Reconstructing structures from their abstract clones

Michael Pinsker

Vienna University of Technology / Charles University Prague

Funded by Austrian Science Fund (FWF) grant no. P27600 and Czech Grant Agency (GAČR) grant no. 18-20123S

Set Theory, Model Theory and Applications
Eilat Campus of Ben-Gurion University of the Negev
April 2018
Reconstructing structures from their automorphism groups and polymorphism clones

The topology of algebras

Reconstruction notions, results, problems

Michael Pinsker
Reconstructing structures from their automorphism groups and polymorphism clones
Outline

- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras
Outline

- Reconstructing structures from their automorphism groups and polymorphism clones
- The topology of algebras
- Reconstruction notions, results, problems
Part I

Reconstructing structures from their automorphism groups and polymorphism clones
Reconstructing structures up to first-order . . .

Theorem (Ryll-Nardzewski)

Let Δ, Γ be ω-categorical structures on the same domain. Then $\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma$ are first-order interdefinable.

Aut as a topological group

Theorem (Ahlbrandt + Ziegler '86)

Let Δ, Γ be ω-categorical structures. Then $\text{Aut}(\Delta) \cong \text{T} \text{Aut}(\Gamma) \iff \Delta, \Gamma$ are first-order bi-interpretable.

Reconstructing sheep from clones

Michael Pinsker
Reconstructing structures up to first-order . . .

\[\text{countable} \]
Reconstructing structures up to first-order . . .

Theorem (Ryll-Nardzewski)

Let Δ, Γ be ω-categorical structures on the same domain. Then $\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta$, Γ are first-order interdefinable.

Theorem (Ahlbrandt + Ziegler '86)

Let Δ, Γ be ω-categorical structures. Then $\text{Aut}(\Delta) \cong \text{Aut}(\Gamma) \iff \Delta$, Γ are first-order bi-interpretable.

countable, ω-categorical
Reconstructing structures up to first-order . . .
Reconstructing structures up to first-order . . .

\[\text{Aut}(\bullet) \]
Reconstructing structures up to first-order . . .

\[\text{Aut}(\text{house}) \rightarrow \]
Reconstructing structures up to first-order . . .

\[\text{Aut(\[\text{house}\])} \rightarrow \text{\[\text{house}\]} \text{ first-order interdefinable with } \text{\[\text{house}\]} \]
Reconstructing structures up to first-order . . .

\[\text{Aut}(\Delta) \rightarrow \text{first-order interdefinable with } \text{Aut}(\Gamma) \]

Theorem (Ryll-Nardzewski)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order interdefinable.

Michael Pinsker
Reconstructing structures up to first-order . . .

\[\text{Aut}(\mathcal{H}) \rightarrow \mathcal{H} \text{ first-order interdefinable with } \mathcal{H} \]

Theorem (Ryll-Nardzewski)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order interdefinable.

\[\text{Aut}(\mathcal{H}) \text{ as a topological group} \]
Reconstructing structures up to first-order . . .

\[\text{Aut(} \Delta \text{)} \rightarrow \text{first-order interdefinable with } \Gamma \]

Theorem (Ryll-Nardzewski)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order interdefinable.

\[\text{Aut(} \Delta \text{)} \text{ as a topological group } \rightarrow \]
Reconstructing structures up to first-order . . .

\[\text{Aut}(\Delta) \rightarrow \text{first-order interdefinable with } \Gamma. \]

Theorem (Ryll-Nardzewski)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order interdefinable.

\[\text{Aut}(\Delta) \text{ as a topological group } \rightarrow \text{first-order bi-interpretable with } \Gamma. \]
Reconstructing structures up to first-order . . .

\[
\text{Aut}(\mathcal{A}) \rightarrow \mathcal{A} \quad \text{first-order interdefinable with} \quad \mathcal{B}
\]

Theorem (Ryll-Nardzewski)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Aut}(\Delta) = \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order interdefinable.

\[
\text{Aut}(\mathcal{A}) \text{ as a topological group} \rightarrow \mathcal{A} \quad \text{first-order bi-interpretable with} \quad \mathcal{B}
\]

Theorem (Ahlbrandt + Ziegler ’86)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures. Then \(\text{Aut}(\Delta) \cong^T \text{Aut}(\Gamma) \iff \Delta, \Gamma \) are first-order bi-interpretable.
Reconstruction from the abstract group

$\text{Aut}(\mathbb{H})$ as an abstract group $\rightarrow \ ?$
Can we reconstruct a \(\omega\)-categorical structure \(\Delta\) from the algebraic group structure of \(\text{Aut}(\Delta)\)?
Reconstruction from the abstract group

\[\text{Aut}(\Delta) \text{ as an abstract group } \rightarrow ? \]

- Can we reconstruct an \(\omega \)-categorical structure \(\Delta \) from the algebraic group structure of \(\text{Aut}(\Delta) \)?

- Can we reconstruct the topological structure of \(\text{Aut}(\Delta) \) from its algebraic structure?
Let Δ be a structure. $\text{Aut}(\Delta)$ is the automorphism group of Δ, $\text{End}(\Delta)$ is the endomorphism monoid of Δ, and $\text{Pol}(\Delta)$ is the polymorphism clone of Δ. All homomorphisms $f: \Delta \to \Delta$ belong to $\text{Pol}(\Delta)$, for all $n \geq 1$.

