⊕ b and player I responds with x⊕ a
according to his winning strategy τ . That means x ⊕ a = τ((z ⊕ b) ⊕ b).
Recall that z ≥T xτ , so we have that τ, z ∈ P ∗η(z)(z; Σ).

We define a strategy τ∗ for player I such that in a run of the Gale-Stewart
game G(AP ∗

η(z)
(z;Σ)) inside the model P ∗η(z)(z; Σ) according to the strategy

τ∗, player I has to respond to the real b with producing the real a, where a
and b are as above. So we have that τ∗(b) = a.

I a = τ∗(b)
II b

Then, since τ is a winning strategy for player I in the original game G, we
have that the ordinal η(x⊕ (z ⊕ b)) is defined and that

a⊕ b ∈ AP ∗
η(x⊕(z⊕b))(x⊕(z⊕b);Σ).
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Now it is enough to show that

AP ∗
η(z)

(z;Σ) = AP ∗
η(x⊕(z⊕b))(x⊕(z⊕b);Σ)

to derive a contradiction, because then τ∗ is a winning strategy for player
I in the Gale-Stewart game with payoff set AP ∗

η(z)
(z;Σ) played in P ∗η(z)(z; Σ).

This implies that the set AP ∗
η(z)

(z;Σ) is determined in P ∗η(z)(z; Σ), which is a

contradiction since AP ∗
η(z)

(z;Σ) was supposed to be the least non-determined

ODΣ-set of reals in P ∗η(z)(z; Σ).

Since τ, z ∈ P ∗η(z)(z; Σ) and as we worked inside the model P ∗η(z)(z; Σ), we

have that

x⊕ (z ⊕ b) ∈ P ∗η(z)(z; Σ).

Moreover η(z) was defined such that P ∗η(z)(z; Σ) � ZFC∗, so η(z) is in par-

ticular a limit step in the construction of P k(z; Σ). Therefore we have by
our construction of k-rich L(z; Σ)-models that

P ∗η(z)(x⊕ (z ⊕ b); Σ) ∼Σ P ∗η(z)(z; Σ),

where P ∼Σ Q abbreviates that P and Q have the same sets of reals and the
same ODΣ-sets of reals in the same order. This equality holds true because
the k-rich L(x⊕(z⊕b); Σ)-model up to η(z), P ∗η(z)(x⊕(z⊕b); Σ), constructed

inside the model P ∗η(z)(z; Σ) is the same as the k-rich L(x ⊕ (z ⊕ b); Σ)-

model up to η(z) constructed in V , since during the construction of the
model P ∗η(z)(z; Σ) we close under the predicate Σ, under appropriate Skolem

functions and under certain names, η(z) is a limit step in the construction
such that P ∗η(z)(z; Σ) � ZFC∗, and we defined the construction in a unique
way.

Moreover we have that η(x⊕ (z ⊕ b)) ≥ η(z) by our choice of z since z ≤T
x⊕(z⊕b). This implies by the definition of the ordinal η(z) that we already
have that

η(x⊕ (z ⊕ b)) = η(z)

since the models P ∗η(z)(x ⊕ (z ⊕ b); Σ) and P ∗η(z)(z; Σ) agree on their sets

of reals and ODΣ-sets of reals and on the order of their ODΣ-sets of reals.
Therefore we have that

P ∗η(x⊕(z⊕b))(x⊕ (z ⊕ b); Σ) ∼Σ P ∗η(z)(z; Σ).

This finally gives

AP ∗
η(x⊕(z⊕b))(x⊕(z⊕b);Σ) = AP ∗

η(z)
(z;Σ),

as desired.

Now suppose that player II has a winning strategy σ in the game G intro-
duced above and let xσ be a real coding this strategy σ. Recall that z0 is a
base of a cone of reals z such that

∃η < ωV1 (P ∗η (z; Σ) � ¬ODΣ-determinacy + ZFC∗).
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Then as above we can pick a real z ≥T xσ⊕z0 such that for all reals x ≥T z,
we have that the ordinal η(x) is defined and η(x) ≥ η(z). We again want to
prove that

P ∗η(z)(z; Σ) � “AP ∗
η(z)

(z;Σ) is determined”

to derive a contradiction.

For this purpose we also work in the model P ∗η(z)(z; Σ). Analogous to the

case when player I has a winning strategy in G we consider the following
run of the game G defined above.

I (z ⊕ a)⊕ a
II y ⊕ b = σ((z ⊕ a)⊕ a)

Assume player I plays the real (z ⊕ a) ⊕ a and player II responds with the
real y ⊕ b according to his winning strategy σ. That means we have that
y ⊕ b = σ((z ⊕ a)⊕ a). So as above we have that σ, z ∈ P ∗η(z)(z; Σ).

We define a strategy σ∗ for player II such that in a run of the Gale-Stewart
game G(AP ∗

η(z)
(z;Σ)) inside the model P ∗η(z)(z; Σ) according to the strategy

σ∗, player II has to respond to the real a with producing the real b, where
a and b are as above. So we have that σ∗(a) = b.

I a
II b = σ∗(a)

We have by our choice of the real z that the ordinal η((z⊕a)⊕ y) is defined
because (z ⊕ a)⊕ y ≥T z. Then, since σ is a winning strategy for player II
in the original game G, it follows that

a⊕ b /∈ AP ∗
η((z⊕a)⊕y)

((z⊕a)⊕y;Σ).

Now it is again enough to show that

AP ∗
η(z)

(z;Σ) = AP ∗
η((z⊕a)⊕y)

((z⊕a)⊕y;Σ)

to derive a contradiction, because then σ∗ is a winning strategy for player
II in the Gale-Stewart game with payoff set AP ∗

η(z)
(z;Σ) played in the model

P ∗η(z)(z; Σ). This implies that AP ∗
η(z)

(z;Σ) is determined inside P ∗η(z)(z; Σ),

which is a contradiction since AP ∗
η(z)

(z;Σ) was supposed to be the least non-

determined ODΣ-set of reals inside P ∗η(z)(z; Σ).

This now follows exactly as in the case that player I has a winning strategy
in the game G by the following argument. Since we worked inside the model
P ∗η(z)(z; Σ) we have that (z ⊕ a)⊕ y ∈ P ∗η(z)(z; Σ) and therefore it follows as

above by our construction of k-rich L(z; Σ)-models that

P ∗η(z)((z ⊕ a)⊕ y; Σ) ∼Σ P ∗η(z)(z; Σ).
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Moreover we have that η((z⊕a)⊕y) ≥ η(z) by our choice of the real z since
z ≤T (z⊕a)⊕ y. This implies as before by the definition of the ordinal η(z)
that we already have that η((z ⊕ a)⊕ y) = η(z). Therefore it follows that

P ∗η((z⊕a)⊕y)((z ⊕ a)⊕ y; Σ) ∼Σ P ∗η(z)(z; Σ)

and this finally gives that

AP ∗
η((z⊕a)⊕y)

((z⊕a)⊕y;Σ) = AP ∗
η(z)

(z;Σ),

as desired. �

6.6. A Hybrid Model with One Woodin Cardinal in a k-rich
Model

In this section we will show how to use Lemma 6.5.1 to provide the basis
for constructing a hybrid inner model with one Woodin cardinal, which is
“strong enough” to survive putting (k − 1,Σ)-small Σ-mice on top. This is
a generalization of Theorem 7.7 in [St96] analogous to Theorem 2.5.1.

As in Section 2.4 we first need the following consequence of Lemma 6.5.1
which is essentially due to Solovay. Since the proof is a straightforward
generalization to the hybrid case of the proof of Corollary 2.4.1 we omit it
here.

Corollary 6.6.1. Let k ≥ 1 and assume that every Σ1
2k+2Γ-definable set of

reals is determined. For all x ∈ ωω let P k(x; Σ) be the k-rich L(x; Σ)-model
above x as constructed in Section 6.3. Then

ω
Pk(x;Σ)
1 is measurable in HOD

Pk(x;Σ)
Σ

for a cone of reals x.

Remark. We denote by HODΣ the class of all hereditarily ODΣ-definable
sets. That means

HODΣ = {x | TC({x}) ⊂ ODΣ},

where TC({x}) denotes the transitive closure of the set {x}.

Now we are ready to prove the main theorem of this section, which will be
the analogue of Theorem 2.5.1 for k-rich models.

Theorem 6.6.2. Let k ≥ 1 and assume that every Σ1
2k+2Γ-definable set of

reals is determined. For all x ∈ ωω let P k(x; Σ) be the k-rich L(x; Σ)-model
above x as constructed in Section 6.3. Then there is a cone of reals x such
that

(Kc,Σ)P
k(x;Σ)

has a Woodin cardinal or is not fully iterable via the Q-structure iteration
strategy.
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Remark. By (Kc,Σ)P
k(x;Σ) we denote the Kc-construction of Chapter 2 in

[St96] generalized to the hybrid context as in Section 5.2 and furthermore
generalized to (k,Σ)-small Σ-premice instead of (1,Σ)-small Σ-premice. As
the notation suggests the construction is performed inside the model P k(x; Σ).

