TBA

Michael Pinsker (Paris 7)

joint work with Manuel Bodirsky (LIX Palaiseau)

Dagstuhl 2012
Topological Birkhoff & Applications

Michael Pinsker (Paris 7)

joint work with Manuel Bodirsky (LIX Palaiseau)

Dagstuhl 2012
Outline

Topological Birkhoff theorem

Generalization of Birkhoff’s HSP fin theorem from finite to certain infinite algebras

Corollary in the purely model theoretic language: Primitive positive interpretations

Applications to CSPs with infinite templates

Implication chain: ↓

Motivation chain: ↑

TBA

Michael Pinsker (Paris 7)
Outline

Topological Birkhoff
Topological Birkhoff: theorem
Topological Birkhoff: theorem

- Generalization of Birkhoff’s HSP^fin theorem from finite to certain infinite algebras
Outline

Topological Birkhoff: theorem

- Generalization of Birkhoff’s HSP^fin theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations
Outline

Topological Birkhoff: theorem

- Generalization of Birkhoff’s HSP$^\text{fin}$ theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to CSPs with infinite templates
Topological Birkhoff: theorem

- Generalization of Birkhoff’s HSP^fin theorem from finite to certain infinite algebras
- Corollary in the purely model theoretic language: Primitive positive interpretations
- Applications to CSPs with infinite templates

Implication chain: \downarrow (TBA)
Motivation chain: \uparrow (ATB)
Part I: Simple cloning
Let \(\Gamma \) be a relational structure with finite language \(\tau \).

\[\text{CSP}(\Gamma) \]

INPUT: A finite set of variables and \(\tau \)-constraints on these variables.

QUESTION: Does there exists a satisfying assignment of values in \(\Gamma \)?
Let Γ be a relational structure with finite language τ.

CSP(Γ)

INPUT: A finite set of variables and τ-constraints on these variables.

QUESTION: Does there exist a satisfying assignment of values in Γ?

Γ can be infinite!
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don't have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren't there undecidable infinite template CSPs?
A1: Isn't ... undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness
Q: Can CSP (Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?
Q: Why do you generalize?
A: Why did you restrict? OK for technical reasons.
Three basic human fears

Fear 1: the fear of nonexistence
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don't have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don’t have to invite the elements of Γ to your living room!
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don’t have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?

A: How can an algorithm add integers?

Q: Aren’t there undecidable infinite template CSPs?

A1: Isn’t \ldots undecidable too?

A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness

Q: Can CSP Γ be meaningful for infinite Γ?

A: Is acyclicity of digraphs a meaningful problem?

Q: Why do you generalize?

A: Why did you restrict? OK for technical reasons.

TBA

Michael Pinsker (Paris 7)
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don’t have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?

A: How can an algorithm add integers?

Q: Aren’t there undecidable infinite template CSPs?

A1: Isn’t ... undecidable too?

A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness

Q: Can CSP(Γ) be meaningful for infinite Γ?

A: Is acyclicity of digraphs a meaningful problem?

Q: Why do you generalize?

A: Why did you restrict?

OK for technical reasons.
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?

A1: You don’t have to invite the elements of Γ to your living room!

A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?

A: How can an algorithm add integers?
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should \(\Gamma \) be infinite?
A1: You don’t have to invite the elements of \(\Gamma \) to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite \(\Gamma \)?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t \(\ldots \) undecidable too?
A2: There is a large interesting class of infinite \(\Gamma \) whose CSP is in NP.

Fear 3: the fear of meaninglessness
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t ... undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness

Q: Can CSP(Γ) be meaningful for infinite Γ?
Three basic human fears

Fear 1: the fear of nonexistence

Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence

Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness

Q: Can CSP(Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness
Q: Can CSP(Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?
Q: Why do you generalize?
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness
Q: Can CSP(Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?
Q: Why do you generalize?
A: Why did you restrict?
Three basic human fears

Fear 1: the fear of nonexistence
Q: Every thing in my life is finite. Why should Γ be infinite?
A1: You don’t have to invite the elements of Γ to your living room!
A2: Are the natural numbers part of your life?

