The Equivalence of Two Dichotomy Conjectures for Infinite Domain CSPs

Libor Barto0 Michael Kompatscher∞ Miroslav Olšák0

Trung Van Pham∞ Michael Pinsker0,∞

0 Univerzita Karlova v Praze

∞ Technische Universität Wien

Funded by Austrian Science Fund (FWF) grant P27600

LICS 2017, Reykjavík
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP Γ

INPUT: A primitive positive sentence $\phi \equiv \exists x_1 \cdots \exists x_n R_i^1(\ldots) \land \cdots \land R_i^m(\ldots)$

QUESTION: $\Gamma |_\omega = \phi$??

Γ (i.e., its domain) can be finite or infinite.

Number of relations finite.

Any computational problem can be modeled as CSP (Γ).

ω-categorical \Rightarrow "algebraic-topological approach".

ω-categorical: countable and $\Gamma_n/\text{Aut}(\Gamma)$ is finite for all $n \geq 1$.

One conjecture for infinite CSPs

Michael Pinsker
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP(\Gamma)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

ONE conjecture for infinite CSPs

Michael Pinsker
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP(Γ)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

- Γ (i.e., its domain) can be finite or infinite.

ONE conjecture for infinite CSPs

Michael Pinsker
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP(Γ)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

- Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP(\Gamma)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

- Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as CSP(\Gamma).

ONE conjecture for infinite CSPs

Michael Pinsker
Constraint Satisfaction Problems (CSPs)

Let $\Gamma = (D; R_1, \ldots, R_n)$ be a relational structure.

Definition CSP(Γ)

INPUT: A primitive positive sentence

$$\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)$$

QUESTION: $\Gamma \models \phi$???

- Γ (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as CSP(Γ).
- Γ ω-categorical \implies “algebraic-topological approach".
Constraint Satisfaction Problems (CSPs)

Let \(\Gamma = (D; R_1, \ldots, R_n) \) be a relational structure.

Definition CSP(\(\Gamma \))

INPUT: A primitive positive sentence

\[
\phi \equiv \exists x_1 \cdots \exists x_n \ R_{i_1}(\ldots) \land \cdots \land R_{i_m}(\ldots)
\]

QUESTION: \(\Gamma \models \phi \) ???

- \(\Gamma \) (i.e., its domain) can be finite or infinite.
- Number of relations finite.
- Any computational problem can be modeled as \(\text{CSP}(\Gamma) \).
- \(\Gamma \) \(\omega \)-categorical \(\implies \) "algebraic-topological approach".

\(\omega \)-categorical: countable and \(\Gamma^n/\text{Aut}(\Gamma) \) is finite for all \(n \geq 1 \).
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \downarrow \text{Pol}(\Gamma) = \{ h : \Gamma^* \rightarrow \Gamma \mid n \geq 1, h \text{ homomorphism} \} \]

"Polymorphism clone" poor-\(\Gamma\) \iff "rich-\(\Gamma\) \iff "poor-\(\text{Pol}(\Gamma)\)

In the following:

- \(\Gamma\) poor-\(\iff\) \text{CSP}(\Gamma) \text{ in P}
- \(\Gamma\) rich-\(\iff\) \text{CSP}(\Gamma) NP-hard

Goal: Characterize these by structural properties of \(\text{Pol}(\Gamma)\).

When is \(\text{Pol}(\Gamma)\) "rich" / "poor"?

\[\text{ONE conjecture for infinite CSPs}\]
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]

In the following:

\(\Gamma \) poor: \(\Leftrightarrow \) CSP(\(\Gamma \)) in P

\(\Gamma \) rich: \(\Leftrightarrow \) CSP(\(\Gamma \)) NP-hard

Goal: Characterize these by structural properties of \(\text{Pol}(\Gamma) \).

