Minimal functions on the random graph

Michael Pinsker

joint work with Manuel Bodirsky

ÉLM Université Denis-Diderot Paris 7

Logic Colloquium 2010
Let Γ be a countable relational structure in a finite language.
Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,
For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(\Gamma)$ extending i.
Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.
Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \to B$ there exists $\alpha \in \text{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

Definition

A *reduct* of Γ is a structure with a first-order (f.o.) definition in Γ.
Reducts of homogeneous structures

Let Γ be a countable relational structure in a finite language which is *homogeneous*, i.e.,

For all $A, B \subseteq \Gamma$ finite, for all isomorphisms $i : A \rightarrow B$ there exists $\alpha \in \text{Aut}(\Gamma)$ extending i.

Γ is the Fraïssé limit of its *age*, i.e., its class of finite induced substructures.

Definition

A *reduct* of Γ is a structure with a first-order (f.o.) definition in Γ.

Problem

Classify the reducts of Γ.
Possible classifications

Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.
Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.
Possible classifications

Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

"Δ is a reduct of Δ'" is a quasiorder on relational structures over the same domain.
Possible classifications

Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

“Δ is a reduct of Δ'” is a quasiorder on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.
Possible classifications

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are *first-order interdefinable*.

“Δ is a reduct of Δ'” is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of Γ, e.g. up to

Existential interdefinability
Existential positive interdefinability
Primitive positive interdefinability
Possible classifications

Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

"Δ is a reduct of Δ'" is a quasiorder on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.

Finer classifications of the reducts of Γ, e.g. up to

- Existential interdefinability
Possible classifications

Consider two reducts Δ, Δ' of Γ *equivalent* iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are *first-order interdefinable*.

"Δ is a reduct of Δ'" is a *quasiorder* on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a *complete lattice*.

Finer classifications of the reducts of Γ, e.g. up to

- Existential interdefinability
- Existential positive interdefinability
Possible classifications

Consider two reducts Δ, Δ' of Γ equivalent iff Δ is also a reduct of Δ' and vice-versa.

We say that Δ and Δ' are first-order interdefinable.

"Δ is a reduct of Δ'" is a quasiorder on relational structures over the same domain.

This quasiorder, factored by f.o.-interdefinability, becomes a complete lattice.

Finer classifications of the reducts of Γ, e.g. up to
- Existential interdefinability
- Existential positive interdefinability
- Primitive positive interdefinability
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R(k) = \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$$

Theorem (Thomas '91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$,
2. Γ is first-order interdefinable with $(V; R(3))$,
3. Γ is first-order interdefinable with $(V; R(4))$,
4. Γ is first-order interdefinable with $(V; R(5))$,
5. Γ is first-order interdefinable with $(V; =)$.
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas ’91)

Let Γ be a reduct of G. Then:
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas ’91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$, or
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas ’91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$, or
2. Γ is first-order interdefinable with $(V; R^{(3)})$, or
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas '91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$, or
2. Γ is first-order interdefinable with $(V; R^{(3)})$, or
3. Γ is first-order interdefinable with $(V; R^{(4)})$, or
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{ (x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd} \}.$$

Theorem (Thomas ’91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$, or
2. Γ is first-order interdefinable with $(V; R^{(3)})$, or
3. Γ is first-order interdefinable with $(V; R^{(4)})$, or
4. Γ is first-order interdefinable with $(V; R^{(5)})$, or
Example: The random graph

Let $G = (V; E)$ be the random graph, and set for all $k \geq 2$

$$R^{(k)} := \{(x_1, \ldots, x_k) \subseteq V^k : x_i \text{ distinct, number of edges odd}\}.$$

Theorem (Thomas '91)

Let Γ be a reduct of G. Then:

1. Γ is first-order interdefinable with $(V; E)$, or
2. Γ is first-order interdefinable with $(V; R^{(3)})$, or
3. Γ is first-order interdefinable with $(V; R^{(4)})$, or
4. Γ is first-order interdefinable with $(V; R^{(5)})$, or
5. Γ is first-order interdefinable with $(V; =)$.
Further examples

Theorem (Thomas '91)
The homogeneous K_n-free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas '96)
The homogeneous k-graph has $2k+1$ reducts, up to f.o.-interdefinability.