$\text{Pol}(\Delta)$ is a function clone: it is closed under composition and contains projections.

Observe: $\text{Pol}(\Delta) \supseteq \text{End}(\Delta) \supseteq \text{Aut}(\Delta)$.
Better reconstruction plans

Let Δ be a structure.

$\text{Aut}(\Delta)$. . . automorphism group of Δ

$\text{End}(\Delta)$. . . endomorphism monoid of Δ

$\text{Pol}(\Delta)$. . . polymorphism clone of Δ

$\text{End}(\Delta)$. . . all homomorphisms $f: \Delta \rightarrow \Delta$

$\text{Pol}(\Delta)$. . . all homomorphisms $f: \Delta^n \rightarrow \Delta$, where $1 \leq n < \omega$

$\text{Pol}(\Delta)$ is a function clone:

closed under composition

contains projections.

Observe:

$\text{Pol}(\Delta) \supseteq \text{End}(\Delta) \supseteq \text{Aut}(\Delta)$.
Better reconstruction plans

Let Δ be a structure.

- $\text{Aut}(\Delta)$... automorphism group of Δ
Better reconstruction plans

Let Δ be a structure.

- $\text{Aut}(\Delta)$... automorphism group of Δ
- $\text{End}(\Delta)$... endomorphism monoid of Δ

$\text{Pol}(\Delta)$ is a function clone:
- closed under composition
- contains projections.

Observe: $\text{Pol}(\Delta) \supseteq \text{End}(\Delta) \supseteq \text{Aut}(\Delta)$.
Let Δ be a structure.

- $\text{Aut}(\Delta)$... automorphism group of Δ
- $\text{End}(\Delta)$... endomorphism monoid of Δ
- $\text{Pol}(\Delta)$... polymorphism clone of Δ
Better reconstruction plans

Let Δ be a structure.

- $\text{Aut}(\Delta)$...automorphism group of Δ
- $\text{End}(\Delta)$...endomorphism monoid of Δ
- $\text{Pol}(\Delta)$...polymorphism clone of Δ

$\text{End}(\Delta)$...all homomorphisms $f : \Delta \to \Delta$.
Let Δ be a structure.

- $\text{Aut}(\Delta)$... automorphism group of Δ
- $\text{End}(\Delta)$... endomorphism monoid of Δ
- $\text{Pol}(\Delta)$... polymorphism clone of Δ

$\text{End}(\Delta)$... all homomorphisms $f: \Delta \rightarrow \Delta$.

$\text{Pol}(\Delta)$... all homomorphisms $f: \Delta^n \rightarrow \Delta$, where $1 \leq n < \omega$.
Better reconstruction plans

Let Δ be a structure.

- $\text{Aut}(\Delta)$... automorphism group of Δ
- $\text{End}(\Delta)$... endomorphism monoid of Δ
- $\text{Pol}(\Delta)$... polymorphism clone of Δ

$\text{End}(\Delta)$... all homomorphisms $f: \Delta \to \Delta$.

$\text{Pol}(\Delta)$... all homomorphisms $f: \Delta^n \to \Delta$, where $1 \leq n < \omega$.

$\text{Pol}(\Delta)$ is a function clone:
- closed under composition
- contains projections.
Better reconstruction plans

Let \(\Delta \) be a structure.

- \(\text{Aut}(\Delta) \) . . . automorphism group of \(\Delta \)
- \(\text{End}(\Delta) \) . . . endomorphism monoid of \(\Delta \)
- \(\text{Pol}(\Delta) \) . . . polymorphism clone of \(\Delta \)

\[\text{End}(\Delta) \ldots \text{all homomorphisms } f : \Delta \rightarrow \Delta. \]

\[\text{Pol}(\Delta) \ldots \text{all homomorphisms } f : \Delta^n \rightarrow \Delta, \text{ where } 1 \leq n < \omega. \]

\(\text{Pol}(\Delta) \) is a function clone:
- closed under composition
- contains projections.

Observe: \(\text{Pol}(\Delta) \supseteq \text{End}(\Delta) \supseteq \text{Aut}(\Delta) \).
Reconstruction up to primitive positive definitions

Theorem (Bodirsky + Nešetřil '03)
Let Δ, Γ be ω-categorical structures on the same domain. Then $\text{Pol}(\Delta) = \text{Pol}(\Gamma)$ \iff Δ, Γ are primitive positive interdefinable.

Why primitive positive definitions?
For Δ a structure with a finite relational signature τ:

Definition (Constraint Satisfaction Problem) $\text{CSP}(\Delta)$ is the computational problem to decide whether a given primitive positive τ-sentence holds in Δ.

Reconstructing sheep from clones
Michael Pinsker
Reconstruction up to primitive positive definitions

Pol(🏠) → ?
Reconstruction up to primitive positive definitions

\[\text{Pol}(\vdash) \rightarrow ? \]

Theorem (Bodirsky + Nešetřil ’03)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Pol}(\Delta) = \text{Pol}(\Gamma) \iff \Delta, \Gamma \) are primitive positive interdefinable.
Reconstruction up to primitive positive definitions

\[\text{Pol(凰) } \rightarrow ? \]

Theorem (Bodirsky + Nešetřil ’03)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Pol}(\Delta) = \text{Pol}(\Gamma) \iff \Delta, \Gamma \) are primitive positive interdefinable.