Fear 2: the fear of impotence
Q: How can an algorithm calculate anything about infinite Γ?
A: How can an algorithm add integers?
Q: Aren’t there undecidable infinite template CSPs?
A1: Isn’t . . . undecidable too?
A2: There is a large interesting class of infinite Γ whose CSP is in NP.

Fear 3: the fear of meaninglessness
Q: Can CSP(Γ) be meaningful for infinite Γ?
A: Is acyclicity of digraphs a meaningful problem?
Q: Why do you generalize?
A: Why did you restrict? OK for technical reasons.
Finite simple cloning
Finite simple cloning ("Neanderthal cloning")

Theorem (Geiger '68; Bodnarchuk+Kaluzhnin+Kotov+Romov '69)

Let Γ, Δ be finite relational structures on the same domain. TFAE:

1. Δ is pp-definable in Γ.
2. $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.

\Rightarrow Δ "sits inside" Γ.

\Rightarrow $\text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.

TBA

Michael Pinsker (Paris 7)
Finite simple cloning ("Neanderthal cloning")

Theorem (Geiger ’68; Bodnarchuk+Kaluzhnin+Kotov+Romov ’69)

Let Γ, Δ be finite relational structures on the same domain. TFAE:
- Δ is pp-definable in Γ;
- $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.
Theorem (Geiger ’68; Bodnarchuk+Kaluzhnin+Kotov+Romov ’69)

Let \(\Gamma, \Delta \) be finite relational structures on the same domain. TFAE:

- \(\Delta \) is pp-definable in \(\Gamma \);
- \(\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta) \).

\[\Rightarrow \] \(\Delta \) “sits inside” \(\Gamma \).

\[\Rightarrow \] \(\text{CSP}(\Gamma) \) is at least as hard as \(\text{CSP}(\Delta) \).
Finite simple cloning (“Neanderthal cloning”)

Theorem (Geiger ’68; Bodnarchuk+Kaluzhnin+Kotov+Romov ’69)

Let Γ, Δ be finite relational structures on the same domain. TFAE:

- Δ is pp-definable in Γ;
- $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.

$\implies \Delta$ “sits inside” Γ.

$\implies \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.
\(\omega\)-categoricity

A countable relational structure \(\Gamma\) is \(\omega\)-categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning: For every \(n \geq 1\) there exist finitely many \(n\)-tuples \(a_1, \ldots, a_k\) of elements of \(\Gamma\) such that any other \(n\)-tuple is equivalent to one of the \(a_i\) with respect to the theory of \(\Gamma\).

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

CSP: essentially finitely many choices for \(n\) variables!
ω-categoricity

Def. A countable relational structure Γ is **ω-categorical** iff its theory has no countable non-standard model.

Finiteness condition!

Meaning: For every $n \geq 1$ there exist finitely many n-tuples a_1, \ldots, a_k of elements of Γ such that any other n-tuple is equivalent to one of the a_i with respect to the theory of Γ.

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

CSP: essentially finitely many choices for n variables!
ω-categoricity

Def. A countable relational structure Γ is ω-categorical iff its theory has no countable non-standard model.

Finiteness condition!
Def. A countable relational structure Γ is ω-categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:
ω-categoricity

Def. A countable relational structure Γ is **ω-categorical** iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \geq 1$
ω-categoricity

Def. A countable relational structure Γ is ω-categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \geq 1$

there exist finitely many n-tuples a_1, \ldots, a_k of elements of Γ
ω-categoricity

Def. A countable relational structure Γ is ω-categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \geq 1$
there exist finitely many n-tuples a_1, \ldots, a_k of elements of Γ
such that any other n-tuple
\textbf{Def.} A countable relational structure \(\Gamma \) is \(\omega \)-categorical iff its theory has no countable non-standard model.

