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Abstract. To every locally closed clone, one can assign a larger clone
in a canonical way. We examine properties of such extensions, and show
that unfortunately, the most desirable properties do not hold.

1. Local clones and their canonical extensions

Let X be an infinite set, denote for every n ≥ 1 the set of n-ary operations
onX, and set O :=

∪
n≥1 O(n) to be the set of all finitary operations onX. A

clone is a subset of O which is closed under composition and which contains
all projections. This notion is a generalization of a transformation monoid,
i.e., a subset of O(1) which is closed under composition and which contains
the identity operation.

If X is equipped with the discrete topology, then we naturally obtain a
topology on O if we view it as the sum space of the product spaces O(n) =
XXn

. A clone is locally closed, or local, or simply closed iff it is a closed set
in this topology. (The first two notions are used among universal algebraists;
the last one is confusing since there are two closure operators acting on O,
the topological and the algebraic one, but it is used for topologically closed
permutation groups.)

Since intersections of arbitrary sets of clones are again clones, the set of
all clones on X forms a complete lattice Cl(X) with respect to inclusion.
For the same reason, the set of all local clones forms a lattice Clloc, which
is a subset (but not a sublattice) of Cl(X). Most of what is known on the
lattice Cl(X) has been summarized in [GP08], and the structure of Clloc(X)
has been further investigated in [Pin]. The lattices Cl(X) and Clloc(X) do
not seem to have too much in common; they already differ considerably in

size (|Cl(X) = 22
|X|

whereas |Clloc(X)| = 2|X|).
A clone is called maximal iff it is a dual atom of Cl(X). A local clone

is called locally maximal iff it is a dual atom of Clloc(X). Observe that
local clones can, at least in theory, be maximal, and that they can be locally
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maximal but not maximal. Clearly, maximality implies local maximality. In
this paper, we will be concerned with (global) maximality of locally maximal
local clones.

We note that Clloc(X) is not dually atomic ([RS82]; see also [GP08], [GSb]
or [BCP]), i.e., there exists a local clone which is not contained in a locally
maximal one. It is still unknown whether Cl(X) is dually atomic, although
it is at least not provable in ZFC that it is [GSa]. A set of local clones which
is cofinal in Clloc(X) has been found in [RS82], [RS84] and [RS00].

In order to understand local clones, one uses a characterization of such
clones which depends on the following definition.

Definition 1. Let R ⊆ Xm be a relation, where m ≥ 1 is finite.

• Let f ∈ O(n). We say that f preserves R iff whenever x1, . . . , xm ∈
Xn are so that they belong toR componentwise, then (f(x1), . . . , f(xm))
also belongs to R.

• We write Pol(R) for the set of all f ∈ O which preserve the relation
R; the elements of Pol(R) are called polymorphisms of R.

• Given a set of relations R, we also write Pol(R) for the set of all
f ∈ O which preserve all R ∈ R (so Pol(R) =

∩
R∈R Pol(R)).

It is easy to check that Pol(R) is always a local clone, and in fact

Theorem 2 ([Rom77]). The local clones are exactly the sets of operations
of the form Pol(R).

Clearly every locally maximal clone is of the form Pol(R) for a single
relation R. Inspired by the question

When is a locally maximal clone also maximal in Cl(X)?

one can weaken the condition of preservation of R quite naturally as follows,
obtaining a larger clone:

Definition 3. Let R ⊆ Xm be a relation.

• Let f ∈ O(n). We say that f morally preserves R iff there is
an equivalence relation θ = θf on Xn with finitely many classes
such that for all x1, . . . , xm ∈ Xn which are equivalent with re-
spect to θf it is true that if (x1, . . . , xm) ∈ R componentwise, then
(f(x1), . . . , f(xm)) ∈ R.

• We write Pol∗(R) for the set of all f ∈ O which morally preserve R.
• Pol∗(R), where R is a set of relations, is defined as Pol∗(R) =∩

R∈R Pol∗(R).

It is easy to see the following:

Fact 4. Pol∗(R) (and hence, Pol∗(R)) is a clone.

In the notion of moral preservation, we do not demand a function to really
preserve a relation, but to preserve it on each of the finitely many classes of
θf . In particular, if a function f preserves a relation R, then it also morally
preserves it, since we can set θf := (Xn)2. Therefore we have
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Fact 5. Pol(R) ⊆ Pol∗(R).