Theorem (Cameron '76)
$\langle \mathbb{Q}; < \rangle$ has 5 reducts, up to f.o.-interdefinability.

Theorem (Junker, Ziegler '08)
$\langle \mathbb{Q}; <, 0 \rangle$ has 116 reducts, up to f.o.-interdefinability.
Further examples

<table>
<thead>
<tr>
<th>Theorem (Thomas ’91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The homogeneous K_n-free graph has 2 reducts, up to f.o.-interdefinability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Thomas ’96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The homogeneous k-graph has 2^{k+1} reducts, up to f.o.-interdefinability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Cameron ’76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Junker, Ziegler ’08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\mathbb{Q}; <, 0)$ has 116 reducts, up to f.o.-interdefinability.</td>
</tr>
</tbody>
</table>
Further examples

<table>
<thead>
<tr>
<th>Theorem (Thomas ’91)</th>
<th>The homogeneous K_n-free graph has 2 reducts, up to f.o.-interdefinability.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (Thomas ’96)</td>
<td>The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.</td>
</tr>
</tbody>
</table>
Further examples

Theorem (Thomas ’91)

The homogeneous K_n-free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas ’96)

The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.

Theorem (Cameron ’76)

$(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.
Further examples

Theorem (Thomas ’91)

The homogeneous K_n-free graph has 2 reducts, up to f.o.-interdefinability.

Theorem (Thomas ’96)

The homogeneous k-graph has $2^k + 1$ reducts, up to f.o.-interdefinability.

Theorem (Cameron ’76)

$(\mathbb{Q}; <)$ has 5 reducts, up to f.o.-interdefinability.

Theorem (Junker, Ziegler ’08)

$(\mathbb{Q}; <, 0)$ has 116 reducts, up to f.o.-interdefinability.
Conjecture (Thomas ’91)

Let Γ be homogeneous in a finite language.
Then Γ has finitely many reducts up to f.o.-interdefinability.
A formula is existential iff it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is existential positive iff it is existential and does not contain negations.

A formula is primitive positive iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P.'08) For the structure $\Gamma := (X; =)$, there exist:

1. \aleph_0 reducts up to first order / existential interdefinability
2. \aleph_0 reducts up to existential positive interdefinability
3. \aleph_0 reducts up to primitive positive interdefinability

M. Pinsker (Paris 7)
A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.
A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

Theorem (Bodirsky, Chen, P. ’08)
For the structure $\Gamma := (X; =)$, there exist:
1. reduct up to first order / existential interdefinability
2. \aleph_0 reducts up to existential positive interdefinability
3. \aleph_0 reducts up to primitive positive interdefinability
Finer classifications

A formula is *existential* iff
it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff
it is existential and does not contain negations.

A formula is *primitive positive* iff
it is existential positive and does not contain disjunctions.
A formula is *existential* iff
it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff
it is existential and does not contain negations.

A formula is *primitive positive* iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)
For the structure $\Gamma := (X; =)$, there exist:
Finer classifications

A formula is existential iff it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is existential positive iff it is existential and does not contain negations.

A formula is primitive positive iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
Finer classifications

A formula is *existential* iff it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff it is existential and does not contain negations.

A formula is *primitive positive* iff it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. ’08)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \aleph_0 reducts up to existential positive interdefinability
Finer classifications

A formula is *existential* iff
it is of the form $\exists x_1, \ldots, x_n. \psi$, where ψ is quantifier-free.

A formula is *existential positive* iff
it is existential and does not contain negations.

A formula is *primitive positive* iff
it is existential positive and does not contain disjunctions.

Theorem (Bodirsky, Chen, P. '08)

For the structure $\Gamma := (X; =)$, there exist:

- 1 reduct up to first order / existential interdefinability
- \aleph_0 reducts up to existential positive interdefinability
- 2^{\aleph_0} reducts up to primitive positive interdefinability
Groups, Monoids, Clones

Theorem

The mapping $\Delta \mapsto \text{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.

