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Synopsis
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(Nešetřil, Rödl)

Act III: Topological dynamics
(Kechris, Pestov, Todorcevic, Tsankov)

Epilogue: Schaefer’s theorem for graphs

M. Pinsker (Paris / Wien / Jerusalem) Clones on Ramsey structures ICAL 2 / 48



M. Pinsker (Paris / Wien / Jerusalem) Clones on Ramsey structures ICAL 3 / 48



Prologue

The graph satisfiability problem
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The Boolean satisfiability problem

Let Ψ be a finite set of propositional formulas.

Computational problem: Boolean-SAT(Ψ)
INPUT:

A set W of propositional variables, and
statements φ1, . . . , φn about the variables in W , where each φi is
taken from Ψ.

QUESTION: Is there an assignment of values (0 or 1) to the variables
in W such that all φi become true?

Computational complexity depends on Ψ. Always in NP.

Theorem (Schaefer ’78)
Boolean-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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The Graph Satisfiability Problem

Let E be a binary relation symbol.
(Imagine: edge relation of an undirected graph.)
Let Ψ be a finite set of first-order {E}-formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is there a graph on the vertex set W that satisfies all φi?

Computational complexity depends on Ψ. Always in NP.

Question
Is Graph-SAT(Ψ) either in P or NP-complete, for all Ψ?
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Graph-SAT: Examples

Example 1 Let Ψ1 only contain

ψ1(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ1) is NP-complete.

Example 2 Let Ψ2 only contain

ψ2(x , y , z) :=(E(x , y) ∧ ¬E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ E(y , z) ∧ ¬E(x , z))

∨ (¬E(x , y) ∧ ¬E(y , z) ∧ E(x , z))

∨ (E(x , y) ∧ E(y , z) ∧ E(x , z)) .

Graph-SAT(Ψ2) is in P.
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Graph formulas and reducts of the random graph

Let G = (V ; E) denote the random graph, i.e.,
the unique countably infinite graph which

is (ultra-)homogeneous
contains all finite (even countable) graphs.

For a graph formula ψ(x1, . . . , xn), define a relation

Rψ := {(a1, . . . ,an) ∈ V n : ψ(a1, . . . ,an)}.

For a set Ψ of graph formulas, define a structure

ΓΨ := (V ; (Rψ : ψ ∈ Ψ)).

ΓΨ is a reduct of the random graph, i.e.,
a structure with a first-order definition in G.
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Graph-SAT as Constraint Satisfaction Problem

An instance
W = {w1, . . . ,wm}
φ1, . . . , φn

of Graph-SAT(Ψ) has a positive solution↔

the sentence ∃w1, . . . ,wm.
∧

i φi holds in ΓΨ.

The decision problem
whether or not a given primitive positive sentence holds in ΓΨ

is called the Constraint Satisfaction Problem of ΓΨ (or CSP(ΓΨ)).

So Graph-SAT(Ψ) and CSP(ΓΨ) are one and the same problem.

Let’s study the reducts of the random graph!
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Act I

Reducts of homogeneous structures
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Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language

which is homogeneous, i.e.,
For all A,B ⊆ Γ finite, for all isomorphisms i : A→ B
there exists α ∈ Aut(Γ) extending i .

Γ is the Fraïssé limit of its age, i.e., its class of finite induced
substructures.

Definition
A reduct of Γ is a structure with a first-order (f.o.) definition in Γ.

Problem
Classify the reducts of Γ.
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Possible classifications

Consider two reducts ∆,∆′ of Γ equivalent iff ∆ is also a reduct of ∆′

and vice-versa.

We say that ∆ and ∆′ are first-order interdefinable.

“∆ is a reduct of ∆′” is a quasiorder on relational structures over the
same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a
complete lattice.

Finer classifications of the reducts of Γ, e.g. up to

Existential interdefinability
Existential positive interdefinability
Primitive positive interdefinability
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Example: The dense linear order

Denote by (Q;<) be the dense linear order, and set

betw(x , y , z) := {(x , y , z) ∈ Q3 : x < y < z or z < y < x};
cycl(x , y , z) := {(x , y , z) ∈ Q3 : x < y < z or z < x < y or y < z < x};

sep(x , y , z,w) := {(x , y , z,w) ∈ Q4 : . . .}.

Theorem (Cameron ’76)
Let Γ be a reduct of (Q;<). Then:

1 Γ is first-order interdefinable with (Q;<), or
2 Γ is first-order interdefinable with (Q; betw), or
3 Γ is first-order interdefinable with (Q; cycl), or
4 Γ is first-order interdefinable with (Q; sep), or
5 Γ is first-order interdefinable with (Q; =).
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Example: The random graph

Let G = (V ; E) be the random graph, and set for all k ≥ 2

R(k) := {(x1, . . . , xk ) ⊆ V k : xi distinct, number of edges odd}.