Why primitive positive definitions?
Reconstruction up to primitive positive definitions

\[\text{Pol(\text{\textsuperscript{}}}) \rightarrow ? \]

Theorem (Bodirsky + Nešetřil ’03)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Pol}(\Delta) = \text{Pol}(\Gamma) \iff \Delta, \Gamma \) are primitive positive interdefinable.

Why primitive positive definitions?

For \(\Delta \) a structure with a finite relational signature \(\tau \):

Reconstructing sheep from clones
Reconstruction up to primitive positive definitions

\[\text{Pol}(\mathfrak{A}) \rightarrow ? \]

Theorem (Bodirsky + Nešetřil ’03)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures on the same domain. Then \(\text{Pol}(\Delta) = \text{Pol}(\Gamma) \iff \Delta, \Gamma \) are primitive positive interdefinable.

Why primitive positive definitions?

For \(\Delta \) a structure with a finite relational signature \(\tau \):

Definition (Constraint Satisfaction Problem)

\(\text{CSP}(\Delta) \) is the computational problem to decide whether a given primitive positive \(\tau \)-sentence holds in \(\Delta \).
Topological clones

Function clones carry:
- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.

$\xi: C \to D$ is a (clone) homomorphism iff it preserves arities; sends every projection in C to the corresponding projection in D;

$\xi(f(g_1, \ldots, g_n)) = \xi(f)(\xi(g_1), \ldots, \xi(g_n))$ for all $f, g_1, \ldots, g_n \in C$.

\[\Rightarrow \]

Topological clones

Theorem (Bodirsky + MP '12)

Let Δ, Γ be ω-categorical structures. Then:

$Pol(\Delta) \cong TPol(\Gamma) \iff \Delta, \Gamma$ are primitive positive bi-interpretable.

Reconstructing sheep from clones

Michael Pinsker
Topological clones

Function clones carry:

Let C, D be function clones. $\xi : C \rightarrow D$ is a (clone) homomorphism iff it preserves arities; sends every projection in C to the corresponding projection in D; $\xi(f(g_1, \ldots, g_n)) = \xi(f)(\xi(g_1), \ldots, \xi(g_n))$ for all $f, g_1, \ldots, g_n \in C$.

Theorem (Bodirsky + MP '12)

Let Δ, Γ be ω-categorical structures. Then: $\text{Pol}(\Delta) \sim \text{T} \text{Pol}(\Gamma) \iff \Delta, \Gamma$ are primitive positive bi-interpretable.

Reconstructing sheep from clones

Michael Pinsker
Topological clones

Function clones carry:

- algebraic structure (composition / equations)

Theorem (Bodirsky + MP '12)

Let \(\Delta, \Gamma \) be \(\omega \)-categorical structures. Then:

\[
\text{Pol}(\Delta) \cong T \text{Pol}(\Gamma) \iff \Delta, \Gamma \text{ are primitive positive bi-interpretable.}
\]
Topological clones

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)
Topological clones

Function clones carry:
- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.

$\xi : C \to D$ is a (clone) homomorphism iff

Theorem (Bodirsky + MP '12)

Let Δ, Γ be ω-categorical structures. Then:

$\text{Pol}(\Delta) \cong T \text{Pol}(\Gamma) \iff \Delta, \Gamma$ are primitive positive bi-interpretable.
Topological clones

Function clones carry:
- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.

$\xi : C \to D$ is a (clone) homomorphism iff
- it preserves arities;
Function clones carry:
- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.

$\xi : C \to D$ is a (clone) homomorphism iff
- it preserves arities;
- sends every projection in C to the corresponding projection in D;

Theorem (Bodirsky + MP '12)

Let Δ, Γ be ω-categorical structures. Then:

$\text{Pol}(\Delta) \cong \text{T Pol}(\Gamma) \iff \Delta, \Gamma$ are primitive positive bi-interpretable.

Reconstructing sheep from clones
Michael Pinsker
Topological clones

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let \mathbf{C}, \mathbf{D} be function clones.

$\xi : \mathbf{C} \to \mathbf{D}$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in \mathbf{C} to the corresponding projection in \mathbf{D};
- $\xi(f(g_1, \ldots, g_n)) = \xi(f)(\xi(g_1), \ldots, \xi(g_n))$ for all $f, g_1, \ldots, g_n \in \mathbf{C}$.

Theorem (Bodirsky + MP '12)

Let Δ, Γ be ω-categorical structures. Then:

$\text{Pol}(\Delta) \cong T \text{Pol}(\Gamma) \iff \Delta$, Γ are primitive positive bi-interpretable.
Topological clones

Function clones carry:

- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.

$\xi : C \to D$ is a (clone) homomorphism iff

- it preserves arities;
- sends every projection in C to the corresponding projection in D;
- $\xi(f(g_1, \ldots, g_n)) = \xi(f)(\xi(g_1), \ldots, \xi(g_n))$ for all $f, g_1, \ldots, g_n \in C$.