Pol(Δ) is the set of finitary operations which contains all projections and which is closed under composition.
Theorem

The mapping $\Delta \mapsto \text{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.
Theorem

The mapping $\Delta \mapsto \text{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $\text{Aut}(\Gamma)$.

Pol(Δ)...
...Polymorphisms of Δ, i.e., all homomorphisms from finite powers of Δ to Δ...
Theorem

- The mapping $\Delta \mapsto \text{Aut}(\Delta)$ is a one-to-one correspondence between the first-order closed reducts of Γ and the closed supergroups of $\text{Aut}(\Gamma)$.
- The mapping $\Delta \mapsto \text{End}(\Delta)$ is a one-to-one correspondence between the existential positive closed reducts of Γ and the closed supermonoids of $\text{Aut}(\Gamma)$.
- The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the primitive positive closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.
The mapping $\Delta \mapsto \text{Aut}(\Delta)$ is a one-to-one correspondence between the \textbf{first-order} closed reducts of Γ and the closed supergroups of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{End}(\Delta)$ is a one-to-one correspondence between the \textbf{existential positive} closed reducts of Γ and the closed supermonoids of $\text{Aut}(\Gamma)$.

The mapping $\Delta \mapsto \text{Pol}(\Delta)$ is a one-to-one correspondence between the \textbf{primitive positive} closed reducts of Γ and the closed superclones of $\text{Aut}(\Gamma)$.

$\text{Pol}(\Delta) \ldots$ Polymorphisms of Δ, i.e., all homomorphisms from finite powers of Δ to Δ.

Pol(Δ)...
The mapping \(\Delta \mapsto \text{Aut}(\Delta) \) is a one-to-one correspondence between the first-order closed reducts of \(\Gamma \) and the closed supergroups of \(\text{Aut}(\Gamma) \).

The mapping \(\Delta \mapsto \text{End}(\Delta) \) is a one-to-one correspondence between the existential positive closed reducts of \(\Gamma \) and the closed supermonoids of \(\text{Aut}(\Gamma) \).

The mapping \(\Delta \mapsto \text{Pol}(\Delta) \) is a one-to-one correspondence between the primitive positive closed reducts of \(\Gamma \) and the closed superclones of \(\text{Aut}(\Gamma) \).

\(\text{Pol}(\Delta) \ldots \) Polymorphisms of \(\Delta \), i.e., all homomorphisms from finite powers of \(\Delta \) to \(\Delta \)

\(\text{Clone} \ldots \) set of finitary operations which contains all projections and which is closed under composition
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph.
Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
Let $- : V \to V$ be an isomorphism between G and \bar{G}.
Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
Let $- : V \to V$ be an isomorphism between G and \bar{G}.
For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
Let $\pi : V \rightarrow V$ be an isomorphism between G and \bar{G}.
For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.
Let $\text{sw}_c : V \rightarrow V$ be an isomorphism between G and G_c.

Theorem (Thomas '91)

The closed groups containing $\text{Aut}(G)$ are the following:

1. $\text{Aut}(G)$
2. $\langle \{-\} \cup \text{Aut}(G) \rangle$
3. $\langle \{\text{sw}_c\} \cup \text{Aut}(G) \rangle$
4. $\langle \{-, \text{sw}_c\} \cup \text{Aut}(G) \rangle$
5. The full symmetric group S_V.

M. Pinsker (Paris 7)
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph. Let \bar{G} be the graph that arises by switching edges and non-edges. Let $\sigma : V \to V$ be an isomorphism between G and \bar{G}.

For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c. Let $sw_c : V \to V$ be an isomorphism between G and G_c.

Theorem (Thomas '91)

The closed groups containing $\text{Aut}(G)$ are the following:

1. $\text{Aut}(G)$
2. $\langle \{\sigma\} \cup \text{Aut}(G) \rangle$
3. $\langle \{sw_c\} \cup \text{Aut}(G) \rangle$
4. $\langle \{\sigma, sw_c\} \cup \text{Aut}(G) \rangle$
5. The full symmetric group S_V.