Finiteness condition!

\textbf{Meaning:}

For every \(n \geq 1 \)
there exist finitely many \(n \)-tuples \(a_1, \ldots, a_k \) of elements of \(\Gamma \)
such that any other \(n \)-tuple
is equivalent to one of the \(a_i \) with respect to the theory of \(\Gamma \).
ω-categoricity

Def. A countable relational structure Γ is **ω-categorical** iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \geq 1$

there exist finitely many n-tuples a_1, \ldots, a_k of elements of Γ

such that any other n-tuple

is equivalent to one of the a_i with respect to the theory of Γ.

Examples: Order of rationals, random graph, random partial order.
\(\omega \)-categoricity

Def. A countable relational structure \(\Gamma \) is \(\omega \)-categorical iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every \(n \geq 1 \)

there exist finitely many \(n \)-tuples \(a_1, \ldots, a_k \) of elements of \(\Gamma \)

such that any other \(n \)-tuple

is equivalent to one of the \(a_i \) with respect to the theory of \(\Gamma \).

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.
ω-categoricity

Def. A countable relational structure Γ is **ω-categorical** iff its theory has no countable non-standard model.

Finiteness condition!

Meaning:

For every $n \geq 1$

there exist finitely many n-tuples a_1, \ldots, a_k of elements of Γ such that any other n-tuple is equivalent to one of the a_i with respect to the theory of Γ.

Examples: Order of rationals, random graph, random partial order.

Non-example: Order of integers.

CSP: essentially finitely many choices for n variables!
Infinite simple cloning

Theorem (Bodirsky+Nešetřil '03)

Let Γ, Δ be ω-categorical rel. structures on the same domain. TFAE:

Δ is pp-definable in Γ;

$Pol(\Gamma) \subseteq Pol(\Delta)$.

$\Rightarrow \Delta$ "sits inside" Γ.

$\Rightarrow \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.

TBA

Michael Pinsker (Paris 7)
Infinite simple cloning

Theorem (Bodirsky+Nešetřil ’03)

Let Γ, Δ be ω-categorical rel. structures on the same domain. TFAE:

- Δ is pp-definable in Γ;
- $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.
Infinite simple cloning

Theorem (Bodirsky+Nešetřil ’03)

Let Γ, Δ be ω-categorical rel. structures on the same domain. TFAE:

- Δ is pp-definable in Γ;
- $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.

$\implies \Delta$ “sits inside” Γ.
$\implies \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.

Michael Pinsker (Paris 7)
Infinite simple cloning

Theorem (Bodirsky+Nešetřil ’03)
Let Γ, Δ be ω-categorical rel. structures on the same domain. TFAE:
- Δ is pp-definable in Γ;
- $\text{Pol}(\Gamma) \subseteq \text{Pol}(\Delta)$.

$\implies \Delta$ “sits inside” Γ.
$\implies \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.
Part II: Double cloning
Interpretations

Definition. Let Δ, Γ be relational structures. Δ has a pp-interpretation in Γ iff it is constructible from Γ by expanding Γ by all pp-definable relations; then taking a finite “power”; then taking a substructure induced by a pp-definable subset; then factoring by a pp-definable equivalence relation; then forget some of the relations.

Meaning. $\Rightarrow \Delta$’s sits inside Γ in a weaker sense. $\Rightarrow \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.

Example: $(\mathbb{Q}; +, \cdot)$ has a pp-interpretation in $(\mathbb{Z}; +, \cdot)$.

TBA

Michael Pinsker (Paris 7)
Interpretations

Definition. Let Δ, Γ be relational structures. Δ has a pp-interpretation in Γ iff it is constructible from Γ.
Interpretations

Definition. Let Δ, Γ be relational structures. Δ has a **pp-interpretation** in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite “power”;
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Meaning. \Rightarrow Δ “sits inside” Γ in a weaker sense.
\Rightarrow CSP(Γ) is at least as hard as CSP(Δ).