The following less obvious fact makes the concept interesting. It says
that unless R is essentially unary, i.e., unless Pol(R) = Pol(S) for a unary
relation S ⊆ X, the clone Pol∗(R) properly contains Pol(R). We say that R
is pp-definable from a structure Γ with domain X iff it can be defined using
a primitive positive formula over the relations of Γ.

Proposition 6. The following are equivalent:

(1) Pol(R) = Pol∗(R).
(2) R is pp-definable from some relational structure (X,S), where S ⊆

X.
(3) R is essentially unary, i.e., Pol(R) = Pol(S) for some unary relation

S ⊆ X.

We remark that Pol(S) is a maximal clone for all proper non-empty sub-
sets S of X (see [RS82]).

A first conjecture of the authors of this paper was that unless R is es-
sentially unary, Pol∗(R) is a cover of Pol(R) in the lattice Cl(X), at least
if Pol(R) is locally maximal. This belief was nourished by the observation
that this was true for equivalence relations:

Proposition 7. Let R be an equivalence relation. Then Pol(R) is maximal
in Cl(X) iff Pol∗(R) = O.
In fact, Pol∗(R) is the unique cover of Pol(R), i.e. Pol(R) ( C iff Pol∗(R) ⊆
C for all (global) clones C .

We remark that Pol(R) is locally maximal for all non-trivial equivalence
relations R (see [RS84]).

It turns out, however, that the “cover conjecture” does not hold.

Proposition 8. There is a binary relation R such that

• Pol(R) is locally maximal, and
• Pol∗(R) is not a cover of Pol(R) in Cl(X).

Although Pol∗(R) is not a cover of Pol(R) in general, it could still be true
that the additional assumption Pol∗(R) = O implies that there is nothing in
between these two clones. So we were hoping for a while that the following
“maximality conjecture” holds:

If Pol(R) locally maximal but not (globally) maximal, then
this is witnessed by Pol∗(R), i.e. Pol∗(R) ̸= O.

If this were true, it would very much facilitate proving global maximality
for locally maximal clones: Without that statement, one would have to
show that for any function f /∈ Pol(R), the only clone containing f and
Pol(R) is O, whereas with the statement one would only have to prove that
Pol∗(R) = O, so we are given all functions f /∈ Pol(R) for which we can
find an equivalence relation showing f ∈ Pol∗(R) for free. Indeed, with
this maximality criterion at hand, one would be spared the often technical
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procedure of composing functions and need only find a partition for every
operation f which witnesses f ∈ Pol∗(R).

The statement turned out to be true for a number of nice relations.

Proposition 9. Let R be a non-trivial equivalence relation, a locally bounded
partial order, or the graph of a fixed point free permutation on X all of whose
cycles have the same prime length. Then:

• Pol(R) is locally maximal, and
• Pol(R) is maximal iff Pol∗(R) = O.

In the end, however, the maximality conjecture turned out to be false.

Proposition 10. There exists a binary relation R such that

• Pol∗(R) = O, and
• Pol(R) is locally maximal, and
• Pol(R) is not maximal.

The following sections contain the proofs of the results of this section.

1.1. Notation. When R is a binary relation, we will also write a R b for
(a, b) ∈ R. If the arity of f ∈ O has not yet been given a name, we may
denote it by nf . If a ∈ Xn is a tuple, we write ai for its i-th component, for
all 1 ≤ i ≤ n. For an m-ary relation R ⊆ Xm and n ≥ 1, we write Rn for
the m-ary relation on Xn induced by R componentwise: If x1, . . . , xm ∈ Xn,
then (x1, . . . , xm) ∈ Rn iff they belong to R componentwise.

2. Basic properties of the canonical extension

This section contains the proof of Proposition 6. In a first lemma, we
establish the equivalence between items (2) and (3) of that proposition.

Lemma 11. Pol(R) = Pol(S) for some subset S ⊆ X iff R has a pp defini-
tion from S and vice-versa.

Proof. It is clear that the structure (X,S) is ω-categorical, i.e., its first-
order theory has precisely one countably infinite model up to isomorphisms.
It then follows from [BN06] that a relation is pp-definable from S iff it is
preserved by all functions in Pol(S).