The Q-structure iteration strategy for the premouse (Kc,Σ)P
k(x;Σ) is the

straightforward generalization of the Q-structure iteration strategy in the
projective case as defined in Definition 2.2.2.

Proof of Theorem 6.6.2. By Lemma 6.5.1 there exists a real x such
that we have for all reals y ≥T x that

P k(y; Σ) � ODΣ-determinacy.

Fix such a real x and assume toward a contradiction that the Σ-premouse

(Kc,Σ)P
k(x;Σ) does not have Woodin cardinals and is fully iterable via the Q-

structure iteration strategy. Then we can isolate the core model (KΣ)P
k(x;Σ)

from (Kc,Σ)P
k(x;Σ) by a generalization to the hybrid case of Theorem 1.1 in

[JS13].

In particular (KΣ)P
k(x;Σ) is absolute for set sized forcings over P k(x; Σ) and

by a generalization of [MSch95] it follows that (KΣ)P
k(x;Σ) satisfies weak

covering, that means we have

P k(x; Σ) � (α+)K
Σ

= α+,

for all singular cardinals α (see Theorem 1.1 in [JS13]).

Let α = ℵP
k(x;Σ)

ω < ωV1 , so α is a singular cardinal inside P k(x; Σ). Therefore
we have that in particular

P k(x; Σ) � (α+)K
Σ

= α+.

Pick a real z in V which is generic over the model P k(x; Σ) for Col(ω, α)
such that we have 1

P k(x; Σ)[z] = P k(x⊕ z; Σ),

using Lemma 6.3.5 (iii).

Recall that we chose the real x such that we have

P k(x⊕ z; Σ) � ODΣ-determinacy.

This implies that

P k(x; Σ)[z] � ODΣ-determinacy.

Furthermore we have by Corollary 6.6.1 that ω
Pk(x⊕z;Σ)
1 is measurable in

HOD
Pk(x⊕z;Σ)
Σ since by the proof of Corollary 6.6.1 (see the proof of Corollary

2.4.1 in Part 1) it follows that x is also a base for a cone of reals as in
Corollary 6.6.1.

1Again by this equality we mean that the models P k(x; Σ)[z] and P k(x ⊕ z; Σ) have the
same universe (and not necessarily the same hierarchies).
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Work in the model P k(x; Σ)[z] from now on. Then we also have that ω1 is

measurable in HODΣ. Since KΣ ⊆ HODΣ and ω1 = (α+)K
Σ

it follows that
ω1 = (α+)HODΣ . This is a contradiction, because all measurable cardinals
in HODΣ are inaccessible as HODΣ � ZFC. �

With the help of Theorem 6.6.2 we will construct a hybrid premouse with a
Woodin cardinal in Section 7.2, such that the Woodin cardinal “survives”,
if we put a (k − 1,Σ)-small Σ-mouse on top. Such premice will be called
(A, k)-suitable. This property will be ensured by the fact, that we build the
premouse inside the k-rich model P k(x; Σ).



CHAPTER 7

Proving Iterability

In this chapter we will prove that we can in fact construct iterable hybrid
models with Woodin cardinals. For that purpose we will show that the
important concepts of Sections 3.1 and 3.4 generalize to our context beyond
the projective hierarchy.

7.1. Canonical Hybrid Mice

As in Chapter 6 we fix for i < ω sets Ai ∈ P(R), a pointclass Γ, a (possibly
hybrid) premouse N and an ω1-iteration strategy Σ for N which condenses
well and witnesses that N captures every set Ai at some cardinal δ, such
that the pointclass Γ is (N ,Σ)-apt (see Definition 6.1.7). Moreover we let
A =

⋃
i<ω Ai.

In what follows we define canonical hybrid premice at the level of k-rich
L(x; Σ)-models. We call these premice pre-(A, k)-suitable and tacitly as-
sume, whenever we are mentioning pre-(A, k)-suitable Σ-premice, that the

(Σ, x)-premouse MΣ,#
k−1 (x) exists for all x ∈ ωω, which follows from Π1

2k+1Γ
determinacy as we inductively assume that Theorem 7.3.1 holds at the level
k − 1.

Definition 7.1.1. Let k ≥ 1. Then we say that a countable (hybrid) Σ-
premouse M is pre-(A, k)-suitable iff there exists an ordinal δ < ωV1 such
that

(1) M � “ ZFC−+ δ is the largest cardinal”,
(2) N ∈M ,

M = MΣ
k−1(N ,M |δ)|(δ+)M

Σ
k−1(N ,M |δ),

and for all γ < δ

MΣ
k−1(N ,M |γ)|(γ+)M

Σ
k−1(N ,M |γ) CM,

(3) MΣ
k−1(N ,M |δ) is a proper class model and

MΣ
k−1(N ,M |δ) � “δ is Woodin”,

and
(4) for every γ < δ, MΣ

k−1(N ,M |γ) is a set, or

MΣ
k−1(N ,M |γ) 2 “γ is Woodin”.

171
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Remark. For k = 0 we let MΣ
k = LΣ. Moreover we say that a premouse is

pre-A-suitable iff it is pre-(A, 1)-suitable.

Remark. Here the hybrid premouse MΣ
k−1 is defined as in Section 5.2. As

above we write MΣ
k−1(N ,M |δ) to remind ourselves that Σ is an iteration

strategy for the premouse N we fixed earlier.

We use MΣ,#
k−1 (N ,M) to denote the following model constructed above a

Σ-premouse M such that N ∈ M . We construct the Σ-premouse MΣ,#
k−1 on

top of M including the extenders of M on the sequence and analogous to
Definition 2.2.6 we stop the construction if it reaches a model which is not
fully sound. (Note that constructing further in this case would mean that
the resulting model is no longer a Σ-premouse.) In particular we have that

the model MΣ,#
k−1 (N ,M) is not (k− 1,Σ)-small above M if it does not reach

a model which is not fully sound.

In this case we let MΣ
k−1(N ,M) denote the proper class model obtained

from MΣ,#
k−1 (N ,M) by iterating the top measure out of the universe. If

MΣ,#
k−1 (N ,M) is not fully sound, we just let MΣ

k−1(N ,M) = MΣ,#
k−1 (N ,M).

The Σ-premice in Definition 7.1.1 are called (A, k)-suitable, because they are
typical candidates for premice capturing the set A as introduced above. The
only thing that holds them back from providing a premouse that captures
A is their possible lack of iterability. We will take care of this issue during
this chapter by using (A, k)-suitable premice to prove the existence of a

particular Σ-mouse, namely MΣ,#
k , which will capture the set A.

We can define a notion of short tree iterability for pre-(A, k)-suitable Σ-
premice analogous to the definition of short tree iterability for pre-n-suitable
premice, see Definition 3.1.5, as follows. Again we tacitly assume that

MΣ,#
k−1 (x) exists for all x ∈ ωω.

Definition 7.1.2. Let k ≥ 1 and let T be an iteration tree of length < ωV1
on a pre-(A, k)-suitable premouse M . We say that T is short iff for all limit
ordinals λ < lh(T ), the Q-structure Q(T � λ) exists, is (k−1,Σ)-small above
δ(T � λ) and we have that,

Q(T � λ)EMTλ ,

and if T has limit length we in addition have that Q(T ) exists and

Q(T )EMΣ
k−1(N ,M(T )).

As usual we say that T is maximal iff T is not short.

This now yields a notion of short tree iterability.

Definition 7.1.3. Let k ≥ 1 and let M be a pre-(A, k)-suitable Σ-premouse.
We say that M is short tree iterable iff whenever T is a short tree on M ,
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(i) if T has a last model, then every putative iteration tree U extending
T with lh(U) = lh(T ) + 1 has a well-founded last model and the last
model of U is a Σ-premouse, and

(ii) if T has limit length, then there exists a cofinal well-founded branch b
through T such that

Q(b, T ) = Q(T )

and the model MTb is a Σ-premouse.

Now we can finally define when a hybrid premouse is (A, k)-suitable.

Definition 7.1.4. Let k ≥ 1. Then we say that a (hybrid) Σ-premouse M
is (A, k)-suitable iff

(i) M is pre-(A, k)-suitable,
(ii) M is short tree iterable in the sense of Definition 7.1.3, and

(iii) M is fullness preserving for non-dropping short trees, that means when-
ever T is a short tree on M of length λ+ 1 for some ordinal λ < ωV1 ,
which is non-dropping on the main branch [0, λ]T , then MTλ is again
pre-(A, k)-suitable.

Remark. In contrast to the situation in the projective hierarchy it is nec-
essary to demand here that M is short tree iterable. At the projective levels
we included a weak form of iterability in the definition of pre-n-suitability
(see Definition 3.1.1) and were able to prove that every such pre-n-suitable
premouse is in fact short tree iterable. So there it was not necessary to
include short tree iterability explicitly in the definition of n-suitability. We
do not see how to prove a similar thing in this setting, because we have to
take care of the iteration strategy Σ. Nevertheless we are able to prove in
Section 7.2 that an (A, k)-suitable premouse, which in particular is short
tree iterable, exists from our determinacy assumption.