One conjecture for infinite CSPs

Michael Pinsker
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]

\[\downarrow \]

\[\text{Pol}(\Gamma) = \{ h: \Gamma^n \to \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]
The algebraic-topological approach: clones

\[
\text{CSP}(\Gamma) \downarrow \quad \text{Pol}(\Gamma) = \{ h: \Gamma^n \to \Gamma \mid n \geq 1, \; h \text{ homomorphism} \}
\]

“Polymorphism clone"
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]
\[\downarrow \]
\[\text{Pol}(\Gamma) = \{ h: \Gamma^n \rightarrow \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]

“Polymorphism clone”

“poor” \(\Gamma \) ⇔ “rich” \(\text{Pol}(\Gamma) \)

“rich” \(\Gamma \) ⇔ “poor” \(\text{Pol}(\Gamma) \)
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]

\[\downarrow \]

\[\text{Pol}(\Gamma) = \{ h : \Gamma^n \rightarrow \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]

"Polymorphism clone"

"poor" \(\Gamma \) ⇔ "rich" \(\text{Pol}(\Gamma) \)

"rich" \(\Gamma \) ⇔ "poor" \(\text{Pol}(\Gamma) \)

In the following:
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]

\[\downarrow \]

\[\text{Pol}(\Gamma) = \{ h : \Gamma^n \to \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]

"Polymorphism clone"

"poor" \(\Gamma \) \(\iff \) "rich" \(\text{Pol}(\Gamma) \)

"rich" \(\Gamma \) \(\iff \) "poor" \(\text{Pol}(\Gamma) \)

In the following:

- \(\Gamma \) poor \(\iff \) \(\text{CSP}(\Gamma) \) in \(\text{P} \)
The algebraic-topological approach: clones

\[
\text{CSP}(\Gamma) \downarrow
\text{Pol}(\Gamma) = \{ h: \Gamma^n \to \Gamma \mid n \geq 1, \ h \text{ homomorphism} \}
\]

“Polymorphism clone"

“poor” \(\Gamma\) ⇔ “rich” \(\text{Pol}(\Gamma)\)

“rich” \(\Gamma\) ⇔ “poor” \(\text{Pol}(\Gamma)\)

In the following:

- \(\Gamma\) poor :⇔ \(\text{CSP}(\Gamma)\) in \(P\)
- \(\Gamma\) rich :⇔ \(\text{CSP}(\Gamma)\) NP-hard
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]

\[\downarrow \]

\[\text{Pol}(\Gamma) = \{ h: \Gamma^n \to \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]

“Polymorphism clone”

“poor" \(\Gamma \) \(\iff \) “rich" \(\text{Pol}(\Gamma) \)

“rich" \(\Gamma \) \(\iff \) “poor" \(\text{Pol}(\Gamma) \)

In the following:

- \(\Gamma \) poor \(\iff \) \(\text{CSP}(\Gamma) \) in P
- \(\Gamma \) rich \(\iff \) \(\text{CSP}(\Gamma) \) NP-hard

Goal:

ONE conjecture for infinite CSPs

Michael Pinsker
The algebraic-topological approach: clones

\[
\begin{align*}
\text{CSP}(\Gamma) \\
\downarrow \\
\text{Pol}(\Gamma) = \{h : \Gamma^n \to \Gamma \mid n \geq 1, \ h \text{ homomorphism}\}
\end{align*}
\]

“Polymorphism clone”

“poor” \(\Gamma\) \(\iff\) “rich” \(\text{Pol}(\Gamma)\)

“rich” \(\Gamma\) \(\iff\) “poor” \(\text{Pol}(\Gamma)\)

In the following:

- \(\Gamma\) poor \(\iff\) \(\text{CSP}(\Gamma)\) in P
- \(\Gamma\) rich \(\iff\) \(\text{CSP}(\Gamma)\) NP-hard

Goal:

- Characterize these by \textit{structural properties} of \text{Pol}(\Gamma).
The algebraic-topological approach: clones

\[\text{CSP}(\Gamma) \]
\[\downarrow \]
\[\text{Pol}(\Gamma) = \{ h: \Gamma^n \rightarrow \Gamma \mid n \geq 1, \ h \text{ homomorphism} \} \]

"Polymorphism clone"

"poor" \(\Gamma \) \(\iff \) "rich" \(\text{Pol}(\Gamma) \)

"rich" \(\Gamma \) \(\iff \) "poor" \(\text{Pol}(\Gamma) \)

In the following:

- \(\Gamma \) poor \(\iff \) \(\text{CSP}(\Gamma) \) in \(P \)
- \(\Gamma \) rich \(\iff \) \(\text{CSP}(\Gamma) \) NP-hard

Goal:

- Characterize these by \textbf{structural properties} of \(\text{Pol}(\Gamma) \).
- When is \(\text{Pol}(\Gamma) \) "rich" / "poor"?
Structure of $\text{Pol}(\Gamma)$