\Rightarrow Topological clones
Topological clones

Function clones carry:
- algebraic structure (composition / equations)
- topological structure (pointwise convergence)

Let C, D be function clones.
\[\xi : C \to D \text{ is a (clone) homomorphism iff} \]
- it preserves arities;
- sends every projection in C to the corresponding projection in D;
- $\xi(f(g_1, \ldots, g_n)) = \xi(f)(\xi(g_1), \ldots, \xi(g_n))$ for all $f, g_1, \ldots, g_n \in C$.

\[\implies \text{Topological clones} \]

Theorem (Bodirsky + MP ’12)

Let Δ, Γ be ω-categorical structures. Then:
$\text{Pol}(\Delta) \cong^T \text{Pol}(\Gamma) \iff \Delta, \Gamma \text{ are primitive positive bi-interpretable.}$
Reconstruction from the abstract clone

Can we reconstruct an \(\omega \)-categorical structure \(\Delta \) from the algebraic clone structure of \(\text{Pol}(\Delta) \)? Can we reconstruct the topological structure of \(\text{Pol}(\Delta) \) from its algebraic structure?
Reconstruction from the abstract clone

\(\text{Pol}(\text{\includegraphics[width=5em]{house.png}}) \) as an abstract clone \(\rightarrow \) ?
Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of $\text{Pol}(\Delta)$?
Reconstruction from the abstract clone

Pol(-house) as an abstract clone $\rightarrow \ ?$

- Can we reconstruct an ω-categorical structure Δ from the algebraic clone structure of Pol(Δ)?
- Can we reconstruct the topological structure of Pol(Δ) from its algebraic structure?
Part II

The topology of algebras
Clones from algebras

Let A be an algebra. Term functions of A (obtained by composition): function clone $\text{Clo}(A)$. $\text{Clo}(A)$ encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of A \iff equations in $\text{Clo}(A)$.

Reconstructing sheep from clones
Let \mathcal{A} be an algebra.
Let \mathcal{A} be an algebra.

Term functions of \mathcal{A} (obtained by composition): function clone $\text{Clo}(\mathcal{A})$.
Let A be an algebra.

Term functions of A (obtained by composition): function clone $\text{Clo}(A)$. $\text{Clo}(A)$ encodes the equations (=identities) which hold in A.
Let A be an algebra.

Term functions of A (obtained by composition): function clone $\text{Clo}(A)$.

$\text{Clo}(A)$ encodes the equations (=identities) which hold in A.

Universal Algebra: Structure of $A \iff$ equations in $\text{Clo}(A)$.
Birkhoff’s theorem

For an algebra A, consider the algebras obtained by taking homomorphic images, subalgebras, and powers/finite powers.

Theorem (Birkhoff 1935)
Let A, B be algebras. Then $\text{Clo}(B) = \text{Clo}(C)$ for some $C \in \text{HSP}(A) \iff \exists$ clone homomorphism from $\text{Clo}(A)$ onto $\text{Clo}(B)$.

Theorem (Bodirsky + MP ‘11)
Let A, B be countable. Then $\text{Clo}(B) = \text{Clo}(C)$ for some $C \in \text{HSP}_{\text{fin}}(A) \iff \exists$ uniformly continuous clone homomorphism from $\text{Clo}(A)$ onto $\text{Clo}(B)$.
Birkhoff’s theorem

For an algebra \mathfrak{A} consider the algebras obtained by taking

Theorem (Birkhoff 1935)

Let \mathfrak{A}, \mathfrak{B} be algebras. Then $\text{Clo}(\mathfrak{B}) = \text{Clo}(\mathfrak{C})$ for some $\mathfrak{C} \in \text{HSP}(\mathfrak{A})$ if and only if there exists a clone homomorphism from $\text{Clo}(\mathfrak{A})$ onto $\text{Clo}(\mathfrak{B})$.

Theorem (Bodirsky + MP ‘11)

Let \mathfrak{A}, \mathfrak{B} be countable. Then $\text{Clo}(\mathfrak{B}) = \text{Clo}(\mathfrak{C})$ for some $\mathfrak{C} \in \text{HSP}_{\text{fin}}(\mathfrak{A})$ if and only if there exists a uniformly continuous clone homomorphism from $\text{Clo}(\mathfrak{A})$ onto $\text{Clo}(\mathfrak{B})$.
Birkhoff’s theorem

For an algebra \(A \) consider the algebras obtained by taking

- Homomorphic images

Theorem (Birkhoff 1935)

Let \(A, B \) be algebras.

Then \(\text{Clo}(B) = \text{Clo}(C) \) for some \(C \in \text{HSP}(A) \) \(\iff \exists \) clone homomorphism from \(\text{Clo}(A) \) onto \(\text{Clo}(B) \).

Theorem (Bodirsky + MP ’11)

Let \(A, B \) be countable.

Then \(\text{Clo}(B) = \text{Clo}(C) \) for some \(C \in \text{HSP}_{\text{fin}}(A) \) \(\iff \exists \) uniformly continuous clone homomorphism from \(\text{Clo}(A) \) onto \(\text{Clo}(B) \).
Birkhoff’s theorem

For an algebra \mathfrak{A} consider the algebras obtained by taking
- Homomorphic images
- Subalgebras

Theorem (Birkhoff 1935)
Let $\mathfrak{A}, \mathfrak{B}$ be algebras.
Then $\text{Clo}(\mathfrak{B}) = \text{Clo}(\mathfrak{C})$ for some $\mathfrak{C} \in \text{HSP}(\mathfrak{A})$ \leftrightarrow \exists clone homomorphism from $\text{Clo}(\mathfrak{A})$ onto $\text{Clo}(\mathfrak{B})$.

