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Term equivalence of algebras

Fix a set X (here: infinite).
Consider an algebra A = (X ,FA) with domain X .

Fact
Many algebraic properties of A depend only on the
term operations of A.
E.g. Subalgebras, Congruences, Automorphisms.

Definition
Terms of A: All operations on X which can be built by composing
operations from FA and the projections. We write 〈FA〉.

Definition
For algebras A,B on X , we write A � B iff 〈FA〉 ⊆ 〈FB〉.
We write A ∼ B iff 〈FA〉 = 〈FB〉.
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Clones

Fact
The order � on the set of algebras on X , factored by ∼,
is a complete lattice Cl(X ).

Definition
The elements of Cl(X ) (=classes of term equivalent algebras)
are called clones.

Equivalent definition

For all n ≥ 1, set O(n) := X X n
= {f : X n → X}.

Write O =
⋃

n O(n).
A clone is a subset C of O which

Contains all projections and
Is closed under composition.
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Examples of clones

The full clone O.
The set P of all projections.
For a partial order ≤, the set of all
monotone functions.
For a relation ρ ⊆ X I , the set of all f which preserve this relation.
Every clone is of this form.
The set of idempotent operations
(all f that satisfy f (x , . . . , x) = x).
For a topological space X = (X ,T), the set of all continuous
operations which map some product X n into X .
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The lattice operations

Fact
If Ci , i ∈ I are clones, then so is their intersection.

Thus
∧

i∈I Ci =
⋂

i∈I Ci .

Fact∨
i∈I Ci = 〈

⋃
i∈I Ci〉.

Problem
What does Cl(X ) look like?
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Picture of the clone lattice

w
P

w O
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Properties of the clone lattice

Fact

The size of the clone lattice is 22|X |
.

Proof
For every A ⊆ X , take the characteristic function fA ∈ O(1).
Every set of such functions generates a different clone.

Fact
Cl(X ) is algebraic: It is the lattice of ideals of a ∨-semilattice S.

S consists of the finitely generated (“compact”) clones.
S has size 2|X |.

Theorem (2006)

Cl(X ) contains all algebraic lattices with 2|X | compact elements as
complete sublattices.
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Set Theory→ Clones
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Dual atoms of the clone lattice

Fact

The size of the clone lattice is 22|X |
.

Proof 2
Let U be an ultrafilter on X .
CU := {f ∈ O : ∀A /∈ U (f [An] /∈ U)} is a clone.

Proof 3
For f ∈ O, set Fix(f ) := {x ∈ X : f (x , . . . , x) = x}.
DU := {f ∈ O : Fix(f ) ∈ U} is a clone.

Theorem
(Rosenberg 76; Marchenkov 81; Goldstern & Shelah 02)

The clone lattice has 22|X |
dual atoms.
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Dual atomicity of the clone lattice

Problem (Gavrilov 59)
Is every clone 6= O contained in a dual atom of the clone lattice?

Remark
For finite X : Yes.
(Trivial application of Zorn’s lemma.)

Theorem (Goldstern & Shelah 05,07)

If |X | is regular and 2|X | = |X |+, then the answer is no.

Method
So-called creatures which measure the growth of functions.
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Dual atoms containing O(1)

Theorem (Gavrilov 65)
On countable X , there exist exactly two dual atoms T1,T2 which
contain O(1).

Theorem (Goldstern & Shelah 02)
The same is true if |X | is a weakly compact cardinal.

Theorem (Goldstern & Shelah 02)
If |X | satisfies a certain negative partition property
(which holds in particular for all successors of regulars ≥ ℵ2),
then there exist 22|X |

dual atoms containing O(1).

Intuition
Unary operations: Pigeonhole principle.
Higher arity operations: “Real” partition properties.
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More on T1, T2

Theorem (2004)
T1 has a nice (finite) generating system and is well-understood.

We do not really understand T2.

Observation
If X is equipped with the discrete topology, then O(n) = X X n

is the Baire
space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)
T1 is a Borel set in O.

Theorem (Goldstern 04)
T2 is a complete co-analytic set.
In particular, it is not countably generated over O(1).

M. Pinsker (Caen) Clones January 2009 15 / 28



More on T1, T2

Theorem (2004)
T1 has a nice (finite) generating system and is well-understood.

We do not really understand T2.

Observation
If X is equipped with the discrete topology, then O(n) = X X n

is the Baire
space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)
T1 is a Borel set in O.

Theorem (Goldstern 04)
T2 is a complete co-analytic set.
In particular, it is not countably generated over O(1).

M. Pinsker (Caen) Clones January 2009 15 / 28



More on T1, T2

Theorem (2004)
T1 has a nice (finite) generating system and is well-understood.

We do not really understand T2.

Observation
If X is equipped with the discrete topology, then O(n) = X X n

is the Baire
space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)
T1 is a Borel set in O.

Theorem (Goldstern 04)
T2 is a complete co-analytic set.
In particular, it is not countably generated over O(1).