Example: $(\mathbb{Q}; +, \cdot)$ has a pp-interpretation in $(\mathbb{Z}; +, \cdot)$.

TBA

Michael Pinsker (Paris 7)
Interpretations

Definition. Let Δ, Γ be relational structures. Δ has a **pp-interpretation** in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite “power”;
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Meaning.

$\implies \Delta$ “sits inside” Γ in a weaker sense.

$\implies \text{CSP}(\Gamma)$ is at least as hard as $\text{CSP}(\Delta)$.
Interpretations

Definition. Let Δ, Γ be relational structures. Δ has a **pp-interpretation** in Γ iff it is constructible from Γ by

- expanding Γ by all pp-definable relations;
- then taking a finite “power”;
- then taking a substructure induced by a pp-definable subset;
- then factoring by a pp-definable equivalence relation;
- then forget some of the relations.

Meaning.

\implies Δ “sits inside” Γ in a weaker sense.

\implies CSP(Γ) is at least as hard as CSP(Δ).

Example: $(\mathbb{Q}; +, \cdot)$ has a pp-interpretation in $(\mathbb{Z}; +, \cdot)$.

TBA

Michael Pinsker (Paris 7)
Can view \(\Gamma \) as an algebra on \(\Gamma \) by giving it a signature.

Let \(C \) be a class of algebras of the same signature.

\[\text{Pol}(\Gamma) \]

... all finite products of algebras in \(C \).

\[\text{HSP}_{\text{fin}}(\text{Pol}(\Gamma)) \]

... all subalgebras of algebras in \(C \).

\[\text{H}(\Gamma) \]

... all factors of algebras in \(C \).

Theorem

Let \(\Gamma, \Delta \) be finite. TFAE:

- \(\Delta \) has a pp-interpretation in \(\Gamma \);
- there exists \(B \in \text{HSP}_{\text{fin}}(\text{Pol}(\Gamma)) \) whose functions are elements of \(\text{Pol}(\Delta) \).

TBA

Michael Pinsker (Paris 7)
Can view $\text{Pol}(\Gamma)$ as an algebra on Γ by giving it a signature.
Can view $\text{Pol}(\Gamma)$ as an algebra on Γ by giving it a signature.

Let \mathcal{C} be a class of algebras of the same signature.
Can view \(\text{Pol}(\Gamma) \) as an algebra on \(\Gamma \) by giving it a signature.

Let \(\mathcal{C} \) be a class of algebras of the same signature.

- \(P^{\text{fin}}(\mathcal{C}) \) . . . all finite products of algebras in \(\mathcal{C} \).
- \(S(\mathcal{C}) \) . . . all subalgebras of algebras in \(\mathcal{C} \).
- \(H(\mathcal{C}) \) . . . all factors of algebras in \(\mathcal{C} \).
Finite double cloning I

Can view $\text{Pol}(\Gamma)$ as an algebra on Γ by giving it a signature.

Let \mathcal{C} be a class of algebras of the same signature.

- $\text{P}^{\text{fin}}(\mathcal{C})$. . . all finite products of algebras in \mathcal{C}.
- $\text{S}(\mathcal{C})$. . . all subalgebras of algebras in \mathcal{C}.
- $\text{H}(\mathcal{C})$. . . all factors of algebras in \mathcal{C}.