Theorem (Bodirsky + MP ’11)
Let $\mathfrak{A}, \mathfrak{B}$ be countable.
Then $\text{Clo}(\mathfrak{B}) = \text{Clo}(\mathfrak{C})$ for some $\mathfrak{C} \in \text{HSP}^{\text{fin}}(\mathfrak{A})$ \leftrightarrow \exists uniformly continuous clone homomorphism from $\text{Clo}(\mathfrak{A})$ onto $\text{Clo}(\mathfrak{B})$.
Birkhoff’s theorem

For an algebra \mathcal{A} consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

Theorem (Birkhoff 1935)

Let \mathcal{A}, \mathcal{B} be algebras.

$$\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$$

for some $\mathcal{C} \in \text{HSP}(\mathcal{A}) $$

\iff

\exists clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.

Theorem (Bodirsky + MP ’11)

Let \mathcal{A}, \mathcal{B} be countable.

$$\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$$

for some $\mathcal{C} \in \text{HSP}_{\text{fin}}(\mathcal{A})$

\iff

\exists uniformly continuous clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.

Reconstructing sheep from clones

Michael Pinsker
Birkhoff’s theorem

For an algebra \mathcal{A} consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

Theorem (Birkhoff 1935)

Let \mathcal{A}, \mathcal{B} be algebras.

Then $\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$ for some $\mathcal{C} \in \text{HSP}(\mathcal{A}) \iff \exists$ clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.

Theorem (Bodirsky + MP ‘11)

Let \mathcal{A}, \mathcal{B} be countable.

Then $\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$ for some $\mathcal{C} \in \text{HSP}_{\text{fin}}(\mathcal{A}) \iff \exists$ uniformly continuous clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.

Reconstructing sheep from clones

Michael Pinsker
Birkhoff’s theorem

For an algebra \mathcal{A} consider the algebras obtained by taking

- Homomorphic images
- Subalgebras
- Powers / finite Powers.

Theorem (Birkhoff 1935)

Let \mathcal{A}, \mathcal{B} be algebras.

Then $\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$ for some $\mathcal{C} \in \text{HSP}(\mathcal{A}) \iff \exists$ clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.

Theorem (Bodirsky + MP ’11)

Let \mathcal{A}, \mathcal{B} be countable.

Then $\text{Clo}(\mathcal{B}) = \text{Clo}(\mathcal{C})$ for some $\mathcal{C} \in \text{HSP}^{\text{fin}}(\mathcal{A}) \iff \exists$ uniformly continuous clone homomorphism from $\text{Clo}(\mathcal{A})$ onto $\text{Clo}(\mathcal{B})$.
HSP vs. HSP$^\text{fin}$

When do HSP and HSP$^\text{fin}$ coincide for an algebra?

When can HSP$^\text{fin}$ be described algebraically?

Can we reconstruct the topological structure of function clones from their algebraic structure?
HSP vs. HSP$^\text{fin}$

- When do HSP and HSP$^\text{fin}$ coincide for an algebra?
HSP vs. HSP^{fin}

- When do HSP and HSP^{fin} coincide for an algebra?
- When can HSP^{fin} be described algebraically?
HSP vs. HSP^fin

- When do HSP and HSP^fin coincide for an algebra?
- When can HSP^fin be described algebraically?
- Can we reconstruct the topological structure of function clones from their algebraic structure?
Part III

Reconstruction notions & results
Reconstruction notions

Let O be the largest function clone on ω, and C be a closed subclone.

Definition

C has reconstruction $\iff C \cong D$ implies $C \cong T D$ for all closed subclones D of O;

C has automatic homeomorphicity \iff every clone isomorphism between C and a closed subclone of O is a homeomorphism;

C has automatic continuity \iff every clone homomorphism from C into O is continuous.

Observation. (2) \Rightarrow (1).

Fact. For groups (3) \Rightarrow (2).

Reconstructing sheep from clones

Michael Pinsker
Reconstruction notions

Let \mathcal{O} be the largest function clone on ω, and \mathcal{C} be a closed subclone.

Definition \mathcal{C} has reconstruction $\iff \mathcal{C} \sim = \mathcal{T} \mathcal{D}$ implies $\mathcal{C} \sim = \mathcal{T} \mathcal{D}$ for all closed subclones \mathcal{D} of \mathcal{O};

\mathcal{C} has automatic homeomorphicity \iff every clone isomorphism between \mathcal{C} and a closed subclone of \mathcal{O} is a homeomorphism;

\mathcal{C} has automatic continuity \iff every clone homomorphism from \mathcal{C} into \mathcal{O} is continuous.

Observation. \((2) \Rightarrow (1) \).

Fact. For groups $(3) \Rightarrow (2)$.

Michael Pinsker
Reconstruction notions

Let \mathcal{O} be the largest function clone on ω, and \mathcal{C} be a closed subclone.

