Algebraic lattices are complete sublattices of the clone lattice over an infinite set

M. Pinsker

Algebra
Vienna University of Technology
Wien, Austria

9 June, 2006 / Budapest
Outline

1. The clone lattice
2. How complicated is the clone lattice?
3. The clone lattice on finite X is quite complicated
4. Monoidal intervals
5. The clone lattice on infinite X is very complicated
6. Remarks and outlook
The clone lattice

\(X \ldots \) base set.

\(\mathcal{O}^{(n)} = \mathcal{X}^{\mathcal{X}^n} = \{ f : \mathcal{X}^n \to \mathcal{X} \} \ldots n\text{-ary functions on } \mathcal{X}.

\(\mathcal{O} = \bigcup_{n \geq 1} \mathcal{O}^{(n)} \ldots \) finitary operations on \(\mathcal{X} \).
The clone lattice

$X \ldots$ base set.

$\mathcal{O}^{(n)} = X^X^n = \{ f : X^n \to X \} \ldots n$-ary functions on X.

$\mathcal{O} = \bigcup_{n \geq 1} \mathcal{O}^{(n)} \ldots$ finitary operations on X.

Definition

$\mathcal{C} \subseteq \mathcal{O}$ clone iff
The clone lattice

$X \ldots$ base set.

$\mathcal{O}^{(n)} = X^X^n = \{ f : X^n \rightarrow X \} \ldots n$-ary functions on X.

$\mathcal{O} = \bigcup_{n \geq 1} \mathcal{O}^{(n)} \ldots$ finitary operations on X.

Definition

$\mathcal{C} \subseteq \mathcal{O}$ clone iff

- \mathcal{C} contains the projections and
- \mathcal{C} closed under composition.
The clone lattice

\(X \) ... base set.

\(\mathcal{O}^{(n)} = X^X = \{ f : X^n \to X \} \) ... \(n \)-ary functions on \(X \).

\(\mathcal{O} = \bigcup_{n \geq 1} \mathcal{O}^{(n)} \) ... finitary operations on \(X \).

Definition

\(\mathcal{C} \subseteq \mathcal{O} \) clone iff

- \(\mathcal{C} \) contains the projections and
- \(\mathcal{C} \) closed under composition.

\(Cl(X) = \{ \mathcal{C} \subseteq \mathcal{O} : \mathcal{C} \) clone\} \)... lattice of clones (with inclusion).
The clone lattice

X . . . base set.

$\mathcal{O}^{(n)} = X^X^n = \{f : X^n \to X\}$. . . n-ary functions on X.

$\mathcal{O} = \bigcup_{n \geq 1} \mathcal{O}^{(n)}$. . . finitary operations on X.

Definition

$\mathcal{C} \subseteq \mathcal{O}$ clone iff

- \mathcal{C} contains the projections and
- \mathcal{C} closed under composition.

$Cl(X) = \{\mathcal{C} \subseteq \mathcal{O} : \mathcal{C}$ clone$\}$. . . lattice of clones (with inclusion).

Post’s theorem

$|X| = 2 \to Cl(X)$ completely known ($|Cl(X)| = \aleph_0$).
How complicated is the clone lattice?

Problem

Describe the clone lattice for $|X| \geq 3$.
How complicated is the clone lattice?

Problem

Describe the clone lattice for $|X| \geq 3$.

Solving this is believed impossible.
How complicated is the clone lattice?

Problem

Describe the clone lattice for $|X| \geq 3$.

Solving this is believed impossible because...

The clone lattice is large:

$$|Cl(X)| = 2^\aleph_0$$ if $3 \leq |X| < \aleph_0$

$$|Cl(X)| = 2^{2^{|X|}}$$ if $|X| \geq \aleph_0$

we have (despite considerable effort) so far failed to do so.

M. Pinsker (Vienna University of Technology)
How complicated ist the clone lattice?

Problem

Describe the clone lattice for $|X| \geq 3$.

Solving this is believed impossible

..because...