Remark. Again in contrast to the situation in the projective hierarchy we
did not demand any fullness preservation for maximal trees in the definition
of (A, k)-suitability. It should be possible to prove this analogous to the
projective case and as in the proof of Claim 2 in the proof of Theorem 7.2.1,
but we will not need it in what follows.

7.2. A Canonical Premouse with Finitely Many Woodin
Cardinals

Fix k ≥ 1 throughout this section. We will construct an (A, k)-suitable
Σ-premouse using Theorem 6.6.2. Recall that similar to the projective case
in Part 1 of this thesis we will assume inductively that if every Π1

2k+1Γ-

definable set of reals is determined, then the (Σ, x)-premouse MΣ,#
k−1 (x) exists

and is ω1-iterable for every real x. That means we assume inductively that
Theorem 7.3.1 and Corollary 7.3.2 (see overview at the beginning of this
part of this thesis) hold.
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Theorem 7.2.1. Let k ≥ 1 and assume that every Σ1
2k+2Γ-definable set of

reals is determined. Then there exists an (A, k)-suitable Σ-premouse.

Proof. The proof of this theorem divides into two parts. We first
construct a pre-(A, k)-suitable Σ-premouse using Theorem 6.6.2, afterwards
we prove in the second part that this premouse is in fact already (A, k)-
suitable.

We fix a real x such that x is contained in a cone of reals as in Theorem
6.6.2. Recall that P k(x; Σ) denotes the k-rich L(x; Σ)-model as constructed
in Section 6.3. Then we have that

(Kc,Σ)P
k(x;Σ)

as defined in Theorem 6.6.2 has a Woodin cardinal or is not fully iterable
via the Q-structure iteration strategy.

We now construct the Σ-premouse M as follows.

Case 1. Assume that (Kc,Σ)P
k(x;Σ) has a Woodin cardinal.

Then (Kc,Σ)P
k(x;Σ) has a largest Woodin cardinal and is (k,Σ)-small, be-

cause otherwise we already have that MΣ,#
k exists and is ω1-iterable for

trivial reasons.

So let δ denote the largest Woodin cardinal in (Kc,Σ)P
k(x;Σ). Then we let

M = MΣ,#
k−1 (N , (Kc,Σ)P

k(x;Σ)|δ) | δ+,

where δ+ denotes (δ+)M
Σ,#
k−1 (N ,(Kc,Σ)P

k(x;Σ)|δ) and we have that the Σ-premouse

MΣ,#
k−1 (N , (Kc,Σ)P

k(x;Σ)|δ) exists in P k(x; Σ) by Lemma 6.4.2 (ii).

Case 2. Assume that (Kc,Σ)P
k(x;Σ) is not fully iterable via the Q-structure

iteration strategy and does not have a Woodin cardinal.

Then there exists an iteration tree T of limit length on (Kc,Σ)P
k(x;Σ) such

that there is no Q-structure for T inside the model P k(x; Σ). We have

that the ω1-iterable Σ-premouse MΣ,#
k−1 (N ,M(T )) exists inside the model

P k(x; Σ) using Lemma 6.4.2 (ii).

Moreover we have that the construction of MΣ,#
k−1 (N ,M(T )) inside P k(x; Σ)

does not break down, that means MΣ,#
k−1 (N ,M(T )) is not (k − 1,Σ)-small

above δ(T ), because otherwise we would already have a Q-structure for T
inside P k(x; Σ). In particular we have that

MΣ,#
k−1 (N ,M(T )) � “δ(T ) is Woodin”.

We let δ = δ(T ) and

M = MΣ,#
k−1 (N ,M(T )) | δ+,
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where similar as above δ+ denotes (δ+)M
Σ,#
k−1 (N ,M(T )).

We have the following claim by our choice of M .

Claim 1. There is a Σ-premouse M which is pre-(A, k)-suitable.

We show that there is a Σ-premouse M which is pre-(A, k)-suitable in V
(and not only in P k(x; Σ)) using the absoluteness properties of the model
P k(x; Σ) (see Lemma 6.3.5 and Lemma 6.4.2 (ii)).

Proof of Claim 1. We again distinguish two cases as above.

Case 1. Assume that we have M = (Kc,Σ)P
k(x;Σ) | δ+ as in the first case

above.

Then properties (1) and (2) in Definiton 7.1.1 hold by our choice of M above.

To show that property (3) in Definition 7.1.1 holds, we assume toward a

contradiction that the construction of the Σ-premouse MΣ,#
k−1 (N ,M |δ) inside

P k(x; Σ) reaches a model NEMΣ,#
k−1 (N ,M |δ) which is (k−1,Σ)-small above

δ such that δ is not definably Woodin over N .

We have that

N D (Kc,Σ)P
k(x;Σ) | δ

and ρω(N) ≤ δ. Therefore we can consider the coiteration of the Σ-premice

N and (Kc,Σ)P
k(x;Σ) inside the model P k(x; Σ).

We have that (Kc,Σ)P
k(x;Σ) is countably iterable above δ inside P k(x; Σ) by

a generalization of Chapter 9 in [St96] to our context. Moreover N is ω1-
iterable above δ by construction. Since the coiteration takes place above δ
this is enough to show that the coiteration is successful by a straightforward
generalization to the hybrid setting of Claim 1 in the proof of Theorem 2.5.1
using the proof of Lemma 6.4.2 (iii).

We can perform the coiteration inside the model P k(x; Σ), so by univer-

sality of the Σ-premouse (Kc,Σ)P
k(x;Σ) (which follows from a generalization

of Corollary 3.6 in [St96]) it follows that the (Kc,Σ)P
k(x;Σ)-side has to win

the comparison. That means there is an iterate K∗ of (Kc,Σ)P
k(x;Σ) and a

non-dropping iterate N∗ of N such that

N∗ CK∗.

This is a contradiction because we assumed that δ is not definably Woodin
over N , but at the same time we have that

(Kc,Σ)P
k(x;Σ) � “δ is a Woodin cardinal”.

Therefore it follows that M = (Kc,Σ)P
k(x;Σ) | δ+ satisfies property (3) in

Definition 7.1.1. By minimizing M it follows that there is a pre-(A, k)-
suitable premouse, which in particular satisfies property (4) in Definition
7.1.1.



176 7. PROVING ITERABILITY

Case 2. Assume that we have M = MΣ,#
k−1 (N ,M(T )) | δ+ as in the second

case above.

Then again properties (1) and (2) in Definiton 7.1.1 hold by our choice of
M above.

As argued in the second case above we have that MΣ,#
k−1 (N ,M(T )) is not

(k − 1,Σ)-small above δ(T ), so MΣ
k−1(N ,M(T )) is by definition a proper

class model and moreover we have that

MΣ,#
k−1 (N ,M(T )) � “δ(T ) is Woodin”.

Therefore property (3) in Definition 7.1.1 holds true for M . Furthermore
we again have that it follows by minimizing that there exists a pre-(A, k)-
suitable premouse, which in particular satisfies property (4) in Definition
7.1.1. �

Let M be the pre-(A, k)-suitable premouse as constructed in Claim 1. The
second step will be to show that M is in fact already (A, k)-suitable. For
that we need to prove that M is short tree iterable and fullness preserving
for short trees.

Claim 2. M is (A, k)-suitable.

Proof. Assume toward a contradiction that this is not the case and say
this is witnessed by some short iteration tree T on M . Let δ be the ordinal
from the definition of M .

Case 1. T witnesses that M is not short tree iterable.

For simplicity assume in this case that T has limit length since the other
case is easier. Then T witnesses that the following statement φ1(M) holds
true in V .

φ1(M) ≡ ∃T tree on M of length λ for some limit ordinal λ < ωV1

∃ (Qγ | γ ≤ λ limit ordinal), such that for all limit ordinals γ ≤ λ,
Qγ is ω1-iterable above δ(T � γ), (k − 1,Σ)-small

above δ(T � γ), and a Q-structure for T � γ, and

for all limit ordinals γ < λ we have Qγ EMTγ , but

there exists no cofinal branch b through T such that

MTb is a Σ-premouse and Qλ EMTb .

We have that the statement φ1(M) is ΣΣ
2k-definable uniformly in any code

for M (relative to Σ), because by Lemma 6.4.2 (i) the statement “P is
ω1-iterable” for some countable Σ-premouse P which is (k − 1,Σ)-small is
ΠΣ

2k−1-definable uniformly in any real coding the premouse P relative to Σ.
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Case 2. T is a short tree on M of length λ + 1 for some ordinal λ < ωV1
which is non-dropping on the main branch such that the final modelMTλ is
not pre-(k,Σ)-suitable.

Let

iT0λ : M →MTλ
be the corresponding iteration embedding, which exists because the iteration
tree T is non-dropping on the main branch. Assume that

MΣ
k−1(N ,MTλ |iT0λ(δ)) 2 “iT0λ(δ) is Woodin”,

where δ is the largest cardinal in MTλ .

