Lattices of subgroups of the symmetric group

Michael Pinsker (Paris 7)

joint work with

Saharon Shelah (Jerusalem)

AAA 84 Dresden 2012
Outline

Part I
Lattices of: Groups - Monoids - Clones

Part II
(Locally) closed groups - monoids - clones

Lattices of permutation groups
Michael Pinsker (Paris 7)
Part I

Lattices of: Groups - Monoids - Clones
Part I
Lattices of: Groups - Monoids - Clones

Part II
(Locally) closed groups - monoids - clones
Three lattices

Let X be an infinite set.
Three lattices

Let X be an infinite set.

$\text{Gr}(X)$. . . lattice of all permutation groups on X.
(order = containment, meet = intersection)
Three lattices

Let \(X \) be an infinite set.

\[
\text{Gr}(X) \ldots \text{lattice of all permutation groups on } X.
\]
(order = containment, meet = intersection)
Alternatively: \(\text{Gr}(X) \) subgroup lattice of the symmetric group \(\text{Sym}(X) \).

\[
\text{Mo}(X) \ldots \text{lattice of all transformation monoids on } X.
\]
(order = containment, meet = intersection)
Alternatively: \(\text{Mo}(X) \) submonoid lattice of the monoid \(X \times X \).

\[
\text{Cl}(X) \ldots \text{lattice of all (concrete) clones on } X.
\]
(order = containment, meet = intersection)
Alternatively: \(\text{Cl}(X) \) subclone lattice of the full clone \(\bigcup_{n \in \mathbb{N}} X \times X \).
Three lattices

Let X be an infinite set.

$\text{Gr}(X)$... lattice of all permutation groups on X.
(order = containment, meet = intersection)
Alternatively: $\text{Gr}(X)$ subgroup lattice of the symmetric group $\text{Sym}(X)$.

$\text{Mo}(X)$... lattice of all transformation monoids on X.
(order = containment, meet = intersection)
Three lattices

Let X be an infinite set.

$\text{Gr}(X)$. . . lattice of all permutation groups on X. (order = containment, meet = intersection)
Alternatively: $\text{Gr}(X)$ subgroup lattice of the symmetric group $\text{Sym}(X)$.

$\text{Mo}(X)$. . . lattice of all transformation monoids on X. (order = containment, meet = intersection)
Alternatively: $\text{Mo}(X)$ submonoid lattice of the monoid X^X.
Three lattices

Let X be an infinite set.

Gr(X) . . . lattice of all permutation groups on X.
(order = containment, meet = intersection)
Alternatively: Gr(X) subgroup lattice of the symmetric group Sym(X).

Mo(X) . . . lattice of all transformation monoids on X.
(order = containment, meet = intersection)
Alternatively: Mo(X) submonoid lattice of the monoid X^X.

Cl(X) . . . lattice of all (concrete) clones on X.
(order = containment, meet = intersection)
Let X be an infinite set.

Gr(X) . . . lattice of all permutation groups on X.
(order = containment, meet = intersection)
Alternatively: Gr(X) subgroup lattice of the symmetric group Sym(X).

Mo(X) . . . lattice of all transformation monoids on X.
(order = containment, meet = intersection)
Alternatively: Mo(X) submonoid lattice of the monoid X^X.

Cl(X) . . . lattice of all (concrete) clones on X.
(order = containment, meet = intersection)
Alternatively: Cl(X) subclone lattice of the full clone $\varnothing := \bigcup_n X^{X^n}$.
Lattice worries

What do these lattices look like?

(lattices: Gr\(_X\), Mo\(_X\), Cl\(_X\))

Are they ugly?

What do they contain?

Is this vegetarian?

Lattices of permutation groups

Michael Pinsker (Paris 7)
Lattice worries

- What do these lattices look like?
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
- Are they ugly?
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
- Are they ugly?
- What do they contain?
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
- Are they ugly?
- What do they contain?

Is this vegetarian?
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
- Are they ugly?
- What do they contain?

Is this vegetarian?
Lattice worries

- What do these lattices look like? (lattices: $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$)
- Are they ugly?
- What do they contain?

Is this vegetarian?
Comparing the lattices

Gr(\(X\)) is a sublattice of Mo(\(X\)) is a sublattice of Cl(\(X\)).
Comparing the lattices

Gr(X) is a sublattice of Mo(X) is a sublattice of Cl(X).

Problem
Converse true?
Size of the lattices

Observations.

\[
\text{Sym}(X) = X \times X = \mathbb{O} = 2 \times X.
\]

\[
\text{Gr}(X) = \text{Mo}(X) = \text{Cl}(X) = 2^2 \times X.
\]

But:

number of finitely generated groups / monoids / clones: 2 \times X.

\[G \text{ finitely generated } \leftrightarrow G \text{ is compact}, \text{i.e., whenever } G \leq \bigvee_{i \in I} G_i, \text{ then also } G \leq \bigvee_{i \in J} G_i \text{ for some } J \subseteq I \text{ finite.}\]

Every group (monoid, clone) is the join of compact elements.

