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Vorwort mit deutscher
Kurzfassung

Sei X eine Menge. Eine fundamentale Frage des mathematischen Gebietes der uni-
versellen Algebra ist

Beschreibe die Menge aller universellen Algebren auf X.

Sei nun A eine universelle Algebra auf X. Viele Eigenschaften von A , wie beispiel-
sweise die Kongruenzen, die Unteralgebren, und die Automorphismen, hängen nicht von
den fundamentalen Operationen von A ab, sondern von den Termoperationen, also je-
nen Operationen, welche von den fundamentalen Operationen und den Projektionen
durch Funktionskomposition generiert werden. Aus diesem Grunde bezeichnen wir zwei
universelle Algebren als äquivalent genau dann, wenn sie dieselben Termoperationen
erzeugen. Modulo dieser Äquivalenz können wir obige Frage wie folgt formulieren:

Beschreibe die Menge aller Äquivalenzklassen von universellen Algebren auf X.

Ein Klon ist eine Menge von Termoperationen einer universellen Algebra auf X. Ebenso
kann man einen Klon als Menge endlichstelliger Funktionen auf X, die alle Projektionen
enthält und die unter Funktionskomposition abgeschlossen ist, definieren. Die Klone
entsprechen also den Term-Äquivalenzklassen von universellen Algebren auf X. Ordnet
man die Klone entsprechend der mengentheoretischen Inklusion, so erhält man einen
vollständigen algebraischen Verband Cl(X). Das Ziel der Klontheorie ist die Beant-
wortung eines bestimmten Aspektes obiger Frage, nämlich

Beschreibe Cl(X).

Diese Dissertation behandelt Teile dieser Frage, hauptsächlich auf unendlichem X, und
resultiert in einigen Struktursätzen über Cl(X). Die Dissertation ist in eine Einleitung
und drei Kapitel unterteilt, die unabhängig voneinander gelesen werden können. Die
Kapitel entsprechen den Publikationen [Pin04a], [Pin04b], [Pin0x] des Autors.
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Das Thema des ersten Kapitels sind Klone auf einer linear geordneten Grundmenge X,
die endlich oder unendlich sein kann. Mithilfe der linearen Ordnung lassen sich gewisse
natürliche Funktionen definieren, von denen wohl die natürlichsten die Maximum-,
die Minimum-, und die Medianfunktionen sind, mit ihren offensichtlichen Definitio-
nen. Während man leicht einsieht, daß eine Maximumfunktion mindestens zweier
Veränderlicher auch die Maximumfunktionen anderer Stelligkeit erzeugt, und daß das-
selbe für die Minimumfunktionen gilt, ist es nicht klar, ob beispielsweise der dreistel-
lige Median die Medianfunktionen größerer Stelligkeit generiert. Unter Verwendung
kombinatiorischer Methoden zeigen wir, daß dies tatsächlich der Fall, daß also alle
Medianfunktionen denselben Klon generieren.

Das zweite Kapitel behandelt Klone auf unendlichen Grundmengen X regulärer Kar-
dinalität. Eine Funktion heißt fast unär, falls eine ihrer Variablen den Funktionswert
schon bis auf eine Menge bestimmt, deren Kardinalität kleiner als die von X ist. Die
Menge aller fast unären Funktionen bildet einen Klon, der alle (echt) unären Funktio-
nen enthält; dieser Klon spielt eine zentrale Rolle in der Struktur des Klonverbandes
oberhalb der unären Funktionen. Wir bestimmen alle Klone, die den Klon der fast
unären Funktionen enthalten. Es stellt sich heraus, daß diese Klone unabhängig von
der Größe der Grundmenge eine abzählbar unendliche absteigende Kette bilden, deren
Durchschnitt gerade der Klon der fast unären Funktionen ist.

Im dritten Kapitel wenden wir uns maximalen Klonen auf unendlichen Mengen zu.
Dabei nennen wir einen Klon maximal, wenn er ein Dualatom des Klonverbandes ist.
Es ist bekannt, daß die Menge der maximalen Klone auf unendlichem X schon so groß
ist wie der gesamte Klonverband; daher gibt es wenig Hoffnung, alle maximalen Klone
zu finden. Wir schränken die Menge der betrachteten Klone ein und erhalten auf un-
endlichem X regulärer Kardinalität eine explizite Liste aller maximalen Klone, die alle
Permutationen, nicht aber alle unären Funktionen enthalten. Zudem bestimmen wir auf
allen unendlichen Mengen X alle maximalen Submonoide des Transformationsmonoids,
die die Permutationen von X enthalten.

Mein Dank gebührt dem Betreuer meiner Dissertation Martin Goldstern, der die richti-
gen Fragen stellte und mich immer bei deren Beantwortung unterstützte, Lutz Hein-
dorf für die Hilfe, die er mir nicht nur während meines Aufenthaltes in Berlin leis-
tete, dem II. Mathematischen Institut der Freien Universität Berlin für seine Gastfre-
undlichkeit während meines Aufenthaltes, und Hajime Machida, der als externer Prüfer
nach Wien kam. Schließlich möchte ich mich bei der Österreichischen Akademie der
Wissenschaften bedanken, die es mir mit dem DOC-Stipendium ermöglicht hat, mich
ganz der Forschung zu widmen.
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Preface

Let X be a set. A fundamental problem of the field of universal algebra is

Describe the set of all universal algebras on X.

Consider a universal algebra A on X. Many properties of A , such as its congruences,
its subalgebras, and its automorphisms, do not depend on the fundamental operations
of A , but on its term operations, that is, the operations which are generated from its
fundamental operations and the projections by function composition. We therefore call
two universal algebras equivalent if and only if they have the same term operations.
Up to this equivalence, we can reformulate our problem as follows:

Describe the set of all term equivalence classes of universal algebras on X.

A clone is a set of term operations of a universal algebra on X. Equivalently, a clone
can be defined as a set of finitary operations on X which contains the projections and
which is closed under composition. The set of all clones on X thus corresponds to
the set of term equivalence classes of universal algebras on X. Ordering this set by
set-theoretical inclusion, one obtains a complete algebraic lattice Cl(X). The aim of
clone theory is the solution of a certain aspect of the above-mentioned problem, namely

Describe Cl(X).

This thesis treats instances of the latter question, mainly for infinite X, resulting in
several structure theorems on Cl(X). We divide this thesis into an introduction plus
three chapters, all of which can be read independently. The chapters correspond to the
author’s publications [Pin04a], [Pin04b], [Pin0x].

The first chapter deals with clones on a linearly ordered base set X (finite or infinite).
Using the linear order, certain natural functions can be defined, the most natural ones
being the maximum, the minimum, and the median functions, with their obvious defi-
nitions. Whereas it is easily seen that any maximum function of at least two variables
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generates the maximum functions of all arities, and that the same is true for the min-
imum functions, it is not clear that the median of, say, three variables generates the
median functions of larger arities. Using combinatorial methods, we show that this is
indeed the case, that is, all median functions generate the same clone.

In the second chapter, we turn to base sets X of infinite regular cardinality. A function
is called almost unary iff one of its variables determines the value of the function up to a
set of cardinality smaller than the cardinality of X. The set of all almost unary functions
forms a clone which contains all (really) unary functions; this clone is of importance for
the structure of the clone lattice above the unary functions. We determine all clones
containing all almost unary functions; it turns out that independently of the size of X,
these clones are a countably infinite descending chain with the almost unary functions
as its intersection.

Chapter 3 is devoted to maximal clones on infinite sets. A clone is called maximal iff
it is a dual atom in Cl(X). Because the number of maximal clones on an infinite set
equals the size of the whole clone lattice, there is little hope to find all of them. We
restrict the set of clones under consideration and provide on all infinite X of regular
cardinality an explicit list of all maximal clones which contain all permutations of X

but not all unary functions. Moreover, we determine on all infinite X the maximal
submonoids of the full transformation monoid which contain the permutations.

I would like to thank my supervisor Martin Goldstern for asking the right questions
and supporting me in answering them, Lutz Heindorf for his many remarks that helped
me a lot not only during my stay in Berlin, to the II. Mathematisches Institut at Freie
Universität Berlin for their hospitality during my visit, and to Hajime Machida for
coming to Vienna as an external examiner. I would also like to thank the Austrian
Academy of Sciences for the financial support via the DOC-scholarship that made my
research possible.
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Introduction

Let X be a set of size |X| = κ and denote by O(n) the set of all n-ary functions
on X. Then O =

⋃∞
n=1 O(n) is the set of all finitary functions on X. A clone C

over X is a subset of O which contains the projections, i.e. the functions of the form
πn

k (x1, . . . , xn) = xk (1 ≤ k ≤ n), and which is closed under composition. Since
arbitrary intersections of clones are obviously again clones, the set of all clones over X

forms a complete lattice Cl(X) with respect to inclusion. This lattice is a subset of the
power set of O. The clone lattice is countably infinite if X has only two elements, and
has been completely determined in that case by E. Post [Pos41]. If X is finite and has at
least three elements, Cl(X) is already of size 2ℵ0 . For infinite X we have |Cl(X)| = 22κ

.
Because the clone lattice is so large in the latter two cases, it is unlikely that it will
ever be fully described. The approach of clone theory is to investigate interesting parts
of the lattice, such as the maximal clones, the minimal clones, or natural intervals in
the lattice.

A clone is called maximal iff it is a dual atom in Cl(X). On finite X there exist
finitely many maximal clones and an explicit list of those clones has been provided
by I. Rosenberg [Ros70] (see also the diploma thesis [Pin02] for a self-contained proof
of Rosenberg’s Theorem). Moreover, the clone lattice is dually atomic in that case,
that is, every clone is contained in a maximal one. If X is infinite, then the number
of maximal clones equals the size of the whole clone lattice ([Ros76], see also [GS02]),
so that it seems impossible to determine all of them. It has also been shown [GS04]
that if the continuum hypothesis holds, then the clone lattice on a countably infinite
base set is not dually atomic. We will deal with maximal clones in Chapters 2 and
3: In the second chapter, we obtain on all X of infinite regular cardinality a simple
description of a certain maximal clone above O(1) which is important for the structure
of the interval [O(1),O] of the clone lattice. In the third chapter, we give an explicit
list of the maximal clones which contain the set S of all permutations on X but which
do not contain O(1).

A minimal clone on X is an atom in the lattice Cl(X), i.e. a minimal element in

1



INTRODUCTION 2

Cl(X) \ {J }, where J is the trivial clone containing only the projections. Clearly
every minimal clone is generated by a single nontrivial function. Functions which
generate minimal clones are called minimal as well. On finite X, the minimal clones
are finite in number and every clone contains a minimal one. Surprisingly, there is no
characterization of minimal clones even on finite X. If we take the base set X to be
infinite, then the number of minimal clones is 2κ, and it is easy to see that not every
clone contains a minimal one. The first chapter deals with a certain minimal clone on
a linearly ordered base set X, namely the clone generated by the median functions.

Because the clone lattice is too large to completely understand it, it makes sense
to pick feasible intervals of it and try to determine them. For example, there exist a
number of results on the interval [O(1), O] of clones containing all unary functions. One
such result due to G. Gavrilov [Gav65] is that on countably infinite X, there exist only
two maximal clones in this interval. M. Goldstern and S. Shelah [GS04] proved that
the same is true on X of weakly compact cardinality, but showed in the same article
that on most other cardinals, in particular on all successors of regulars, there exist 22κ

such clones. We will prove another structure theorem for clones above O(1) in Chapter
2, determining the interval [U , O] of clones containing all almost unary functions.
Another example of an interesting interval in the interval [S ,O] of clones containing
all permutations of X. L. Heindorf [Hei02] determined on countably infinite X all
maximal clones in this interval. We will extend his result to all infinite X of regular
cardinality in Chapter 3, obtaining an explicit list of all maximal clones which contain
the permutations but not O(1).
The interval [J , O(1)] consists of those clones which contain only essentially unary
functions, i.e. functions that depend only on one of their variables. Such clones are
essentially submonoids of the full transformation monoid O(1). It is known that the
number of dual atoms in this interval is 22κ

, so there is no hope to determine them.
However, G. Gavrilov [Gav65] found all dual atoms of this interval which contain S

(so he found the dual atoms of [S , O(1)]), on countably infinite X. We will generalize
his theorem to all infinite X in Chapter 3.

For extensive introductions to clone theory (although primarily on finite base sets),
we refer to the monograph [Sze86] by Á. Szendrei and the textbook [PK79] by R.
Pöschel and L. Kalužnin.



Chapter 1

The clone generated by the
median functions

Let X be a linearly ordered set of arbitrary size (finite or infinite). Natural functions
on such a set one can define using the linear order include maximum, minimum and
median functions. While it is clear what the clone generated by the maximum or the
minimum looks like, this is not obvious for the median functions. We show that every
clone on X contains either no median function or all median functions, that is, the
median functions generate each other.

1.1 The median functions

Assume X to be linearly ordered. We emphasize that the cardinality of X is not
relevant. For all n ≥ 1 and all 1 ≤ k ≤ n we define a function

mn
k(x1, . . . , xn) = xjk

if xj1 ≤ . . . ≤ xjn .

In words, the function mn
k returns the k-th smallest element from an n-tuple. The func-

tions mn
k are totally symmetric, i.e., invariant unter all permutations of their variables,

and mn
k(x1, . . . , xn) = xk whenever x1 ≤ . . . ≤ xn. For example, mn

n is the maximum
function maxn and mn

1 the minimum function minn in n variables. If n is an odd
number then we call mn

n+1
2

the n-th median function and denote this function by medn.

It is easy to check what the clones generated by the functions max and min look
like:

〈{maxn}〉 = {maxk(π
j
i1

, . . . , πj
ik

) : 1 ≤ i1, . . . , ik ≤ j, 1 ≤ k ≤ j}

3



MEDIAN FUNCTIONS 4

and
〈{minn}〉 = {mink(π

j
i1

, . . . , πj
ik

) : 1 ≤ i1, . . . , ik ≤ j, 1 ≤ k ≤ j},
where n ≥ 2 is arbitrary. In particular, the two clones are minimal. Now it is natural
to ask which of these properties hold for the functions “in between”, that is the mn

k

as defined before, most importantly the median functions. We will show that for odd
n ≥ 3

〈{medn}〉 ⊇ {medk(π
j
i1

, . . . , πj
ik

) : 1 ≤ i1, . . . , ik ≤ j, 1 ≤ k ≤ j, k odd},

but one readily constructs functions in that clone which are not a median function and
not a projection. However, R. Pöschel and L. Kalužnin observed in [PK79], Theorem
4.4.5, that the median of three variables (and hence by our result, all medians) does
generate a minimal clone.

Theorem 1. The clone generated by the function med3 is minimal.

We are going to prove

Theorem 2. Let k, n ≥ 3 be odd natural numbers. Then medk ∈ 〈{medn}〉. In other
words, a clone contains either no median function or all median functions.

1.1.1 Notation

For a set of functions F we shall denote the smallest clone containing F by 〈F 〉. If
1 ≤ k ≤ n, we write πn

k for the n-ary projection on the k-th component.
For a positive rational number q we write

bqc = max{n ∈ N : n ≤ q}

and
dqe = min{n ∈ N : q ≤ n}.

If a ∈ Xn is an n-tuple and 1 ≤ k ≤ n we write ak for the k-th component of a. We
will assume X to be linearly ordered by the relation ≤ and let < carry the obvious
meaning.

1.2 The proof of Theorem 2

1.2.1 Almost divisibility

We split the proof of the theorem into a sequence of lemmas.
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Definition 3. Let k, n ≥ 1 be natural numbers. Denote by R(n
k ) the remainder

of the division n
k . We say that n is almost divisible by k iff either R(n

k ) ≤ n
k or

(k − 1)−R(n
k ) ≤ n

k .