Theorem

Let Γ, Δ be finite. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathcal{B} \in \text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.
Theorem (Birkhoff)

Let \mathcal{A}, \mathcal{B} be finite τ-algebras. TFAE:

- $\mathcal{B} \in \text{HSP}^{\text{fin}}(\mathcal{A})$.
- all equations of \mathcal{A} also hold in \mathcal{B}.
- the natural homomorphism which sends every τ-term in \mathcal{A} to the corresponding term in \mathcal{B} exists.
Theorem (Birkhoff)

Let \mathcal{A}, \mathcal{B} be finite τ-algebras. TFAE:

- $\mathcal{B} \in \text{HSP}^{\text{fin}}(\mathcal{A})$.
- all equations of \mathcal{A} also hold in \mathcal{B}.
- the natural homomorphism which sends every τ-term in \mathcal{A} to the corresponding term in \mathcal{B} exists.

Theorem

Let Γ, Δ be finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists a homomorphism from $\text{Pol}(\Gamma)$ into $\text{Pol}(\Delta)$.
Finite double cloning visualized

\[\Gamma \rightarrow \text{Pol}(\Gamma) \]

\[\text{Equ}(\text{Pol}(\Gamma)) \]
Let S be the structure on $\{0, 1\}$ with the only relation $\{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$.

$\text{CSP}(S)$ equivalent to positive 1-in-3-SAT. NP-complete.

$\text{Pol}(S)$ is the trivial clone consisting only of projections.

Fact

Let Γ be finite. TFAE:

- S has a pp-interpretation in Γ.
- There exists a homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- All finite structures have a pp-interpretation in Γ.

Conjecture (Bulatov+Jeavons+Krokhin; Feder+Vardi)

For finite idempotent cores Γ this is the unique reason for NP-hardness.
Dichotomy?

Let \mathcal{S} be the structure on $\{0, 1\}$ with the only relation $\{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$.
Dichotomy?

Let \mathcal{S} be the structure on $\{0, 1\}$ with the only relation
$\{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$.

CSP(\mathcal{S}) equivalent to positive 1-in-3-SAT. NP-complete.

Pol(\mathcal{S}) is the trivial clone 1 consisting only of projections.
Dichotomy?

Let S be the structure on $\{0, 1\}$ with the only relation
$\{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$.

$\text{CSP}(S)$ equivalent to positive 1-in-3-SAT. NP-complete.

$\text{Pol}(S)$ is the trivial clone 1 consisting only of projections.

Fact

Let Γ be finite. TFAE:

- S has a pp-interpretation in Γ.
- There exists a homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- All finite structures have a pp-interpretation in Γ.

Dichotomy?

Let S be the structure on $\{0, 1\}$ with the only relation
$\{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$.

$\text{CSP}(S)$ equivalent to positive 1-in-3-SAT. NP-complete.

$\text{Pol}(S)$ is the trivial clone 1 consisting only of projections.

Fact

Let Γ be finite. TFAE:

- S has a pp-interpretation in Γ.
- There exists a homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- All finite structures have a pp-interpretation in Γ.

Conjecture (Bulatov+Jeavons+Krokhin; Feder+Vardi)

For finite idempotent cores Γ this is the unique reason for
NP-hardness.
Theorem
Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $B \in \text{HSP}_{\text{fin}}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}_{\text{fin}}(\text{Pol}(\Gamma))$? Birkhoff help!

Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \geq 1$.

Def. An algebra is oligomorphic iff its term functions contain an oligomorphic permutation group.

Thm. A relational structure Γ is ω-categorical iff $\text{Pol}(\Gamma)$ is oligomorphic.
Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathcal{B} \in \text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$? Birkhoff help!
Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \geq 1$.

Def. An algebra is oligomorphic iff its term functions contain an oligomorphic permutation group.

Thm. A relational structure Γ is ω-categorical iff $\text{Pol}(\Gamma)$ is oligomorphic.
Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathcal{B} \in \text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$? Birkhoff help!
Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathfrak{B} \in \text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^{\text{fin}}(\text{Pol}(\Gamma))$? Birkhoff help!

Theorem for which algebras instead of finite ones?
Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathfrak{B} \in \text{HSP}^\text{fin}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^\text{fin}(\text{Pol}(\Gamma))$? Birkhoff help!
Theorem for which algebras instead of finite ones?