Example:

$$\forall x, y, z. u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$$

topological / metric structure:

$$(f_i)_{i \in \omega} \rightarrow f: \leftrightarrow \forall c (f_i(c) = f(c))$$

Theorem (Bodirsky + P '11)

Let Γ, Δ be ω-categorical. Suppose $\text{Pol}(\Gamma)$, $\text{Pol}(\Delta)$ have identical structure:

$$\exists \xi: \text{Pol}(\Gamma) \rightarrow \text{Pol}(\Delta), \text{bijective, preserving identities, uniformly cont.}$$

Then $\text{CSP}(\Gamma)$ and $\text{CSP}(\Delta)$ are polynomial-time equivalent.

Henceforth assume ω-categoricity.

One conjecture for infinite CSPs

Michael Pinsker
Structure of $\text{Pol}(\Gamma)$

- **algebraic structure**: identities (universally quantified equations)
 Example: $\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$
Structure of $\text{Pol}(\Gamma)$

- **algebraic structure**: identities (universally quantified equations)
 Example: $\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$

- **topological / metric structure**:
 $(f_i)_{i \in \omega} \rightarrow f : \iff \forall \bar{c} \ (f_i(\bar{c}) = f(\bar{c}) \text{ eventually})$.

Theorem (Bodirsky + P ’11)

Let Γ, Δ be ω-categorical. Suppose $\text{Pol}(\Gamma), \text{Pol}(\Delta)$ have identical structure: $\exists \xi: \text{Pol}(\Gamma) \rightarrow \text{Pol}(\Delta)$, bijective, preserving identities, uniformly cont.

Then $\text{CSP}(\Gamma)$ and $\text{CSP}(\Delta)$ are polynomial-time equivalent.

Henceforth assume ω-categoricity.

ONE conjecture for infinite CSPs

Michael Pinsker
Structure of Pol(\(\Gamma\))

- **algebraic structure**: identities (universally quantified equations)
 Example: \(\forall x, y, z.\ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))\)

- **topological / metric structure**:
 \((f_i)_{i \in \omega} \rightarrow f :\longleftrightarrow \forall \overline{c} \ (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).\)

Theorem (Bodirsky + P ’11)

Let \(\Gamma, \Delta\) be \(\omega\)-categorical.
Structure of \(\text{Pol}(\Gamma) \)

- **algebraic structure:** identities (universally quantified equations)

 Example: \(\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) \)

- **topological / metric structure:**

 \((f_i)_{i \in \omega} \rightarrow f :\iff \forall \overline{c} (f_i(\overline{c}) = f(\overline{c}) \text{ eventually}).\)

Theorem (Bodirsky + P ’11)

Let \(\Gamma, \Delta \) be \(\omega \)-categorical.

Suppose \(\text{Pol}(\Gamma), \text{Pol}(\Delta) \) have **identical structure:**
Structure of Pol(Γ)

- **algebraic structure**: identities (universally quantified equations)
 Example: \(\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) \)

- **topological / metric structure**:
 \((f_i)_{i \in \omega} \rightarrow f :\leftrightarrow \forall c \ (f_i(c) = f(c) \text{ eventually}) \).

Theorem (Bodirsky + P ’11)

Let \(\Gamma, \Delta \) be \(\omega \)-categorical.

Suppose Pol(Γ), Pol(Δ) have **identical structure**:
\(\exists \xi: \text{Pol}(\Gamma) \rightarrow \text{Pol}(\Delta), \text{bijective, preserving identities, uniformly cont.} \)
Structure of \(\text{Pol}(\Gamma) \)

- **algebraic structure: identities** (universally quantified equations)

 Example: \(\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) \)

- **topological / metric structure:**

 \[
 (f_i)_{i \in \omega} \rightarrow f : \leftrightarrow \ \forall \bar{c} \ (f_i(\bar{c}) = f(\bar{c}) \text{ eventually}).
 \]

Theorem (Bodirsky + P ’11)

Let \(\Gamma, \Delta \) be \(\omega \)-categorical.