Therefore, if R has a pp definition from S, then it is invariant under
Pol(S), implying Pol(R) ⊇ Pol(S). Also, (X,R) is ω-categorical if R is
definable from S, so by the same argument, with the roles of S and R
reversed, we get Pol(R) ⊆ Pol(S).

For the other direction, observe that Pol(R) = Pol(S) implies that R is
preserved by Pol(S) and vice-versa. Since S is ω-categorical, we get that R
is pp-definable from S. But then R is ω-categorical as well, implying that
S is pp-definable from R by the same argument. �

We now show that (2) implies (1) in Proposition 6.
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Lemma 12. If R has a pp definition from (X,S) for some set S ⊆ X, then
Pol(R) = Pol∗(R).

Proof. We may assume that Pol(R) ̸= O since otherwise the statement is
trivial; in particular, this implies that S is non-empty and does not equal
X. Since R has a pp definition from S, a quick check shows that for all
x ∈ X, R contains the tuple (x, . . . , x) if and only if x ∈ S. Now let
f ∈ Pol∗(R) be n-ary, and let θ be an equivalence relation on Xn such that
f preserves R on every θ-class. If f did not preserve R, then, since Pol(R) =
Pol(S), it would not preserve S. Hence there would exist s1, . . . , sn ∈ S
such that f(s1, . . . , sn) =: s /∈ S. Denoting the arity of R by m, we define
tuples xi := (s1, . . . , sn), for all 1 ≤ i ≤ m. Being identical, any two xi
are related with respect to θ. Also, (x1, . . . , xm) ∈ R componentwise, and
so (f(x1), . . . , f(xm)) = (s, . . . , s) /∈ R, a contradiction. Hence Pol(R) =
Pol∗(R).

�

Finally, we prove that (1) implies (2) in Proposition 6.

Lemma 13. If R is not pp-definable from any structure (X,S), where S ⊆
X, then Pol(R) ̸= Pol∗(R).

Proof. Let m be the arity of R. Set T = {b ∈ X : (b, . . . , b) ∈ R}, and
S = X \ T .

Assume there exist b1, . . . , bm ∈ S such that (b1, . . . , bm) ∈ R. Let f ∈
O(1) map all bi to b1 and be the identity otherwise. Then f /∈ Pol(R) as
(f(b1), . . . , f(bm)) = (b1, . . . , b1) /∈ R. However, f ∈ Pol∗(R) as is ensured
by the equivalence relation {{b1}, . . . , {bm}, X \ {b1, . . . , bm}}. This proves
the lemma for this case, and we may henceforth assume that there are no
such b1, . . . , bm; in particular, we may assume that T is non-empty.

Let i1, . . . , ir be those numbers ij with 1 ≤ ij ≤ m which have the prop-
erty that t ∈ R implies tij ∈ T . Now there exists a tuple t /∈ R such that
tij ∈ T for all 1 ≤ j ≤ r; otherwise, we would have t ∈ R iff tij ∈ T for all
1 ≤ j ≤ r, and R would be pp-definable from T , in contradiction with our
assumption.

Fix such a tuple t. Write {j1, . . . , jp} := {1, . . . ,m}\{i1, . . . , ir}. For every
jq in that set, fix a tuple sjq ∈ R with s

jq
jq

/∈ T . Fix moreover any tuple v ∈ R.

Set n := p + 1. Now for all 1 ≤ w ≤ m, write sj := (sj1w , . . . , s
jp
w , vw) ∈ Xn.

Set f(sj) = tj , for all 1 ≤ j ≤ m. Fix c ∈ T , and let f send all other tuples
of Xn to c. Clearly, f /∈ Pol(R) since the s1, . . . , sm are in R componentwise
and since (f(s1), . . . , f(sm)) = t /∈ R. But f ∈ Pol∗(R), as is witnessed by
the equivalence relation θ = {{s1}, . . . , {sm}, Xn \ {s1, . . . , sm}}: For any
1 ≤ i ≤ m, if x1, . . . , xm all equal si, then the xi are not in R componentwise,
so f ∈ Pol∗(R) cannot be violated there. If on the other hand x1, . . . , xm ∈
Xn \ {s1, . . . , sm}, then (f(x1), . . . , f(xn)) = (c, . . . , c) ∈ R. �
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3. The cover conjecture

We will prove Proposition 7 which states that if R is an equivalence rela-
tion, then Pol∗(R) is the unique cover of Pol(R) in Cl(X), and which inspired
the “cover conjecture”, i.e., the statement that this is true in general. After
that, we prove Proposition 8, disproving the conjecture.