Let φ2(M) be the following statement:

φ2(M) ≡ ∃T tree on M of length λ+ 1 for some λ < ωV1 such that

T is non-dropping on the main branch and

∀γ < lh(T ) limit ∃QEMTγ such that

Q is (k − 1,Σ)-small above δ(T � γ), ω1-iterable above

δ(T � γ), and a Q-structure for T � γ, and

∃P BMTλ |iT0λ(δ) such that P is (k − 1,Σ)-small above iT0λ(δ),

ω1-iterable above iT0λ(δ), iT0λ(δ)-sound, ρω(P) ≤ iT0λ(δ), and

iT0λ(δ) is not definably Woodin over P.

By Lemma 6.4.2 (i) the statement “P is ω1-iterable” for some countable
Σ-premouse P which is (k−1,Σ)-small, is ΠΣ

2k−1-definable uniformly in any
real coding the premouse P relative to Σ. This yields that the statement
φ2(M) is ΣΣ

2k-definable uniformly in any code for M (relative to Σ).

Now consider the two cases together again and let

φ(M) = φ1(M) ∨ φ2(M).

Then the iteration tree T witnesses that φ(M) holds in V (still assuming
for simplicity that T has limit length if T is as in Case 1).

By our construction of the model P k(x; Σ), see Lemma 6.3.5 (ii), we have
that φ(M) holds in the model P k(x; Σ)[G] for comeager many G ∈ V which
are Col(ω, δ)-generic over P k(x; Σ) as M ∈ P k(x; Σ), M is countable in
P k(x; Σ)[G] and P k(x; Σ)[G] is ΣΣ

2k+2-correct in V for comeager many such
G ∈ V .

We want to reflect this counterexample to a countable hull. So we let

Hull
Pk(x;Σ)
m,Σ ({δ}) be the uncollapsed hull inside P k(x; Σ) for some large

enough natural number m with the additional predicate Σ and we let H
be its Mostowski collapse. Moreover let

π : H → P k(x; Σ)
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denote the uncollapse map such that we have δ,M ∈ ran(π) and let δ̄, M̄ ∈ H
be such that π((δ̄, M̄)) = (δ,M).

Let g ∈ P k(x; Σ) be Col(ω, δ̄)-generic over H such that we have

H[g] � φ(M̄).

Then we can pick g ∈ P k(x; Σ) because H is countable in P k(x; Σ).

Let T̄ be a tree on M̄ witnessing that φ(M̄) holds in H[g]. Then we have
that T̄ ∈ P k(x; Σ). Moreover we have that T̄ also witnesses that φ(M̄)
holds in V by absoluteness.

By Lemma 6.4.2 (ii) we have that the ω1-iterable Σ-premouseMΣ,#
k−1 (N ,M |δ)

exists in P k(x; Σ). Moreover we have that MΣ,#
k−1 (N ,M |δ) is not (k − 1,Σ)-

small above δ, because M is pre-(A, k)-suitable. We abbreviate

P = MΣ,#
k−1 (N ,M |δ).

Let P̄ be the corresponding model to P inside H. So we have that P̄ is not
(k − 1,Σ)-small above δ̄. Then we can lift the iteration tree T̄ on M̄ to an
iteration tree T ∗ on P̄ inside P k(x; Σ) such that the branches choosen in
T ∗ are the same as the ones choosen by the Q-structure iteration strategy1

in H while iterating M̄ , because the statement φ(M̄) guarantees that the
Q-structures for T̄ inside H are iterable enough to stay Q-structures in the
model P k(x; Σ).

Now we again distinguish two cases.

Case 1. T̄ witnesses that φ1(M̄) holds in H[g].

By the argument we gave above, we have that T̄ is in fact a short tree on
M̄ in P k(x; Σ).

Since M up to its largest cardinal was obtained from a Kc,Σ-construction
inside the model P k(x; Σ), it is countably iterable by a generalization to this
setting of the iterability proof in Chapter 9 in [St96] applied inside the model
P k(x; Σ). Therefore there exists a cofinal well-founded branch b̄ through T̄
in P k(x; Σ) such that MT̄

b̄
is a Σ-premouse.

Assume first that there is a drop along the branch b̄. Then it immediately

follows that there exists a Q-structure Q(T̄ )EMT̄
b̄

. Consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

MT̄b is a Σ-premouse and Q(T̄ )EMT̄b ”.

1ByQ-structure iteration strategy we mean as before the possibly partial iteration strategy
Λ such that for a tree U of limit length and a branch b through U ,

Λ(U) = b iff Q(b,U) = Q(U).
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This statement ψ(T̄ ,Q(T̄ )) is ΣΣ
1 -definable uniformly in any code for the

parameters T̄ and Q(T̄ ) and holds in the model P k(x; Σ) as witnessed by
the branch b̄.

Let γ < ωV1 be an ordinal such that T̄ and Q(T̄ ) are countable inside the

model H[g]Col(ω,γ). Recall that the model P k(x; Σ) was constructed such
that it is ΣΣ

2k+2-absolute (in the sense of Lemma 6.3.5 (ii)) and recall that H

is the Mostowski collapse of Hull
Pk(x;Σ)
m,Σ ({δ}) for some large natural number

m. So let h be Col(ω, γ)-generic over H[g] such that ψ(T̄ ,Q(T̄ )) holds in
H[g][h].

Since the branch b witnessing that ψ(T̄ ,Q(T̄ )) holds in H[g][h] is uniquely
definable from T̄ ,Q(T̄ ) ∈ H[g], it follows by homogeneity of the forcing
Col(ω, γ) that the branch b witnessing ψ(T̄ ,Q(T̄ )) is in fact already an
element of H[g]. This contradicts the fact that T̄ witnesses in H[g] that M̄
is not short tree iterable.

Therefore we can assume that b̄ does not drop.

Since T̄ witnesses that φ1(M̄) holds in H[g], we have that there exists a
Q-structure Qλ for T̄ with lh(T̄ ) = λ as in φ1(M̄). In particular Qλ is
(k − 1,Σ)-small above δ(T̄ ) and ω1-iterable above δ(T̄ ) in H[g].

Case 1.1. δ(T̄ ) = iT
∗

b̄
(δ̄).

Consider the comparison of Qλ with MT ∗
b̄

inside P k(x; Σ).

The comparison takes place above iT
∗

b̄
(δ̄) = δ(T̄ ). Moreover we have that

MT ∗
b̄

is (k,Σ)-small above iT
∗

b̄
(δ̄) because P = MΣ,#

k−1 (N ,M |δ) is (k,Σ)-small
above δ.

So the Σ-premouse MT ∗
b̄

is iterable above iT
∗

b̄
(δ̄) in P k(x; Σ) via the real-

ization strategy. Moreover we have that Qλ is ω1-iterable above δ(T̄ ) in
H[g] thus by ΣΣ

2k-correctness also inside P k(x; Σ), as the premouse Qλ is
(k − 1,Σ)-small above δ(T̄ ).

We have that P̄ is sound by construction and thus the non-dropping iterate
MT ∗

b̄
is sound above iT

∗

b̄
(δ̄). Moreover we have that ρω(MT ∗

b̄
) ≤ iT ∗

b̄
(δ̄). In

addition Qλ is also sound above iT
∗

b̄
(δ̄) and we have that ρω(Qλ) ≤ δ(T̄ ) =

iT
∗

b̄
(δ̄). Hence Lemma 6.4.2 (iii) implies that we have

Qλ CMT
∗

b̄ or MT ∗b̄ EQλ.

So we again distinguish two different cases.

Case 1.1.1. Qλ CMT
∗

b̄
.

By assumption δ̄ is a Woodin cardinal in P̄ , because M is pre-(A, k)-suitable

and thus δ is a Woodin cardinal in P = MΣ,#
k−1 (N ,M |δ). Therefore we have
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by elementarity that

MT ∗b̄ � “iT
∗

b̄ (δ̄) is Woodin”.

But since Qλ is a Q-structure for T̄ , we have that δ(T̄ ) = iT
∗

b̄
(δ̄) is not

definably Woodin over Qλ. This contradicts Qλ CMT
∗

b̄
.

Case 1.1.2. MT ∗
b̄
EQλ.

The Σ-premouse P̄ is not (k−1,Σ)-small above δ̄ and therefore it follows that
MT ∗

b̄
is not (k − 1,Σ)-small above iT

∗

b̄
(δ̄). But then MT ∗

b̄
EQλ contradicts

the fact that Qλ is (k−1,Σ)-small above δ(T̄ ) = iT
∗

b̄
(δ̄). This contradiction

finishes Case 1.1.

Case 1.2. δ(T̄ ) < iT
∗

b̄
(δ̄).

We have that P = MΣ,#
k−1 (N ,M |δ) is (k+ 1,Σ)-small and (k,Σ)-small above

δ because M is pre-(A, k)-suitable. Therefore MT ∗
b̄

is (k + 1,Σ)-small and

(k,Σ)-small above iT
∗

b̄
(δ̄). Hence it follows that

MT ∗b̄ � “δ(T̄ ) is not Woodin”.