Def. A permutation group on X is oligomorphic iff its action on X^n has finitely many orbits for all $n \geq 1$.

Infinite double cloning I

Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists $\mathcal{B} \in \text{HSP}^\text{fin}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^\text{fin}(\text{Pol}(\Gamma))$? Birkhoff help!

Theorem for which algebras instead of finite ones?

Def. A permutation group on X is **oligomorphic** iff its action on X^n has finitely many orbits for all $n \geq 1$.

Def. An algebra is **oligomorphic** iff its term functions contain an oligomorphic permutation group.
Infinite double cloning I

Theorem

Let Γ be ω-categorical, and Δ be arbitrary. TFAE:

1. Δ has a pp-interpretation in Γ;
2. There exists $\mathfrak{B} \in \text{HSP}^\text{fin}(\text{Pol}(\Gamma))$ whose functions are elements of $\text{Pol}(\Delta)$.

What are the elements of $\text{HSP}^\text{fin}(\text{Pol}(\Gamma))$? Birkhoff help!

Theorem for which algebras instead of finite ones?

Def. A permutation group on X is *oligomorphic* iff its action on X^n has finitely many orbits for all $n \geq 1$.

Def. An algebra is *oligomorphic* iff its term functions contain an oligomorphic permutation group.

Thm. A relational structure Γ is ω-categorical iff $\text{Pol}(\Gamma)$ is oligomorphic.
Topological Birkhoff

Birkhoff for oligomorphic algebras?

Every clone on an infinite domain carries two kinds of structure:

an algebraic structure: composition (aka equations);

topological structure:

a sequence $(g_n)_{n \in \omega}$ of m-ary functions converges to an m-ary function f iff for all finite subsets A of the domain there is $j \in \omega$ such that g_i agrees with f on A for all $i \geq j$.

Theorem ("Topological Birkhoff" MB+MP '12)

Let A, B be oligomorphic τ-algebras. TFAE:

$B \in \text{HSP}_{\text{fin}}(A)$.

the natural homomorphism which sends every τ-term in A to the corresponding term in B exists and is continuous.
Topological Birkhoff

Birkhoff for oligomorphic algebras? **No.**
Topological Birkhoff

Birkhoff for oligomorphic algebras? **No.**

Every clone on an infinite domain carries two kinds of structure:
Topological Birkhoff

Birkhoff for oligomorphic algebras? No.

Every clone on an infinite domain carries two kinds of structure:

- an algebraic structure: composition (aka equations);

Theorem ("Topological Birkhoff" MB+MP '12)

Let A, B be oligomorphic τ-algebras. TFAE:

- $B \in \text{HSP} \left(A \right)$.
- the natural homomorphism which sends every τ-term in A to the corresponding term in B exists and is continuous.

Michael Pinsker (Paris 7)
Birkhoff for oligomorphic algebras? **No.**

Every clone on an infinite domain carries two kinds of structure:

- an **algebraic structure**: composition (aka equations);
- a **topological structure**:
 a sequence $(g_n)_{n \in \omega}$ of m-ary functions converges to an m-ary function f iff
Topological Birkhoff

Birkhoff for oligomorphic algebras? **No.**

Every clone on an infinite domain carries two kinds of structure:

- **an algebraic structure**: composition (aka equations);
- **a topological structure**: a sequence \((g_n)_{n \in \omega}\) of \(m\)-ary functions converges to an \(m\)-ary function \(f\) iff for all finite subsets \(A\) of the domain there is \(j \in \omega\) such that \(g_i\) agrees with \(f\) on \(A^m\) for all \(i \geq j\).
Topological Birkhoff

Birkhoff for oligomorphic algebras? **No.**

Every clone on an infinite domain carries two kinds of structure:

- **an algebraic structure:** composition (aka equations);
- **a topological structure:**
 - a sequence \((g_n)_{n \in \omega}\) of \(m\)-ary functions converges to an \(m\)-ary function \(f\) iff
 - for all finite subsets \(A\) of the domain there is \(j \in \omega\) such that \(g_i\) agrees with \(f\) on \(A^m\) for all \(i \geq j\).