Note that n is almost divisible by k if it is divisible by k. The following lemma tells
us which medians of smaller arity are generated by medn by simple identification of
variables (see also Remark 13).

Lemma 4. Let k ≤ n be odd natural numbers. If n is almost divisible by k, then
medk ∈ 〈{medn}〉.

Proof. We claim that

medk(x1, . . . , xk) = medn(x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk),

where xj occurs in the n-tuple bn
k c + 1 times if j ≤ R(n

k ) and bn
k c times otherwise.

Assume medk(x1, . . . , xk) = xj . Then there are at most k−1
2 components smaller than

xj and at most k−1
2 components larger than xj . Thus in our n-tuple, there are at most

k − 1
2

bn
k
c+ min(R(

n

k
),

k − 1
2

) (1.1)

elements smaller (larger) than xj .
Case 1. R(n

k ) ≤ k−1
2 .

Since n is almost divisible by k, we have either R(n
k ) ≤ n

k or (k − 1) − R(n
k ) ≤ n

k . In
the latter case,

R(
n

k
) ≤ k − 1

2
∧ (k − 1)−R(

n

k
) ≤ n

k

and so
R(

n

k
) ≤ n

k
.

Thus in either of the cases, we can calculate from (1.1)

k − 1
2

bn
k
c+ R(

n

k
)

=
1
2
(kbn

k
c+ R(

n

k
)) +

1
2
(R(

n

k
)− bn

k
c)

=
n

2
+

1
2
(R(

n

k
)− bn

k
c)

≤ n

2

and so medn yields xj .
Case 2. k−1

2 < R(n
k ).
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Again we know that either R(n
k ) ≤ n

k or (k − 1)− R(n
k ) ≤ n

k . In the first case, we see
that

k − 1
2

< R(
n

k
) ∧ R(

n

k
) ≤ n

k

implies
(k − 1)−R(

n

k
) ≤ n

k

and so (1.1) yields at most

k − 1
2

bn
k
c+

k − 1
2

=
k − 1

2
bn
k
c+

1
2
R(

n

k
) +

k − 1
2

− 1
2
R(

n

k
)

=
1
2
(kbn

k
c+ R(

n

k
))− 1

2
bn
k
c+

k − 1
2

− 1
2
R(

n

k
)

≤ n

2
+

1
2
(−bn

k
c+ (k − 1)−R(

n

k
))

≤ n

2

components which are smaller (larger) than xj . This finishes the proof.

Corollary 5. Let k, n ≥ 1 be odd natural numbers. If k ≤ √
n, then medk is generated

by medn.

Proof. Trivially, R(n
k ) ≤ k − 1 and k − 1 ≤ n

k as k ≤ √
n. Hence, n is almost divisible

by k.

Corollary 6. Let n ≥ 3 be odd. Then med3 ∈ 〈{medn}〉.

Proof. Simply observe that all n ≥ 4 are almost divisible by 3.

1.2.2 Majority functions

We have seen that we can get small (that is, of small arity) median functions out of
large ones. The converse inclusion is shown with the help of majority functions.

Definition 7. Let f ∈ O(n). We say that f is a majority function iff f(x1, . . . , xn) = x

whenever the value x occurs at least dn+1
2 e times among (x1, . . . , xn).

Note that medn is a majority function for all odd n. We observe now that we can
build a ternary majority function from most larger ones by identifying variables.
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Lemma 8. Let n ≥ 5 and let majn ∈ O(n) be a majority function. Then majn generates
a majority function of three arguments.

Proof. Set
maj3 = majn(x1, . . . , x1, x2, . . . , x2, x3, . . . , x3),

where xj occurs in the n-tuple bn
3 c+ 1 times if j ≤ R(n

3 ) and bn
3 c times otherwise. It

is readily verified that maj3 is a majority function.

The following lemma tells us that we can generate majority functions of even arity
from majority functions of odd arity.

Lemma 9. Let n ≥ 2 be an even natural number. Then we can get an n-ary majority
function majn out of any (n + 1)-ary majority function majn+1.

Proof. Set
majn(x1, . . . , xn) = majn+1(x1, . . . , xn, xn)

and let x ∈ X have a majority among (x1, . . . , xn). Since n is even, x occurs n
2 +1 times

in the n-tuple which is enough for a majority in the (n + 1)-tuple (x1, . . . , xn, xn).

We now show that we can construct large majority functions out of small ones. This
has already been known but we include our own proof here.

Lemma 10. Let n ≥ 5 be a natural number. Then we can construct an n-ary majority
function out of any (n− 2)-ary majority function majn−2.

Proof. For 2 ≤ j ≤ n− 1 and 1 ≤ i ≤ n− 1 with i 6= j we define functions

γj
i =

{
majn−2(x1, . . . , xi−1, xi+2, . . . , xn) j 6= i + 1
majn−2(x1, . . . , xi−1, xi+1, xi+3, . . . , xn) j = i + 1

In words, given an n-tuple (x1, . . . , xn), γj
i ignores xi and the next component of the

n-tuple which is not xj and calculates majn−2 from what is left. Set

zj = majn−2(γ
j
1, . . . , γ

j
j−1, γ

j
j+1, . . . , γ

j
n−1)

and
f = majn−2(z2, . . . , zn−1).

The function f is an n-ary term of depth three over {majn−2}.
Claim. f is a majority function.
We prove our claim for the case where n is odd. The same proof works in the even
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case, the only difference being that the counting is slightly different (a majority occurs
n+2

2 times instead of n+1
2 , and so on). We leave the verification of this to the diligent

reader.

Assume x ∈ X has a majority. If x occurs more than n+1
2 times, then it is readily

verified that all the γj
i yield x and so do all zj and so does f . So say x appears exactly

n+1
2 times among the variables of f .

Next we observe that if xj = x, then zj = x: For if γj
i 6= x, then both components

ignored in γj
i , that is, xi and the component after xi which is not xj , have to be equal

to x. We can count

|{i : γj
i 6= x}| ≤ |{i 6= j : xi = x} \ {max(i 6= j : xi = x)}| ≤ n− 1

2
− 1 =

n− 3
2

.

Thus, zj = x.

Now we shall count a second time to see that if x1 6= x or xn 6= x, then f = x: Say
without loss of generality x1 6= x. Then

|{2 ≤ j ≤ n− 1 : xj = x}| ≥ n + 1
2

− 1 =
n− 1

2

and since we have seen that zj = x for all such j we indeed obtain f = x.

In a last step we consider the case where both x1 = x and xn = x. Let

k = min{i : xi 6= x}

and
l = max{i : xi 6= x}.

Since n ≥ 5 those two indices are not equal. Count

|{i : γl
i 6= x}| ≤ |{i : xi = x} \ {k − 1, n}| = n + 1

2
− 2 =

n− 3
2

.

Thus, zl = x and we count for the last time

|{j : zj = x}| ≥ |{2 ≤ j ≤ n− 1 : xj = x} ∪ {l}| = n− 3
2

+ 1 =
n− 1

2
,

so that also in this case f = x.

We conclude that if a clone contains a majority function, then it contains majority
functions of all arities.

Corollary 11. Let n, k ≥ 3 be natural numbers. Assume majn ∈ O(n) is any majority
function. Then majn generates a majority function in O(k).
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Proof. If k ≥ n and n, k are either both even or both odd, then we can iterate Lemma
10 to generate a majority function of arity k. Lemma 9 takes care of the case when k

is even but n is odd.

In all other cases with n ≥ 5, generate a ternary majority function from majn first
with the help of Lemma 8 and follow the procedure just described for the other case.

Finally, if n = 4, we can build a majority function maj6 from maj4 first and are
back in one of the other cases.

Now we use the large majority functions to obtain large median functions.

Lemma 12. For all odd n ≥ 3 there exists b ≥ n such that medn ∈ 〈{med3, majb}〉 for
an arbitrary b-ary majority function majb.

Proof. Let n be given. Our strategy to calculate the median from an n-tuple will be
the following: We apply med3 to all possible selections of three elements of the n-tuple.
The results we write to an n1-tuple, from which we again take all possible selections of
three elements. We apply med3 again to these selections and so forth. Now the rate
of “wins” of the true median of the original n-tuple grows in every step, so that after
a finite number of steps (a number we can give a bound for) more than half of the
components of the then giant tuple have the true median as their value. To that tuple
we apply a majority function and obtain the median.

In detail, we define two sequences (nj)j∈ω and (kj)j∈ω by

n0 = n, nj+1 =
(

nj

3

)

and

k0 = 1, kj+1 =
(

kj

3

)
+

(
kj

2

)
(nj − kj) +

(
kj

1

)
(
nj − kj

2
)2.

The sequences have the following meaning: Given an nj-tuple, there are nj+1 possible
selections of three elements of the tuple to which we apply the median med3. If the
median of the nj-tuple (which is equal to the median of the n0 = n-tuple) appeared
at least kj times there, then it appears at least kj+1 times in the resulting nj+1-tuple.
Read kj+1 as follows: We assume the worst case, namely that the median occurs only
once in the original n-tuple, so k0 = 1. If we pick three elements from the nj-tuple
and calculate med3, then the result is the median we are looking for if either all three
elements are equal to the median (

(kj

3

)
possibilities) or two are equal to the median

(
(kj

2

)
(nj − kj) possibilities) or one is equal to the median, one is smaller, and one is
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larger (
(kj

1

)
(nj−kj

2 )2 possibilities). Set rj = kj

nj
for j ≥ 0 to be the relative frequency of

the median in the tuple after j steps. We claim that lim sup(rj)j∈ω = 1:

rj+1 =
kj+1

nj+1

=
kj

nj

(kj − 1)(kj − 2) + 3(kj − 1)(nj − kj) + 3
2(n2

j − 2njkj + k2
j )

(nj − 1)(nj − 2)

= rj

3(nj − 1)2 + 1− k2
j

2(nj − 1)(nj − 2)

Further calculation yields

rj+1 ≥ rj

3(nj − 1)2 + 1− k2
j

2(nj − 1)2

= rj (
3
2
− (kj − 1)2

2(nj − 1)2
− kj − 1

(nj − 1)2
)

≥ rj (
3
2
− 1

2
r2
j −

rj

nj − 1
)

≥ rj (
3
2
− 1

2
r2
j −

1
nj − 1

).

Suppose towards a contradiction that (rj)j∈ω is bounded away from 1 by p : rj < p < 1
for all j ∈ ω. Choose j large enough so that

1
nj − 1

<
1− p

4
.

Then

ri+1 > ri (
3
2
− p

2
− 1− p

4
)

= ri (1 +
1− p

4
)

for all i ≥ j so that there exists l > j such that rl > p, in contradiction to our
assumption. Hence, lim sup(rj)j∈ω = 1.

Now if we calculate j such that rj > 1
2 , and choose b = nj , we can obtain the median

with the help of a b-ary majority function.

We are ready to prove our main theorem.
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Proof of Theorem 2. Let k, n be given. Corollary 6 tells us that we can construct med3

out of medn. Since med3 is also a majority function, we can get majority functions of
arbitrary arity with the help of Corollary 11. Then by the preceding lemma, we can
generate medk.

Remark 13. In fact, the lemma on almost divisibility is not needed for the proof of
the theorem, since we only have to get med3 out of medn (and med3(x1, x2, x3) =
medn(x1, x2, . . . , x2, x3, . . . , x3) where x2 and x3 occur n−1

2 times in the n-tuple) and
then apply Lemma 10 to generate large majority functions. Still, the lemma shows
what we can construct by simple identification of variables.

1.3 Minimality of the mn
k

We mentioned that the clones generated by the maximum, the minimum and the median
functions are minimal. Anyone who hoped that the same holds for all mn

k will be
disappointed by the following lemma.

Lemma 14. Let n ≥ 4 and 2 ≤ k ≤ bn
2 c. Then mn

k is not a minimal function.

Proof. It is enough to see that

min2(x, y) = mn
k(x, . . . , x, y, . . . , y) ∈ 〈{mn

k}〉,

where x occurs in the n-tuple exactly bn
2 c times. The clone generated by min2 is

obviously a nontrivial proper subclone of 〈{mn
k}〉.

Now comes just another disappointment.

Lemma 15. Let dn
2 e < k < n. Then mn

k is not a minimal function.

Proof. This time we have that

max2(x, y) = mn
k(x, . . . , x, y, . . . , y) ∈ 〈{mn

k}〉,

where x occurs in the n-tuple exactly bn
2 c times. The clone generated by the maximum

functions is obviously a proper subclone of 〈{mn
k}〉.

We summarize our results in the following corollary.

Corollary 16. Let n ≥ 2 and 1 ≤ k ≤ n. Then mn
k is minimal iff k = 1 or k = n or

n is odd and k = n+1
2 . That is, the minimal functions among the mn

k are exactly the
maximum, the minimum and the median functions.
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1.4 Variations of the median function

For even natural numbers n we did not define median functions. One could consider
the so-called “lower median” instead:

medlow
n = mn

n
2

But as a consequence of the preceding corollary, medlow
n is not generated by the real

medians and does therefore not serve as a perfect substitute. For the same reason, the
“upper median”

medupp
n = mn

n
2
+1

is not an ideal replacement either.

However, the other direction almost works: medlow
n generates the medians if and

only if n ≥ 6. Indeed, simple identification of variables suffices:

med3 = medlow
n (x1, . . . , x1, x2, . . . , x2, x3, . . . , x3)

where xj occurs in the n-tuple bn
3 c + 1 times if j ≤ R(n

3 ) and bn
3 c times otherwise.

Of course we can do the same with the upper medians. It is easy to see that medlow
4

cannot generate the medians.

One could have the idea of using a more general notion of median functions: Let
(X,∧,∨) be a lattice. Define

m̃n
k(x1, . . . , xn) =

∧

(j1,...,jk)∈{1,...,n}k

∨

1≤i≤k

xji .

If the order induced by the lattice on X is a chain, this definition agrees with our
definition of mn

k . However, although we can get m̃ed3 out of m̃edn just like described
in Remark 13, our proof to obtain large medians via majority functions fails. We do
not know under which conditions on the lattice the same results can be obtained.



Chapter 2

Clones containing all almost
unary functions

Let X be an infinite set of regular cardinality. We determine all clones on X which
contain all almost unary functions. It turns out that independently of the size of X,
these clones form a countably infinite descending chain. Moreover, all such clones
are finitely generated over the unary functions. In particular, we obtain an explicit
description of the only maximal clone in this part of the clone lattice. This is especially
interesting if X is countably infinite, in which case it is known that such a simple
description cannot be obtained for the second maximal clone over the unary functions.

2.1 Background

2.1.1 Almost unary functions

Let X be of infinite regular cardinality from now on unless otherwise stated. We call
a subset S ⊆ X large iff |S| = |X|, and small otherwise. If X is itself a regular
cardinal, then the small subsets are exactly the bounded subsets of X. A function
f(x1, . . . , xn) ∈ O(n) is almost unary iff there exists a function F : X → P(X) and
1 ≤ k ≤ n such that F (x) is small for all x ∈ X and such that for all (x1, . . . , xn) ∈ Xn

we have f(x1, . . . , xn) ∈ F (xk). If we assume X to be a regular cardinal itself, this
is equivalent to the existence of a function F ∈ O(1) and a 1 ≤ k ≤ n such that
f(x1, . . . , xn) < F (xk) for all (x1, . . . , xn) ∈ Xn. Because this is much more convenient
and does not influence the properties of the clone lattice, we shall assume X to be
a regular cardinal throughout this chapter. Let U be the set of all almost unary

13
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functions. It is readily verified that U is a clone. We will determine all clones which
contain U ; in particular, such clones contain O(1).