This implies that Q(T̄ )CMT ∗
b̄

and therefore we have that

Q(T̄ )EMT̄b̄ .

Now we can again consider the statement

ψ(T̄ ,Q(T̄ )) ≡ “there is a cofinal branch b through T̄ such that

MT̄b is a Σ-premouse and Q(T̄ )EMT̄b ”.

Again we have that the statement ψ(T̄ ,Q(T̄ )) holds in the model P k(x; Σ)
as witnessed by the branch b̄. By an absoluteness argument as above it also
holds in H[g], which contradicts the fact that T̄ witnesses in H[g] that M̄
is not short tree iterable.

Case 2. T̄ witnesses that φ2(M̄) holds in H[g].

Recall that in this case T̄ is a tree of successor length and let λ̄ < ωV1 be
such that lh(T ) = λ̄+ 1.

Since φ2(M̄) holds in H[g], there exists a model

RDMT̄λ̄ |i
T̄
0λ̄(δ̄) =MT ∗λ̄ |i

T ∗
0λ̄ (δ̄)

such that R is (k − 1,Σ)-small above iT
∗

0λ̄
(δ̄) and ω1-iterable above iT

∗

0λ̄
(δ̄),

where iT
∗

0λ̄
: P̄ →MT ∗

λ̄
denotes the usual iteration embedding.

Consider the comparison of R with MT ∗
λ̄

inside H[g]. We have that MT ∗
λ̄

is ω1-iterable above iT
∗

0λ̄
(δ̄) inside H[g], as MT ∗

λ̄
is an iterate of P̄ .
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Moreover we have that MT ∗
λ̄

is sound above iT
∗

0λ̄
(δ̄) and ρω(MT ∗

λ̄
) ≤ iT ∗

0λ̄
(δ̄).

We have that φ2(M̄) additionally gives that R is sound above iT
∗

0λ̄
(δ̄) and

that we have ρω(R) ≤ iT
∗

0λ̄
(δ̄). Therefore the proof of Lemma 6.4.2 yields

that we in fact have

RCMT ∗λ̄ or MT ∗λ̄ ER.
So we consider two different cases.

Case 2.1. RCMT ∗
λ̄
.

By our assumptions δ̄ is a Woodin cardinal in P̄ and therefore iT
∗

0λ̄
(δ̄) is

a Woodin cardinal in MT ∗
λ̄

by elementarity. On the other hand φ2(M̄)

implies that iT
∗

0λ̄
(δ̄) is not definably Woodin over R. This contradicts our

case assumption that RCMT ∗
λ̄

.

Case 2.2. MT ∗
λ̄
ER.

We have that P̄ is not (k−1,Σ)-small above δ̄ and therefore by elementarity
MT ∗

λ̄
is not (k− 1,Σ)-small above iT

∗

0λ̄
(δ̄). But this contradicts the fact that

R is (k − 1,Σ)-small above iT
∗

0λ̄
(δ̄). �

So all in all we proved that there exists a Σ-premouse M which is (A, k)-
suitable. �

7.3. MΣ,#
k from a Level of Determinacy

In this section we will finally construct the ω1-iterable Σ-premouse MΣ,#
k

from a level of determinacy. In the previous sections we constructed a Σ-
premouse M which is (A, k)-suitable. We were able to prove short tree
iterability for this premouse M , but we do not know how to prove ω1-
iterability for such a model outright.

For the construction of MΣ,#
k we will prove iterability for a different pre-

mouse, but we will use what we have done so far for this proof. For our
argument, which is along the lines of the proof of Theorem 3.4.1, we need
to assume one projective level of determinacy above Γ more than we did in
the previous sections.

Some parts of the argument will be similar to the proof of Theorem 3.4.1 in
the projective hierarchy we gave earlier in Section 3.4, but we will give most
of the details again to make sure that the argument works in this context
with the adaptations we need to make.

Theorem 7.3.1. Let k < ω and let Γ,Σ be as above. Assume that every
Σ1

2k+2Γ-definable set of reals is determined. Moreover assume that there

is no Σ1
2k+4Γ-definable ω1-sequence of pairwise distinct reals. Then the Σ-

premouse MΣ,#
k exists and is ω1-iterable.
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Using Theorem 6.2.1 we can immediately obtain the following corollary.

Corollary 7.3.2. Let k < ω and let Γ,Σ be as above. Assume that every

Π1
2k+3Γ-definable set of reals is determined. Then the Σ-premouse MΣ,#

k (x)
exists and is ω1-iterable for all reals x.

The rest of this section is devoted to the proof of Theorem 7.3.1.

Proof of Theorem 7.3.1. Fix an (A, k)-suitable Σ-premouse M as
constructed in Theorem 7.2.1.

The following proof is inductive and devides into three parts. So assume as
before that we already proved Theorem 7.3.1, or in fact Corollary 7.3.2, for
k− 1. Then we first construct a powerful model Wx which contains a real x
and the countable Σ-premouse M we fixed above similar to the construction
of P k(x; Σ). Afterwards we show that the Kc,Σ-construction in that model
reaches a level which is not (k,Σ)-small. The last step will be to show that

this is enough to obtain an ω1-iterable Σ-premouse MΣ,#
k in V .

Step 1: We fix an arbitrary real x and start with the construction of the
model Wx. We aim to construct the model Wx such that it satisfies the
following properties.

(1) x,M ∈Wx,
(2) Wx � ZFC, Wx ∩Ord = ωV1 ,
(3) Wx ≺ΣΣ

2k+3
V , and

(4) Wx is closed under the operation a 7→MΣ,#
k−1 (a).

We will construct Wx level-by-level by constructing a sequence of models

(Wα | α < ωV1 ) such that we add Σ-premice MΣ,#
k−1 (a) and witnesses for the

statement

Wx ≺ΣΣ
2k+3

V

along the way. During the construction we will ensure that the resulting
model will be nicely definable, namely Σ1

2k+4Γ-definable from the real x
and a code for M (relative to Σ). Moreover we will define the order of
construction for elements of the model Wx along the way.

Start from W0 = {x,M}. We will use the odd successor steps of our con-
struction to ensure that property (3) holds for Wx. Then we will use the
even successor steps to add witnesses for property (4).

Before we are going to describe the construction at the successor levels in
more detail we fix a Π1

2k+3Γ-definable set U which is universal for Π1
2k+3Γ-

definable sets in V . Moreover let UΓ ∈ Γ be a universal set for the pointclass
Γ, which exists as Γ is R-parametrized. We can pick U such that we have
Upϕq_(a⊕b) = AΓ

ϕ,a,b for every Π1
2k+3-formula ϕ and every a, b ∈ ωω, where

pϕq denotes the Gödel number of the formula ϕ and

AΓ
ϕ,a,b = {x | ϕ(x, a, UΓ

b ,
ωω \ UΓ

b )},
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where as usual this means that UΓ
b is allowed to occur positively and nega-

tively in ϕ.

Moreover we fix a Π1
2k+3Γ-definable uniformizing function F for U . That

means for all z ∈ dom(F ) we have that

(z, F (z)) ∈ U,
where dom(F ) = {z | ∃y (z, y) ∈ U}. We have that U and F as above exist
by our assumptions on Γ (see second remark after Definition 6.1.7), because
we additionally assume that every set of reals in Σ1

2k+2Γ is determined.

Odd successor steps: Assume that we already constructed the model Wα

for some ordinal α < ωV1 such that α = 0, α is a limit ordinal or α is an even
successor ordinal. Then we close Wα under the function F we fixed above.
That means we let

Wα+1 = rud(Wα ∪ {y ∈ ωω | ∃z ∈Wα ∩ ωω ϕF (z, y, UΓ
b ,

ωω \ UΓ
b )}),

where ϕF is a Π1
2k+3-formula and b is a fixed real such that for all z, y ∈ ωω

F (z) = y iff ϕF (z, y, UΓ
b ,

ωω \ UΓ
b ).

Order of construction: We say that F (z) is constructed before F (z′)
for F (z) 6= F (z′) with z, z′ ∈ dom(F ) ∩ Wα if z is constructed before z′

in the order of construction for elements of Wα and z, z′ are the minimal
y, y′ ∈ dom(F ) ∩Wα such that F (z) = F (y) and F (z′) = F (y′). Moreover
we define the order of construction for elements added by the closure under
rudimentary functions analogous to the order of construction for L.

Even successor steps: Assume that we already constructed the model
Wα for some odd successor ordinal α < ωV1 . Let a ∈ Wα be such that

MΣ,#
k−1 (a) does not exist in Wα. The (Σ, a)-premouse MΣ,#

k−1 (a) exists in V
and is (k,Σ)-small and ω1-iterable there, because we inductively assume
that this follows from our hypothesis that Π1

2k+1Γ determinacy holds, i.e.
we inductively assume that Corollary 7.3.2 holds. Let M be a countable
(Σ, a)-premouse in V with the following properties.