Theorem ("Topological Birkhoff" MB+MP ’12)

Let \(\mathcal{A}, \mathcal{B}\) be oligomorphic \(\tau\)-algebras. TFAE:

- \(\mathcal{B} \in HSP^{\text{fin}}(\mathcal{A})\).
- the natural homomorphism which sends every \(\tau\)-term in \(\mathcal{A}\) to the corresponding term in \(\mathcal{B}\) exists and is continuous.
Theorem (MB+MP '12)

Let Γ, Δ be ω-categorical or finite relational structures. TFAE:

1. Δ has a pp-interpretation in Γ;
2. There exists a continuous homomorphism from $Pol(\Gamma)$ into $Pol(\Delta)$.

Michael Pinsker (Paris 7)
Theorem (MB+MP ’12)

Let Γ, Δ be ω-categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ;
Infinite double cloning II

Theorem (MB+MP ’12)

Let Γ, Δ be ω-categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ into $\text{Pol}(\Delta)$ whose image is locally oligomorphic.
Theorem (MB+MP ’12)

Let Γ, Δ be ω-categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ into $\text{Pol}(\Delta)$ whose image is locally oligomorphic. (for finite Δ)
Infinite double cloning II

Theorem (MB+MP ’12)

Let Γ, Δ be ω-categorical or finite relational structures. TFAE:

- Δ has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ into $\text{Pol}(\Delta)$ whose image is locally oligomorphic. (for finite Δ)
Corollary

Let Γ be ω-categorical. TFAE:

1. Positive 1-in-3-SAT has a pp-interpretation in Γ;
2. There exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto $\mathbb{1}$.
3. All finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 | x < y < z \lor z < y < x \})$

$\text{CSP}(\Gamma)$ is called the Betweenness problem.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:

1. $\forall x, y \in \Gamma^k: (\forall j x_j \neq y_j \land x_i < y_i) \Rightarrow f(x) < f(y)$, or
2. $\forall x, y \in \Gamma^k: (\forall j x_j \neq y_j \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the i-th k-ary projection in $\mathbb{1}$.

Straightforward: $\xi: \text{Pol}(\Gamma) \to \mathbb{1}$ is a continuous homomorphism.
Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.
Corollary
Let \(\Gamma \) be \(\omega \)-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in \(\Gamma \);
- there exists a continuous homomorphism from \(\text{Pol}(\Gamma) \) onto \(1 \).
- all finite structures have a pp-interpretation in \(\Gamma \).

Example: \(\Gamma := (\mathbb{Q}; \{ (x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x \}) \)
Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

$\text{CSP}(\Gamma)$ is called *Betweenness problem*.
Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

$\text{CSP}(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k.

Cool hardness proofs

Corollary
Let Γ be ω-categorical. TFAE:
- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$
CSP(Γ) is called \textit{Betweenness problem}.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:
Cool hardness proofs

Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:

- $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or
Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$.
CSP(Γ) is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:

- $\forall x, y \in \Gamma^k : (\forall j x_j \neq y_j) \land x_i < y_i \Rightarrow f(x) < f(y)$, or
- $\forall x, y \in \Gamma^k : (\forall j x_j \neq y_j) \land x_i < y_i \Rightarrow f(x) > f(y)$.
Cool hardness proofs

Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

CSP(Γ) is called \textit{Betweenness problem}.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:

- $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or
- $\forall x, y \in \Gamma^k : ((\forall j \ x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the i-th k-ary projection in 1.
Cool hardness proofs

Corollary

Let Γ be ω-categorical. TFAE:

- positive 1-in-3-SAT has a pp-interpretation in Γ;
- there exists a continuous homomorphism from $\text{Pol}(\Gamma)$ onto 1.
- all finite structures have a pp-interpretation in Γ.