M. Pinsker (Paris 7)
The reducts of the random graph, revisited

Let \(G := (V; E) \) be the random graph.
Let \(\bar{G} \) be the graph that arises by switching edges and non-edges.
Let \(- : V \to V \) be an isomorphism between \(G \) and \(\bar{G} \).
For \(c \in V \), let \(G_c \) be the graph that arises by switching all edges and non-edges from \(c \).
Let \(sw_c : V \to V \) be an isomorphism between \(G \) and \(G_c \).

Theorem (Thomas '91)

The closed groups containing \(\text{Aut}(G) \) are the following:

1. \(\text{Aut}(G) \)
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
Let $\neg : V \to V$ be an isomorphism between G and \bar{G}.
For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.
Let $sw_c : V \to V$ be an isomorphism between G and G_c.

Theorem (Thomas ’91)

The closed groups containing $\text{Aut}(G)$ are the following:
1. $\text{Aut}(G)$
2. $\langle \{\neg\} \cup \text{Aut}(G) \rangle$
The reducts of the random graph, revisited

Let $G := (V; E)$ be the random graph.
Let \bar{G} be the graph that arises by switching edges and non-edges.
Let $\bar{-} : V \to V$ be an isomorphism between G and \bar{G}.
For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.
Let $\text{sw}_c : V \to V$ be an isomorphism between G and G_c.

Theorem (Thomas ’91)

The closed groups containing $\text{Aut}(G)$ are the following:

1. $\text{Aut}(G)$
2. $\langle \{-\} \cup \text{Aut}(G) \rangle$
3. $\langle \{\text{sw}_c\} \cup \text{Aut}(G) \rangle$
Let $G := (V; E)$ be the random graph. Let \bar{G} be the graph that arises by switching edges and non-edges. Let $- : V \to V$ be an isomorphism between G and \bar{G}. For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c. Let $sw_c : V \to V$ be an isomorphism between G and G_c.

Theorem (Thomas ’91)

The closed groups containing $\text{Aut}(G)$ are the following:

1. $\text{Aut}(G)$
2. $\langle \{-\} \cup \text{Aut}(G) \rangle$
3. $\langle \{sw_c\} \cup \text{Aut}(G) \rangle$
4. $\langle \{-, sw_c\} \cup \text{Aut}(G) \rangle$
Let $G := (V; E)$ be the random graph.
Let \tilde{G} be the graph that arises by switching edges and non-edges.
Let $\overline{\cdot} : V \to V$ be an isomorphism between G and \tilde{G}.
For $c \in V$, let G_c be the graph that arises by switching all edges and non-edges from c.
Let $sw_c : V \to V$ be an isomorphism between G and G_c.

Theorem (Thomas ’91)
The closed groups containing $\text{Aut}(G)$ are the following:
1. $\text{Aut}(G)$
2. $\langle \{\overline{\cdot}\} \cup \text{Aut}(G) \rangle$
3. $\langle \{sw_c\} \cup \text{Aut}(G) \rangle$
4. $\langle \{\overline{\cdot}, sw_c\} \cup \text{Aut}(G) \rangle$
5. The full symmetric group S_V.

M. Pinsker (Paris 7)
How to find all reducts up to \ldots-interdefinability?

Climb up the lattice!
Canonical functions

Definition

$f: \Gamma \rightarrow \Gamma$ is canonical iff for all tuples (x_1, \ldots, x_n), (y_1, \ldots, y_n) of the same type in Γ, $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.
The identity is canonical.
$-\,$ is canonical on V.
$sw\,c$ is canonical for $(V; E, c)$.

M. Pinsker (Paris 7)
Canonical functions

Definition

$f : \Gamma \to \Gamma$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Γ

$(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.

The identity is canonical.

\neg is canonical on V.

sw is canonical for $(V; E, c)$.
Definition

$f : \Gamma \rightarrow \Gamma$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Γ, $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.

The identity is canonical.

\neg is canonical on V.

swc is canonical for $(V; E, c)$.
Canonical functions

Definition

$f : \Gamma \rightarrow \Gamma$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Γ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.
The identity is canonical.
Definition

$f : \Gamma \rightarrow \Gamma$ is *canonical* iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Γ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.

The identity is canonical.