2.1.2 Maximal clones above O(1)

Although on an infinite set X not every clone must be contained in a maximal one
[GS04], the sublattice of Cl(X) of functions containing O(1) is dually atomic by Zorn’s
lemma, since O is finitely generated over O(1). G. Gavrilov proved in [Gav65] that for
countably infinite X there are only two maximal clones containing all unary functions.
M. Goldstern and S. Shelah extended this result to clones on weakly compact cardinals
in the article [GS02], where an uncountable cardinal X is called weakly compact iff
whenever we colour the edges of a complete graph G of size X with two colours, then
there exists a complete subgraph of G of size X on which the colouring is constant.
In the same paper, the authors proved that on other regular cardinals X satisfying a
certain partition relation there are even 22X

maximal clones above O(1).

There exists exactly one maximal clone above U . So far, this clone has been defined
using the following concept: Let ρ ⊆ XJ be a relation on X indexed by J and let
f ∈ O(n). We say that f preserves ρ iff for all r1 = (r1

i : i ∈ J), . . . , rn = (rn
i : i ∈ J) in

ρ we have (f(r1
i , . . . , r

n
i ) : i ∈ J) ∈ ρ. We define the set of polymorphisms Pol(ρ) of ρ

to be the set of all functions in O preserving ρ; Pol(ρ) is easily seen to be a clone. In
particular, if ρ ⊆ XXk

is a set of k-ary functions, then a function f ∈ O(n) preserves ρ

iff for all functions g1, . . . , gn in ρ the composite f(g1, . . . , gn) is a function in ρ.

Write
T1 = U (2) = {f ∈ O(2) : f almost unary}.

The following was observed by G. Gavrilov [Gav65] for countable base sets and
extended to all regular X by R. Davies and I. Rosenberg [DR85]. Uniqueness on
uncountable regular cardinals is due to M. Goldstern and S. Shelah [GS02].

Theorem 17. Let X have infinite regular cardinality. Then Pol(T1) is a maximal
clone containing all unary functions. Furthermore, Pol(T1) is the only maximal clone
containing all almost unary functions.

For S a subset of X we set

∆S = {(x, y) ∈ S2 : y < x}, ∇S = {(x, y) ∈ S2 : x < y}.

We will also write ∆ and ∇ instead of ∆X and ∇X . Now define

T2 = {f ∈ O(2) : ∀S ⊆ X (S large → neither f ¹∆S
nor f ¹∇S

are 1-1)}.
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The next result is due to G. Gavrilov [Gav65] for X a countable set and due to M.
Goldstern and S. Shelah [GS02] for X weakly compact.

Theorem 18. Let X be countably infinite or weakly compact. Then Pol(T2) is a max-
imal clone which contains O(1). Moreover, Pol(T1) and Pol(T2) are the only maximal
clones above O(1).

The definition of Pol(T2) not only looks more complicated than the one of Pol(T1).
First of all, a result of R. Davies and I. Rosenberg in [DR85] shows that assuming
the continuum hypothesis, T2 is not closed under composition on X = ℵ1 and so it
is unclear what Pol(T2) is. Secondly, on countable X, if we equip O with the natural
topology which we shall specify later, then T2 is a non-analytic set in that space and
so is Pol(T2); in particular, neither 〈T2〉 nor Pol(T2) are countably generated over O(1)

(see [Gol0x]), where for a set of functions F we denote by 〈F 〉 the clone generated by
F . The clones 〈T1〉 and Pol(T1) on the other hand turn out to be rather simple with
respect to this topology, and both clones are finitely generated over O(1).

Fix any injection p from X2 to X; for technical reasons we assume that 0 ∈ X is
not in the range of p.

Fact 19. 〈{p} ∪ O(1)〉 = O, that is, the function p together with O(1) generates O.

For a subset S of X2 we write

pS(x1, x2) =

{
p(x1, x2) , (x1, x2) ∈ S

0 , otherwise

M. Goldstern observed the following [Gol0x]. Since the result has not yet been pub-
lished, but is important for our investigations, we include a proof here.

Fact 20. 〈{p∆} ∪ O(1)〉 = 〈T1〉.

Proof. Set C = 〈{p∆} ∪ O(1)〉. Since p∆(x1, x2) is obviously bounded by the unary
function γ(x1) = sup{p∆(x1, x2) : x2 ∈ X} + 1 = sup{p(x1, x2) : x2 < x1} + 1, where
by α + 1 we mean the successor of an ordinal α, we have p∆ ∈ T1 and hence C ⊆ 〈T1〉.

To see the other inclusion, note first that the function

q(x1, x2) =

{
p∆(x1, x2) , (x1, x2) ∈ ∆
x1 , otherwise

is in C . Indeed, choose ε ∈ O(1) strictly increasing such that p∆(x1, x2) < ε(x1) for
all x1, x2 ∈ X and consider t(x1, x2) = p∆(ε(x1), p∆(x1, x2)). On ∆, t is still one-one,
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and outside ∆, the term is a one-one function of the first component x1. Moreover, the
ranges t[∆] and t[X2 \∆] are disjoint. Hence, we can write q = u ◦ t for some unary
u. By the same argument we see that for arbitrary unary functions a, b ∈ O(1) the
function

qa,b(x1, x2) =

{
a(p∆(x1, x2)) , (x1, x2) ∈ ∆
b(x1) , otherwise

is an element of C .

Now let f ∈ T1 be given and say f(x1, x2) < δ(x1) for all x1, x2 ∈ X, where δ ∈ O(1)

is strictly increasing. Choose a ∈ O(1) such that a(p∆(x1, x2)) = f(x1, x2) + 1 for all
(x1, x2) ∈ ∆. Then set

f1(x1, x2) = qa,δ+1(x1, x2) =

{
f(x1, x2) + 1 , (x1, x2) ∈ ∆
δ(x1) + 1 , otherwise

We construct a second function

f2(x1, x2) =

{
0 , (x1, x2) ∈ ∆
f(x1, x2) + 1 , otherwise

It is readily verified that f2(x1, x2) = u(p∆(x2 + 1, x1)) for some unary u. Now
f2(x1, x2) < f1(x1, x2) and f1, f2 ∈ C . Clearly

f(x1, x2) = u(p∆(f1(x1, x2), f2(x1, x2)))

for some unary u. This shows f ∈ C and so 〈T1〉 ⊆ C as f ∈ T1 was arbitrary.

We shall see that Pol(T1) is also finitely generated over O(1). Moreover, for countable
X it is a Borel set in the topology yet to be defined. Our explicit description Pol(T1)
holds for all infinite X of regular cardinality, but is interesting only if there are not too
many other maximal clones containing O(1). By Theorem 18, this is at least the case
for X countably infinite or weakly compact.

Throughout this chapter, the assumption that the base set X has regular cardinality
is essential. To give an example, we prove now that U is a clone. Let f ∈ U (n) and
g1, . . . , gn ∈ U (m). By definition, there exists F ∈ O(1) and some 1 ≤ k ≤ n such that
f(x) < F (xk) for all x ∈ Xn. Because gk ∈ U , we obtain Gk ∈ O(1) and 1 ≤ i ≤ m

such that gk(x) < Gk(xi) for all x ∈ Xm. Therefore f(g1, . . . , gn)(x) < H(xi), where
we define H(xi) = supy<Gk(xi){F (y)}. Now since F (y) < X for all y ∈ X, and since
the supremum ranges over a set of size Gk(xi) < X, the regularity of X implies that
H(xi) < X, so that the composite f(g1, . . . , gn) is bounded by a unary function and
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hence an element of U . It is easy to see that on singular X, neither of the definition
of an almost unary function by means of small sets nor the one via boundedness by a
unary function yield a clone. Also, the two definitions differ on singulars, whereas on
regulars they coincide.

2.1.3 Notation

For a set of functions F we shall denote the smallest clone containing F by 〈F 〉. By
F (n) we refer to the set of n-ary functions in F .
We call the projections which every clone contains πn

i where n ≥ 1 and 1 ≤ i ≤ n. If
f ∈ O(n) is an n-ary function, it sends n-tuples of elements of X to X and we write
(x1, . . . , xn) for these tuples unless otherwise stated as in f(x, y, z); this is the only
place where we do not stick to set-theoretical notation (according to which we would
have to write (x0, . . . , xn−1)). The set {1, . . . , n} of indices of n-tuples will play an
important role and we write N for it. We denote the set-theoretical complement of a
subset A ⊆ N in N by −A. We identify the set Xn of n-tuples with the set of functions
from N to X, so that if A ⊆ N and a : A → X and b : −A → X are partial functions,
then a ∪ b is an n-tuple. Sometimes, if the arity of f ∈ O has not yet been given a
name, we refer to that arity by nf .
If a ∈ Xn is an n-tuple and 1 ≤ k ≤ n we write (a)n

k or only ak for the k-th component
of a. For c ∈ X and J an index set we write cJ for the J-tuple with constant value c.
The order relation ≤ on X induces the pointwise partial order on the set of J-tuples
of elements of X for any index set J : For x, y ∈ XJ we write x ≤ y iff xj ≤ yj for all
j ∈ J . Consequently we also denote the induced pointwise partial order of O(n) by ≤,
so that for f, g ∈ O(n) we have f ≤ g iff f(x) ≤ g(x) for all x ∈ Xn. Whenever we
state that a function f ∈ O(n) is monotone, we mean it is monotone with respect to ≤:
f(x) ≤ f(y) whenever x ≤ y. We denote the power set of X by P(X). The element
0 ∈ X is the smallest element of X.

2.2 Properties of clones above U and the clone Pol(T1)

2.2.1 What 〈T1〉 is

We start by proving that the almost unary clone U is a so-called binary clone, that is,
it is generated by its binary part. Thus, when investigating [U , Pol(T1)], we are in fact
dealing with an interval of the form [〈C (2)〉,Pol(C (2))] for C a clone.

Lemma 21. The binary almost unary functions generate all almost unary functions.
That is, 〈T1〉 = U .
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Proof. Trivially, 〈T1〉 ⊆ U . Now we prove by induction that U (n) ⊆ 〈T1〉 for all n ≥ 1.
This is obvious for n = 1, 2. Assume we have U (k) ⊆ 〈T1〉 for all k < n and take any
function f ∈ U (n). Say without loss of generality that f(x1, . . . , xn) ≤ γ(x1) for some
γ ∈ O(1). We will use the function p∆ ∈ T1 to code two variables into one and then use
the induction hypothesis. Define

g1(x1, . . . , xn−2, z) =

{
f(x1, . . . , xn−2, (p−1

∆ (z))21, (p
−1
∆ (z))22) , z ∈ p∆[X2] \ {0}

x1 , otherwise

The function is an element of U (n−1) as it is bounded by max(x1, γ(x1)). Intuitively, g1

does the following: If z 6= 0 and in the range of p∆, then g1 imagines a pair (xn−1, xn) to
be coded into z via p∆. It reconstructs the pair (xn−1, xn) and calculates f(x1, . . . , xn).
If z = 0 or not in the range of p∆, then g knows there is no information in z; it simply
forgets about the tuple (x2, . . . , xn) and returns x1, relying on the following similar
function to do the job: Set ∆′ = ∆ ∪ {(x, x) : x ∈ X} and define

g2(x1, . . . , xn−2, z) =

{
f(x1, . . . , xn−2, (p−1

∆′ (z))22, (p
−1
∆′ (z))21) , z ∈ p∆′ [X2] \ {0}

x1 , otherwise

The function g2 does exactly the same as g1 but assumes the pair (xn−1, xn) to be
coded into z in wrong order, namely as (xn, xn−1), plus it cares for the diagonal. Now
consider

h(x1, . . . , xn) = g2(g1(x1, . . . , xn−2, p∆(xn−1, xn)), x2, . . . , xn−2, p∆′(xn, xn−1)).

All functions which occur in h are almost unary with at most n − 1 variables. We
claim that h = f . Indeed, if xn−1 < xn, then p∆(xn−1, xn) 6= 0 and g1 yields f .
But p∆′(xn, xn−1) = 0 and so g2 returns g1 = f . If on the other hand xn ≤ xn−1,
then p∆(xn−1, xn) = 0 and g1 = x1, whereas p∆′(xn, xn−1) 6= 0, which implies h =
f(g1, x2, . . . , xn) = f(x1, . . . , xn).

The following corollary will be crucial for our investigation of clones containing T1.

Corollary 22. Let C be a clone containing T1. Then C is downward closed, that is,
if f ∈ C , then also g ∈ C for all g ≤ f .

Proof. If f ∈ C (n) and g ∈ O(n) with g ≤ f are given, define hg(x1, . . . , xn+1) =
min(g(x1, . . . , xn), xn+1). Then hg ≤ xn+1 and consequently, hg ∈ 〈T1〉 ⊆ C . Now
g = hg(x1, . . . , xn, f(x1, . . . , xn)) ∈ C .
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2.2.2 Wildness of functions

We have seen in the last section that in a sense, the interval [U ,O] is about growth
of functions: Modulo U , a function f ∈ O(n) generates all g ∈ O(n) with g ≤ f as all
clones above U are downward closed. But mind we are not talking about how rapidly
functions are growing in the sense of polynomial growth, exponential growth and so
forth since we are considering clones modulo O(1) (and so we can make functions as
steep as we like); the growth of a function will be determined by which of its variables
are responsible for the function to obtain many values. The following definition is due
to M. Goldstern and S. Shelah [GS02]. Recall that N = {1, . . . , n}.

Definition 23. Let f ∈ O(n). We call a set ∅ 6= A ⊆ N f-strong iff for all a ∈ XA the
set {f(a ∪ x) : x ∈ X−A} is small. A is f-weak iff it is not f -strong. In order to use
the defined notions more freely, we define the empty set to be f -strong iff f has small
range.

Thus, a set of indices of variables of f is strong iff f is bounded whenever those
variables are. For example, a function is almost unary iff it has a one-element strong
set. Here, we shall rather think in terms of the complements of weak sets.

Definition 24. Let f ∈ O(n) and let A $ N and a ∈ X−A. We say A is (f, a)-wild iff
the set {f(a∪x) : x ∈ XA} is large. The set A is called f-wild iff there exists a ∈ X−A

such that A is (f, a)-wild. We say that A is f-insane iff A is (f, a)-wild for all a ∈ X−A.
The set N itself we call f -wild and f -insane iff f is unbounded.

Observe that if A ⊆ B ⊆ N and A is f -wild, then B is f -wild as well. Obviously,
A ⊆ N is f -wild iff −A is f -weak. It is useful to state the following trivial criterion for
a function to be almost unary.

Lemma 25. Let n ≥ 2 and f ∈ O(n). f is almost unary iff there exists a subset of N

with n− 1 elements which is not f-wild.

Proof. If f is almost unary, then there is a one-element f -strong subset of N and the
complement of that set is not f -wild. If on the other hand there exists k ∈ N such that
N \ {k} is not f -wild, then {k} is f -strong and so f is almost unary.

We will require the following fact from [GS02].

Fact 26. If f ∈ Pol(T1)(n) and A1, A2 ⊆ N are f-wild, then A1 ∩A2 6= ∅.

We observe that the converse of this statement holds as well.
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Lemma 27. Let f ∈ O(n) be any n-ary function. If all pairs of f-wild subsets of N

have a nonempty intersection, then f ∈ Pol(T1).

Proof. Let g1, . . . , gn ∈ T1 be given and set A1 = {k ∈ N : ∃γ ∈ O(1) (gk(x1, x2) ≤
γ(x1))} and A2 = −A1. Since A1 ∩ A2 = ∅ either A1 or A2 cannot be f -wild. Thus
f(g1, . . . , gn) is bounded by a unary function of x2 in the first case and by a unary
function of x1 in the second case.

The equivalence yields a first description of Pol(T1) with an interesting consequence.

Theorem 28. A function f ∈ O(n) is an element of Pol(T1) iff all pairs of f -wild
subsets of N have a nonempty intersection.