Proof of Proposition 7. Let f /∈ Pol(R) be n-ary. We can assume that f is
unary: There exist a, b ∈ Xn equivalent with respect to R componentwise
and such that (f(a), f(b)) /∈ R. Pick 0, 1 ∈ X such that (0, 1) ∈ R and

define fi ∈ O(1) by fi(0) = ai and fi(x) = bi, for all 1 ≤ i ≤ n. Clearly, all
fi preserve R. Now set f ′ := f(f1, . . . , fn). Then f ′(0) = f(a) is not related
to f ′(1) = f(b), and we can replace f by f ′.

Let g ∈ O(k) be any function in Pol∗(R). We will write g as a combination
of functions in Pol(R) with the function f , thus proving that the smallest
clone containing f and Pol(R) must contain Pol∗(R).

Assume that g ∈ Pol∗(R) is witnessed by an equivalence relation θ on
Xk. We can find an n ≥ 1 and a function c : Xk → {0, 1}n inducing θ.
As the components of c take only the values 0 and 1, and 0 R 1, we have
that the component functions ci, which send a tuple x from Xk to the i-th
component of c(x), are in Pol(R), for all 1 ≤ i ≤ n.

Now define G(x, y) : Xk×Xn → X distinguishing three cases (so x ∈ Xk,
and y ∈ Xn):

(a) There is x′ ∈ Xk, equivalent to x componentwise, such that (yi, f(ci(x
′))) ∈

R for all i.
(a1) We can choose x′ = x. Then G(x, y) := g(x).
(a2) We cannot choose x′ = x. Then we choose any x′, and let

G(x, y) := g(x′).
(b) Case (a) does not hold. Let G(x, y) := x1.

We claim that G preserves R. Note that for all i and all x ∈ Xk we
have f(ci(x)) ∈ {f(0), f(1)}. Therefore, given a, b ∈ Xk, the statement
∀i (f(ci(a)), f(ci(b))) ∈ R implies ∀i ci(a) = ci(b), which in turn implies
(a, b) ∈ θ.

To prove that G preserves R, take x1, x2 ∈ Xk and y1, y2 ∈ Xn such that
x1, x2 and y1, y2 are equivalent with respect to R componentwise; we must
show that G(x1, y1) and G(x2, y2) are equivalent with respect to R. Assume
that G(x1, y1) = g(x1) as in Case (a1), and G(x2, y2) = g(x2) as in Case
(a2). So for all i we have f(ci(x1)) R f(ci(x2)), hence x1 θ x2. Together
with x1 Rk x2 Rk x′2 we get G(x1, y1) = g(x1) R g(x2) = G(x2, y2). The
other cases are left to the reader. �

We turn to the proof of Proposition 8.

Definition 14. Let Q be a binary relation on a set Y , and θ be an equiva-
lence relation on the same set. We say that θ is canonical for Q iff



NON-PROPERTIES OF CANONICAL EXTENSIONS OF LOCAL CLONES 7

For all θ-classes A ̸= B we have
either ∀a ∈ A∀b ∈ B (a, b) ∈ Q, or ∀a ∈ A∀b ∈ B (a, b) /∈ Q.

Definition 15. For a binary relation R on X, Polc(R) is the set of all
functions f ∈ O such that there is an Rnf -canonical equivalence relation
θ = θf on Xnf with finitely many classes such that

∀x, y ∈ Xnf : If x θ y and x Rnf y, then f(x) R f(y).

Lemma 16. Pol(R) ⊆ Polc(R) ⊆ Pol∗(R).

Proof. Trivial. �

The following is a counterexample to the “cover conjecture”.