So \(\text{Gr}(X), \text{Mo}(X), \text{Cl}(X)\) are algebraic.

Fact: A complete sublattice of an algebraic lattice is algebraic and cannot have more compact elements.
Size of the lattices

Observations.

\[|\text{Sym}(X)| = |X^X| = |\emptyset| = 2^{|X|}. \]
Size of the lattices

Observations.

- $|\text{Sym}(X)| = |X^X| = |\emptyset| = 2^{|X|}$.
- $|\text{Gr}(X)| = |\text{Mo}(X)| = |\text{Cl}(X)| = 2^{2^{|X|}}$.

But: number of finitely generated groups / monoids / clones: $2^{2^{|X|}}$.

Every group (monoid, clone) is the join of compact elements.

So $\text{Gr}(X)$, $\text{Mo}(X)$, $\text{Cl}(X)$ are algebraic.

Fact: A complete sublattice of an algebraic lattice is algebraic and cannot have more compact elements.
Size of the lattices

Observations.

- $|\text{Sym}(X)| = |X^X| = |\emptyset| = 2^{|X|}$.
- $|\text{Gr}(X)| = |\text{Mo}(X)| = |\text{Cl}(X)| = 2^{2^{|X|}}$.

But: number of *finitely generated* groups / monoids / clones: $2^{|X|}$.

Michael Pinsker (Paris 7)
Size of the lattices

Observations.

- $|\text{Sym}(X)| = |X^X| = |\emptyset| = 2^{|X|}$.
- $|\text{Gr}(X)| = |\text{Mo}(X)| = |\text{Cl}(X)| = 2^{2^{|X|}}$.

But: number of *finitely generated* groups / monoids / clones: $2^{|X|}$.

If \mathcal{G} finitely generated \iff \mathcal{G} is *compact*, i.e., whenever $\mathcal{G} \leq \bigvee_{i \in I} \mathcal{G}_i$, then also $\mathcal{G} \leq \bigvee_{i \in J} \mathcal{G}_i$ for some $J \subseteq I$ finite.
Size of the lattices

Observations.

- \(|\text{Sym}(X)| = |X|^X| = |\emptyset| = 2^{|X|}|
- \(|\text{Gr}(X)| = |\text{Mo}(X)| = |\text{Cl}(X)| = 2^{2^{|X|}}|

But: number of finitely generated groups / monoids / clones: \(2^{|X|}\).

\(\mathcal{G}\) finitely generated \(\iff\) \(\mathcal{G}\) is compact, i.e., whenever \(\mathcal{G} \leq \bigvee_{i \in I} \mathcal{G}_i\), then also \(\mathcal{G} \leq \bigvee_{i \in J} \mathcal{G}_i\) for some \(J \subseteq I\) finite.

Every group (monoid, clone) is the join of compact elements.

So \(\text{Gr}(X), \text{Mo}(X), \text{Cl}(X)\) are algebraic.
Size of the lattices

Observations.

- $|\text{Sym}(X)| = |X^X| = |\emptyset| = 2^{|X|}$.
- $|\text{Gr}(X)| = |\text{Mo}(X)| = |\text{Cl}(X)| = 2^{2^{|X|}}$.

But: number of *finitely generated* groups / monoids / clones: $2^{|X|}$.

G finitely generated $\iff G$ is compact, i.e., whenever $G \leq \bigsqcup_{i \in I} G_i$, then also $G \leq \bigsqcup_{i \in J} G_i$ for some $J \subseteq I$ finite.

Every group (monoid, clone) is the join of compact elements.

So $\text{Gr}(X), \text{Mo}(X), \text{Cl}(X)$ are algebraic.

Fact: A *complete sublattice* of an algebraic lattice is algebraic and cannot have more compact elements.
Theorem (MP '06) \(\text{Cl}(X) \) is universal, i.e., every algebraic lattice with at most \(|X| \) compact elements is a complete sublattice of \(\text{Cl}(X) \).

Theorem (MP + Shelah '11) \(\text{Mo}(X) \) is universal.

Theorem (MP + Shelah '12) \(\text{Gr}(X) \) is universal.

So \(\text{Cl}(X) \) is a sublattice of \(\text{Mo}(X) \) which is a sublattice of \(\text{Gr}(X) \).
Non-vegetarian lattices

Theorem (MP ’06)

\(Cl(X) \) is universal, i.e., every algebraic lattice with at most \(2^{|X|} \) compact elements is a complete sublattice of \(Cl(X) \).
Non-vegetarian lattices

Theorem (MP ’06)

Cl(X) is *universal*, i.e., every algebraic lattice with at most $2^{|X|}$ compact elements is a complete sublattice of Cl(X).