2.2.3 Descriptive set theory

We show now that for countable X, this description implies that Pol(T1) is a Borel set
with respect to the natural topology on O. The reader not interested in the topic can
skip this part and proceed directly to the next section.

We first explain the very basics of descriptive set theory; for more details consult
[Kec95]. Let T = (T, Υ) be a Polish space, that is, a complete, metrizable, separable
topological space. The Borel sets of T are the smallest σ-algebra on T which contains
the open sets. These sets can be ordered according to their complexity: One starts by
defining Σ0

1 = Υ ⊆ P(T ) to consist exactly of the open sets and Π0
1 of the closed sets.

Then one continues inductively for all 1 < α < ω1 by setting Π0
α to contain precisely

the complements of Σ0
α sets, and Σ0

α to consist of all countable unions of sets which are
elements of

⋃
1≤δ<α Π0

δ . The sequences (Σ0
α)1≤α<ω1 and (Π0

α)1≤α<ω1 are increasing and
the union over either of the two sequences yields the Borel sets.

Equip our base set X = ω with the discrete topology. Then the product space N =
ωω = O(1) is the so-called Baire space. It is obvious that O(n) = ωωn

is homeomorphic
to N . Examples of open sets in O(n) are the Ay

x = {f ∈ O(n) : f(x) = y}, where x ∈ Xn

and y ∈ X; in fact, these sets form a subbasis of the topology of O(n). O =
⋃∞

n=1 O(n)

is the sum space of ω copies of N : The open sets in O are those whose intersection
with each O(n) is open in O(n). With this topology, O is a Polish space, and in fact
again homeomorphic to N .

Since clones are subsets of O, they can be divided into Borel clones and clones which
are no Borel sets. In our case, we find that Pol(T1) is a very simple Borel set.

Theorem 29. Let X be countably infinite. Then Pol(T1) is a Borel set in O.
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Proof. We have to show that Pol(T1)(n) is Borel in O(n) for each n ≥ 1. By the
preceding theorem,

Pol(T1)(n) = {f ∈ O(n) : ∀A,B ⊆ N(A,B f -wild → A ∩B 6= ∅)}

There are no (only finite) quantifiers in this definition except for those which might
occur in the predicate of wildness (observe that ∃-quantifiers correspond to unions and
∀-quantifiers to intersections). Now

A ⊆ N f -wild ↔ ∃a ∈ X−A∀k ∈ X∃b ∈ XA(f(a ∪ b) > k)

For fixed A ⊆ N , a ∈ X−A, k ∈ X, and b ∈ XA, the set of all functions in O(n) for
which (f(a ∪ b) > k) is open. Thus, the set of all f ∈ O(n) for which A is f -wild is
of the form

⋃⋂ ⋃
open, and hence Σ0

3 by counting of unions and negations. Observe
that all unions which occur in the definition are countable.

Since the predicate of wildness is negated in the definition of Pol(T1)(n), we conclude
that Pol(T1)(n) is Π0

3.

It is readily verified that U (and hence, T1) is a Borel set as well. This is interesting
in connection with the following:

Above the Borel sets of a Polish space, one can continue the hierarchy of complexity.
The next level, Σ1

1, comprises the so-called analytic sets, which are the continuous
images of Borel sets; the co-analytic sets (Π1

1) are the complements of analytic sets. It
is easy to see that the clone generated by a Borel set of functions in O is an analytic
set. Since O(1) and all countable sets are Borel, every set which is countably generated
over O(1) is analytic. M. Goldstern showed in [Gol0x] that T2 and Pol(T2) are relatively
complicated:

Theorem 30. Let X be countably infinite. Then T2 and Pol(T2) are co-analytic but not
analytic in O. Hence, neither of the two clones 〈T2〉 and Pol(T2) is countably generated
over O(1).

2.2.4 What wildness means

We wish to compare the wildness of functions. Write SN for the set of all permutations
on N .

Definition 31. For f, g ∈ O(n) we say that f is as wild as g and write f ∼W g iff there
exists a permutation π ∈ SN such that A is f -wild if and only if π[A] is g-wild for all
A ⊆ N . Moreover, g is at least as wild as f (f ≤W g) iff there is a permutation π ∈ SN

such that for all f -wild subsets A ⊆ N the image π[A] of A under π is g-wild.
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Lemma 32. ∼W is an equivalence relation and ≤W a quasiorder extending ≤ on the
set of n-ary functions O(n).

Proof. We leave the verification of this to the reader.

Lemma 33. Let f, g ∈ O(n). Then f ∼W g iff f ≤W g and g ≤W f .

Proof. It is clear that f ≤W g (and g ≤W f) if f ∼W g. Now assume f ≤W g and
g ≤W f . Then there are π1, π2 ∈ SN which take f -wild and g-wild subsets of N to
g-wild and f -wild sets, respectively.

Set π = π2 ◦ π1. Then A is f -wild iff π[A] is f -wild for any subset A of N : If A is
f -wild, then π1[A] is g-wild, then π2[π1[A]] = π[A] is f -wild. If on the other hand π[A]
is f -wild, then take k ≥ 1 such that πk = idN and observe that πk−1[π[A]] = πk[A] = A

is f -wild.

Now we see that A is f -wild iff π1[A] is g-wild for all A ⊆ N : If π1[A] is g-wild,
then so is π2 ◦ π1[A] = π[A] and so is A by the preceding observation. Hence, the
permutation π1 shows that f ∼W g.

Corollary 34. Let n ≥ 1. Then ≤W /∼W is a partial order on the ∼W -equivalence
classes of O(n).

Notation 35. Let f ∈ O(n). By 〈f〉T1 we mean 〈{f} ∪ T1〉 from now on. 〈f〉T1 is the
smallest clone containing f as well as all almost unary functions.

We are aiming for the following theorem which tells us why we invented wildness.

Theorem 36. Let f, g ∈ O(n). If f ≤W g, then f ∈ 〈g〉T1. In words, if g is at least as
wild as f , then it generates f modulo T1.

Corollary 37. Let f, g ∈ O(n). If f ∼W g, then 〈f〉T1 = 〈g〉T1.

We split the proof of Theorem 36 into a sequence of lemmas. In the next lemma we
see that it does not matter which a ∈ X−A makes a set A ⊆ N wild.

Lemma 38. Let g ∈ O(n). Then there exists g′ ∈ 〈g〉(n)
T1

such that for all A ⊆ N the
following holds: If A is g-wild, then A is (g′, 0−A)-wild.

Proof. Fix for all g-wild A ⊆ N a tuple aA ∈ X−A such that {g(x ∪ aA) : x ∈ XA} is
large. For an n-tuple (x1, . . . , xn) write P = P (x1, . . . , xn) = {l ∈ N : xl 6= 0} for the
set of indices of positive components in the tuple. Define for 1 ≤ i ≤ n functions

γi(x1, . . . , xn) =

{
xi , xi 6= 0 ∨ P (x1, . . . , xn) not g-wild
(aP )i , otherwise
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In words, if the set P of indices of positive components in (x1, . . . , xn) is a wild set,
then the γi leave those positive components alone and send the zero components to
the respective values making P wild. Otherwise, they act just like projections. It is
obvious that γi is almost unary, 1 ≤ i ≤ n. Set g′ = g(γ1, . . . , γn) ∈ 〈g〉T1 . To prove
that g′ has the desired property, let A ⊆ N be g-wild. Choose any minimal g-wild
A′ ⊆ A. Then by the definition of wildness the set {g(x∪aA′) : x ∈ XA′} is large. Take
a large B ⊆ XA′ such that the sequence (g(x ∪ aA′) : x ∈ B) is one-one. Select further
a large C ⊆ B such that each component in the sequence of tuples (x : x ∈ C) is either
constant or injective and such that 0 does not occur in any of the injective components
(it is a simple combinatorial fact that this is possible). If one of the components were
constant, then A′ would not be minimal g-wild; hence, all components are injective.
Now we have

|X| = |{g(x ∪ aA′) : x ∈ C}|
= |{g′(x ∪ 0−A′) : x ∈ C}| ≤ |{g′(x ∪ 0−A) : x ∈ XA}|

and so A is (g′, 0−A)-wild.

We prove that we can assume functions to be monotone.

Lemma 39. Let g ∈ O(n). Then there exists g′′ ∈ 〈g〉(n)
T1

such that g ≤ g′′ and g′′ is
monotone with respect to the pointwise order ≤.

Proof. We will define a mapping γ from Xn to Xn such that γi = πn
i ◦γ is almost unary

for 1 ≤ i ≤ n and such that g′′ = g ◦γ has the desired property. We fix for every g-wild
A ⊆ N a sequence (αA

ξ )ξ∈X of elements of Xn so that all components of αA
ξ which lie

not in A are constant and so that (g(αA
ξ ))ξ∈X is monotone and unbounded.

Let x ∈ Xn. The order type of x is the unique n-tuple (j1, . . . , jn) of indices in
N such that {j1, . . . , jn} = {1, . . . , n} and such that xj1 ≤ . . . ≤ xjn and such that
jk < jk+1 whenever xjk

= xjk+1
. Let 1 ≤ k ≤ n be the largest element with the

property that the set {jk, . . . , jn} is g-wild. We call the set {jk, . . . , jn} the pushing set
Push(x) and {j1, . . . , jk−1} the holding set of x with respect to g.

We define by transfinite recursion

γ :
Xn → Xn

x 7→ α
Push(x)
λ(x)

where
λ(x) = min{ξ : g(αPush(x)

ξ ) ≥ sup({g′′(y) : y < x} ∪ {g(x)})}.
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This looks worse than it is: We simply map x to the first element of the sequence
(αPush(x)

ξ )ξ∈X such that all values of g′′ already defined as well as g(x) are topped. By
definition, g′′ = g ◦ γ is monotone and g ≤ g′′. It only remains to prove that all γi,
1 ≤ i ≤ n, are almost unary to see that g′′ ∈ 〈g〉T1 .

Suppose not, and say that γk is not almost unary for some 1 ≤ k ≤ n. Then there
exists a value c ∈ X and a sequence of n-tuples (βξ)ξ∈X with constant value c in the
k-th component such that (γk(βξ))ξ∈X is unbounded. Since there exist only finitely
many order types of n-tuples, we can assume that all βξ have the same order type
(j1, . . . , jn); say without loss of generality (j1, . . . , jn) = (1, . . . , n). Then all βξ have
the same pushing set Push(β) of indices. If k was an element of the holding set of
the tuples βξ, then (γk(βξ) : ξ ∈ X) would be constant so that k must be in Push(β).
Clearly, (λ(βξ))ξ∈X has to be unbounded as otherwise (γk(βξ))ξ∈X would be bounded.
Since by definition the value of λ increases only when it is necessary to keep g ≤ g′′,
the set {g(y) : ∃ξ ∈ X(y ≤ βξ)} is unbounded. But because of the order type of the
βξ, whenever i ≤ k, then we have (βξ)n

i ≤ c for all ξ ∈ X so that the components of
the βξ with index in the set {1, . . . , k} are bounded. Thus, {k + 1, . . . , n} is g-wild,
contradicting the fact that k is in the pushing set Push(β).

In a next step we shall see that modulo T1, wildness is insanity.

Lemma 40. Let g ∈ O(n). Then there exists g′′ ∈ 〈g〉(n)
T1

such that g′′ is monotone and
for all A ⊆ N the following holds: If A is g-wild, then A is g′′-insane.

Proof. Let g′ ∈ 〈g〉(n)
T1

be provided by Lemma 38 and make a monotone g′′ out of it
with the help of the preceding lemma. We claim that g′′ already has both desired
properties. To prove this, consider an arbitrary g-wild A ⊆ N . By construction of
g′, A is (g′, 0−A)-wild and so it is also (g′′, 0−A)-wild as g′ ≤ g′′. But 0−A ≤ a for
all a ∈ X−A; hence the fact that g′′ is monotone implies that A is (g, a)-wild for all
a ∈ X−A which means exactly that A is g′′-insane.

Lemma 41. Let f, g ∈ O(n). If f ≤W g, then there exists h ∈ 〈g〉(n)
T1

such that f ≤ h.

Proof. Without loss of generality, we assume that the permutation π ∈ SN taking f -
wild subsets of N to g-wild sets is the identity on N . We take g′′ ∈ 〈g〉T1 according to
the preceding lemma. We wish to define γ ∈ O(1) with f ≤ γ ◦ g′′. For x ∈ X write
Ux = g′′−1[{x}] for the preimage of x under g′′. Now set

γ(x) =

{
sup{f(y) : y ∈ Ux} , Ux 6= ∅
0 , otherwise
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We claim that γ is well-defined, that is, the supremum in its definition always exists
in X. For suppose there is an x ∈ X such that the set {f(y) : y ∈ Ux} is unbounded.
Choose a large subset B ⊆ Ux making the sequence (f(y) : y ∈ B) one-one. Take
further a large C ⊆ B so that all components in the sequence (y : y ∈ C) are either
one-one or constant. Set A ⊆ N to consist of the indices of the injective components.
Obviously, A is f -wild; therefore it is g′′-insane. Since g′′ is also monotone, the set
{g′′(y) : y ∈ C} is large, contradicting the fact that g′′ is constant on Ux. Thus, γ is
well-defined and clearly f ≤ h ∈ 〈g〉T1 where h = γ ◦ g′′.

Proof of Theorem 36. The assertion is an immediate consequence of the preceding
lemma and the fact that all clones above U are downward closed.

Remark 42. Unfortunately, the converse does not hold: If f, g ∈ O(n) and f ∈ 〈g〉T1

then it need not be true that f ≤W g. We will see an example at the end of the section.

2.2.5 med3 and T1 generate Pol(T1)

We are now ready to prove the explicit description of Pol(T1).

Definition 43. For all n ≥ 1 and all 1 ≤ k ≤ n we define a function

mn
k(x1, . . . , xn) = xjk

, if xj1 ≤ . . . ≤ xjn .

For example, mn
n is the maximum function maxn and mn

1 the minimum function minn

in n variables. Note that minn ∈ Pol(T1) (it is even almost unary) but maxn /∈ Pol(T1)
(and hence 〈maxn〉T1 = O). If n is an odd number then we call mn

n+1
2

the n-th median

function and denote this function by medn.

For fixed odd n it is easily verified (check the wild sets and apply Theorem 28) that
medn is the largest of the mn

k which still lies in Pol(T1): mn
k ∈ Pol(T1) iff k ≤ n+1

2 .
It is for this reason that we are interested in the median functions on our quest for a
nice generating system of Pol(T1). As a consequence of the following theorem from the
preceding chapter (Theorem 2) it does not matter which of the median functions we
consider:

Theorem 44. Let k, n ≥ 3 be odd natural numbers. Then medk ∈ 〈{medn}〉. In other
words, a clone contains either no median function or all median functions.

The following lemma states that within the restrictions of functions of Pol(T1) (Fact
26), we can construct functions of arbitrary wildness with the median.
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Lemma 45. Let n ≥ 1 and let A = {A1, . . . , Ak} ⊆ P(N) be a set of subsets of N

with the property that Ai ∩ Aj 6= ∅ for all 1 ≤ i, j ≤ k. Then there exists monotone
tA ∈ 〈{med3}〉(n) such that all members of A are tA -insane.

Proof. We prove this by induction over the size k of A . If A is empty there is nothing
to show. If k = 1, we can set tA = πn

i , where i is an arbitrary element of A1.
Then A1 is obviously tA -insane. If k = 2, then define tA = πn

i , where i ∈ A1 ∩ A2

is arbitrary. Clearly, both A1 and A2 are tA -insane. Finally, assume k ≥ 3. By
induction hypothesis, there exist monotone terms tB, tC , tD ∈ 〈{med3}〉(n) for the sets
B = {A1, . . . , Ak−1}, C = {A1, . . . , Ak−2, Ak} and D = {Ak−1, Ak} such that all sets
in B (and C , D respectively) are tB-insane (tC -insane, tD -insane). Set

tA = med3(tB, tC , tD).