Proof of Proposition 8. If R is a linear order, then each Dedekind cut de-
termines a canonical equivalence relation on X. We know from [RS84] that
Pol(R) is locally maximal. We claim that Pol(≤) ( Polc(≤) ( Pol∗(≤):

To see that Pol(R) ( Polc(R), let (D1, D2) be any Dedekind cut ofX, and

pick di ∈ Di, for i = 1, 2. The mapping h ∈ O(1) which sends all elements
of D1 to d2 and all elements of D2 to d1 is in Polc(R) but does not preserve
R.

We prove that Polc(R) ( Pol∗(R): By Ramsey’s theorem, X contains a
copy of ω or of its inverse order ω∗; say wlog that C ⊆ X has order type
ω. Divide C into two alternating sets C1, C2. Now the mapping g ∈ O(1)

sending all elements of C1 to the smallest element of C1, and all other
elements of X to the smallest element of C2, is clearly an element of Pol∗(R)
but not of Polc(R). �

Another counterexample is the following:

Another proof of Proposition 8. Let R be the partial order of finite subsets
of N (including the empty set). Then Pol(R) is locally maximal by results of
[RS84] (since R is a locally bounded partial order). Because of the equiva-
lence separating the empty set from the rest, we get Pol(R) ( Polc(R), and
any other equivalence relation proves Polc(R) ( Pol∗(R). �

We remark that one cannot simply replace Pol∗ by Polc in order to “re-
pair” the cover conjecture, as Polc(R) = Pol(R) for many relations R. We
include here the following

Example. Let X consist of the elements of the lattice freely generated by
a countably infinite set {x0, x1, . . .}, and let R be the order of the lattice.
By [RS84], Pol(R) is locally maximal. We claim that for all n ≥ 1, there are
no non-trivial Rn-canonical equivalence relations with finitely many classes,
hence Pol(R) = Polc(R):

Consider the set D of those tuples of Xn all of whose components are
equal to some xi. If there were an Rn-canonical equivalence relation θ, then
one of its classes would contain infinitely many elements of D; call this class
A. Consider any a ∈ A ∩D, and any x ∈ Xn. If (a, x) ∈ R, x /∈ A would
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imply (a′, x) ∈ R for all a′ ∈ A ∩D, which is impossible; hence A contains
all tuples x with (a, x) ∈ R for some a ∈ A ∩ D. Thus, if θ is to be non-
trivial, A cannot contain D. Pick a class B and b ∈ B ∩ D, and pick any
a ∈ A ∩ D. The vector c which is obtained by taking the join of a and b
componentwise satisfies (a, c) ∈ R, hence c ∈ A. From (b, c) ∈ R and b /∈ A
we infer (b, a) ∈ R, a contradiction.

In fact, one will obtain other examples with any partial order which has
a maximal antichain C with the property that no infinite subset of C is
bounded from above or below.

4. The maximality conjecture

This section is devoted to the “maximality conjecture”, i.e., the statement
that Pol∗(R) = O iff Pol(R) is maximal in the clone lattice, for every relation
R which is not essentially unary and for which Pol(R) is locally maximal.
Before actually disproving the conjecture, we prove Proposition 9, which is
a collection of examples in favor of the conjecture.

4.1. Examples in favor of the maximality conjecture.

Example. According to [RS84], Pol(R) is locally maximal for all non-trivial
equivalence relations R. And we have seen in Proposition 7 that the conjec-
ture holds for all such R, since Pol∗(R) is a cover of Pol(R).

Example. According to [RS84], Pol(R) is locally maximal for all locally
bounded partial orders R, where a partial order is called locally bounded iff
for all finite S ⊆ X there exist a, b ∈ X such that aRsRb for all s ∈ S. We
claim that the maximality conjecture holds here as well, i.e., that Pol∗(R) =
O implies that Pol(R) is maximal.

Proof. If R has an infinite ascending chain C, then one readily checks that
Pol∗(R) ̸= O: Let (Ci : i ∈ ω) be a partition of this chain into infinite sets,

and let g ∈ O(1) map each Ci to its smallest element. Then g /∈ Pol∗(R).
Same if R has an infinite descending chain. So, since R is also locally
bounded, we can assume that R is bounded, say with smallest element 0
and largest element 1. By an argument similar to the one with infinite
chains, the set of cardinalities of finite chains in R is bounded. Thus every
a ∈ X has a finite level, which we define to be the length of the longest
chain with smallest element 0 and largest element a. Clearly 1 has the
largest level, which we denote by n. Now for the partial orders in this class,
we indeed have Pol∗(R) = O: For example, if g is unary, then the partition
θ of X which identifies elements of equal level witnesses this. Thus we must
prove that Pol(R) is maximal in Cl(X) for such R.