Theorem (MP + Shelah ’11)

Mo(X) is universal.

Theorem (MP + Shelah ’12)

Gr(X) is universal.

So Cl(X) is a sublattice of Mo(X) which is a sublattice of Gr(X).
Non-vegetarian lattices

Theorem (MP ’06)
Cl(X) is universal, i.e., every algebraic lattice with at most \(2^{|X|}\) compact elements is a complete sublattice of Cl(X).

Theorem (MP + Shelah ’11)
Mo(X) is universal.

Theorem (MP + Shelah ’12)
Gr(X) is universal.
Non-vegetarian lattices

Theorem (MP ’06)

$\text{Cl}(X)$ is universal, i.e., every algebraic lattice with at most $2^{|X|}$ compact elements is a complete sublattice of $\text{Cl}(X)$.

Theorem (MP + Shelah ’11)

$\text{Mo}(X)$ is universal.

Theorem (MP + Shelah ’12)

$\text{Gr}(X)$ is universal.

So $\text{Cl}(X)$ is a sublattice of $\text{Mo}(X)$ is a sublattice of $\text{Gr}(X)$.
Embeddings of algebraic lattices into subgroup lattices of (abstract) groups already known.
Embeddings of algebraic lattices into subgroup lattices of (abstract) groups already known.

E.g. Every algebraic lattice is an interval of the subgroup lattice of a group (Tuma ’89).
Embeddings of algebraic lattices into subgroup lattices of (abstract) groups already known.

E.g. Every algebraic lattice is an interval of the subgroup lattice of a group (Tuma ’89).

Size of group equals number of compact elements.
Embeddings of algebraic lattices into subgroup lattices of (abstract) groups already known.

E.g. Every algebraic lattice is an interval of the subgroup lattice of a group (Tuma ’89).

Size of group equals number of compact elements.

Stone representation as permutation group acting on set of size $2^{|X|}$, and not $|X|$.
Local closure

A permutation group G is called (locally) closed if for all $\alpha \in \text{Sym}(X)$, if α can be interpolated by permutations from G on all finite sets, then $\alpha \in G$.

Analogous definitions for transformation monoids, clones.

A group is closed if it is the automorphism group of a relational structure with domain X.

A monoid is closed if it is the endomorphism monoid of a relational structure with domain X.

A clone is closed if it is the polymorphism clone of a relational structure with domain X.

Topological structure of groups / monoids / clones important even for universal algebraists!

Topological Birkhoff (with M. Bodirsky)

Michael Pinsker (Paris 7)
Local closure

A permutation group \mathcal{G} is called (locally) closed \iff
for all $\alpha \in \text{Sym}(X)$, if α can be interpolated by permutations from \mathcal{G} on all finite sets, then $\alpha \in \mathcal{G}$.
Local closure

A permutation group G is called (locally) closed if for all $\alpha \in \text{Sym}(X)$, if α can be interpolated by permutations from G on all finite sets, then $\alpha \in G$.

Analogous definitions for transformation monoids, clones.
Local closure

A permutation group G is called *(locally) closed* \iff for all $\alpha \in \text{Sym}(X)$, if α can be interpolated by permutations from G on all finite sets, then $\alpha \in G$.

Analogous definitions for transformation monoids, clones.

- Group is closed \iff it is the *automorphism group* of a relational structure with domain X.
- Monoid is closed \iff it is the *endomorphism monoid* of a relational structure with domain X.
- Clone is closed \iff it is the *polymorphism clone* of a relational structure with domain X.

Topological structure of groups / monoids / clones important even for universal algebraists!

Topological Birkhoff (with M. Bodirsky)

Michael Pinsker (Paris 7)
Local closure

A permutation group \mathcal{G} is called (locally) closed \iff for all $\alpha \in \text{Sym}(X)$, if α can be interpolated by permutations from \mathcal{G} on all finite sets, then $\alpha \in \mathcal{G}$.

Analogous definitions for transformation monoids, clones.

- Group is closed \iff it is the automorphism group of a relational structure with domain X.
- Monoid is closed \iff it is the endomorphism monoid of a relational structure with domain X.
- Clone is closed \iff it is the polymorphism clone of a relational structure with domain X.

Topological structure of groups / monoids / clones important even for universal algebraists!

Topological Birkhoff (with M. Bodirsky)
Lattices of closed groups / monoids / clones

Closed groups / monoids / clones form complete lattices (meet = intersection): $\text{Gr}_c(X) / \text{Mo}_c(X) / \text{Cl}_c(X)$.
Closed groups / monoids / clones form complete lattices (meet = intersection): $\text{Gr}_c(X) / \text{Mo}_c(X) / \text{Cl}_c(X)$.