Then each Ai is insane for two of the three terms in med3. Thus, if we fix the variables
outside Ai to arbitrary values, then at least two of the three subterms in med3 are
still unbounded and so is tA by the monotonicity of its subterms. Hence, every Ai is
tA -insane, 1 ≤ i ≤ k. Obviously tA is monotone.

Lemma 46. Let f ∈ Pol(T1)(n). Then there exists tf ∈ 〈{med3}〉 such that f ≤W tf .

Proof. Write A = {A1, . . . , Ak} for the set of f -wild subsets of N . By Fact 26, Ai∩Aj 6=
∅ for all 1 ≤ i, j ≤ k. Apply the preceding lemma to A .

Theorem 47. Pol(T1) = 〈med3〉T1.

Proof. It is clear that Pol(T1) ⊇ 〈med3〉T1 . On the other hand we have just seen
that if f ∈ Pol(T1), then there exists tf ∈ 〈{med3}〉 such that f ≤W tf , whence
f ∈ 〈med3〉T1 .

Corollary 48. Pol(T1) is the ≤-downward closure of the clone generated by med3 and
the unary functions O(1).

Proof. Given f ∈ Pol(T1), by Lemma 46 there exists tf ∈ 〈{med3}〉 such that f ≤W tf .
By Lemma 45, tf is monotone and each tf -wild set is in fact even tf -insane. Now one
follows the proof of Lemma 41 to obtain γ ∈ O(1) such that f ≤ γ ◦ tf .

Corollary 49. Pol(T1) = 〈{med3, p∆} ∪O(1)〉. In particular, Pol(T1) is finitely gener-
ated over the unary functions.

Proof. Remember that 〈{p∆} ∪ O(1)〉 = 〈T1〉 (Fact 20) and apply Theorem 47.
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Now we can give the example promised in Remark 42. Set

g(x1, . . . , x4) = med3(x1, x2, x3)

and
f(x1, . . . , x4) = med5(x1, x1, x2, x3, x4).

It is obvious that 〈g〉T1 = 〈med3〉T1 = Pol(T1). Next observe that 〈f〉T1 ⊆ 〈med5〉T1 =
Pol(T1) and that f(x1, x2, x3, x3) = med3 which implies Pol(T1) = 〈med3〉T1 ⊆ 〈f〉T1 .
Thus, 〈g〉T1 = 〈f〉T1 . Consider on the other hand the 2-element wild sets of the two
functions: Exactly {1, 2}, {1, 3} and {2,3} are g-wild, and {1, 2}, {1, 3}, {1, 4} are the
wild sets of two elements for f . Now the intersection of first group is empty, whereas
the one of the second group is not; so there is no permutation of the set {1, 2, 3, 4}
which takes the first group to the second or the other way. Hence, neither f ≤W g nor
g ≤W f .

2.3 The interval [U , O]

2.3.1 A chain in the interval

Now we shall show that the open interval (〈T1〉, Pol(T1)) is not empty by exhibiting a
countably infinite descending chain therein with intersection U .

Notation 50. For a natural number n ≥ 2, we write Mn = 〈{mn
2} ∪ T1〉.

Observe that since m2
2 = max2 /∈ Pol(T1), Theorem 17 implies that M2 = O.

Moreover, m3
2 = med3 and hence, M3 = Pol(T1).

Lemma 51. Let n ≥ 2. Then M
(k)
n = U (k) for all 1 ≤ k < n. That is, all functions

in Mn of arity less than n are almost unary.

Proof. Given n, k we show by induction over terms that if t ∈ M
(k)
n , then t is almost

unary. To start the induction we note that the only k-ary functions in the generating
set of Mn are almost unary. Now assume t = f(t1, t2), where f ∈ T1 and t1, t2 ∈ M

(k)
n .

By induction hypothesis, t1 and t2 are almost unary and so is t as the almost unary
functions are closed under composition. Finally, say t = mn

2 (t1, . . . , tn), where the ti
are almost unary k-ary functions, 1 ≤ i ≤ n. Since k < n, there exist i, j ∈ N with
i 6= j, l ∈ {1, . . . , k} and γ, δ ∈ O(1) such that ti ≤ γ(xl) and tj ≤ δ(xl). Then,
t ≤ max(γ, δ)(xl) and so t is almost unary as well.

Corollary 52. If n ≥ 2, then mn
2 /∈ Mn+1. Consequently, Mn *Mn+1.
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Lemma 53. If n ≥ 2, then mn+1
2 ∈ Mn. Consequently, Mn+1 ⊆ Mn.

Proof. Set
f(x1, . . . , xn+1) = mn

2 (x1, . . . , xn) ∈ Mn.

Then every n-element subset of {1, . . . , n + 1} is f -wild. Hence, mn+1
2 ≤W f and so

mn+1
2 ∈ 〈f〉T1 ⊆ Mn.

Theorem 54. The sequence (Mn)n≥2 forms a countably infinite descending chain:

O = M2 % M3 = Pol(T1) %M4 % . . . %Mn %Mn+1 % . . .

Moreover, ⋂

n≥2

Mn = U .

Proof. The first statement follows from Corollary 52 and Lemma 53. The second state-
ment a direct consequence of Lemma 51.

2.3.2 Finally, this is the interval

We will now prove that there are no more clones in the interval [U , O] than the ones
we already exhibited. We first state a technical lemma.

Lemma 55. Let f ∈ O(n) be a monotone function such that all f-wild subsets of N

are f -insane. Define for i, j ∈ N with i 6= j functions

f (i,j)(x1, . . . , xn) = f(x1, . . . , xi−1, xj , xi+1, . . . , xn)

which replace the i-th by the j-th component and calculate f . Then the following im-
plications hold for all f -wild A ⊆ N and all i, j ∈ N with i 6= j:

(i) If i /∈ A, then A is f (i,j)-insane.

(ii) If j ∈ A, then A is f (i,j)-insane.

Proof. We have to show that if we fix the variables outside A to constant values, then
f (i,j) is still unbounded; because f is monotone, we can assume all values are fixed to
0. Fix a sequence (αξ : ξ ∈ X) of elements of Xn such that all components outside
A are zero for all tuples of the sequence and such that (f(αξ) : ξ ∈ X) is unbounded.
Define a sequence of n-tuples (βξ : ξ ∈ X) by

(βξ)n
k =

{
0 , k /∈ A

ξ , otherwise
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For each ξ ∈ X there exist a λ ∈ X such that αξ ≤ βλ. Then f(αξ) ≤ f(βλ). In either
of the cases (i) or (ii), f(βλ) ≤ f (i,j)(βλ). Thus, (f (i,j)(βξ) : ξ ∈ X) is unbounded.

Lemma 56. Let f ∈ O(n) not almost unary. Then there exists n0 ≥ 2 such that
〈f〉T1 = 〈mn0

2 〉T1.

Proof. We shall prove this by induction over the arity n of f . If n = 1, there are no not
almost unary functions so there is nothing to show. Now assume our assertion holds
for all 1 ≤ k < n. We distinguish two cases:

First, consider f such that all f -wild subsets of N have size at least n − 1. Then
f ∼W mn

2 and so 〈f〉T1 = 〈mn
2 〉T1 .

Now assume there exists an f -wild subset of N of size n − 2, say without loss of
generality that {2, . . . , n− 1} is such a set. By Lemma 40 and Theorem 36 there exists
a monotone f̂ with 〈f〉T1 = 〈f̂〉T1 and with the property that all f -wild subsets of N

are f̂ -insane. Since we could replace f by f̂ , we assume that f is monotone and that
all f -wild sets are f -insane.

Consider the f (i,j) as defined in the preceding lemma. Formally, these functions are
still n-ary, but in fact they depend only on n− 1 variables. Thus, all of the f (i,j) which
are not almost unary satisfy the induction hypothesis. Set

n0 = min{k : ∃i, j ∈ N 〈f (i,j)〉T1 = 〈mk
2〉T1}.

The minimum is well-defined: Because {2, . . . , n − 1} is f -insane, f (n,1) is not almost
unary so that it generates the same clone as some mn

2 modulo T1; thus, the set is not
empty. Clearly, mn0

2 ∈ 〈f〉T1 . We show that mn0
2 is strong enough to generate f . Since

Mn ⊆ Mn0 for all n ≥ n0 we have f (i,j) ∈ 〈mn0
2 〉T1 for all i, j ∈ N with i 6= j. Now

define
t(x1, . . . , xn) = f (n,1)(x1, f

(1,2), f (1,3), . . . , f (1,n−1)) ∈ 〈mn0
2 〉T1 .

We claim that f ≤W t. Indeed, let A ⊆ N be f -wild and whence f -insane by our
assumption.

If 1 /∈ A, then A is f (1,j)-insane for all 2 ≤ j ≤ n− 1 by the preceding lemma. So A

is insane for all components in the definition of t except the first one. Hence, because
f is monotone, A must be t-insane as otherwise f (n,1) would be almost unary.

If 1 ∈ A, then by the preceding lemma A is still f (1,j)-insane whenever j ∈ A. Thus,
increasing the components with index in A increases the first component in t plus all
subterms f (1,j) with j ∈ A; but by the definition of f (n,1), that is the same as increasing
the variables A ∪ {n} ⊇ A in f . Whence, A is t-insane.

This proves f ≤W t and thus f ∈ 〈mn0
2 〉T1 .
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So here it is, the interval and the end of our quest.

Theorem 57. Let C % U be a clone. Then there exists n ≥ 2 such that C = Mn.

Proof. Set
nC = min{n ≥ 2 : Mn ⊆ C }.

Since C contains a function which is not almost unary, the preceding lemma implies
that the set over which we take the minimum is nonempty. Obviously, MnC ⊆ C .
Now let f be an arbitrary function in C which is not almost unary. Then by the
preceding lemma, there exists n0 such that 〈mn0

2 〉T1 = 〈f〉T1 . Clearly, n0 ≥ nC so that
f ∈ Mn0 ⊆ MnC .

We state a lemma describing how the k-ary parts of the Mn for arbitrary k relate
to each other.

Lemma 58. Let m > n ≥ 2 and k ≥ 2. If k ≥ n (that is, if M
(k)
n is nontrivial), then

M
(k)
n %M

(k)
m .

Proof. We know that M
(k)
n ⊇ M

(k)
m . To see the inequality of the two sets, observe that

f(x1, . . . , xk) = mn
2 (x1, . . . , xn)

is an element of M
(k)
n but definitely not one of M

(k)
m .

Corollary 59. Let k ≥ 2. Then

M
(k)
2 %M

(k)
3 % . . . %M

(k)
k %M

(k)
k+1 = U (k)

Consequently, there are k different k-ary parts of clones of the interval [U , O] for each
k.

In general, if C is a clone, then

Pol(C (1)) ⊇ Pol(C (2)) ⊇ . . . ⊇ Pol(C (n)) ⊇ . . .

Moreover,
Pol(C (n))(n) = C (n) and

⋂

n≥1

Pol(C (n)) = C .

It is natural to ask whether or not for C = U this chain coincides with the chain we
discovered.

Theorem 60. Let n ≥ 1. Then Mn+1 = Pol(U (n)).
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Proof. Clearly, M2 = Pol(U (1)) = O, so assume n ≥ 2. Consider mn+1
2 and let

f1, . . . , fn+1 be functions in U (n). Then two of the fj are bounded by unary functions
of the same variable. Thus mn+1

2 (f1, . . . , fn+1) is bounded by a unary function of
this variable. This shows mn+1

2 ∈ Pol(U (n)) and hence Mn+1 ⊆ Pol(U (n)). Now
consider mn

2 and observe that mn
2 /∈ U (n) = Pol(U (n))(n); this proves Mn * Pol(U (n)).

Whence, Mn+1 = Pol(U (n)).

2.3.3 The mn
k in the chain

As an example, we will show where the clones generated by the mn
k (as in Definition

43) and T1 can be found in the chain.

Notation 61. For 1 ≤ k ≤ n we set M k
n = 〈mn

k〉T1 .

Note that if k = 1, then M k
n = U , and if k > n+1

2 , then M k
n = O. Observe also

that Mn = M 2
n for all n ≥ 2.

Notation 62. For a positive rational number q we write

bqc = max{n ∈ N : n ≤ q}

and
dqe = min{n ∈ N : q ≤ n}.

The remainder of the division n
k we denote by the symbol R(n

k ).

Lemma 63. Let 2 ≤ k ≤ n+1
2 and let t ∈ M k

n not almost unary. Then all t-wild
subsets of Nt have size at least n

k−1 − 1.

Proof. Our proof will be by induction over terms. If t = mn
k , then all t-wild subsets

of Nt = N have at least n − k + 1 elements in accordance with our assertion. For
the induction step, assume t = f(t1, t2), where f ∈ T1, say f(x1, x2) ≤ γ(x1) for some
γ ∈ O(1). Then t inherits the asserted property from t1. Finally we consider the case
where t = mn

k(t1, . . . , tn). Suppose towards contradiction there exists A ⊆ Nt t-wild
with |A| < n

k−1 − 1. There have to be at least n− k + 1 terms tj for which A is tj-wild
so that A can be t-wild. By induction hypothesis, these n − k + 1 terms are almost
unary and bounded by a unary function of a variable with index in A. From the bound
on the size of A we conclude that at least

dn− k + 1
|A| e >

n− k + 1
n

k−1 − 1
= k − 1
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of the terms tj are bounded by an unary function of the same variable with index in A.
But if k of the tj have the same one-element strong set, then t is bounded by a unary
function of this variable as well in contradiction to the assumption that t is not almost
unary.

Corollary 64. Let 2 ≤ k ≤ n+1
2 . Then Md n

k−1
e−1 * M k

n .

Proof. With the preceding lemma it is enough to observe that m
d n

k−1
e−1

2 ∈ Md n
k−1

e−1

has a wild set of size d n
k−1e − 2.

So we identify now the Mj which M k
n is equal to.

Lemma 65. Let 2 ≤ k ≤ n. Then Md n
k−1

e ⊆ M k
n .

Proof. It suffices to show that mn
k generates m

d n
k−1

e
2 . But this is easy:

m
d n

k−1
e

2 = mn
k(x1, . . . , x1, x2, . . . , x2, . . . , xd n

k−1
e, . . . , xd n

k−1
e),

where xj occurs k−1 times if 1 ≤ j ≤ b n
k−1c and R( n

k−1) < k−1 times if j = b n
k−1c+1.

For if we evaluate the function for a d n
k−1e-tuple with xj1 ≤ . . . ≤ xjd n

k−1
e , then xj1

occurs at most k − 1 times in the tuple, but xj1 together with xj2 occur more than k

times; thus, the k-th smallest element in the tuple is xj2 and mn
k returns xj2 .

Theorem 66. M k
n = Md n

k−1
e for all 2 ≤ k ≤ n.

Proof. By Theorem 57, M k
n has to be somewhere in the chain (Mn)n≥2. Because of

Corollary 64 and Lemma 65 the assertion follows.

2.3.4 Further on the chain

We conclude by giving one simple guideline for where to search the clone 〈f〉T1 in the
chain for arbitrary f ∈ O.

Lemma 67. Let 1 ≤ k ≤ n and let f ∈ O(n) be a not almost unary function which has
a k-element f -wild subset of N . Then Mk+1 ⊆ 〈f〉T1.