Let g ∈ O(1) be arbitrary. Fix a chain (c0, . . . , cn) starting from 0 and
ending at 1. The operation h which maps every x at level i to ci preserves
R. Fix an antichain (d0, . . . , dn). There is an operation t ∈ C which maps
every ci to di. Now set G(x, y) = g(x), if y = di for some i and y = t ◦ h(x),
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G(x, y) = 1, if y > di for some i, G(x, y) = 0, if y < di for some i, and
G(x, y) = x otherwise. Clearly, g(x) = G(x, t ◦ h(x)). We have show G ∈
Pol(R). Let a ≤ c and b ≤ d. If b = t ◦ h(a) and d = t ◦ h(c), then G(a, b) =
g(a) and G(c, d) = g(c). However, in that case t ◦ h(a) ≤ t ◦ h(c) implies
that a and c are at the same level, meaning that a = c. The remaining cases
can be checked as well. �
Example. Let R be the graph of a fixed point free permutation of X whose
cycles are all of the same prime length. According to [RS84], Pol(R) is
locally maximal. We claim that Pol∗(R) = O for all such R, and Pol(R) is
maximal. Thus the maximality conjecture holds for such relations R.

Proof. To see that Pol∗(R) = O, observe that any equivalence θ with the
property that each of its classes intersects each cycle at most once is a witness
for every unary g ∈ O(1). The n-ary case is similar.

We prove that Pol(R) is maximal. Let f /∈ Pol(R), and let g ∈ O be
arbitrary; we have to write g as a term of f and functions from Pol(R). It
is not hard to see that f and Pol(R) together generate a unary operation
that does not preserve R, so we may assume that f is itself unary. Let
C0, C1, . . . be an enumeration of all cycles, and denote the elements of each
Cj by c0j , . . . , c

p−1
j (where p is the common prime length of the cycles).

The operation h which maps every cij to ci0 preserves R. Clearly, for each

1 ≤ i ≤ p− 1, there is a function f i ∈ O(1) generated by f and Pol(R) such
that (fi(c

i
0), fi(c

i+1
0 )) /∈ R (where we set (p− 1) + 1 := 0). Now, writing m

for the arity of g, set G(x1, . . . , xm, y01, . . . , y
p−1
1 , . . . , y0m, . . . , yp−1

m ) to equal
g(x1, . . . , xm), if yij = f i(h(xj)) for all 1 ≤ j ≤ m and 0 ≤ i ≤ p − 1. We

have that G is a partial function of arity m+ pm = m(p+ 1). Clearly,

g(x1, . . . , xm) = G(x1, . . . , xm, f0(h(x1)), . . . , f
p−1(h(x1)), . . . , f

0(h(xm)), . . . , fp−1(h(xm)));

we only have to show that we can extend G to a function in Pol(R). Call

two tuples u, v ∈ Om(p+1) parallel iff for the permutation α of which R is
the graph there exists a number 0 ≤ q ≤ p − 1 such that u = αq(v). It is
easy to see from the definitions of h and the f i that G is not yet defined on
any two distinct parallel tuples. Now set G(v) to an arbitrary value in X if
v is not parallel to any tuple for which G has already been defined. Finally,
set G(αi(v)) := αi(v) for all v for which G has been defined so far and for
all 1 ≤ i ≤ p− 1. It is easy to see that G preserves R. �

4.2. Disproving the maximality conjecture. Let R be a locally central
symmetric binary relation, that is, a reflexive and symmetric relation with
the additional property that for all finite F ⊆ X there exists c ∈ X with
F × {c} ⊆ R. According to [RS84], Pol(R) is maximal in Clloc(X).

We view R as a graph with vertex set X. Denote the graph obtained
by deleting all loops by GR. By Ramsey’s theorem, GR contains either an
infinite complete subgraph, or an infinite induced independent set. It turns
out that in the first case, Pol∗(R) = O iff the complement of GR (without
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loops) is n-colorable for some n ≥ 1, and in the second case Pol∗(R) = O iff
GR itself is n-colorable for some finite n (Lemma 17).