Definition

- \mathcal{C} has reconstruction $\iff \mathcal{C} \cong \mathcal{D}$ implies $\mathcal{C} \cong^T \mathcal{D}$
 for all closed subclones \mathcal{D} of \mathcal{O};
Reconstruction notions

Let \mathcal{O} be the largest function clone on ω, and \mathcal{C} be a closed subclone.

Definition

- \mathcal{C} has **reconstruction** $\iff \mathcal{C} \cong D$ implies $\mathcal{C} \cong^T D$ for all closed subclones D of \mathcal{O};

- \mathcal{C} has **automatic homeomorphicity** \iff every clone isomorphism between \mathcal{C} and a closed subclone of \mathcal{O} is a homeomorphism;

Observation. $(2) \implies (1)$.

Fact. For groups $(3) \implies (2)$.

Reconstructing sheep from clones

Michael Pinsker
Let \mathcal{O} be the largest function clone on ω, and \mathcal{C} be a closed subclone.

Definition

- **\mathcal{C} has reconstruction** \iff $\mathcal{C} \cong D$ implies $\mathcal{C} \cong^T D$ for all closed subclones D of \mathcal{O};
- **\mathcal{C} has automatic homeomorphicity** \iff every clone isomorphism between \mathcal{C} and a closed subclone of \mathcal{O} is a homeomorphism;
- **\mathcal{C} has automatic continuity** \iff every clone homomorphism from \mathcal{C} into \mathcal{O} is continuous.

Observation. (2) \Rightarrow (1).

Fact. For groups (3) \Rightarrow (2).

Reconstructing sheep from clones

Michael Pinsker
Reconstruction notions

Let \mathcal{O} be the largest function clone on ω, and \mathcal{C} be a closed subclone.

Definition

- \mathcal{C} has **reconstruction** $\iff \mathcal{C} \cong D$ implies $\mathcal{C} \cong^T D$ for all closed subclones D of \mathcal{O};
- \mathcal{C} has **automatic homeomorphismicity** \iff every clone isomorphism between \mathcal{C} and a closed subclone of \mathcal{O} is a homeomorphism;
- \mathcal{C} has **automatic continuity** \iff every clone homomorphism from \mathcal{C} into \mathcal{O} is continuous.

Observation. (2) \implies (1).
Reconstruction notions

Let \(O \) be the largest function clone on \(\omega \), and \(C \) be a closed subclone.

Definition

- **C** has reconstruction \(\iff C \cong D \implies C \cong^T D \)
 for all closed subclones \(D \) of \(O \);

- **C** has automatic homeomorphicity \(\iff \) every clone isomorphism between \(C \) and a closed subclone of \(O \) is a homeomorphism;

- **C** has automatic continuity \(\iff \) every clone homomorphism from \(C \) into \(O \) is continuous.

Observation. (2) \(\implies \) (1).

Fact. For groups (3) \(\implies \) (2).
Groups: the small index property

Automorphism groups with automatic continuity:

- $(G;\cong)$ (Dixon+Neumann+Thomas'86)
- $(G;\triangleleft)$ and the atomless Boolean algebra (Truss'89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah'93)
- the random K_n-free graphs (Herwig'98)
Groups: the small index property

Automorphism groups with automatic continuity:
Groups: the small index property

Automorphism groups with automatic continuity:

- \((\mathbb{N}; =)\) (Dixon+Neumann+Thomas’86)
- \((\mathbb{Q}; <)\) and the atomless Boolean algebra (Truss’89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
- the random \(K_n\)-free graphs (Herwig’98)
Groups: Rubin’s forall-exists interpretations

Automorphism groups with automatic homeomorphicity: the random graph \((\mathbb{Q};<)\) all homogeneous countable graphs various \(\omega\)-categorical semilinear orders the random partial order the random tournament (Rubin '94) the random \(k\)-hypergraphs the Henson digraphs (Barbina+MacPherson '07).

Reconstructing sheep from clones

Michael Pinsker
Groups: Rubin’s forall-exists interpretations

Automorphism groups with automatic homeomorphicity:
Automorphism groups with automatic homeomorphism:

- the random graph
 \((\mathbb{Q}; <)\)
- all homogeneous countable graphs
- various \(\omega\)-categorical semilinear orders
- the random partial order
- the random tournament
 \(\text{(Rubin '94)}\)
Groups: Rubin’s forall-exists interpretations

Automorphism groups with automatic homeomorphicity:

- the random graph
 \((\mathbb{Q}; <)\)
 all homogeneous countable graphs
 various \(\omega\)-categorical semilinear orders
 the random partial order
 the random tournament
 (Rubin ’94)

- the random \(k\)-hypergraphs
 the Henson digraphs
 (Barbina+MacPherson ’07).
Observation
If Δ is ω-categorical, then $\text{Emb}(\Delta)$ does not have automatic continuity.

Theorem (Evans + Hewitt '90)
There exists an ω-categorical Δ such that $\text{Aut}(\Delta)$ does not have reconstruction.

Theorem (Bodirsky + Evans + Kompatscher + MP '16)
$\text{Pol}(\Delta)$, $\text{End}(\Delta)$, $\text{Aut}(\Delta)$ do not have reconstruction.
Observation

If Δ is ω-categorical, then $\text{Emb}(\Delta)$ does not have automatic continuity.
Observation
If Δ is ω-categorical, then $\text{Emb}(\Delta)$ does not have automatic continuity.