M. Pinsker (Caen) Clones January 2009 15 / 28



More on T1, T2

Theorem (2004)
T1 has a nice (finite) generating system and is well-understood.

We do not really understand T2.

Observation
If X is equipped with the discrete topology, then O(n) = X X n

is the Baire
space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)
T1 is a Borel set in O.

Theorem (Goldstern 04)
T2 is a complete co-analytic set.
In particular, it is not countably generated over O(1).

M. Pinsker (Caen) Clones January 2009 15 / 28



More on T1, T2

Theorem (2004)
T1 has a nice (finite) generating system and is well-understood.

We do not really understand T2.

Observation
If X is equipped with the discrete topology, then O(n) = X X n

is the Baire
space. The sum space O is again homeomorphic to the Baire space.

Theorem (2004)
T1 is a Borel set in O.

Theorem (Goldstern 04)
T2 is a complete co-analytic set.
In particular, it is not countably generated over O(1).

M. Pinsker (Caen) Clones January 2009 15 / 28



Monoidal intervals

Fix a transformation monoid M ⊆ O(1).
Consider the set of all clones C with C ∩ O(1) = M.
This set is in interval of the clone lattice.

Definition
Such intervals are called monoidal.

Fact
The monoidal intervals are a natural partition of the clone lattice.

Problem
What do they look like?
What cardinalities can they have?
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Monoidal intervals

wP

wPol(P)

w
M

wPol(M)

wO(1)

w O = Pol(O(1))
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Cardinalities of monoidal intervals

Theorem (2005)

If L is a dually algebraic distributive lattice with ≤ 2|X | compact
elements, then it is isomorphic to a monoidal interval.

Corollary

For all λ ≤ 2|X |, there are monoidal intervals of cardinality
λ and
2λ.

What about 2|X | < λ < 22|X |
, with λ not the cardinality of a power set?

Theorem (Abraham, Goldstern, P. 07)
It is consistent with ZFC that there exists no algebraic lattice of
cardinality λ (with ≤ 2|X | compact elements).
It is also consistent that there exists a monoidal interval of size λ.
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It is consistent with ZFC that there exists no algebraic lattice of
cardinality λ (with ≤ 2|X | compact elements).
It is also consistent that there exists a monoidal interval of size λ.
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Clones→ Model theory
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Reducts of relational structures

Γ = (X ,R) . . . relational structure.

Problem
Determine the reducts of Γ,
i.e. all structures first-order definable from Γ.

Traditionally: Γ1 ∼ Γ2 iff Γ1 has a first-order definition in Γ2 and
vice-versa.

Examples

Cameron ’76: 5 reducts of (Q, <).
Junker & Ziegler ’08: 116 reducts of (Q, <,a).
Thomas ’91: 5 reducts of the random graph.
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First order definability and permutations

Definition
Aut(Γ) := { automorphisms of Γ}.
Let G be a set of permutations.
Inv(G) := {R : R invariant under all g ∈ G}.

Fact
Inv Aut= closure operator on the relational structures.
Aut Inv= closure operator on the sets of permutations.

Theorem (Ryll-Nardzewski)
Let Γ be ω-categorical.
Then Inv Aut(Γ) = fo(Γ).

Corollary
The reducts of Γ correspond to the closed groups containing Aut(Γ).
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Primitive positive definability and operations

Problem
Given a structure Γ, determine its reducts up to primitive positive
interdefinability.

Formulas of the form ∃x1, . . . , xn φ1 ∧ . . . ∧ φm,
with φi atomic, are called primitive positive.

Definition
Pol(Γ) := {f ∈ O : f preserves all relations of Γ}.
For F ⊆ O, set Inv(F) := {R : R is invariant under all f ∈ F}.

Fact
Inv Pol= closure operator on the relational structures.

Pol Inv= closure operator on the sets of operations.
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Primitive positive definability and operations

Fact
The Pol Inv-closed sets of operations are precisely the closed clones.

Theorem (Bodirsky & Nešetřil ’06)
Let Γ be ω-categorical. Then Inv Pol(Γ) = pp(Γ).

Corollary
The reducts of Γ, up to pp-interdefinability,
correspond to the closed clones containing Aut(Γ).
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The reducts of equality

First step
Reducts of the simplest structure, Γ := (X ,=).

Observation
The reducts of (X ,=) correspond to the closed clones containing all
permutations.

Theorem (Bodirsky, Chen, P. 2008)
There are uncountably many reducts of (X ,=) up to
pp-interdefinability.
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The reducts of equality
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Future projects

Problem
Determine the reducts of other nice ω-categorical structures, such as

The random graph
The unbounded dense linear order.
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Connection to CSP

Constraint Satisfaction Problem CSP(Γ)
Fixed: A structure Γ (“template”).
Input: A finite structure ∆.
Question: Does there exist a homomorphism ∆→ Γ?

Fact
Complexity of CSP(Γ) (polynomial time-) invariant under pp-definitions.

Consequence
For ω-categorical Γ, the Galois connection Inv-Pol can be used.
This is called the “algebraic approach” to CSP.
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