(i) M is (k,Σ)-small, but not (k − 1,Σ)-small,
(ii) all proper initial segments of M are (k − 1,Σ)-small,

(iii) M is a-sound, and ρω(M) = a, and
(iv) M is ω1-iterable.

These properties uniquely determine the premouse MΣ,#
k−1 (a) in V using

Lemma 6.4.2. We let Wα+1 be the model obtained by taking the closure
under rudimentary functions of Wα together with all such (Σ, a)-premice
M as above for all a ∈Wα.

Order of construction: For a (Σ, a)-premouseMa and a (Σ, b)-premouse
Mb satifying properties (i)− (iv) withMa 6=Mb for a, b ∈Wα, we say that
Ma is defined beforeMb if a is defined before b in the order of construction
for elements of Wα, which exists inductively, and a, b are the minimal a′, b′ ∈
Wα such that Ma =Ma′ and Mb =Mb′ where Ma′ and Mb′ also satisfy
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(i) − (iv). For elements added by the closure under rudimentary functions
we define the order of construction analogous to the order of construction
for L.

Limit steps: At limit steps of the construction we take unions. That means
if λ ≤ ωV1 is a limit ordinal and we already constructed Wα for all α < λ,
then we let

Wλ =
⋃
α<λ

Wα.

Finally we let

Wx = WωV1
=

⋃
α<ωV1

Wα.

Order of construction: At limit steps we define the order of construction
analogous to the order of construction for L.

For our proof of the following claim we now need to use the additional
hypothesis that there exists no Σ1

2k+4Γ-definable ω1-sequence of pairwise
distinct reals. This is done in the same way as before, for example for the
model P k(x; Σ).

Claim 1. Wx � ZFC.

Proof. Assume this is not the case. Then the power set axiom has to
fail. So let γ be a countable ordinal such that

P(γ) ∩Wx /∈Wx.

This implies that the set P(γ) ∩Wx has size ℵ1.

Let Wγ = Wx|γ be the γ-th level in the construction of Wx. Then we can
fix a real a in V which codes the countable set Wγ .

If it exists, we let Aξ for γ < ξ < ωV1 be the smallest subset of γ in

Wx | (ξ + 1) \ Wx | ξ

according to the order of construction. Moreover we let X be the set of all
ordinals ξ with γ < ξ < ωV1 such that Aξ exists. Then X is cofinal in ωV1 .

Finally we let aξ again be a real coding Aξ relative to the code a we fixed
for Wγ . For ξ ∈ X we have that Aξ ∈ P(γ)∩Wx and thus Aξ ⊆Wγ , so the
canonical code aξ for Aξ relative to a exists.

Now we consider the following ωV1 -sequence of reals

A = (aξ ∈ ωω | ξ ∈ X).

Analogous to the proof of the levels α + 2 in the proof of Lemma 6.3.4 in
Section 6.3 and to the proof of Claim 3 in the proof of Theorem 3.4.1 (using
Lemma 6.4.2 (i) in this setting) it follows that the sequence A as defined
above is Σ1

2k+4Γ-definable in the parameters a, x and a code for M . Hence A

contradicts the additional hypothesis that there exists no Σ1
2k+4Γ-definable

ω1-sequence of pairwise distinct reals. �
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Moreover the construction gives the following claim.

Claim 2. We have that

(i) x,M ∈Wx,
(ii) Wx ∩Ord = ωV1 ,

(iii) Wx ≺ΣΣ
2k+3

V , and

(iv) the model Wx is closed under the operation

a 7→MΣ,#
k−1 (a).

Proof. Properties (i) and (ii) immediately follow from the construc-
tion. Moreover we have that property (iii) follows from the construction at
the odd successor levels exactly as in the proof of property (i) in Lemma
6.3.5 and property (iv) follows from the construction at the even successor
levels analogous to the proof of Claim 4 (3) in the proof of Theorem 3.4.1
using Lemma 6.4.2. �

So we constructed the model Wx as desired.

Step 2: In the next step we want to prove that a Kc,Σ-construction inside

the model Wx reaches the Σ-premouse MΣ,#
k . For this reason we assume

toward a contradiction that

Wx � “MΣ,#
k does not exist”.

As usual by “MΣ,#
k exists” we mean that “MΣ,#

k exists and is ω1-iterable”.

With (Kc,Σ)Wx we denote the result of a Kc-construction from [MSch04]
generalized to the hybrid context as in Section 5.2 and furthermore general-
ized to (k,Σ)-small Σ-premice. Moreover the Kc,Σ-construction is performed

inside the model Wx. The following claim is now crucial to prove that MΣ,#
k

exists in V .

Claim 3. (Kc,Σ)Wx is not (k,Σ)-small.

Proof. Work inside the model Wx for the whole proof of this claim and
distinguish the following cases.

Case 1. Assume that

Kc,Σ � “there is a Woodin cardinal”.

This means that there exists a largest Woodin cardinal, say δ, in Kc,Σ,
because otherwise Kc,Σ would certainly not be (k,Σ)-small.

Now let

M = MΣ,#
k−1 (N , (Kc,Σ)|δ)

be the model as constructed in the sense of the remark after Definition 7.1.1.
ThenM exists in Wx by Claim 2, so we can consider the coiteration of Kc,Σ

with M inside Wx.
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This coiteration is successful, because it takes place above δ and furthermore
M is iterable enough for a successful comparison above δ by construction
(see also the proof of Lemma 6.4.2) and Kc,Σ is iterable enough for a success-
ful comparison above δ by the straightforward generalization to the hybrid
context of Subclaim 1 in the proof of Claim 5 in the proof of Theorem 3.4.1.
Therefore there exists an iterate R of Kc,Σ and an iterate M∗ of M such
that we have

REM∗ or M∗ ER.

By universality above δ inside the model Wx (which follows from a general-
ization of Section 3 in [MSch04]) the Kc,Σ-side has to win the comparison,
that means there is no drop on the M-side of the coiteration and we have
that

M∗ ER.
This implies in particular that the construction of the Σ-premouse M =

MΣ,#
k−1 (N , (Kc,Σ)|δ) does not stop, that means we have that M is not (k −

1,Σ)-small above δ because otherwiseM is not fully sound and sinceM∗ER
this yields a contradiction because of soundness.

Therefore it follows that the Σ-premouse M is not (k,Σ)-small and thus
M∗ is also not (k,Σ)-small. Hence we have that R and finally Kc,Σ is not
(k,Σ)-small as claimed.

Case 2. Assume that

Kc,Σ � “there is no Woodin cardinal”.

Recall that we fixed an (A, k)-suitable Σ-premouse M at the beginning of
this proof and consider the coiteration of the Σ-premice Kc,Σ and M inside
the model Wx. Let T and U be the iteration trees on Kc,Σ and M respec-
tively resulting from the coiteration. We stop the coiteration if it terminates
successfully or if it reaches a maximal tree U on M . As in Case 1 we have
that the coiteration cannot fail on the Kc,Σ-side by the straightforward gen-
eralization to the hybrid context of Subclaim 1 in the proof of Claim 5 in
the proof of Theorem 3.4.1.

Then we distinguish the following two subcases.

Case 2.1. Assume that U is a short tree on M .

Then the coiteration of Kc,Σ and M is successful because M is short tree
iterable by definition. In particular T and U are iteration trees of length
λ + 1 for some ordinal λ and if we let R = MTλ and M∗ = MUλ , then we
have that

REM∗ or M∗ ER.
By universality of Kc,Σ inside Wx (which again follows from a generalization
of Section 3 in [MSch04]) we have that the Kc,Σ-side wins the comparison.
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That means we have that

M∗ ER

and there is no drop on the M -side of the coiteration.

Since M is (A, k)-suitable, the fact that U is a short tree implies that M∗

is also pre-(A, k)-suitable by fullness preservation for non-dropping short
trees. Let δ∗ be the largest cardinal in M∗. Then we have in particular

that MΣ,#
k−1 (N ,M∗|δ∗) is a Σ-premouse with k Woodin cardinals which is

ω1-iterable above δ∗. Therefore we can consider the coiteration of the Σ-
premice

R and MΣ,#
k−1 (N ,M∗|δ∗).

We have that M∗ ER and that both MΣ,#
k−1 (N ,M∗|δ∗) and R are iterable

above δ∗, so the coiteration is successful. If there is no drop on the main
branch through T , thenR =MTλ has to win this comparison by universality

of Kc,Σ again. If there is a drop on the main branch through T , then we
have

ρω(R) < δ∗ and ρω(MΣ,#
k−1 (N ,M∗|δ∗)) = δ∗,

so R again wins the comparison with MΣ,#
k−1 (N ,M∗|δ∗). Therefore there

exists an iterateR∗ ofR and a non-dropping iterateM∗∗ ofMΣ,#
k−1 (N ,M∗|δ∗)

such that we have

M∗∗ ER∗.