– is canonical on V.
Canonical functions

Definition

$f : \Gamma \rightarrow \Gamma$ is canonical iff for all tuples $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of the same type in Γ $(f(x_1), \ldots, f(x_n))$ and $(f(y_1), \ldots, f(y_n))$ have the same type in Γ.

Examples on the random graph.
The identity is canonical.
- is canonical on V.
sw$_c$ is canonical for $(V; E, c)$.
Ramsey classes

Let N, H, P be structures in the same language. $N \rightarrow (H)P$ means:

For all colorings of the copies of P in N with 2 colors there exists a copy of H in N such that all the copies of P in H have the same color.

Definition

A class C of structures of the same signature is called a Ramsey class iff for all $H, P \in C$ there is $N \in C$ such that $N \rightarrow (H)P$.
Ramsey classes

Let N, H, P be structures in the same language.

\[N \rightarrow (H)^P \]

means:
Ramsey classes

Let N, H, P be structures in the same language.

$$N \rightarrow (H)^P$$

means:
For all colorings of the copies of P in N with 2 colors there exists a copy of H in N such that all the copies of P in H have the same color.
Ramsey classes

Let N, H, P be structures in the same language.

$$N \to (H)^P$$

means:

For all colorings of the copies of P in N with 2 colors there exists a copy of H in N such that all the copies of P in H have the same color.

Definition

A class \mathcal{C} of structures of the same signature is called a Ramsey class iff for all $H, P \in \mathcal{C}$ there is N in \mathcal{C} such that $N \to (H)^P$.
Observation. Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class). Let H be a finite structure in the age of Γ. Then there is a copy of H in Γ on which f is canonical.

Refining this idea, one can show: If Γ is a reduct of an ordered Ramsey structure, then every non-trivial function g generates a non-trivial function which is canonical with respect to $(\Gamma, c_1, \ldots, c_n)$ for constants c_1, \ldots, c_n.

M. Pinsker (Paris 7)

Minimal functions

LC2010 13 / 18
Observation.

Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Observation.

Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class). Let H be a finite structure in the age of Γ. Then there is a copy of H in Γ on which f is canonical.

Refining this idea, one can show: If Γ is a reduct of an ordered Ramsey structure, then every non-trivial function generates a non-trivial function which is canonical with respect to $(\Gamma, c_1, \ldots, c_n)$ for constants c_1, \ldots, c_n.
Observation.

Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Let H be a finite structure in the age of Γ.
Then there is a copy of H in Γ on which f is canonical.
Observation.

Let Γ be ordered Ramsey (i.e., its age is an ordered Ramsey class).
Let H be a finite structure in the age of Γ.
Then there is a copy of H in Γ on which f is canonical.

Refining this idea, one can show:

If Γ is a reduct of an ordered Ramsey structure,
then every non-trivial function generates a non-trivial function which is canonical
with respect to $(\Gamma, c_1, \ldots, c_n)$ for constants c_1, \ldots, c_n.
Theorem (Thomas ’96)

Let $f : V \to V$, $f \notin \text{Aut}(G)$.
Then f generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- SW_c
Theorem (Thomas ’96)

Let $f : V \to V$, $f \not\in \text{Aut}(G)$.

Then f generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- SW_c

We thus know the minimal closed monoids containing $\text{Aut}(G)$.
The minimal monoids on the random graph

Theorem (Thomas ’96)

Let \(f : V \rightarrow V, \ f \notin \text{Aut}(G) \). Then \(f \) generates one of the following:

- A constant operation
- An injection that deletes all edges
- An injection that deletes all non-edges
- \(\text{SW}_c \)

We thus know the **minimal closed monoids** containing \(\text{Aut}(G) \).

Corollary. All reducts of the random graph are model-complete.
Theorem (Bodirsky, P. ’09)

Let \(f : V^n \to V, \ f \notin \text{Aut}(G). \)

Then \(f \) generates one of the following:

- One of the five minimal unary functions of Thomas’ theorem;
- One of 9 canonical binary injections.

We thus know the minimal closed clones containing \(\text{Aut}(G) \).

Application.

Constraint Satisfaction in theoretical computer science.