Suppose \(\text{Pol}(\Gamma), \text{Pol}(\Delta) \) have **identical structure:**

\[
\exists \xi : \text{Pol}(\Gamma) \rightarrow \text{Pol}(\Delta), \text{ bijective, preserving identities, uniformly cont.}
\]

Then \(\text{CSP}(\Gamma) \) and \(\text{CSP}(\Delta) \) are **polynomial-time equivalent.**
Structure of Pol(\(\Gamma\))

- **algebraic structure**: identities (universally quantified equations)

 Example: \(\forall x, y, z. \ u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))\)

- **topological / metric structure**:

 \((f_i)_{i \in \omega} \rightarrow f \iff \forall c \ (f_i(c) = f(c) \text{ eventually}).\)

Theorem (Bodirsky + P ’11)

Let \(\Gamma, \Delta\) be \(\omega\)-categorical.

Suppose Pol(\(\Gamma\)), Pol(\(\Delta\)) have identical structure:

\(\exists \xi: \text{Pol}(\Gamma) \rightarrow \text{Pol}(\Delta), \text{bijective, preserving identities, uniformly cont.}\)

Then CSP(\(\Gamma\)) and CSP(\(\Delta\)) are polynomial-time equivalent.

Henceforth assume \(\omega\)-categoricity.
Richness and poverty of Pol(Γ)

Poorest polymorphism clone: \(\text{Clone} \overset{P}{\rightarrow} \text{Pol}(\Gamma) \) of projections on domain \(\{0, 1\} \).

Polymorphism clone of a structure with NP-complete CSP. \(P \overset{\rightarrow}{\rightarrow} \text{Pol}(\Gamma) \) (preserving structure: identities + topology) for any \(\Gamma \).

Theorem (Bodirsky + P '11) If \(\text{Pol}(\Gamma) \overset{\rightarrow}{\rightarrow} P \), then CSP(\(\Gamma \)) is NP-hard.

Richness: Theorem (Barto + P '16) \(\text{Pol}(\Gamma) \not\rightarrow P \), even after some preprocessing \(\Leftrightarrow \) Pol(\(\Gamma \)) contains \(u, v, s \):

\[
\begin{align*}
u(s(x, y, x, z, y, z)) &= v(s(y, x, z, x, z, y))
\end{align*}
\]

"Pseudo-Siggers."

Dichotomy Conjecture (Bodirsky + P '11) For a certain class of \(\Gamma \), richness of \(\text{Pol}(\Gamma) \) forces CSP(\(\Gamma \)) into P.

ONE conjecture for infinite CSPs

Michael Pinsker
Richness and poverty of $\text{Pol}(\Gamma)$

Poorest polymorphism clone:
Richness and poverty of \(\text{Pol}(\Gamma) \)

Poorest polymorphism clone:
- Clone \(\mathbf{P} \) of projections on domain \(\{0, 1\} \).
Richness and poverty of Pol(Γ)

Poorest polymorphism clone:

- Clone P of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.

Theorem (Bodirsky + P '11)

If $Pol(Γ) \rightarrow P$, then CSP$(Γ)$ is NP-hard.

Richness:

Theorem (Barto + P '16)

$Pol(Γ) \not\rightarrow P$, even after some preprocessing \iff $Pol(Γ)$ contains u, v, s:

$$u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$$

"Pseudo-Siggers."

Dichotomy Conjecture (Bodirsky + P '11)

For a certain class of $Γ$, richness of $Pol(Γ)$ forces CSP$(Γ)$ into P.
Richness and poverty of $\text{Pol}(\Gamma)$

Poorest polymorphism clone:

- Clone \mathbf{P} of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- $\mathbf{P} \rightarrow \text{Pol}(\Gamma)$ (preserving structure: identities + topology) for any Γ.

Theorem (Bodirsky + P ’11)

If $\text{Pol}(\Gamma) \rightarrow \mathbf{P}$, then $\text{CSP}(\Gamma)$ is NP-hard.

Richness:

Theorem (Barto + P ’16)

$\text{Pol}(\Gamma) \not\rightarrow \mathbf{P}$, even after some preprocessing $\iff \text{Pol}(\Gamma)$ contains u, v, s:

$u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$

"Pseudo-Siggers."

Dichotomy Conjecture (Bodirsky + P ’11)

For a certain class of Γ, richness of $\text{Pol}(\Gamma)$ forces $\text{CSP}(\Gamma)$ into P.
Richness and poverty of Pol(Γ)

Poorest polymorphism clone:

- Clone \(P \) of projections on domain \(\{0, 1\} \).
- Polymorphism clone of a structure with NP-complete CSP.
- \(P \rightarrow \text{Pol}(\Gamma) \) (preserving structure: identities + topology) for any \(\Gamma \).