As argued above we have that MΣ,#
k−1 (N ,M∗|δ∗) is not (k,Σ)-small. There-

fore it follows by elementarity that M∗∗ cannot be (k,Σ)-small and thus we
have that R∗ is not (k,Σ)-small. After all R and thus Kc,Σ is not (k,Σ)-
small, because R is an iterate of Kc,Σ. This finishes the case that U is a
short tree on M .

Case 2.2. Assume that U is a maximal tree on M .

Then we have that U has limit length and

MΣ,#
k−1 (N ,M(U)) � “δ(U) is Woodin”.

The Σ-premouse MΣ,#
k−1 (N ,M(U)) is not (k − 1,Σ)-small above δ(U) by

maximality of U , because otherwise MΣ,#
k−1 (N ,M(U)) would provide a Q-

structure Q for U which is (k− 1,Σ)-small above δ(U), witnessing that U is
short.

As above we can write R =MTλ as Kc,Σ is iterable enough for the compari-

son and therefore we can extend the iteration tree on Kc,Σ one more step by
a cofinal well-founded branch to obtain the limit model MTλ . Now consider
the coiteration of the Σ-premice

MΣ,#
k−1 (N ,M(U)) and R =MTλ .
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This coiteration takes place above δ(U) = δ(T � λ) and since both Σ-premice

MΣ,#
k−1 (N ,M(U)) and R are iterable enough above δ(U), the coiteration is

successful.

As before, if there is no drop on the main branch through T , then R =MTλ
wins the comparison by universality of Kc,Σ. If there is a drop on the main
branch through T , then we have

ρω(R) < δ(U) =M(U) ∩Ord,

so R again wins the comparison. That means there is an iterate R∗ of R
and a non-dropping iterate M∗ of MΣ,#

k−1 (N ,M(U)) such that we have

M∗ ER∗.
As argued above the Σ-premouse MΣ,#

k−1 (N ,M(U)) is not (k,Σ)-small. So
we can argue as in the previous case to conclude that R is not (k,Σ)-small
and therefore Kc,Σ is not (k,Σ)-small.

This finishes the case that U is a maximal tree on M and thus finishes the
proof of Claim 3. �

Step 3: In the last step of the proof of Theorem 7.3.1 we now want to show

that MΣ,#
k exists in V and is ω1-iterable. For this purpose we now work in

V again.

Let x be an arbitrary real. Then Claim 3 implies that

Wx � “MΣ,#
k exists and is ω1-iterable”.

Since MΣ,#
k is (k+1,Σ)-small, the statement “MΣ,#

k is ω1-iterable” is ΠΣ
2k+3-

definable uniformly in any code for MΣ,#
k (relative to Σ) by Lemma 6.4.2

(i). Here Π1
2k+1Γ determinacy suffices to prove this as remarked in the proof

of Lemma 6.4.2. Since the model Wx is ΣΣ
2k+3-correct in V this implies that

V � “(MΣ,#
k )Wx is ωWx

1 -iterable”.

Let y be a real such that (MΣ,#
k )Wx ∈Wy and ωWx

1 ≤ ωWy

1 . Then it follows
by correctness again that

Wy � “(MΣ,#
k )Wx is ωWx

1 -iterable”.

This suffices to successfully compare the Σ-premice (MΣ,#
k )Wx and (MΣ,#

k )Wy

and therefore we have as argued several times before that (MΣ,#
k )Wx =

(MΣ,#
k )Wy . So we have that (MΣ,#

k )Wx is the same for a cone of reals x and

we call this Σ-premouse MΣ,#
k .

Now an easy argument shows that MΣ,#
k is ωV1 -iterable in V as

V � “MΣ,#
k is ωWx

1 -iterable”

for a cone of reals x. Therefore it follows that we have

V � “MΣ,#
k exists and is ω1-iterable”
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and we finished the proof of Theorem 7.3.1. �





CHAPTER 8

Applications to the Core Model Induction

In this chapter we will finally outline some applications of the results in Part
2 of this thesis and mention related open problems. In particular we will
sketch how to obtain premice N and pointclasses Γ as used in Chapters 6
and 7.

8.1. The L(R)-hierarchy

The application we are interested in is related to determinacy at the in-
dividual levels of the L(R)-hierarchy. Thus we use this section to briefly
remind the reader of the definitions and the relevant properties of the L(R)-
hierarchy as developed in [St08]. Therefore if not specified otherwise all
definitions and results in this section are due to John R. Steel and can be
found in [St08].

Definition 8.1.1. We define the following hierarchy in L(R). Let

J1(R) = Vω+1,

Jα+1(R) = rud(Jα(R)), for α > 0,

and

Jλ(R) =
⋃
α<λ

Jα(R), for λ limit.

Then we let L(R) =
⋃
α∈Ord Jα(R).

Section 1 of [St08] describes the fine structure of this hierarchy. We will
not go into any details here anyway, so we omit the presentation of the fine
structure of L(R).

We focus on the scale property in the L(R)-hierarchy. To outline the situa-
tion there, it is important to notice that this hierarchy is divided into gaps
which are defined as follows.

Definition 8.1.2. For ordinals α ≤ β we say that the interval [α, β] is a
Σ1-gap iff

(i) Jα(R) ≺R1 Jβ(R),

(ii) ∀α′ < α (Jα′(R) ⊀R1 Jα(R)), and
(iii) ∀β′ > β (Jβ(R) ⊀R1 Jβ′(R)).

191
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Remark. As in [St08] we write M ≺R1 N for models M and N iff for all
parameters a ∈ R and all Σ1-formulae ϕ,

M � ϕ(a) iff N � ϕ(a).

Let us fix the following notation.

Definition 8.1.3. Let n ≥ 1 and let α be an ordinal. Then we let Σn(Jα(R))
denote the collection of all sets which are definable over the model (Jα(R),∈)
by a Σn-formula with parameters from Jα(R).

Moreover the lightface version Σn(Jα(R)) denotes the collection of all sets
which are definable over the model (Jα(R),∈) by a Σn-formula with param-
eters from Vω+1.

Remark. Whenever we say for example “Σn(Jα(R)) has the scale property”
we in fact mean that “Σn(Jα(R)) ∩ P(R) has the scale property”.

At the beginning of a gap the picture is as follows.

Lemma 8.1.4. If an ordinal α > 1 begins a Σ1-gap and every set in Jα(R)
is determined, then Σ1(Jα(R)) has the scale property.

The picture looks different depending on the admissibility of Jα(R). Option
(2) in the following lemma is due to Martin in [Ma08].

Lemma 8.1.5. Let α > 1 be an ordinal such that α begins a Σ1-gap. Suppose
that every set in Jα+1(R) is determined.

(1) If the set Jα(R) is not admissible, then for all n < ω, the pointclasses
Σ2n+1(Jα(R)) and Π2n+2(Jα(R)) have the scale property.

(2) If Jα(R) is admissible, then none of the pointclasses Σn(Jα(R)) and
Πn(Jα(R)) for n > 1 has the scale property.

The following lemma states that scales do not appear inside a gap.

Lemma 8.1.6. If α < γ < β are ordinals such that [α, β] is a Σ1-gap, then
none of the pointclasses Σn(Jγ(R)) or Πn(Jγ(R)) for n < ω has the scale
property.

The most interesting behavior happens at the end of a gap. There we again
have to distinguish two different cases, which are given by the following
definitions.

Definition 8.1.7. We say that an ordinal β is strongly Πn-reflecting iff
every Σn-type realized in Jβ(R) is realized in Jα(R) for some α < β, where
the Σn-type realized by some a in Jβ(R) is defined as

{ϕ | ϕ is a Σn- or a Πn-formula and Jβ(R) � ϕ(a)}.
Definition 8.1.8. Let α < β be ordinals such that [α, β] is a Σ1-gap. We
say that [α, β] is a strong Σ1-gap iff β is strongly Πn-reflecting, where n < ω
is the least natural number such that ρn(Jβ(R)) = R. Otherwise we call [α, β]
a weak Σ1-gap.



8.2. CAPTURING SETS OF REALS WITH HYBRID MICE 193

Then we get the following picture at the end of a gap. Here option (2) is
again a corollary of Martin’s work in [Ma08].

Lemma 8.1.9. Let α < β be ordinals such that [α, β] is a Σ1-gap and suppose
that every set in Jα(R) is determined.

(1) If [α, β] is a weak Σ1-gap and n < ω is least such that ρn(Jβ(R)) = R,
then we have that for k < ω each of the pointclasses Σn+2k(Jβ(R)) and
Πn+2k+1(Jβ(R)) has the scale property.

(2) If [α, β] is a strong Σ1-gap and every set in Jα+1(R) is determined,
then we have that none of the pointclasses Σn(Jβ(R)) or Πn(Jβ(R)) for
n < ω has the scale property. That means at strong gaps [α, β] the scale
property first appears again at the pointclass Σ1(Jβ+1(R)).

The proof of this lemma in [St08] yields the following corollary which will
be useful to obtain hybrid mice capturing sets of reals at the end of a weak
Σ1-gap.