Proof. We can assume that {1, . . . , k} and all A ⊆ N with |A| = n − 1 are f -insane
and that f is monotone. Define

g(x1, . . . , xk+1) = f(x1, . . . , xk, xk+1, . . . , xk+1) ∈ 〈f〉T1 .
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Let A ⊆ {1, . . . , k + 1} with |A| = k be given. If A = {1, . . . , k} then A is f -wild
and so it is g-wild. Otherwise A contains k + 1 and so it affects n − 1 components in
the definition of g. Therefore A is g-wild by Lemma 25. Hence, mk+1

2 ≤W g and so
Mk+1 ⊆ 〈g〉T1 ⊆ 〈f〉T1 .

Remark 68. Certainly it is not true that if the smallest wild set of a function f ∈ O

has k elements, then Mk+1 = 〈f〉T1 . The mn
k are an example.

Corollary 69. Let f ∈ Pol(T1) not almost unary and such that there exists a 2-element
f-wild subset of N . Then 〈f〉T1 = Pol(T1).

2.4 Summary and a nice picture

We summarize the main results of this chapter: For the interval of clones containing
the almost unary functions we have [U ,O] = {M2, M3, . . . , U }, where the Mn =
〈{mn

2}∪U 〉 = 〈{mn
2 , p∆}∪O(1)〉 are all finitely generated over O(1). Alternatively, Mn

can be described as the ≤-downward closure of 〈{mn
2} ∪O(1)〉. The interval is a chain:

M2 = O(1) % M3 = Pol(T1) % M4 % . . . and
⋂

n≥2 Mn = U . Together with the fact
that Mn+1 = Pol(U (n)) for all n ≥ 1 this yields that U is an example of a clone C for
which the chain Pol(C (1)) ⊇ Pol(C (2)) ⊇ . . . ⊇ C is unrefinable and collapses nowhere.
U is a so-called binary clone, that is, 〈U (2)〉 = U .

The Mn have the property that M
(k)
n = U (k) whenever 1 ≤ k < n. Furthermore,

M
(k)
n % M

(k)
m whenever m > n ≥ 2 and k ≥ n. Consequently, for each k ≥ 1 there

exist exactly k different k-ary parts of clones of the interval [U ,O].

Using wildness, a notion which completely determines a function modulo U , it is
possible to calculate for all 2 ≤ k ≤ n that M k

n = 〈{mn
k} ∪U 〉 = Md n

k−1
e. In general,

if one knows the wild subsets of {1, . . . , n} of a function f ∈ O(n), he can draw certain
conclusions about where to find the clone 〈{f} ∪U 〉 in the chain.

On countable X, if we equip O with the natural topology, then the sets T1 and
Pol(T1) are Borel sets of low complexity, as opposed to the sets T2 and Pol(T2) which
have been shown by M. Goldstern to be non-analytic. In fact, with the results of this
chapter, all clones above the almost unary functions can be shown to be Borel.

If X is countably infinite or weakly compact, we can draw the situation we ran into
like this.
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y J

y
〈O(1)〉

y O = M2

y
Pol(T2)

y
〈T1〉

y
〈T2〉

©©©©©©©©©©

HHHHHHHHHH

?

y
Pol(T1) =

M3

yM4

yM5

...

[〈T1〉, O] = {〈T1〉, . . . ,M3, M2}



Chapter 3

Maximal clones on uncountable
sets that include all permutations

We first determine the maximal clones on a set X of infinite regular cardinality κ which
contain all permutations but not all unary functions, extending a result of L. Heindorf
for countably infinite X. If κ is countably infinite or weakly compact, this yields a
list of all maximal clones containing the permutations since in that case the maximal
clones above the unary functions are known. We then generalize a result of G. Gavrilov
to obtain on all infinite X a list of all maximal submonoids of the monoid of unary
functions which contain the permutations.

3.1 Background and the results

3.1.1 Clones containing the bijections

Although the clone lattice on an infinite base set X need not be dually atomic by a result
of M. Goldstern and S. Shelah [GS04], the sublattice of Cl(X) of clones containing the
set S of all permutations of X is dually atomic since O is finitely generated over S :
Call a set A ⊆ X large iff |A| = |X| = κ and small otherwise. Moreover, A is co-large
iff X \A is large, and co-small iff X \A is small. Set

Y = {f ∈ O(1) : f is injective and f [X] is co-large}
and

Z = {g ∈ O(1) : g−1[y] is large for all y ∈ X}.
It is readily verified that for arbitrary fixed f ∈ Y and g ∈ Z we have

Y = {α ◦ f : α ∈ S } and Z = {α ◦ g ◦ β : α, β ∈ S }.

35
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Moreover,
O(1) = {j ◦ i : j ∈ Z , i ∈ Y }.

Together with the well-known fact that O(1) ∪{p} generates O for any binary injection
p we conclude that O is generated by S ∪ {p, f, g}. Hence Zorn’s lemma implies that
the interval [S , O] is dually atomic.

We will determine all maximal clones C on a base set of regular cardinality for
which S ⊆ C but O(1) 6⊆ C . This has already been done for countable base sets
by L. Heindorf in the article [Hei02] using the following concept: Let ρ ⊆ XJ be a
relation on X indexed by J and let f ∈ O(n). We say that f preserves ρ iff for all
r1 = (r1

i : i ∈ J), . . . , rn = (rn
i : i ∈ J) in ρ we have (f(r1

i , . . . , r
n
i ) : i ∈ J) ∈ ρ.

We define the clone of polymorphisms Pol(ρ) of ρ ⊆ XJ to consist exactly of the
functions in O preserving ρ. In particular, if ρ ⊆ XXk

is a set of k-ary functions,
then the polymorphisms of ρ are exactly those f ∈ O(n) for which the composite
f(g1, . . . , gn) ∈ ρ whenever g1, . . . , gn ∈ ρ. It is obvious that since clones are closed
under composition we have C ⊆ Pol(C (n)) for any clone C and for all n ≥ 1, where
C (n) = C ∩ O(n). Moreover, Pol(C (n))(n) = C (n). Therefore if C is a maximal clone
such that S ⊆ C (1) $ O(1), then C ⊆ Pol(C (1)) $ O holds. Hence C = Pol(C (1)) by
the maximality of C . We conclude that all maximal clones with S ⊆ C (1) $ O(1) are
of the form Pol(G ) where S ⊆ G $ O(1) is a submonoid of O(1), that is, a set of unary
functions closed under composition and containing the identity map.

Theorem 70 (L. Heindorf). Let X be a countably infinite set. The maximal clones
over X which contain all bijections but not all unary functions are exactly those of the
form Pol(G ), where G ∈ {A , B, D ,E ,F} ∪ {Gn : 1 ≤ n < ℵ0} is one of the following
submonoids of O(1):

1. A = {f ∈ O(1) : f−1[{y}] is finite for almost all y ∈ X}

2. B = {f ∈ O(1) : f−1[{y}] is finite for all y ∈ X}

3. D = {f ∈ O(1) : f is almost injective or not almost surjective}

4. E = {f ∈ O(1) : f is almost surjective}

5. F = {f ∈ O(1) : f is almost surjective or constant}

6. Gn = {f ∈ O(1) : if A ⊆ X has cardinality n then |X \ f [X \A]| ≥ n}

Consequently the number of such clones is countably infinite.
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In the theorem, “almost all” means “all but finitely many”, “almost injective” means
that there exists a finite subset A of X such that the restriction of f to X\A is injective,
and “almost surjective” means that the range of f is co-finite.

The restriction in the theorem to clones which do not contain all unary functions is
not important since G. Gavrilov showed the following in [Gav65].

Theorem 71 (G. Gavrilov). If X is countably infinite, then there exist exactly two
maximal clones which contain O(1).

The two results imply that the number of maximal clones containing the permuta-
tions is countably infinite on a countably infinite base set.

We now turn to base sets of any infinite cardinality. A property P (y) holds for almost
all y ∈ X iff the set of all elements for which the property does not hold is small. For
λ ≤ κ a cardinal define a unary function f to be λ-surjective iff |X \f [X]| < λ. Instead
of κ-surjective we also say almost surjective; this means that the range of f is co-small.
f is λ-injective iff |{x ∈ X : ∃y 6= x (f(x) = f(y))}| < λ. For λ = 1 or infinite, this is
the case iff there exists a set A ⊆ X such that |A| < λ and such that the restriction of
f to the complement of A is injective. Almost injective means κ-injective.

We are going to prove

Theorem 72. Let X be a set of regular cardinality κ. The maximal clones over X

which contain all bijections but not all unary functions are exactly those of the form
Pol(G ), where G ∈ {A ,B,E ,F} ∪ {Gλ : 1 ≤ λ ≤ κ, λ a cardinal} is one of the
following submonoids of O(1):

1. A = {f ∈ O(1) : f−1[{y}] is small for almost all y ∈ X}

2. B = {f ∈ O(1) : f−1[{y}] is small for all y ∈ X}

3. E = {f ∈ O(1) : f is almost surjective}

4. F = {f ∈ O(1) : f is almost surjective or constant}

5. Gλ = {f ∈ O(1) : if A ⊆ X has cardinality λ then |X \ f [X \A]| ≥ λ}

Corollary 73. Let X be a set of regular cardinality κ = ℵα. Then there exist max(|α|,ℵ0)
maximal clones on X which contain all bijections but not all unary functions.

Unfortunately, we do not know the maximal clones above O(1) on all regular car-
dinals; however we do on some. Let κ be a cardinal. The partition symbol κ → (κ)22
means: Whenever the edges of a complete graph with κ vertices are colored with 2
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colors, then there is a complete subgraph with κ vertices, all of whose edges have the
same color. An uncountable κ for which the partition relation κ → (κ)22 holds is called
weakly compact. For example, the well-known theorem of F. Ramsey says that the
defined partition relation holds for ℵ0: If G is a complete countably infinite graph and
we color its edges with two colors, then there is an infinite complete subgraph of G on
which the coloring is constant.

M. Goldstern and S. Shelah [GS02] extended G. Gavrilov’s result on maximal clones
containing O(1) to weakly compact cardinals.

Theorem 74 (M. Goldstern and S. Shelah). If κ = |X| is a weakly compact
cardinal, then there exist exactly two maximal clones on X which contain O(1).

Hence in the case of a weakly compact base set we know all maximal clones con-
taining the permutations. It is a fact that weakly compact cardinals κ satisfy κ = ℵκ.
Thus Corollary 73 and Theorem 74 imply

Corollary 75. Let X be a set of weakly compact cardinality κ. Then there exist κ

maximal clones which contain all bijections.

Unfortunately things are not always that easy.

Theorem 76 (M. Goldstern and S. Shelah [GS02]). For many regular cardinal-
ities of X, in particular for all successors of regulars, there exist 22|X| maximal clones
which contain O(1).

It is interesting that whereas above O(1) the number of maximal clones varies heavily
with the partition properties of the underlying base set (2 for weakly compact cardinals,
22κ

for many others), the number of maximal clones above the permutations but not
above O(1) is a monotone function of κ and always relatively small (≤ κ).

3.1.2 Maximal submonoids of O(1)

Not all monoids appearing in Theorem 72 are maximal submonoids of O(1). More
surprisingly, there exist maximal submonoids of O(1) above the permutations whose
polymorphism clone is not maximal. Observe that submonoids of O(1) are simply
unary clones, that is clones consisting only of essentially unary functions, and that the
lattice of monoids which contain the permutations is dually atomic by the argument
we have seen before.
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Theorem 77 (G. Gavrilov [Gav65]). On a countably infinite base set X the maximal
submonoids of O(1) containing the permutations are precisely the monoids A , D , G1,
M and N , where

M = {f ∈ O(1) : f is surjective or not injective}

and
N = {f ∈ O(1) : f is almost surjective or not almost injective}.

We will generalize Theorem 77 to arbitrary infinite sets in the last section, obtaining

Theorem 78. Let X be an infinite set. If X has regular cardinality, then the maximal
submonoids of O(1) which contain the permutations are exactly the monoid A and the
monoids Gλ and Mλ for λ = 1 and ℵ0 ≤ λ ≤ κ, λ a cardinal, where

Mλ = {f ∈ O(1) : f is λ-surjective or not λ-injective}.

If X has singular cardinality, then the same is true with the monoid A replaced by

A ′ = {f ∈ O(1) : ∃λ < κ ( |f−1[{x}]| ≤ λ for almost all x ∈ X ) }.

Corollary 79. On a set X of infinite cardinality ℵα there exist 2 |α| + 5 maximal
submonoids of O(1) that contain the permutations. Hence the smallest cardinality on
which there are infinitely many such monoids is ℵω.

Observe that the statement about singular cardinals in Theorem 78 differs only
slightly from the corresponding one for regulars. We do not know whether Theorem 72
can be generalized to singulars, but in our proof we do use the regularity condition.

3.1.3 Where has D gone?

One might ask why in the general Theorems 72 and 78 there is no monoid D as in
Theorems 70 and 77. The answer to that question is the following: Define for λ = 1
and for all ℵ0 ≤ λ ≤ κ monoids

δ(λ) = {f ∈ O(1) : f is λ-injective or not λ-surjective}

(this definition is due to I. Rosenberg [Ros74]). Then we have

Lemma 80. δ(λ) = Gλ for λ = 1 and ℵ0 ≤ λ ≤ κ. In particular, D = δ(κ) = Gκ.
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Proof. Note that for λ = 1, λ-injective simply means injective and λ-surjective means
surjective. The lemma is easily verified for that case, and we prove it for λ infinite.
Assuming f ∈ δ(λ) we show f ∈ Gλ. It is clear that if f is not λ-surjective, then
f ∈ Gλ. So assume f is λ-surjective; then by the definition of δ(λ), f is λ-injective.
Now let A ⊆ X be an arbitrary set of size λ. Assume towards contradiction that
|X \ f [X \ A]| < λ. Then two things can happen: If |f [A] ∩ f [X \ A]| ≥ λ, then
|{x ∈ X : ∃y 6= x (f(x) = f(y))}| ≥ |{x ∈ A : ∃y ∈ X \ A (f(x) = f(y))}| ≥ λ,
contradicting the λ-injectivity of f . Otherwise, A is mapped onto a set of size smaller
than λ, again in contradiction to f being λ-injective.
To see the other inclusion, take any f /∈ δ(λ). Then f is not λ-injective; thus we can
find A ⊆ X of size λ such that f [X] = f [X \A]. But then |X \f [X \A]|=|X \f [X]| < λ

as f is λ-surjective. Hence, f /∈ Gλ.

Before we start with the proofs we fix some notation.

3.1.4 Notation

For a set of functions F we shall denote the smallest clone containing F by 〈F 〉. We
call the projections which every clone contains πn

i where n ≥ 1 and 1 ≤ i ≤ n. We write
nf for the arity of a function f ∈ O whenever that arity has not been given another
name. If a ∈ Xn is an n-tuple and 1 ≤ k ≤ n we write ak for the k-th component of
a. The image of a set A ⊆ Xn under a function f ∈ O(n) we denote by f [A]. Similarly
we write f−1[A] for the preimage of A ⊆ X under f . If A = {c} is a singleton we cut
short and write f−1[c] rather than f−1[{c}]. Occasionally we shall denote the constant
function with value c ∈ X also by c. Whenever we identify X with its cardinality we
let < and ≤ refer to the canonical well-order on X.

3.2 The proof of Theorem 72

In this section we are going to prove Theorem 72; it will be the direct consequence of
Propositions 82, 84, 85, 90, 91, 95, 96, 97, and 101. The first part of the proof (Section
3.2.1) is not much more than a translation of L. Heindorf’s paper [Hei02] to arbitrary
regular cardinals; the reader familiar with that article should not be surprised to find
the same constructions here. In Section 3.2.2 we generalize a completeness criterion
due to G. Gavrilov from countable sets to the uncountable to finish the proof.
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3.2.1 The core of the proof

We start with a general observation which will be useful.

Lemma 81. Let G be a proper submonoid of O(1) such that 〈Pol(G ) ∪ {h}〉 = O for
all unary h /∈ G . Then Pol(G ) is maximal.