Theorem (Bodirsky + P ’11)

If \(\text{Pol}(\Gamma) \rightarrow P \), then CSP(\(\Gamma \)) is NP-hard.
Richness and poverty of Pol(Γ)

Poorest polymorphism clone:

- Clone \(P \) of projections on domain \(\{0, 1\} \).
- Polymorphism clone of a structure with NP-complete CSP.
- \(P \rightarrow \text{Pol}(\Gamma) \) (preserving structure: identities + topology) for any \(\Gamma \).

Theorem (Bodirsky + P ’11)

If \(\text{Pol}(\Gamma) \rightarrow P \), then CSP(\(\Gamma \)) is NP-hard.

Richness:
Richness and poverty of Pol(Γ)

Poorest polymorphism clone:
- Clone \mathbf{P} of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- $\mathbf{P} \rightarrow \text{Pol}(\Gamma)$ (preserving structure: identities + topology) for any Γ.

Theorem (Bodirsky + P ’11)

If $\text{Pol}(\Gamma) \rightarrow \mathbf{P}$, then CSP(Γ) is NP-hard.

Richness:

Theorem (Barto + P ’16)

$\text{Pol}(\Gamma) \not\rightarrow \mathbf{P}$, even after some preprocessing \iff $\text{Pol}(\Gamma)$ contains u, v, s:

$$u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y)) \text{ "Pseudo-Siggers".}$$

"Pseudo-Siggers".
Richness and poverty of $\text{Pol}(\Gamma)$

Poorest polymorphism clone:
- Clone \mathbf{P} of projections on domain $\{0, 1\}$.
- Polymorphism clone of a structure with NP-complete CSP.
- $\mathbf{P} \rightarrow \text{Pol}(\Gamma)$ (preserving structure: identities + topology) for any Γ.

Theorem (Bodirsky + P ’11)

If $\text{Pol}(\Gamma) \rightarrow \mathbf{P}$, then $\text{CSP}(\Gamma)$ is NP-hard.

Richness:

Theorem (Barto + P ’16)

$\text{Pol}(\Gamma) \leftrightarrow \mathbf{P}$, even after some preprocessing \iff $\text{Pol}(\Gamma)$ contains u, v, s: $u(s(x, y, x, z, y, z)) = v(s(y, x, z, x, z, y))$ “Pseudo-Siggers”.

Dichotomy Conjecture (Bodirsky + P ’11)

For a certain class of Γ, richness of $\text{Pol}(\Gamma)$ forces $\text{CSP}(\Gamma)$ into \mathbf{P}.
The wonderland of the new rich

Alternative poverty:

If there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P '15)

If \(\text{Pol} \ (\Gamma) \not\rightarrow \text{P} \), then \(\text{CSP} \ (\Gamma) \) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P '15)

For a certain class of \(\Gamma \), new richness of \(\text{Pol} \ (\Gamma) \) forces \(\text{CSP} \ (\Gamma) \) into P.

\[\text{Pol} \ (\Gamma) \rightarrow \text{P} \Rightarrow \text{CSP} \ (\Gamma) \text{NP-hard} \]

\[\text{Pol} \ (\Gamma) = \text{P} \Rightarrow \text{CSP} \ (\Gamma) \text{NP-hard} \]

\[\text{Pol} \ (\Gamma) \not\rightarrow \text{P} \] (even after preprocessing) \Rightarrow Pseudo-Siggers?

\[\text{Pol} \ (\Gamma) \not= \text{P} \] \Rightarrow \text{CSP} \ (\Gamma) \text{in P}

ONE conjecture for infinite CSPs

Michael Pinsker
Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.
The wonderland of the new rich

Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)
If Pol(Γ) → P, then CSP(Γ) is NP-hard.
The wonderland of the new rich

Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15):
If Pol(Γ) → P, then CSP(Γ) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15):
For a certain class of Γ, new richness of Pol(Γ) forces CSP(Γ) into P.
The wonderland of the new rich

Alternative poverty:
Pol(\(\Gamma\)) \(\rightarrow\) P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)
If Pol(\(\Gamma\)) \(\rightarrow\) P, then CSP(\(\Gamma\)) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15)
For a certain class of \(\Gamma\), new richness of Pol(\(\Gamma\)) forces CSP(\(\Gamma\)) into P.