Theorem (Evans + Hewitt ’90)
There exists an ω-categorical Δ such that $\text{Aut}(\Delta)$ does not have reconstruction.
Observation
If Δ is ω-categorical, then $\text{Emb}(\Delta)$ does not have automatic continuity.

Theorem (Evans + Hewitt ’90)
There exists an ω-categorical Δ such that $\text{Aut}(\Delta)$ does not have reconstruction.

Theorem (Bodirsky + Evans + Kompatscher + MP ’16)
$\text{Pol}(\Delta)$, $\text{End}(\Delta)$, $\overline{\text{Aut}(\Delta)}$ do not have reconstruction.
Method I: Automatic continuity via Birkhoff’s theorem

Let C be a closed subclone of O, and $\xi: C \to O$ be a homomorphism.

Theorem (Birkhoff ’35)

The algebra $(\omega; \xi[C])$ is an HSP of the algebra $(\omega; C)$.

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz ’13)

Any closed subclone of O containing $\omega \omega$ has automatic continuity and automatic homeomorphicity.
Method I: Automatic continuity via Birkhoff’s theorem

Let C be a closed subclone of O, and $\xi: C \to O$ be a homomorphism.
Let \(C \) be a closed subclone of \(O \), and \(\xi: C \to O \) be a homomorphism.

Theorem (Birkhoff ’35)
The algebra \((\omega; \xi[C])\) is an HSP of the algebra \((\omega; C)\).
Method I: Automatic continuity via Birkhoff’s theorem

Let \mathbf{C} be a closed subclone of \mathbf{O}, and $\xi: \mathbf{C} \rightarrow \mathbf{O}$ be a homomorphism.

Theorem (Birkhoff ’35)

The algebra $(\omega; \xi[\mathbf{C}])$ is an HSP of the algebra $(\omega; \mathbf{C})$.

The only possibly discontinuous step is an infinite product.
Method I: Automatic continuity via Birkhoff’s theorem

Let C be a closed subclone of O, and $\xi: C \rightarrow O$ be a homomorphism.

Theorem (Birkhoff ’35)
The algebra $(\omega; [C])$ is an HSP of the algebra $(\omega; C)$.

The only possibly discontinuous step is an infinite product.

Theorem (Bodirsky + MP + Pongrácz ’13)
Any closed subclone of O containing ω^ω has automatic continuity and automatic homeomorphicity.
Method II: Automatic homeomorphicity via groups

Let C be a closed subclone of O whose group G_C of invertibles has automatic homeomorphicity. Show:
- the closure of G_C in O has reconstruction;
- the clone of unary functions of C has reconstruction;
- C has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph. The following have automatic homeomorphicity:
- $\text{End}(G)$;
- $\text{Pol}(G)$;
- Various other famous clones containing $\text{Aut}(G)$.

Reconstructing sheep from clones
Method II: Automatic homeomorphicity via groups

Let \mathcal{C} be a closed subclone of \mathcal{O} whose group $G_\mathcal{C}$ of invertibles has automatic homeomorphicity.
Method II: Automatic homeomorphism via groups

Let \(\mathcal{C} \) be a closed subclone of \(\mathcal{O} \)
whose group \(\mathcal{G}_C \) of invertibles has automatic homeomorphism.
Show:
Method II: Automatic homeomorphicity via groups

Let \mathcal{C} be a closed subclone of \mathcal{O} whose group G_C of invertibles has automatic homeomorphicity. Show:

- the closure of G_C in \mathcal{O} has reconstruction;

Theorem (Bodirsky + MP + Pongrácz '13) Let G be the random graph. The following have automatic homeomorphicity:

- $\text{End}(G)$;
- $\text{Pol}(G)$;
- Various other famous clones containing $\text{Aut}(G)$.\hfill \Box
Method II: Automatic homeomorphicity via groups

Let \mathcal{C} be a closed subclone of \mathcal{O} whose group G_C of invertibles has automatic homeomorphicity. Show:

- the closure of G_C in \mathcal{O} has reconstruction;
- the clone of unary functions of \mathcal{C} has reconstruction;
Method II: Automatic homeomorphicity via groups

Let \mathcal{C} be a closed subclone of \mathcal{O} whose group G_C of invertibles has automatic homeomorphicity.

Show:

- the closure of G_C in \mathcal{O} has reconstruction;
- the clone of unary functions of \mathcal{C} has reconstruction;
- \mathcal{C} has reconstruction.

Theorem (Bodirsky + MP + Pongrácz '13)

Let G be the random graph.

The following have automatic homeomorphicity:
- $\text{End}(G)$;
- $\text{Pol}(G)$;
- Various other famous clones containing $\text{Aut}(G)$.

Reconstructing sheep from clones

Michael Pinsker
Method II: Automatic homeomorphism via groups

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group \mathbf{G}_C of invertibles has automatic homeomorphism.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of \mathbf{C} has reconstruction;
- \mathbf{C} has reconstruction.

Theorem (Bodirsky + MP + Pongrácz ’13)

Let G be the random graph. The following have automatic homeomorphism:
Method II: Automatic homeomorphicity via groups

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group \mathbf{G}_C of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of \mathbf{C} has reconstruction;
- \mathbf{C} has reconstruction.