Proof. Let f /∈ Pol(G ) be given. Then there exist h1, . . . , hnf
∈ G such that h =

f(h1, . . . , hnf
) /∈ G . Now h ∈ 〈G ∪ {f}〉 ⊆ 〈Pol(G ) ∪ {f}〉 and 〈Pol(G ) ∪ {h}〉 = O by

assumption so that we conclude 〈Pol(G ) ∪ {f}〉 = O.

The monoids A and B

Proposition 82. The clones Pol(A ) and Pol(B) are maximal.

Proof. The maximality of Pol(A ) has been proved in [Gav65] for the countable case
and in [Ros74] (Proposition 4.1) for arbitrary infinite sets.

For the maximality of Pol(B), let a unary h /∈ B be given; by Lemma 81, it suffices
to show 〈Pol(G ) ∪ {h}〉 = O. By the definition of B there exists c ∈ X such that the
preimage Y = h−1[c] is large. Choose any injection g : X → Y ; then h ◦ g(x) = c for
all x ∈ X.

Now let f ∈ O(n) be an arbitrary function and consider f̃ ∈ On+1 defined by

f̃(x1, . . . , xn, y) =

{
f(x1, . . . , xn) , y = c

y , y 6= c
.

We claim that f̃ ∈ Pol(B). For let α1, . . . , αn, β ∈ B and d ∈ X be given. If
f̃(α1, . . . , αn, β)(x) = d, then by the definition of f̃ either β(x) = c and f(α1(x), . . . , αn(x)) =
d or β(x) 6= c and β(x) = d. But since β ∈ B, the set of all x ∈ X such that β(x) = c

or β(x) = d is small. Hence f̃(α1, . . . , αn, β)−1[d] is small and so f̃(α1, . . . , αn, β) ∈ B.

Now to finish the proof it is enough to observe that f(x1, . . . , xn) = f̃(x1, . . . , xn, c) =
f̃(x1, . . . , xn, h ◦ g(x1)) ∈ 〈Pol(B) ∪ {h}〉.

We will prove now that B is the only proper submonoid of A whose Pol is maximal.
We start with a lemma.

Lemma 83. If f /∈ Pol(A ), then there exist α1, . . . , αnf
∈ O(1) constant or injective

such that f(α1, . . . , αnf
) /∈ A .
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Proof. Since f /∈ Pol(A ), there exist β1, . . . , βnf
∈ A such that f(β1, . . . , βnf

) /∈ A .
We will use induction over nf . If nf = 1, then f /∈ Pol(A )(1) = A so that f(π1

1) =
f /∈ A which proves the assertion for that case. Now assume the lemma holds for
all functions of arity at most nf − 1. Define for 1 ≤ i ≤ nf sets Bi = {y ∈ X :
β−1

i [y] is large}. By definition of A , all Bi are small. Set

Γ = (β1, . . . , βnf
)[X] \

∏

1≤i≤nf

Bi ⊆ Xnf

Claim. There exists a large set D ⊆ X such that f−1[d] ∩ Γ is large for all d ∈ D.
To prove the claim, set D = {d ∈ X : f(β1, . . . , βnf

)−1[d] large} \ f [
∏

1≤i≤nf
Bi].

The set D is large as f(β1, . . . , βnf
) /∈ A and as

∏
1≤i≤nf

Bi is small. Define Ad =
(f(β1, . . . , βnf

))−1[d] for each d ∈ D. Then (β1, . . . , βnf
)[Ad] ⊆ Γ is large for all d ∈ D.

Indeed, assume to the contrary that there exists d ∈ D such that (β1, . . . , βnf
)[Ad]

is small; then, since |X| = κ is regular, there is an x ∈ (β1, . . . , βnf
)[Ad] so that

(β1, . . . , βnf
)−1[x] is large. But then we would have x ∈ ∏

1≤i≤nf
Bi, in contradiction

to the assumption that d /∈ f [
∏

1≤i≤nf
Bi]. This proves the claim since f−1[d] ∩ Γ =

(β1, . . . , βnf
)[Ad] is large for every d ∈ D.

Setting H i
b = {x ∈ Xnf : xi = b} for all 1 ≤ i ≤ nf and all b ∈ X, we can write Γ as

follows:

Γ = (
nf⋃

i=1

⋃

b∈Bi

Γ ∩H i
b) ∪ (Γ \∆),

where ∆ =
⋃nf

i=1

⋃
b∈Bi

H i
b. Since κ is regular and the union consists only of a small

number of sets, we have that either there exist 1 ≤ i ≤ nf and some b ∈ Bi such that
f−1[d] ∩ Γ ∩H i

b is large for a large set of d ∈ D, or f−1[d] ∩ Γ \∆ is large for a large
set of d ∈ D. We distinguish the two cases:
Case 1. There exist 1 ≤ i ≤ nf and b ∈ Bi such that f−1[d] ∩ Γ ∩ H i

b is large
for many d ∈ D; say without loss of generality i = nf . Then f(β1, . . . , βnf−1, b) /∈
A . By induction hypothesis, there exist α1, . . . , αnf−1 injective or constant such that
f(α1, . . . , αnf−1, b) /∈ A . Setting αnf

(x) = b for all x ∈ X proves the lemma.
Case 2. f−1[d] ∩ ∆ is large for many d ∈ D. Observe that for all a ∈ X and all
1 ≤ i ≤ nf , ∆ ∩ H i

a is small, for otherwise β−1
i [a] would be large and thus a ∈ Bi,

contradiction. Set
C = {c ∈ X : f−1[c] ∩∆ large}.

By the assumption for this case, C is large. Now fix any g : X → C such that g−1[c]
is large for all c ∈ C. We define a function α : X → ∆ such that f ◦ α = g; moreover,
αi = π

nf

i ◦ α will be injective, 1 ≤ i ≤ nf . Identify X with its cardinality κ. Then all
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αi are injective iff αi(x) 6= αi(y) for all y < x and all 1 ≤ i ≤ nf . This is the case iff

(α1, . . . , αnf
)(x) ∈ ∆ \

⋃
y<x

nf⋃

i=1

H i
αi(y).

Using transfinite induction on κ, we define (α1, . . . , αnf
) by picking

(α1, . . . , αnf
)(x) ∈ (f−1[g(x)] ∩∆) \

⋃
y<x

nf⋃

i=1

H i
αi(y).

This is possible as f−1[g(x)] ∩∆ is large for all x ∈ X whereas ∆ ∩⋃
y<x

⋃nf

i=1 H i
αi(y)

is small. Clearly f(α1, . . . , αnf
) = g /∈ A and the proof of the lemma is complete.

Proposition 84. Let G ⊆ A be a submonoid of O(1) which contains all permutations.
Then either G ⊆ B or Pol(G ) ⊆ Pol(A ).

Proof. Assume G * B; we show Pol(G ) ⊆ Pol(A ). Observe first that for all co-large
A ⊆ X and all a ∈ X there exists g ∈ G such that g[A] = {a}. Indeed, choose any
h ∈ G \B. There exists y ∈ X such that h−1[y] is large. Choose bijections α, β ∈ S

with the property that α[A] ⊆ h−1[y] and that β(y) = a. Then g = β ◦ h ◦ α has the
desired property.
Now let f /∈ Pol(A ) be arbitrary; we show f /∈ Pol(G ). By the preceding lemma there
exist α1, . . . , αnf

constant or injective such that f(α1, . . . , αnf
) /∈ A . Choose a large

and co-large A ⊆ X such that f(α1, . . . , αnf
)−1[x]∩A is large for a large set of x ∈ X.

We modify the αi to γi ∈ G in such a way that αi ¹A= γi ¹A for 1 ≤ i ≤ nf : If αi is
injective, then we can choose γi to be a bijection. If αi is constant, then γi is delivered
by the observation we just made. Thus, as f(α1, . . . , αnf

) ¹A= f(γ1, . . . , γnf
) ¹A we

have f(γ1, . . . , γnf
) /∈ A ⊇ G .

Proposition 85. Let G ⊆ B be a submonoid of O(1) which contains all permutations.
Then Pol(G ) ⊆ Pol(B).

Proof. Let f /∈ Pol(B) be arbitrary. We show f /∈ Pol(G ). There are β1, . . . , βnf
∈ B

such that there exists c ∈ X with the property that f(β1, . . . , βnf
)−1[c] is large. Define

Γ = (β1, . . . , βnf
)[X]. Then since βi ∈ B, H i

a ∩ Γ is small for all 1 ≤ i ≤ nf and
all a ∈ X, where H i

a = {x ∈ Xnf : xi = a}. Moreover, f−1[c] ∩ Γ is large. Just
like at the end of the proof of Lemma 83, we can construct injective α1, . . . , αnf

such
that f(α1, . . . , αnf

) is constant with value c. Choose A ⊆ X large and co-large and
bijections γ1, . . . , γnf

such that γi ¹A= αi ¹A for 1 ≤ i ≤ nf . Then, being constant on
A, f(γ1, . . . , γnf

) /∈ B ⊇ G . Thus, f /∈ Pol(G ).
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Generous functions

We now turn to monoids G ⊇ S which are not submonoids of A . Our first goal is
Proposition 90, in which we give a positive description of such monoids.

Definition 86. A function f ∈ O(1) is called generous iff f−1[y] is either large or
empty for all y ∈ X.

Notation 87. Let 0 ≤ λ ≤ κ be a cardinal. We denote by Iλ the set of all generous
functions f with the property that |X \ f [X]| = λ.

Lemma 88. 1. If g ∈ O(1) is generous, then f ◦ g is generous for all f ∈ O(1).

2. Iλ is a subsemigroup and Iλ ∪S a submonoid of O(1) for all λ ≤ κ.

3. If λ < κ and f, g ∈ Iλ, then there exist α, β ∈ S such that f = α ◦ g ◦ β.

4. Iκ contains all generous functions with small range, in particular the constant
functions.

5. If g ∈ Iκ has large range, then 〈S ∪ {g}〉 ⊇ Iκ.

Proof. (1) and (4) are obvious. For (2), let f, g ∈ Iλ; we want to show that f ◦g ∈ Iλ.
By (1) f ◦ g is generous, so it remains to show that |X \ f ◦ g[X]| = λ. We distinguish
two cases: If λ = κ, then we have κ ≥ |X \ f ◦ g[X]| ≥ |X \ f [X]| = κ and so we are
finished. Otherwise we claim f [X] = f ◦ g[X]. Indeed, if y ∈ f [X], then f−1[y] is large
so that g[X]∩ f−1[y] 6= ∅ as λ < κ. Hence, y ∈ f ◦ g[X]. Thus f [X] ⊆ f ◦ g[X] and the
other inclusion is obvious.
We prove (3). Write f [X] = {ci}i∈κ and g[X] = {di}i∈κ. Set further Ci = f−1[ci] and
Di = g−1[di] and let βi be bijections from Ci onto Di, i ∈ κ. Then β =

⋃
i∈κ βi is

a bijection on X. Define the function α by α(di) = ci for all i < κ and extend α to
X by an arbitrary bijection from X \ g[X] onto X \ f [X]. It is readily verified that
f = α ◦ g ◦ β.
To prove (5), let an arbitrary f ∈ Iκ be given; we show f ∈ 〈S ∪ {g}〉. Select any
bijection γ with the property that g◦γ(x) = g◦γ(y) implies f(x) = f(y) for all x, y ∈ X.
This is possible since g has large range and since both f and g are generous. Choose
another bijection β such that for all x, y ∈ X we have g ◦β ◦g ◦γ(x) = g ◦β ◦g ◦γ(y) iff
f(x) = f(y). Then it is clear that there is a bijection α satisfying f(x) = α◦g◦β◦g◦γ(x)
for all x ∈ X.

Lemma 89. If g /∈ A , then there exists α ∈ S such that the function g ◦ α ◦ g is
generous and has large range.
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Proof. There exists a large set A ⊆ X such that g−1[a] is large for all a ∈ A. Set
E = g[X] \ A and D = X \ g[X]. Choose B ⊆ A with the property that A \ B is
large and that |B| = |g−1[E]|. Fix a0 ∈ A \ B. Take any function γ : D → g−1[A]
making g ◦ γ injective. γ exists as A is large. We want α ∈ O(1) to satisfy the following
properties:

(i) E shall be mapped injectively on a co-large part of g−1[a0].

(ii) B shall be mapped bijectively onto g−1[E]

(iii) α ¹D= γ

Since E,B and D are disjoint, we can indeed choose an injective partial function α̃

defined on E ∪ B ∪ D which satisfies (i)-(iii). Because X \ (E ∪ B ∪D) ⊇ A \ B the
domain of α̃ is co-large. Its range is also co-large as at least a large subset of g−1[ao] is
not in the range. Hence we can extend α̃ to α ∈ S . We claim that α has the asserted
properties. Clearly g ◦ α ◦ g[X] ⊆ g[X] = A ∪ E; we show that (g ◦ α ◦ g)−1[y] is large
for all y ∈ A ∪ E. Indeed, if y ∈ E, then (g ◦ α)−1[y] ⊆ B ⊆ A. Thus, the preimage of
y under g ◦ α ◦ g is large. If y ∈ A, then g−1[y] is large and so is g−1[y] \ γ[D]. Thus,
(g ◦ α)−1[y] \ D is large as well. Hence, (g ◦ α ◦ g)−1[y] is large which we wanted to
show.

Proposition 90. Let G ⊆ O(1) be a monoid containing all bijections. Then either
G ⊆ A or there exists a cardinal λ ≤ κ such that Iλ ⊆ G .

Proof. This is an immediate consequence of Lemmas 88 and 89.

The preceding proposition implies that when considering submonoids G of O(1)

which contain the permutations, we can from now on assume that Iλ ⊆ G for some λ,
since we already treated the case G ⊆ A . We distinguish three cases corresponding to
the minimal λ with the property that Iλ ⊆ G : λ = κ, 0 < λ < κ and λ = 0.

The case λ = κ

Recall that Gκ consists of all functions f ∈ O(1) with the property that whenever A is
a large set then f [X \A] is co-large. Remember also that this is equivalent to f being
either not almost surjective or almost injective.

Proposition 91. 1. Pol(Gκ) is a maximal clone.

2. If G is a submonoid of O(1) such that S ∪Iκ ⊆ G and such that Iλ ⊆ G for no
λ < κ, then Pol(G ) ⊆ Pol(Gκ).
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Proof. (1) We will prove this together with the maximality of the other Pol(Gλ) in
Proposition 95.
(2) Assume f /∈ Pol(Gκ); we show f /∈ Pol(G ). Take α1, . . . , αnf

∈ Gκ such that g =
f(α1, . . . , αnf

) /∈ Gκ, that is, g is almost surjective but not almost injective. Choose a
co-large set A ⊆ X such that g[A] = g[X] is co-small. Because αi ∈ Gκ, αi[A] is co-large
for 1 ≤ i ≤ nf . Now fix for all a ∈ A a large set Ba such that A∩Ba = {a}, Ba∩Ba′ = ∅
whenever a 6= a′ and such that X =

⋃
a∈A Ba. This is possible since A is co-large. Define

for 1 ≤ i ≤ nf functions βi ∈ O(1) by βi(x) = αi(a) whenever x ∈ Ba. It is clear that
all βi are generous. Also, since βi[X] = αi[A] is co-large we have βi ∈ Iκ ⊆ G for all
1 ≤ i ≤ nf . The function f(β1, . . . , βnf

) is generous since it is constant on every Ba.
Now f(β1, . . . , βnf

)[X] ⊇ f(β1, . . . , βnf
)[A] = f(α1, . . . , αnf

)[A] = f(α1, . . . , αnf
)[X] is

co-small. Hence there exists a λ < κ such that f(β1, . . . , βnf
) ∈ Iλ, and since Iλ * G ,

we infer f(β1, . . . , βnf
) /∈ G from Lemma 88 (3) which proves f /∈ Pol(G ).