Corollary 8.1.10. Let α < β be ordinals such that [α, β] is a weak Σ1-gap
and suppose that every set in Jα(R) is determined. If n < ω is least such
that ρn(Jβ(R)) = R, then

A ∈ Σn(Jβ(R)) ∩ P(R) iff A =
⋃
i<ω

Ai,

where Ai ∈ Jβ(R) for all i < ω.

Concerning the connection of the scale property and the uniformization
property we have the following general result which is Theorem 3.1 in
[KM08]. For the notion of an adequate pointclass see Section 1 in [KM08].
In what follows all pointclasses we consider are adequate.

Theorem 8.1.11. Assume that Γ is a pointclass which is adequate and closed
under ∀R. Then the scale property for Γ implies the uniformization property
for Γ.

8.2. Capturing Sets of Reals with Hybrid Mice

In this section we will describe how to obtain a possibly hybrid mouse N
satisfying the assumption of Lemma 5.3.4 starting from a set A. Most of
the details can be found in [SchSt]. Once we have that, we can use Chapters
6 and 7 to construct a hybrid mouse which captures sets of reals in the
pointclasses Σ1

n(A) and Π1
n(A) for some n < ω as in Corollary 5.3.5.

Chapter 5 in [SchSt] proves the following theorem which is due to W. Hugh
Woodin. We phrase everything here for the end of a weak gap, but it is
possible to get a similar picture at the end of a strong gap.

Theorem 8.2.1 (Woodin). Let α < β be ordinals such that [α, β] is a weak
Σ1-gap and suppose that every set of reals in Jα(R) is determined. Moreover
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let n < ω be least such that ρn(Jβ(R)) = R and let A be a set of reals in
Σn(Jβ(R)). Let Ai ∈ Jβ(R) for i < ω be such that

A =
⋃
i<ω

Ai.

Then there exists a premouse N with a Woodin cardinal δ such that there
is an iteration strategy Σ for N which condenses well and witnesses that N
captures the set Ai at δ for every i < ω.

This result yields the following theorem.

Theorem 8.2.2. Let α < β be ordinals such that [α, β] is a weak Σ1-gap
and suppose that every set in Jα(R) is determined. Moreover let n < ω be
least such that ρn(Jβ(R)) = R and let A be a set of reals in the pointclass

Γ = Σn(Jβ(R)).

Then if the premouse N with iteration strategy Σ is as in Theorem 8.2.1,
we have that Σ ∈ ∀NΓ and the pointclass Γ has the scale property, is R-
parametrized and adequate.

Proof. It is left to prove that Σ ∈ ∀NΓ, because for Γ = Σn(Jβ(R))
the rest is clear by the results in [St08] quoted in the previous section.

We can write

A =
⋃
i<ω

Ai

for Ai ∈ Jβ(R) for i < ω. Let N and Σ be as in Theorem 8.2.1 and let T
be an arbitrary iteration tree on N which is based on N|δ, where δ is the
Woodin cardinal in N from Theorem 8.2.1. For all i < ω, let τNi denote the
(N ,Σ)-term for Ai at δ. Moreover assume that T has limit length λ < ωV1 .
Then we have that

Σ(T ) = b iff ∀γ < λ limit T � γ is according to Σ, and

let M =MTb DM(T ), iTb : N →M,

and let iTb (δ) = δ∗, then

∀k < ω, iTb (τNk ) = τ∗k ,

where for k < ω, τ∗k is a canonical term for the set Ak in M at δ∗. That
means we have

(σ, p) ∈ τ∗k iff p ∈ Col(ω, δ∗), σ ∈ (H(δ∗)+)M is a Col(ω, δ∗)−
standard term for a real, and for comeager many g

being Col(ω, δ∗)-generic over M, if p ∈ g,
then σg ∈ Ak.

Therefore the statement “Σ(T ) = b” is ∀NΣn(Jβ(R))-definable because the
sequence (Ak | k < ω) is Σn(Jβ(R))-definable. �
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8.3. Conclusion

For sets of reals in L(R) we finally proved the following theorem in this part
of the thesis.

Theorem 8.3.1. Let α < β be ordinals such that [α, β] is a weak Σ1-gap
and let

A ∈ Γ = Σn(Jβ(R)) ∩ P(R),

where n < ω is the least natural number such that ρn(Jβ(R)) = R. Moreover
assume that every Π1

5Γ-definable set of reals is determined. Then there exists
an ω1-iterable hybrid Σ-premouse N which captures A.

Proof. If we let N = MΣ,#
1 this follows from Corollary 7.3.2 together

with Corollary 5.3.5 and Theorem 8.2.2. �

In fact we showed the following more general theorem, which also follows
from Corollary 7.3.2 together with Corollary 5.3.5 and Theorem 8.2.2.

Theorem 8.3.2. Let α < β be ordinals such that [α, β] is a weak Σ1-gap,
let k ≥ 0, and let

A ∈ Γ = Σn(Jβ(R)) ∩ P(R),

where n < ω is the least natural number such that ρn(Jβ(R)) = R. Moreover
assume that every Π1

2k+5Γ-definable set of reals is determined. Then there
exists an ω1-iterable hybrid Σ-premouse N which captures every set of reals
in the pointclass Σ1

k(A) or Π1
k(A).

Here we again denote by Σ1
n(A) and Π1

n(A) for n < ω and a set of reals A
the set of all reals which are definable over the model (Vω+1,∈, A) by a Σn-
or a Πn-formula respectively from the parameter Vω+1.

Converse directions of the results presented in this part of the thesis, for ex-
ample obtaining determinacy for sets of reals in levels of the L(R)-hierarchy

from the existence and ω1-iterability of the Σ-premouse MΣ,#
k for k < ω and

an iteration strategy Σ which condenses well for some appropriate countable
premouse N , are due to Itay Neeman and follow from [Ne02] (see Definition
2.10 and Theorem 2.14 in [Ne02]).

8.4. Open Problems

We close with mentioning some related open problems. The result we proved
in this part of the thesis concerning sets in the L(R)-hierarchy is most likely
not optimal, but at some levels in the L(R)-hierarchy it it is not even clear
which mice to consider when aiming for an optimal result.

A promising candidate would be a mouse whose mouse set is definable in a
countable ordinal over a level of the L(R)-hierarchy, where a mouse set as
defined by Mitchell Rudominer is the set of reals of a mouse. This would
mimic the situation in the projective hierarchy since there we have the fol-
lowing theorem.
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Theorem 8.4.1 (Martin, Steel, Woodin in [St95]). Let n ≥ 1 and assume

that M#
n exists and is ω1-iterable. Then R ∩M#

n is exactly the set of reals
which are ∆1

n+2-definable in a countable ordinal.

Mitch Rudominer investigated mouse sets in the L(R)-hierarchy in [Ru97].
But for some levels of the L(R)-hierarchy, for example for the set of re-
als which are ∆2-definable in a countable ordinal over the first level after
the projective sets J2(R), the question what the right mouse to consider is
remains open.

All definitions and results which we describe concerning this question are
due to Rudominer and can be found in [Ru97]. It is conjectured that the
right candidate at this level is a so called ladder mouse, which is defined as
follows.

Definition 8.4.2. A mouse P is called a ladder mouse iff there exists a
sequence (δn | n < ω) of cardinals in P such that P ∩Ord = supn<ω δn and
we have for all n < ω that

(1) M#
n (P|δn) � “δn is a Woodin cardinal”, and

(2) M#
n (P|δn)E P.

So the following is conjectured.

Conjecture (Steel, Woodin, 2015). Let P be the minimal ladder mouse.
Then for all reals x, we have that

x ∈ P ∩ R iff x is ∆2(J2(R))-definable in a countable ordinal.

What is known so far is, that the minimal ladder mouse as defined above is a
lower bound for the set of reals which are ∆2(J2(R))-definable in a countable
ordinal.

Theorem 8.4.3 (Rudominer in [Ru97]). Let P be the minimal ladder mouse
and let x ∈ P ∩ R. Then x is ∆2(J2(R))-definable in a countable ordinal.

The known upper bound for the set of reals which are ∆2(J2(R))-definable
in a countable ordinal is an admissible ladder mouse, which is defined as
follows.

Definition 8.4.4. A mouse Pa is called an admissible ladder mouse iff there
exists a sequence (δn | n < ω) of cardinals in Pa such that Pa ∩ Ord is the
least admissible ordinal above supn<ω δn and we have for all n < ω that

(1) M#
n (Pa|δn) � “δn is a Woodin cardinal”, and

(2) M#
n (Pa|δn)E Pa.

Theorem 8.4.5 (Rudominer in [Ru97]). Let Pa be the minimal admissible
ladder mouse and let x be a real which is ∆2(J2(R))-definable in a countable
ordinal. Then x ∈ Pa.
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So there are still lots of interesting questions concerning generalizations of
results in the projective hierarchy to levels of the L(R)-hierarchy which
remain open and further research has to be done to analyse the full picture
of the sets of reals in the L(R)-hierarchy and their connection to mice.
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