- The clone lattice is large:

 $|Cl(X)| = 2^{\aleph_0}$ if $3 \leq |X| < \aleph_0$

 $|Cl(X)| = 2^{2^{\aleph_0}}$ if $|X| \geq \aleph_0$
How complicated ist the clone lattice?

Problem

Describe the clone lattice for $|X| \geq 3$.

Solving this is believed impossible

..because...

- The clone lattice is large:

 $|Cl(X)| = 2^{\aleph_0}$ if $3 \leq |X| < \aleph_0$

 $|Cl(X)| = 2^{2^{|X|}}$ if $|X| \geq \aleph_0$

- we have (despite considerable effort) so far failed to do so.
Theorem (Bulatov 1992)

|\(|X| \geq 3 \rightarrow\) the subsemigroup lattice of the additive semigroup of the natural numbers embeds into \(Cl(X)\).|

Corollary

|\(|X| \geq 3 \rightarrow\) \(Cl(X)\) does not satisfy any non-trivial identity.|
Reasons to believe

Theorem (Bulatov 1992)

\(|X| \geq 3 \rightarrow \) the subsemigroup lattice of the additive semigroup of the natural numbers embeds into \(Cl(X)\).

Corollary

\(|X| \geq 3 \rightarrow \) \(Cl(X)\) does not satisfy any non-trivial identity.
Reasons to believe

Theorem (Bulatov 1992)

\[|X| \geq 3 \rightarrow \text{the subsemigroup lattice of the additive semigroup of the natural numbers embeds into } Cl(X). \]

Corollary

\[|X| \geq 3 \rightarrow Cl(X) \text{ does not satisfy any non-trivial identity.} \]

Theorem (Bulatov 1993)

\[|X| \geq 4 \rightarrow \text{every countable product of finite lattices embeds into } Cl(X). \]
Reasons to believe

Theorem (Bulatov 1992)

\[|X| \geq 3 \rightarrow \text{the subsemigroup lattice of the additive semigroup of the natural numbers embeds into } Cl(X). \]

Corollary

\[|X| \geq 3 \rightarrow Cl(X) \text{ does not satisfy any non-trivial identity.} \]

Theorem (Bulatov 1993)

\[|X| \geq 4 \rightarrow \text{every countable product of finite lattices embeds into } Cl(X). \]

Corollary

\[|X| \geq 4 \rightarrow Cl(X) \text{ does not satisfy any non-trivial quasi-identity.} \]
Monoidal intervals

For any monoid \(G \subseteq \mathcal{O}^{(1)} \),

\[J_G = \{ C \in \text{Cl}(X) : C \cap \mathcal{O}^{(1)} = G \} \]

is an interval of \(\text{Cl}(X) \), called a \textit{monoidal} interval.
For any monoid $G \subseteq \emptyset^{(1)}$,

$$I_G = \{ C \in Cl(X) : C \cap \emptyset^{(1)} = G \}$$

is an interval of $Cl(X)$, called a monoidal interval.

The monoidal intervals are a partition of $Cl(X)$.
Monoidal intervals

For any monoid $g \subseteq \varnothing^{(1)}$,

$$I_g = \{ C \in Cl(X) : C \cap \varnothing^{(1)} = g \}$$

is an interval of $Cl(X)$, called a monoidal interval.

The monoidal intervals are a partition of $Cl(X)$.

X finite: Monoidal intervals can be finite, or countably infinite, or size continuum.
Monoidal intervals

For any monoid \(G \subseteq \emptyset^{(1)} \),

\[I_G = \{ C \in Cl(X) : C \cap \emptyset^{(1)} = G \} \]

is an interval of \(Cl(X) \), called a monoidal interval.

The monoidal intervals are a partition of \(Cl(X) \).

\(X \) finite: Monoidal intervals can be finite, or countably infinite, or size continuum.