- Pol(\(\Gamma\)) \(\rightarrow\) P \(\implies\) CSP(\(\Gamma\)) NP-hard
The wonderland of the new rich

Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)
If Pol(Γ) → P, then CSP(Γ) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15)
For a certain class of Γ, new richness of Pol(Γ) forces CSP(Γ) into P.

- Pol(Γ) → P ⇒ CSP(Γ) NP-hard
- Pol(Γ) ---→ P ⇒ CSP(Γ) NP-hard
The wonderland of the new rich

Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)
If Pol(Γ) → P, then CSP(Γ) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15)
For a certain class of Γ, new richness of Pol(Γ) forces CSP(Γ) into P.

- Pol(Γ) → P ⇒ CSP(Γ) NP-hard
- Pol(Γ) → P ⇒ CSP(Γ) NP-hard
- Pol(Γ) /→ P (even after preprocessing) ⇒ Pseudo-Siggers ? CSP(Γ) in P
The wonderland of the new rich

Alternative poverty:
Pol(Γ) → P if there exists a mapping preserving linear identities (no nesting), uniformly continuous.

Theorem (Barto + Opršal + P ’15)
If Pol(Γ) → P, then CSP(Γ) is NP-hard.

New Dichotomy Conjecture (Barto + Opršal + P ’15)
For a certain class of Γ, new richness of Pol(Γ) forces CSP(Γ) into P.

- Pol(Γ) → P ⟹ CSP(Γ) NP-hard
- Pol(Γ) → P ⟹ CSP(Γ) NP-hard
- Pol(Γ) ↳ P (even after preprocessing) ⟹ Pseudo-Siggers ↳ CSP(Γ) in P
- Pol(Γ) ↳ P ⟹ CSP(Γ) in P

ONE conjecture for infinite CSPs

Michael Pinsker
Comparing the rich and the new rich

Theorem

Let Γ be the countable atomless Boolean algebra. Then $\text{Pol}(\Gamma)$ has P, but $\text{Pol}(\Gamma)$ is not $\rightarrow P$ after preprocessing.

Theorem

Any such Γ must have at least double exponential orbit growth: for every $n \geq 1$, $\frac{\Gamma^n}{\text{Aut}(\Gamma)}$ has at least 2^{2^n} elements asymptotically.
Comparing the rich and the new rich

Preprocessing:

Theorem
Let Γ be the countable atomless Boolean algebra. Then $\text{Pol}(\Gamma)$ is $\exists \Phi_9$, but $\text{Pol}(\Gamma) \not\rightarrow \Phi_9$ after preprocessing.

Theorem
Any such Γ must have at least double exponential orbit growth: For every $n \geq 1$, $\Gamma_n/\text{Aut}(\Gamma)$ has at least 2^{2^n} elements asymptotically.
Comparing the rich and the new rich

Preprocessing:
- replacing \(\Gamma \) by its model-complete core
 (obtaining \(\text{Aut}(\Gamma) = \text{End}(\Gamma) \))
Comparing the rich and the new rich

Preprocessing:

- replacing Γ by its model-complete core (obtaining $\text{Aut}(\Gamma) = \text{End}(\Gamma)$)
- adding finitely many constants to Γ (making $\text{Pol}(\Gamma)$ poorer).

Irrelevant for $\text{Pol}(\Gamma)$, but not for $\text{Pol}(\Gamma) \rightarrow P$.

Theorem

Let Γ be the countable atomless Boolean algebra. Then $\text{Pol}(\Gamma) \not\rightarrow P$, but $\text{Pol}(\Gamma)$ after preprocessing.

Theorem

Any such Γ must have at least double exponential orbit growth: For every $n \geq 1$, $\Gamma_n / \text{Aut}(\Gamma)$ has at least 2^{2^n} elements asymptotically.

ONE conjecture for infinite CSPs

Michael Pinsker
Comparing the rich and the new rich

Preprocessing:

- replacing Γ by its model-complete core (obtaining $\text{Aut}(\Gamma) = \text{End}(\Gamma)$)
- adding finitely many constants to Γ (making $\text{Pol}(\Gamma)$ poorer).