We then show that if GR contains an infinite complete graph, then unless
R is globally central, i.e., unless there exists c ∈ X with X × {c} ⊆ R,
Pol(R) is not maximal.

This proves Proposition 10, since GR can be chosen to contain an infinite
complete subgraph, without globally central element, and in such a way
that its complement is n-colorable, all at the same time. We then have
Pol∗(R) = O, but Pol(R) is not maximal.

Lemma 17. Let R be a locally central symmetric binary relation.

• If R contains an infinite complete subgraph, then Pol∗(R) = O iff
the complement of GR is n-colorable for some finite n.

• If R contains an infinite independent set, then Pol∗(R) = O iff GR

is n-colorable for some finite n.

Proof. We prove the first statement. Assume first that Pol∗(R) = O. Let
K ⊆ X be so that GR is the complete countably infinite graph on K. Let
g ∈ O(1) map K bijectively onto X, and do anything outside K. Let θ be
an equivalence relation on X witnessing g ∈ Pol∗(R), and let C1, . . . , Cn be
its classes. Then the sets g[K ∩ Ci] induce a finite coloring of X, and if
(a, b) /∈ R, then a and b have different colors.

Conversely, let g ∈ O(m) be arbitrary. Let C1, . . . , Cn be the partition
corresponding to the coloring of the complement of GR, and setDi = g−1[Ci]
for all 1 ≤ i ≤ n. The Di form a partition of Xm which witnesses g ∈
Pol∗(R).

For the second statement, assume first that Pol∗(R) = O. Let E ⊆ X

be so that GR is the infinite graph with no edges on E. Let g ∈ O(1) map
X bijectively onto E. Any partition θ witnessing g ∈ Pol∗(R) is a finite
coloring of GR.

Conversely, let g ∈ O(m) be arbitrary. Let θ be the finite coloring of
GR; then, via preimages, θ induces a finite coloring of Xm witnessing g ∈
Pol∗(R). �

Definition 18. We call C ⊆ Xn bounded iff there exists c ∈ Xn such that
{c} × C ⊆ Rn.

Thus a symmetric reflexive relation is locally central iff all finite subsets of
X are bounded. The bounded subsets of Xn form an order ideal (in general
no join-semilattice-ideal) in the power set of Xn, for every n ≥ 1. A subset
of Xn is bounded iff it is contained in a product C1 × . . .× Cn of bounded
subsets of X.

Definition 19. An operation g ∈ O(n) is tame iff g[C] is bounded for all
bounded C ⊆ Xn.

Lemma 20. The set T of tame operations is a clone.
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Proof. T certainly contains the projections. Let g ∈ T (m) and f1, . . . , fm ∈
T (n), and t = g(f1, . . . , fm), and C ⊆ Xn be bounded. We have that for all
1 ≤ i ≤ n, fi[Ci] is bounded, hence the product of these sets is bounded,
hence the image of this product under g is bounded, hence t[C], which is
contained in the latter set, is bounded. �

Lemma 21. Pol(R) ( T .

Proof. Let h ∈ Pol(R)(n), and let C ⊆ Xn be bounded. Pick c ∈ Xn with
{c} × C ⊆ Rn. Then {h(c)} × h[C] ⊆ R, proving that h[C] is bounded,
so Pol(R) ⊆ T . The inequality follows from the fact that T contains all
operations with bounded range, in particular those with finite range. �

Lemma 22. If X has an infinite bounded subset, and if X is not bounded
itself, then T ̸= O.

Proof. Let S be this subset, and let g ∈ O(1) map S ontoX, and do anything
outside S. Then g /∈ T . �

Proposition 23. Let R be locally central, symmetric and reflexive. Assume
that X contains an infinite complete subgraph, contains no globally central
element, and that the complement of GR is n-colorable for some finite n ≥ 1.
Then

(1) Pol∗(R) = O, and
(2) Pol(R) is locally maximal, and
(3) Pol(R) ( T ( O, in particular is Pol(R) not globally maximal.

Proof. (1) is Lemma 17. (2) is from [RS84]. By the preceding lemma we
have T ( O, and by Lemma 21 we have Pol(R) ( T . �
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