Example: $\Gamma := (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

$\text{CSP}(\Gamma)$ is called *Betweenness problem*.

Let $f \in \text{Pol}(\Gamma)$ of arity k. There is a unique $i \in \{1, \ldots, k\}$ such that:

- $\forall x, y \in \Gamma^k : ((\forall j x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) < f(y)$, or
- $\forall x, y \in \Gamma^k : ((\forall j x_j \neq y_j) \land x_i < y_i) \Rightarrow f(x) > f(y)$.

Set $\xi(f)$ to be the i-th k-ary projection in 1.

Straightforward: $\xi : \text{Pol}(\Gamma) \rightarrow 1$ is continuous homomorphism.
Part III: Infinite triple cloning
Automatic continuity

Does the complexity of CSP (Γ) only depend on the algebraic structure of Pol (Γ)?

Automatic continuity for automorphism groups: there is a model of ZF (+DC) where every homomorphism between automorphism groups is continuous (Shelah'84).

TBA

Michael Pinsker (Paris 7)
Automatic continuity

Does the complexity of CSP(Γ) only depend on the algebraic structure of Pol(Γ)?
Automatic continuity

Does the complexity of CSP(Γ) only depend on the algebraic structure of Pol(Γ)?

Automatic continuity for automorphism groups:
Automatic continuity

Does the complexity of CSP(Γ) only depend on the algebraic structure of Pol(Γ)?

Automatic continuity for automorphism groups:
there is a model of ZF (+DC) where every homomorphism between automorphism groups set is continuous (Shelah’84).
Automatic continuity

Does the complexity of CSP(\(\Gamma\)) only depend on the algebraic structure of Pol(\(\Gamma\))?

Automatic continuity for automorphism groups: there is a model of ZF (+DC) where every homomorphism between automorphism groups set is continuous (Shelah’84).
Reconstruction

Do there exist ω-categorical Γ, Δ such that $\text{Pol}(\Gamma), \text{Pol}(\Delta)$ are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt'90).

If so, when does the algebraic structure of $\text{Pol}(\Gamma)$ determine the topological one?

For automorphism groups: “small index property”.

$(N;=) (Dixon+Neumann+Thomas'86) (Q;<) (Truss'89)$

the random graph (Hodges+Hodkinson+Lascar+Shelah'93)

TBA

Michael Pinsker (Paris 7)
Do there exist ω-categorical Γ, Δ such that $\text{Pol}(\Gamma), \text{Pol}(\Delta)$ are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt’90).
Do there exist ω-categorical Γ, Δ such that $Pol(\Gamma)$, $Pol(\Delta)$ are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt’90).

If so, when does the algebraic structure of $Pol(\Gamma)$ determine the topological one?
Reconstruction

Do there exist ω-categorical Γ, Δ such that $\text{Pol}(\Gamma), \text{Pol}(\Delta)$ are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt’90).

If so, when does the algebraic structure of $\text{Pol}(\Gamma)$ determine the topological one?

For automorphism groups: “small index property”.

TBA
Reconstruction

Do there exist ω-categorical Γ, Δ such that $\text{Pol}(\Gamma)$, $\text{Pol}(\Delta)$ are isomorphic algebraically but not topologically?

Yes for automorphism groups (Evans+Hewitt’90).

If so, when does the algebraic structure of $\text{Pol}(\Gamma)$ determine the topological one?

For automorphism groups: “small index property”.

- $(\mathbb{N}; =)$ (Dixon+Neumann+Thomas’86)
- $(\mathbb{Q}; <)$ (Truss’89)
- the random graph (Hodges+Hodkinson+Lascar+Shelah’93)
Topological Birkhoff

Manuel Bodirsky and Michael Pinsker

Transactions of the AMS / arXiv.
Thank you!