Size: $2^{|X|}$. Non-algebraic!
Lattices of closed groups / monoids / clones

Closed groups / monoids / clones form complete lattices (meet = intersection): \(\text{Gr}_c(X) / \text{Mo}_c(X) / \text{Cl}_c(X) \).

Size: \(2^{|X|} \). Non-algebraic!

Theorem (MP ’09)

\(M_{2^{\aleph_0}} \) embeds into \(\text{Cl}_c(\mathbb{N}) \).

Theorem (MP + Shelah ’12)

Assume that \(\lambda < \lambda = \lambda \) and cofinality \((\lambda) > \aleph_0 \).

Then \(M_{2^{\aleph_0}} \) embeds into \(\text{Gr}_c(\lambda) \).
Lattices of closed groups / monoids / clones

Closed groups / monoids / clones form complete lattices (meet = intersection): $\text{Gr}_c(X) / \text{Mo}_c(X) / \text{Cl}_c(X)$.

Size: $2^{|X|}$. Non-algebraic!

Theorem (MP ’09)

$M_{2^{\aleph_0}}$ embeds into $\text{Cl}_c(\mathbb{N})$.

Theorem (MP + Shelah ’12)

$M_{2^{\aleph_0}}$ embeds into $\text{Gr}(\mathbb{N})$ in such a way that the groups are F_σ (= unions of closed groups).
Closed groups / monoids / clones form complete lattices (meet = intersection): $\text{Gr}_c(X) / \text{Mo}_c(X) / \text{Cl}_c(X)$.

Size: $2^{|X|}$. Non-algebraic!

Theorem (MP ’09)

$M_{2^{\aleph_0}}$ embeds into $\text{Cl}_c(\mathbb{N})$.

Theorem (MP + Shelah ’12)

$M_{2^{\aleph_0}}$ embeds into $\text{Gr}(\mathbb{N})$ in such a way that the groups are F_σ (= unions of closed groups).

Theorem (MP + Shelah ’12)

Assume that $\lambda^{<\lambda} = \lambda$ and $\text{cofinality}(\lambda) \geq \aleph_0$.
Then M_{2^λ} embeds into $\text{Gr}_c(\lambda)$.
Open problems

Problem

Does $M_2 \bigotimes \aleph_0$ embed into $Gr(N)$?

Problem

Does $M_2 \bigotimes \aleph_0$ embed into $Mo(N)$?

Problem

Do all lattices (excluding impossible ones) embed into $Gr(N)/Mo(N)/Cl(N)$?

Example of impossible: chain of length 2 \aleph_0.

Lattices of permutation groups

Michael Pinsker (Paris 7)
Open problems

Problem

Does $M_{2^{\aleph_0}}$ embed into $Gr_c(\mathbb{N})$?

Example of impossible: chain of length \aleph_0.
Open problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Does $M_{2^{\aleph_0}}$ embed into $Gr_c(\mathbb{N})$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem</td>
<td>Does $M_{2^{\aleph_0}}$ embed into $Mo_c(\mathbb{N})$?</td>
</tr>
</tbody>
</table>
Open problems

Problem
Does $M_{2^\aleph_0}$ embed into $\text{Gr}_c(\mathbb{N})$?

Problem
Does $M_{2^\aleph_0}$ embed into $\text{Mo}_c(\mathbb{N})$?

Problem
Do all lattices (excluding impossible ones) embed into $\text{Gr}_c(\mathbb{N}) / \text{Mo}_c(\mathbb{N}) / \text{Cl}_c(\mathbb{N})$?
Open problems

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does $M_{2^\aleph_0}$ embed into $Gr_c(\mathbb{N})$?</td>
</tr>
<tr>
<td>Does $M_{2^\aleph_0}$ embed into $Mo_c(\mathbb{N})$?</td>
</tr>
<tr>
<td>Do all lattices (excluding topologically impossible ones) embed into $Gr_c(\mathbb{N}) / Mo_c(\mathbb{N}) / Cl_c(\mathbb{N})$?</td>
</tr>
</tbody>
</table>

Example of impossible: chain of length 2^\aleph_0.

Lattices of permutation groups

Michael Pinsker (Paris 7)
Open problems

Problem
Does $M_{2^{\aleph_0}}$ embed into $\text{Gr}_c(\mathbb{N})$?

Problem
Does $M_{2^{\aleph_0}}$ embed into $\text{Mo}_c(\mathbb{N})$?

Problem
Do all lattices (excluding topologically impossible ones) embed into $\text{Gr}_c(\mathbb{N}) / \text{Mo}_c(\mathbb{N}) / \text{Cl}_c(\mathbb{N})$?

Example of impossible: chain of length 2^{\aleph_0}.
Lattices of permutation groups

Michael Pinsker (Paris 7)