Theorem (Bodirsky + MP + Pongrácz ’13)

Let G be the random graph.
The following have automatic homeomorphicity:

- $\text{End}(G)$;
Method II: Automatic homeomorphism via groups

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group G_C of invertibles has automatic homeomorphism.

Show:

- the closure of G_C in \mathbf{O} has reconstruction;
- the clone of unary functions of \mathbf{C} has reconstruction;
- \mathbf{C} has reconstruction.

Theorem (Bodirsky + MP + Pongrácz ’13)

Let G be the random graph. The following have automatic homeomorphism:

- $\text{End}(G)$;
- $\text{Pol}(G)$;
Method II: Automatic homeomorphicity via groups

Let \mathbf{C} be a closed subclone of \mathbf{O} whose group \mathbf{G}_C of invertibles has automatic homeomorphicity.

Show:

- the closure of \mathbf{G}_C in \mathbf{O} has reconstruction;
- the clone of unary functions of \mathbf{C} has reconstruction;
- \mathbf{C} has reconstruction.

Theorem (Bodirsky + MP + Pongrácz ’13)

Let G be the random graph.
The following have automatic homeomorphicity:

- $\text{End}(G)$;
- $\text{Pol}(G)$;
- Various other famous clones containing $\text{Aut}(G)$.
Method III: Rubin’s interpretations

Interpret structure \(\Delta \) in the algebraic structure of its clone \(\text{Pol}(\Delta) \).

Theorem (Maissel + Rubin '15)

Let \(\text{Pol}(\Delta) \), \(\text{Pol}(\Delta') \) contain all transpositions on their domain \(\omega \).

Then any clone isomorphism \(\text{Pol}(\Delta) \to \text{Pol}(\Delta') \) is induced by a permutation of \(\omega \).
Interpret structure Δ in the algebraic structure of its clone $\text{Pol}(\Delta)$.

Theorem (Maissel + Rubin ’15)

Let $\text{Pol}(\Delta), \text{Pol}(\Delta')$ contain all transpositions on their domain ω.

Then any clone isomorphism $\text{Pol}(\Delta) \rightarrow \text{Pol}(\Delta')$ is induced by a permutation of ω.
Part IV
The open problem
The open problem
The open problem

Let \(\mathbf{1} \) be the clone containing only projections – the smallest clone.
The open problem

Let \(1 \) be the clone containing only projections – the smallest clone.

Problem

Let \(\Delta \) be \(\omega \)-categorical.
The open problem

Let $\mathbf{1}$ be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω-categorical.

- If $\text{Pol}(\Delta) \to \mathbf{1}$ via a clone homomorphism, then also continuously?
The open problem

Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω-categorical.

- If Pol(Δ) → 1 via a clone homomorphism, then also continuously?
- 1 ∈ HSP(Pol(Δ)) implies 1 ∈ HSP^{fin}(Pol(Δ))?
The open problem

Let 1 be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω-categorical.

- If $\text{Pol}(\Delta) \rightarrow 1$ via a clone homomorphism, then also continuously?
- $1 \in \text{HSP}(\text{Pol}(\Delta))$ implies $1 \in \text{HSP}^{\text{fin}}(\text{Pol}(\Delta))$?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP ’17)

Let Δ be ω-categorical, with less than double exponential type growth. TFAE:
The open problem

Let $\mathbf{1}$ be the clone containing only projections – the smallest clone.

Problem

Let Δ be ω-categorical.

- If $\text{Pol}(\Delta) \to \mathbf{1}$ via a clone homomorphism, then also continuously?
- $\mathbf{1} \in \text{HSP}(\text{Pol}(\Delta))$ implies $\mathbf{1} \in \text{HSP}^{\text{fin}}(\text{Pol}(\Delta))$?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP ’17)

Let Δ be ω-categorical, with less than double exponential type growth.

TFAE:

- There is no linear uniformly continuous homomorphism $\text{Pol}(\Delta) \to \mathbf{1}$;
The open problem

Let \(\mathbf{1} \) be the clone containing only projections – the smallest clone.

Problem

Let \(\Delta \) be \(\omega \)-categorical.

- If \(\text{Pol}(\Delta) \rightarrow \mathbf{1} \) via a clone homomorphism, then also continuously?
- \(\mathbf{1} \in \text{HSP}(\text{Pol}(\Delta)) \) implies \(\mathbf{1} \in \text{HSP}^\text{fin}(\text{Pol}(\Delta)) \)?

Theorem (Barto + Kompatscher + Olšák + Van Pham + MP ’17)

Let \(\Delta \) be \(\omega \)-categorical, with less than double exponential type growth.

TFAE:

- There is no linear uniformly continuous homomorphism \(\text{Pol}(\Delta) \rightarrow \mathbf{1} \);
- \(\text{Pol}(\Delta) \) contains functions \(u, v \) (unary) and \(s \) (6-ary) such that

\[
\forall x, y, z \ (u \circ s(x, y, x, z, y, z) = v \circ s(y, x, z, x, z, y))
\]
Reconstructing sheep from clones

Michael Pinsker
Reconstructing sheep from clones

Michael Pinsker
Thank you!