Irrelevant for $\text{Pol}(\Gamma) \rightarrow \text{P}$, but not for $\text{Pol}(\Gamma) \rightarrow \text{P}$.
Comparing the rich and the new rich

Preprocessing:
- replacing \(\Gamma \) by its model-complete core (obtaining \(\text{Aut}(\Gamma) = \text{End}(\Gamma) \))
- adding finitely many constants to \(\Gamma \) (making \(\text{Pol}(\Gamma) \) poorer).

Irrelevant for \(\text{Pol}(\Gamma) \rightarrow P \), but not for \(\text{Pol}(\Gamma) \rightarrow P \).

Theorem
Let \(\Gamma \) be the countable atomless Boolean algebra. Then \(\text{Pol}(\Gamma) \rightarrow P \), but \(\text{Pol}(\Gamma) \not\rightarrow P \) after preprocessing.
Comparing the rich and the new rich

Preprocessing:

- replacing Γ by its model-complete core (obtaining $\text{Aut}(\Gamma) = \text{End}(\Gamma)$)
- adding finitely many constants to Γ (making $\text{Pol}(\Gamma)$ poorer).

Irrelevant for $\text{Pol}(\Gamma) \rightarrow P$, but not for $\text{Pol}(\Gamma) \not\rightarrow P$.

Theorem

Let Γ be the countable atomless Boolean algebra. Then $\text{Pol}(\Gamma) \rightarrow P$, but $\text{Pol}(\Gamma) \not\rightarrow P$ after preprocessing.

Theorem

Any such Γ must have at least double exponential orbit growth: For every $n \geq 1$, $\Gamma^n / \text{Aut}(\Gamma)$ has at least 2^{2^n} elements asymptotically.
Topology is irrelevant

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

1. $\text{Pol}(\Gamma) \not\rightarrow \mathcal{P}$ after preprocessing.
2. $\text{Pol}(\Gamma) \not\rightarrow \mathcal{P}$. (Equivalently, $\text{Pol}(\Gamma)$ satisfies the Pseudo-Siggers identity.)

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

Examples:

- Temp-SAT problems (rational order)
- Graph-SAT problems (random graph)
- Poset-SAT problems (random partial order)

ONE conjecture for infinite CSPs

Michael Pinsker
Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- $\text{Pol}(\Gamma) \not
\rightarrow \mathbf{P}$ after preprocessing.
- $\text{Pol}(\Gamma) \not
\rightarrow \mathbf{P}$.
- $\text{Pol}(\Gamma)$ satisfies the Pseudo-Siggers identity.
- $\text{CSP}(\Gamma)$ in \mathbf{P}.
Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- $\text{Pol}(\Gamma) \not\rightarrow \textbf{P}$ after preprocessing.
- $\text{Pol}(\Gamma) \not\rightarrow \mathcal{P}.$
- $\text{Pol}(\Gamma)$ satisfies the Pseudo-Siggers identity.
- $\text{CSP}(\Gamma)$ in $\textbf{P}.$

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

ONE conjecture for infinite CSPs

Michael Pinsker
Topology is irrelevant

Theorem

Let \(\Gamma \) be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- \(\text{Pol}(\Gamma) \not
ightarrow \mathbb{P} \) after preprocessing.
- \(\text{Pol}(\Gamma) \not
ightarrow \mathbb{P} \).
- \(\text{Pol}(\Gamma) \) satisfies the Pseudo-Siggers identity.
- \(\text{CSP}(\Gamma) \) in \(\mathbb{P} \).

The Open Problem

Are the above equivalent to the satisfaction of linear identities?

Examples:

- Temp-SAT problems (rational order)
- Graph-SAT problems (random graph)
- Poset-SAT problems (random partial order)
Topography is irrelevant

Theorem

Let Γ be first-order definable in a finitely bounded homogeneous structure. Then the following are equivalent:

- $\text{Pol}(\Gamma) \not\rightarrow \text{P}$ after preprocessing.
- $\text{Pol}(\Gamma) \not\rightarrow \text{P}$.
- $\text{Pol}(\Gamma)$ satisfies the Pseudo-Siggers identity.
- $\text{CSP}(\Gamma)$ in P.

The Open Problem

Are the above equivalent to the satisfaction of *linear identities*?

Examples:

- Temp-SAT problems (rational order)
- Graph-SAT problems (random graph)
- Poset-SAT problems (random partial order)
Thank you!