Theorem (P. 2005)

\(X \) infinite, \(L \) completely distributive algebraic with at most \(2^{|X|} \) compact elements \(\rightarrow \)

\(1 + L \) is a monoidal interval of \(Cl(X) \).
Monoidal intervals

\[\emptyset \]

\[\emptyset^{(1)} \]

\[\mathcal{M} \]

\[\emptyset \]

\[\emptyset^{(1)} \]

\[\mathcal{M} \]
Monoidal intervals

\[\emptyset = \text{Pol}(\emptyset^{(1)}) \]
Monoidal intervals

$\emptyset = \text{Pol}(\emptyset^{(1)})$

$\emptyset^{(1)}$

$\text{Pol}(\mathcal{J})$

\mathcal{J}

\emptyset
Monoidal intervals

\[\phi = \text{Pol}(\phi^{(1)}) \]

\[\text{Pol}(\mathcal{J}) \]

\[\mathcal{O}, \mathcal{J} \]
The clone lattice on infinite X is very complicated

Some basic **facts** about the clone lattice:
The clone lattice on infinite X is very complicated

Some basic facts about the clone lattice:

- $Cl(X)$ is an algebraic lattice.
The clone lattice on infinite X is very complicated

Some basic **facts** about the clone lattice:

- $\text{Cl}(X)$ is an *algebraic* lattice.
- $C \in \text{Cl}(X)$ *compact* iff C is finitely generated.
The clone lattice on infinite X is very complicated

Some basic **facts** about the clone lattice:

- $\text{Cl}(X)$ is an *algebraic* lattice.
- $C \in \text{Cl}(X)$ *compact* iff C is finitely generated.
- X finite $\rightarrow \text{Cl}(X)$ has $\aleph_0 = |\emptyset|$ compact clones.
The clone lattice on infinite X is very complicated

Some basic **facts** about the clone lattice:

- $Cl(X)$ is an *algebraic* lattice.
- $\mathcal{C} \in Cl(X)$ *compact* iff \mathcal{C} is finitely generated.
- X finite \rightarrow $Cl(X)$ has $\aleph_0 = |\emptyset|$ compact clones.
- X infinite \rightarrow $Cl(X)$ has $2^{|X|} = |\emptyset|$ compact clones.
The clone lattice on infinite X is very complicated

Some basic facts about the clone lattice:

- $Cl(X)$ is an algebraic lattice.
- $C \in Cl(X)$ compact iff C is finitely generated.
- X finite \rightarrow $Cl(X)$ has $\aleph_0 = |\emptyset|$ compact clones.
- X infinite \rightarrow $Cl(X)$ has $2^{\aleph_0} = |\emptyset|$ compact clones.

Theorem (P. 2006)

X infinite \rightarrow Every algebraic lattice with at most 2^{\aleph_0} compact elements is a complete sublattice of $Cl(X)$.
Remarks and Outlook

Theorem (Bulatov)

M_ω does not embed into the clone lattice over any finite set.
Remarks and Outlook

Theorem (Bulatov)

\(M_\omega\) does not embed into the clone lattice over any finite set.

...so my theorem does not hold on finite \(X\).
Remarks and Outlook

Theorem (Bulatov)

M_ω does *not* embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

X finite $\rightarrow Cl(X)$ satisfies a certain infinite quasi-identity.
Remarks and Outlook

Theorem (Bulatov)

\[M_\omega \text{ does not embed into the clone lattice over any finite set.} \]

...so my theorem does not hold on finite \(X \).

Theorem (Bulatov)

\[X \text{ finite } \rightarrow \text{Cl}(X) \text{ satisfies a certain infinite quasi-identity.} \]

The latter theorem does not hold on infinite \(X \)!
Remarks and Outlook

Theorem (Bulatov)

M_ω does not embed into the clone lattice over any finite set.

...so my theorem does not hold on finite X.

Theorem (Bulatov)

X finite $\rightarrow Cl(X)$ satisfies a certain infinite quasi-identity.

The latter theorem does not hold on infinite X!

Problem

X infinite. Is every algebraic lattice with at most $2^{|X|}$ compact elements an interval of $Cl(X)$? Even a monoidal interval?