Theorem (Thomas ’91)
Let Γ be a reduct of G. Then:

1 Γ is first-order interdefinable with (V ; E), or
2 Γ is first-order interdefinable with (V ; R(3)), or
3 Γ is first-order interdefinable with (V ; R(4)), or
4 Γ is first-order interdefinable with (V ; R(5)), or
5 Γ is first-order interdefinable with (V ; =).
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Further examples

Theorem (Thomas ’91)
The homogeneous Kn-free graph has 2 reducts, up to
f.o.-interdefinability.

Theorem (Thomas ’96)

The homogeneous k -graph has 2k + 1 reducts, up to
f.o.-interdefinability.

Theorem (Junker, Ziegler ’08)
(Q;<,0) has 116 reducts, up to f.o.-interdefinability.
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Thomas’ conjecture

Conjecture (Thomas ’91)

Let Γ be homogeneous in a finite language.

Then Γ has finitely many reducts up to f.o.-interdefinability.
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Act II

The Ramsey property

M. Pinsker (Paris / Wien / Jerusalem) Clones on Ramsey structures ICAL 22 / 48



Finer classifications

A formula is existential iff
it is of the form ∃x1, . . . , xn.ψ, where ψ is quantifier-free.

A formula is existential positive iff
it is existential and does not contain negations.

A formula is primitive positive iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)
For the structure Γ := (X ; =), there exist:

1 reduct up to first order / existential interdefinability
ℵ0 reducts up to existential positive interdefinability
2ℵ0 reducts up to primitive positive interdefinability
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Groups, Monoids, Clones

Theorem

The mapping ∆ 7→ Aut(∆) is a one-to-one correspondence
between the first-order closed reducts of Γ and the closed
supergroups of Aut(Γ).
The mapping ∆ 7→ End(∆) is a one-to-one correspondence
between the existential positive closed reducts of Γ and the closed
supermonoids of Aut(Γ).
The mapping ∆ 7→ Pol(∆) is a one-to-one correspondence
between the primitive positive closed reducts of Γ and the closed
superclones of Aut(Γ).

Pol(∆) . . . Polymorphisms of ∆, i.e.,
all homomorphisms from finite powers of ∆ to ∆

Clone. . . set of finitary operations which contains all projections and
which is closed under composition
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The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.

Let Ḡ be the graph that arises by switching edges and non-edges.
Let − : V → V be an isomorphism between G and Ḡ.
For c ∈ V , let Gc be the graph that arises by switching all edges and
non-edges from c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .
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For c ∈ V , let Gc be the graph that arises by switching all edges and
non-edges from c.
Let swc : V → V be an isomorphism between G and Gc .

Theorem (Thomas ’91)
The closed groups containing Aut(G) are the following:

1 Aut(G)

2 〈{−} ∪ Aut(G)〉
3 〈{swc} ∪ Aut(G)〉
4 〈{−, swc} ∪ Aut(G)〉
5 The full symmetric group SV .

M. Pinsker (Paris / Wien / Jerusalem) Clones on Ramsey structures ICAL 25 / 48



The reducts of the random graph, revisited

Let G := (V ; E) be the random graph.
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How to find all reducts up to . . .-interdefinability?

Climb up the lattice!
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Canonical functions on the Random graph

Definition. f : V → V is canonical iff

for all x , y ,u, v ∈ V ,
if (x , y) and (u, v) have the same type,
then so do (f (x), f (y)) and (f (u), f (v)).

Examples.
The identity is canonical.
− is canonical on V .
swc is canonical on any F ⊆ V \ {c}.

f : V → V is canonical on F ⊆ V iff its restriction to F is canonical.
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Finding canonical behaviour

The class of finite graphs has the following Ramsey property:

For all graphs H
there exists a graph S such that
if the edges of S are colored with 2 colors,
then there is a copy of H in S
on which the coloring is constant.

Given f : V → V , color an edge according to the type of its image (3
possibilities).
Same for non-edges.

Conclusion: Every finite graph has a copy in G on which f is
canonical.
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Patterns in functions on the Random graph

Being canonical means:

Turning everything into edges (eE ), or
turning everything into non-edges (eN), or
behaving like −, or
being constant, or
behaving like the identity.

Let f : V → V .
If f /∈ Aut(G), then there are c,d ∈ V witnessing this.