M. Pinsker (Paris 7)
The minimal clones on the random graph

Theorem (Bodirsky, P. ’09)

Let \(f : V^n \rightarrow V, f \notin \text{Aut}(G) \). Then \(f \) generates one of the following:

- One of the five minimal unary functions of Thomas’ theorem;
- One of 9 canonical binary injections.

We thus know the \textit{minimal closed clones} containing \(\text{Aut}(G) \).
Theorem (Bodirsky, P. ’09)

Let \(f : V^n \to V, \ f \notin \text{Aut}(G). \)

Then \(f \) generates one of the following:
- One of the five minimal unary functions of Thomas’ theorem;
- One of 9 canonical binary injections.

We thus know the minimal closed clones containing \(\text{Aut}(G) \).

Application. Constraint Satisfaction in theoretical computer science.
Theorem (Bodirsky, P., Tsankov '10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

- There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
- Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
- There are finitely many minimal closed clones containing $\text{Aut}(\Gamma)$.

(Arity bound: $|S^2(\Gamma)|$.)

Every closed clone above $\text{Aut}(\Gamma)$ contains a minimal one.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

1. There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
2. Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
3. There are finitely many minimal closed clones containing $\text{Aut}(\Gamma)$.
 (Arity bound: $|\text{S}_2(\Gamma)|$.
4. Every closed clone above $\text{Aut}(\Gamma)$ contains a minimal one.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

- There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
- Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
- There are finitely many minimal closed clones containing $\text{Aut}(\Gamma)$.
 (Arity bound: $|S_{\leq 2}(\Gamma)|$.)
- Every closed clone above $\text{Aut}(\Gamma)$ contains a minimal one.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:
- There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
- Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

- There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
- Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
- There are finitely many minimal closed clones containing $\text{Aut}(\Gamma)$.
 (Arity bound: $|S_2(\Gamma)|$.)
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure. Then:

- There are finitely many minimal closed supermonoids of $\text{Aut}(\Gamma)$.
- Every closed supermonoid of $\text{Aut}(\Gamma)$ contains a minimal closed supermonoid of $\text{Aut}(\Gamma)$.
- There are finitely many minimal closed clones containing $\text{Aut}(\Gamma)$. (Arity bound: $|S_2(\Gamma)|$.)
- Every closed clone above $\text{Aut}(\Gamma)$ contains a minimal one.
Theorem (Bodirsky, P., Tsankov '10)

Let \(\Gamma \) be a finite language reduct of an ordered Ramsey structure which is finitely bounded. Then the following problem is decidable:

Input: First-order formulas \(\psi \) and \(\phi_1, \ldots, \phi_n \) over \(\Gamma \).

Question: Does \(\psi \) have a primitive positive definition from \(\phi_1, \ldots, \phi_n \)?

Same for existential positive / existential.
Theorem (Bodirsky, P., Tsankov ’10)

Let \(\Gamma \) be a finite language reduct of an ordered Ramsey structure which is finitely bounded. Then the following problem is decidable:

Input: First-order formulas \(\psi \) and \(\phi_1, \ldots, \phi_n \) over \(\Gamma \).

Question: Does \(\psi \) have a primitive positive definition from \(\phi_1, \ldots, \phi_n \)?

Same for existential positive / existential.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure which is finitely bounded.
Decidability of definability

Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

- Input: First-order formulas ψ and ϕ_1, \ldots, ϕ_n over Γ.
- Question: Does ψ have a primitive positive definition from ϕ_1, \ldots, ϕ_n?
- Same for existential positive / existential.
Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

Input: First-order formulas ψ and ϕ_1, \ldots, ϕ_n over Γ.

Question: Does ψ have a primitive positive definition from ϕ_1, \ldots, ϕ_n?
Decidability of definability

Theorem (Bodirsky, P., Tsankov ’10)

Let Γ be a finite language reduct of an ordered Ramsey structure which is finitely bounded.

Then the following problem is decidable:

Input: First-order formulas ψ and ϕ_1, \ldots, ϕ_n over Γ.

Question: Does ψ have a primitive positive definition from ϕ_1, \ldots, ϕ_n?

Same for existential positive / existential.
Most important problem

Does Thomas’ conjecture hold for Ramsey structures?