The structure (V ; E , c,d) has similar Ramsey properties as (V ; E).
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The minimal monoids on the random graph

Theorem (Thomas ’96)
Let f : V → V , f /∈ Aut(G).
Then f generates one of the following:

A constant operation
eE

eN

−
swc

We thus know the minimal closed monoids containing Aut(G).
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The minimal clones on the random graph

Theorem (Bodirsky, P. ’09)
Let f : V n → V , f /∈ Aut(G).
Then f generates one of the following:

One of the five minimal unary functions of Thomas’ theorem;
One of 9 canonical binary injections.

We thus know the minimal closed clones containing Aut(G).
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Ramsey classes

Let N,H,P be structures in the same language.

N → (H)P

means:

For all partitions of the copies of P in N into good and bad
there exists a copy of H in N
such that the copies of P in H are all good or all bad.

Definition
A class C of structures of the same signature is called a Ramsey class
iff
for all H,P ∈ C there is N in C such that N → (H)P .
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Canonical functions on Ramsey structures

Let Γ be Ramsey (i.e., its age is a Ramsey class).

Let n be the maximum of the arities of its relations.

Definition
f : Γ→ Γ is canonical iff
for all n-tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. Let H be a finite structure in the age of Γ.
Then there is a copy of H in Γ on which f is canonical.

Thus: Any f : V → V generates a canonical function,
but it could be the identity.

We would like to fix c1, . . . , cn witnessing f /∈ Aut(Γ),
and have canonical behavior on (Γ, c1, . . . , cn).
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for all n-tuples (x1, . . . , xn), (y1, . . . , yn) of the same type
(f (x1), . . . , f (xn)) and (f (y1), . . . , f (yn)) have the same type too.

Observation. Let H be a finite structure in the age of Γ.
Then there is a copy of H in Γ on which f is canonical.

Thus: Any f : V → V generates a canonical function,
but it could be the identity.

We would like to fix c1, . . . , cn witnessing f /∈ Aut(Γ),
and have canonical behavior on (Γ, c1, . . . , cn).
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Act III

Topological dynamics
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Adding constants to Ramsey classes

Problem
If Γ is Ramsey, is (Γ, c1, . . . , cn) still Ramsey?

Theorem (Kechris, Pestov, Todorcevic ’05)
An ordered homogeneous structure ∆ is Ramsey iff
its automorphism group is extremely amenable, i.e.,
it has a fixed point whenever it acts on a compact topological space.

Easy observation (Tsankov ’10)
Every open subgroup of an extremely amenable group is extremely
amenable.

Corollary
If Γ is ordered Ramsey, then so is (Γ, c1, . . . , cn).
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Minimal monoids above Ramsey structures

Thus:

If Γ is ordered Ramsey, f : Γ→ Γ, and c1, . . . , cn ∈ Γ,
then f generates a function canonical for (Γ, c1, . . . , cn)

which behaves like f on {c1, . . . , cn}.

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ be a finite language reduct of an ordered Ramsey structure.
Then:

There are finitely many minimal closed supermonoids of Aut(Γ).
Every closed supermonoid of Aut(Γ) contains a minimal closed
supermonoid of Aut(Γ).
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Minimal clones above Ramsey structures

Going to products of Γ, we get:

Theorem (Bodirsky, P., Tsankov ’10)
Let Γ is a reduct of an ordered Ramsey structure.
Then:

There are finitely many minimal closed clones containing Aut(Γ).
(Arity bound: |S2(Γ)|.)
Every closed clone above Aut(Γ) contains a minimal one.
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Epilogue

Schaefer’s theorem for graphs
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The Graph Satisfiability Problem

Let Ψ be a finite set of graph formulas.

Computational problem: Graph-SAT(Ψ)
INPUT:

A set W of variables (vertices), and
statements φ1, . . . , φn about the elements of W ,
where each φi is taken from Ψ.

QUESTION: Is there a graph on the vertex set W that satisfies all φi?

Theorem (Bodirsky, P. ’10)
Graph-SAT(Ψ) is either in P or NP-complete, for all Ψ.
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Classification
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Open problems

Problem
If Γ is ordered Ramsey, does Aut(Γ) have only finitely many minimal
closed supergroups?

Problem
If ∆ is a reduct of a “nice” structure, is ∆ f.o.-equivalent to a structure
in a finite language?

Problem
If Γ is ordered Ramsey, does it only have finitely many reducts up to
f.o.-interdefinability?

Problem
Can a clone containing the automorphism group of an ordered
Ramsey structure Γ have infinitely many superclones?
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Open problems II

Problem (Junker, Ziegler)
If Γ is not ω-categorical, does it always have infinitely many reducts?

Problem
Determine the reducts of the random graph with a constant.

Problem
Determine the reducts of the random ordered graph.

Problem
Determine the reducts of the countable atomless Boolean algebra.

Problem
Determine the reducts of the random partial order.
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