The case 0 < λ < κ

We shall now investigate the case where G + I0 but G contains Iλ for some 0 < λ < κ.
We collect a couple of facts about the Gλ first. Recall that Gλ consists of those functions
f for which it is true that |X \ f [X \A]| ≥ λ whenever A ⊆ X is of size λ. Recall also
that for λ = 1 or infinite this is the case iff f is λ-injective or not λ-surjective.

Lemma 92. The following statements hold for all 1 ≤ λ ≤ κ.

1. If g ∈ O(n) and |X \ g[Xn]| ≥ λ, then g ∈ Pol(Gλ).

2. Gλ is a submonoid of O(1).

3. Gn % Gn+1 for all 1 ≤ n < ℵ0.

4. For λ = 1 and for λ ≥ ℵ0, Gλ is a maximal submonoid of O(1).

Proof. (1) is obvious. For (2), let f, g ∈ Gλ and take an arbitrary A ⊆ X with |A| = λ.
Then |X \ g[X \A]| ≥ λ. Hence, |X \ f ◦ g[X \A]| = |X \ f [X \ (X \ g[X \A])]| ≥ λ so
that f ◦g ∈ Gλ. It is clear that the identity map is an element of Gλ since it is injective.
We prove (3). Observe first that the inclusion X \f [X \(A∪B)] ⊆ (X \f [X \A])∪f [B]
holds for all A,B ⊆ X and all f ∈ O(1). Now let f ∈ Gn+1 for some 1 ≤ n < ℵ0.
Take an arbitrary n-element subset A of X. Choose any a /∈ A. Then n + 1 ≤
|X \ f [X \ (A ∪ {a})]| ≤ |(X \ f [X \ A])|+ |f [{a}]| and so n ≤ |(X \ f [X \ A])|. This
proves f ∈ Gn. It is obvious that Gn 6= Gn+1.
The proof of (4) can be found in [Ros74] (Proposition 5.2).
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Lemma 93. Let 1 ≤ λ ≤ κ. If h /∈ Gλ, then there exist a λ0 < λ such that 〈Iλ ∪S ∪
{h}〉 ⊇ Iλ0. In particular, 〈Gλ ∪ {h}〉 ⊇ Iλ0.

Proof. There exists A ⊆ X, |A| = λ such that |X\h[X\A]| < λ. Set λ0 = |X\h[X\A]|.
Choose a generous function g with g[X] = X \ A. Then g ∈ Iλ since |X \ g[X]| =
|A| = λ; thus, h ◦ g ∈ 〈Iλ ∪ {h}〉. On the other hand, h ◦ g ∈ Iλ0 and hence
〈Iλ∪S ∪{h}〉 ⊇ Iλ0 by Lemma 88 (3). The second statement is a direct consequence
of the inclusion Gλ ⊇ Iλ ∪S .

Lemma 94. Let B ⊆ X, |B| = λ0 < λ ≤ κ, and let g ∈ O(2) such that g maps (X \B)2

bijectively onto X and such that |g[B ×X] ∪ g[X ×B]| < κ. Then g ∈ Pol(Gλ).

Proof. Let α, β ∈ Gλ be given, and take an arbitrary A ⊆ X of size λ. We have to show
|X \ g(α, β)[X \ A]| ≥ λ. For C = X \ α[X \ A] we have |C| ≥ λ. Thus, there exists
some c ∈ C \B. Obviously, g(α, β)[X \A] ⊆ g[(X \ {c})×X]. But the conditions on g

yield that g[(X \ {c})×X] and g[{c} × (X \B)] \ (g[X ×B] ∪ g[B ×X]) are disjoint.
Since |g[{c} × (X \ B)]| = κ and |g[X × B] ∪ g[B ×X]| < κ, this implies that g(α, β)
misses κ values on X \A and hence, g(α, β) ∈ Gλ and g ∈ Pol(Gλ).

Proposition 95. 1. Pol(Gλ) is a maximal clone for all 1 ≤ λ ≤ κ.

2. Let G ⊆ O(1) be a monoid containing all bijections as well as some Iλ, where
0 ≤ λ < κ, and let λ be minimal with this property. If λ > 0, then Pol(G ) ⊆
Pol(Gλ).

Proof. (1) We show 〈Pol(Gλ)∪{h}〉 = O for an arbitrary h ∈ O(1) \Gλ. By Lemma 93,
there exists λ0 < λ such that Iλ0 ⊆ 〈Gλ ∪ {h}〉. Now choose B and g ∈ Pol(Gλ) as in
Lemma 94. Consider α : X → (X \ B)2 such that α takes every value twice. Clearly,
α1 = π2

1 ◦ α and α2 = π2
2 ◦ α are elements of Iλ0 . The function p = g(α1, α2) = g ◦ α

maps X onto X and takes every value twice as well. Therefore we can find a co-large
set A such that p[A] = X. Now fix a mapping q : X → A so that p ◦ q is the identity
map on X. Let an arbitrary f ∈ O be given. Then q ◦ f [Xnf ] ⊆ A is co-large which
immediately implies q ◦ f ∈ Pol(Gλ). But then f = p ◦ (q ◦ f) = f ∈ 〈Pol(Gλ) ∪ {h}〉
and so 〈Pol(Gλ) ∪ {h}〉 = O as f was arbitrary.
(2) First we claim that G ⊆ Gλ. Indeed, assume there exists h ∈ G \ Gλ. Then, as
Iλ ∪S ⊆ G , by Lemma 93 there exists λ0 < λ such that Iλ0 ⊆ G , in contradiction to
the minimality of λ.
Now let f /∈ Pol(Gλ) be arbitrary; we prove f /∈ Pol(G ). There exist α1, . . . , αnf

∈ Gλ

such that f(α1, . . . , αnf
) /∈ Gλ. That is, there exists A ⊆ X of size λ with the property

that |X \ f [Γ]| < λ, where Γ = {(α1(x), . . . , αnf
(x)) : x ∈ X \ A}. Since αi ∈ Gλ,
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1 ≤ i ≤ nf , for each i there exists a set Bi ⊆ X, |Bi| = λ, such that αi[X \A]∩Bi = ∅.
Then Γ ⊆ ∆ = (X \ B1) × . . . × (X \ Bnf

). Choose β : X → ∆ onto and generous.
Clearly βi = π

nf

i ◦ β ∈ Iλ ⊆ G for all 1 ≤ i ≤ nf . Now for all C ⊆ X of size λ < κ we
have that f(β1, . . . , βnf

)[X \ C] = f [∆] ⊇ f [Γ] and so, as |X \ f [∆]| ≤ |X \ f [Γ]| < λ,
f(β1, . . . , βnf

) /∈ Gλ ⊇ G . Hence, f /∈ Pol(G ).

The case λ = 0 and G ⊆ F

In the following proposition we treat the case where I0 ⊆ G ⊆ E ⊆ F . Recall that E

consists of those functions which are almost surjective (that is, κ-surjective).

Proposition 96. 1. Pol(E ) is a maximal clone.

2. If G ⊆ O(1) is a monoid containing all bijections as well as I0, and if G ⊆ E ,
then Pol(G ) ⊆ Pol(E ).

Proof. (1) We prove that for any unary h /∈ E we have 〈Pol(E )∪{h}〉 = O. By definition
h[X] is co-large, so we can fix A ⊆ X large and co-large such that A∩h[X] = ∅. Choose
any g ∈ O(1) which maps A onto X and which is constantly 0 ∈ X on X \ A. Then
g ∈ E as it is onto. Moreover, g ◦ h is constantly 0. Now let an arbitrary f ∈ O(n) be
given and define a function f̃ ∈ On+1 by

f̃(x1, . . . , xn, y) =

{
f(x1, . . . , xn) , y = 0
y , otherwise

Then f̃ ∈ Pol(E ). Indeed, this follows from the inclusion f̃(α1, . . . , αn, β)[X] ⊇ β[X] \
{0} for arbitrary α1, . . . , αn, β ∈ O(1). Now f(x) = f̃(x, 0) = f̃(x, g ◦ h(x1)) for all
x ∈ Xn and so f ∈ 〈Pol(E ) ∪ {h}〉.
(2) Taking an arbitrary f /∈ Pol(E ) we show that f /∈ Pol(G ). There exist α1, . . . , αnf

almost surjective such that f(α1, . . . , αnf
) is not almost surjective. Consider a small

set A ⊆ X so that A ∪ αi[X] = X for all 1 ≤ i ≤ nf . Let γ be a surjection from X \A

onto X and define for 1 ≤ i ≤ nf functions

βi(x) =

{
αi ◦ γ(x) , x ∈ X \A

x , x ∈ A

Clearly, all βi are surjective and f(β1, . . . , βnf
)[X] = f(α1, . . . , αnf

)[X]∪{f(x, . . . , x) :
x ∈ A} is co-large. Fix any δ ∈ I0. Obviously βi ◦ δ ∈ I0 ⊆ G and also f(β1 ◦
δ, . . . , βnf

◦ δ)[X] is co-large. Thus f(β1 ◦ δ, . . . , βnf
◦ δ) /∈ E ⊇ G so that we infer

f /∈ Pol(G ).
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In a next step we see what happens in the case I0 ⊆ G ⊆ F and G * E . F is the
set of those functions which are almost surjective or constant.

Proposition 97. 1. Pol(F ) is a maximal clone.

2. If G ⊆ F is a monoid which contains I0 as well as all bijections, and if G * E ,
then Pol(G ) ⊆ Pol(F ).

Proof. (1) can be found in [Ros74] (Proposition 3.1).
For (2), let f /∈ Pol(F ) and fix α1, . . . , αnf

∈ F satisfying f(α1, . . . , αnf
) /∈ F . Since

G * E but G ⊆ F , G must contain a constant function, and hence all constant
functions as S ⊆ G . For those of the αi which are not constant we construct βi as
in the proof of the preceding proposition, and for the constant ones we set βi = αi.
Observe that it is impossible that all αi are constant. Choosing any δ ∈ I0 we obtain
that for all 1 ≤ i ≤ nf , βi ◦ δ is either constant or an element of I0, and hence in either
case an element of G . But as in the preceding proof, f(β1 ◦ δ, . . . , βnf

◦ δ) /∈ F ⊇ G so
that f /∈ Pol(G ).

The case λ = 0 and G * F

To conclude, we consider submonoids G of O(1) which contain the bijections as well as
I0, but which are not submonoids of F . It turns out that the polymorphism clones of
such monoids are never maximal. We start with a simple fact about such monoids.

Lemma 98. Let G ⊆ O(1) be a monoid containing S ∪ I0 such that G * F . Then
χ = {ρ ∈ O(1) : |ρ[X]| = 2 and ρ is generous} ⊆ G .

Proof. Let f ∈ G \F . Since f is not constant there exist a 6= b in the range of f . Let
s : X \ f [X] → X be onto and generous and define g ∈ O(1) by

g(x) =





s(x) , x /∈ f [X]
a , x = a

b , otherwise

Then g ∈ I0 ⊆ G and so g ◦ f ◦ g ∈ G . On the other hand, g ◦ f ◦ g ∈ χ which proves
the lemma since obviously any function of χ together with the permutations generate
all of χ.
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To prove that the remaining monoids do not yield maximal clones via Pol, we are
going to generalize the following completeness criterion due to G. Gavrilov [Gav65]
(Lemma 31 on page 51) for countable base sets.

Lemma 99 (G. Gavrilov). Let X be countably infinite. If G ⊆ O(1) is a monoid
containing S ∪I0 ∪χ, and if H ⊆ O is a set of functions such that 〈O(1) ∪H 〉 = O,
then 〈G ∪H 〉 = O.

So we claim

Proposition 100. Lemma 99 holds on all base sets of infinite regular cardinality.

It follows immediately that Pol(G ) is not maximal for the remaining monoids G .

Proposition 101. If G ⊆ O(1) is a monoid such that S ∪ I0 ⊆ G and such that
G * F , then Pol(G ) is not maximal.

Proof. We have just seen that χ ⊆ G so we can apply Proposition 100. Suppose
towards contradiction that Pol(G ) is maximal. Since Pol(G )(1) = G $ O(1) we have
〈O(1) ∪ Pol(G )〉 = O. But then setting H = Pol(G ) in the lemma yields that 〈G ∪
Pol(G )〉 = O, which is impossible as 〈G ∪ Pol(G )〉 = Pol(G ) 6= O, contradiction.

3.2.2 The proof of Proposition 100.

Notation 102. We set L = 〈χ ∪ I0 ∪S 〉. Moreover, we write Const for the set of
all constant functions.

The following description of L is readily verified.

Lemma 103. L = Const∪χ∪I0 ∪S . In words, L consists exactly of the bijections
as well as of all generous functions which are either onto or take at most two values.

Lemma 104. Let u ∈ O(1) be injective and not almost surjective. Then 〈{u} ∪I0〉 ⊇
O(1). In particular, 〈{u} ∪L 〉 ⊇ O(1).

Proof. Let an arbitrary f ∈ O(1) be given. Take any s : X \ u[X] → X which is
generous and onto. Now define g ∈ O(1) by

g(x) =

{
f(u−1(x)) , x ∈ u[X]
s(x) , otherwise

Since g ¹X\u[X]= s we have g ∈ I0. Clearly, f = g ◦ u ∈ 〈{u} ∪I0〉.
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Definition 105. A function f(x1, . . . , xn) ∈ O(n) is almost unary iff there exist a
function F : X → P(X) and some 1 ≤ k ≤ n such that F (x) is small for all x ∈ X

and such that for all (x1, . . . , xn) ∈ Xn we have f(x1, . . . , xn) ∈ F (xk). We denote the
set of all almost unary functions by U .

It is easy to see that on a base set of regular cardinality, U is a clone which contains
O(1). See [Pin04b] for a list of all clones above U ; there are countably many, so in
particular U is not maximal. The reason for us to consider almost unary functions is
the following lemma.

Lemma 106. Let f ∈ O(n) \ U be any function which is not almost unary. Then
〈{f} ∪L 〉 ⊇ O(1).

Observe that this lemma implies that Pol(G ) ⊆ U for all proper submonoids G of
O(1) which contain L and that we can therefore conclude directly that these polymor-
phism clones are not maximal. We will now prove Lemma 106 by showing that L

together with a not almost unary f generate a function u as in Lemma 104. We start
by observing that L and f generate functions of arbitrary range.

Lemma 107. Let f ∈ O(n) \ U . Then there exists a unary g ∈ 〈{f} ∪L 〉 such that
the range of g is large and co-large.

Proof. We distinguish two cases.
Case 1. For all 1 ≤ i ≤ n and all c ∈ X it is true that f [Xi−1×{c}×Xn−i] is co-small.
Then consider an arbitrary large and co-large A ⊆ X. Set Γ = f−1[X \ A] ⊆ Xn and
let α : X → Γ be onto. By the assumption for this case, f [Xi−1×{c}×Xn−i]\A is still
large for all 1 ≤ i ≤ n and all c ∈ X. Thus the components αi = πn

i ◦ α are generous
and onto; hence, αi ∈ I0 ⊆ L for all 1 ≤ i ≤ n. But now f(α1, . . . , αn)[X] = f [Xn]\A

is large and co-large so that it suffices to set g = f ◦ α.
Case 2. There exists 1 ≤ i ≤ n and c ∈ X such that f [Xi−1 ×{c}×Xn−i] is co-large,
say without loss of generality i = 1. Since f /∈ U , there exists d ∈ X satisfying that
f [{d}×Xn−1] is large. Choose Γ ⊆ Xn−1 large and co-large such that f [{d}×Γ] is large
and such that f [{c}×Xn−1]∪f [{d}×Γ] is still co-large. Take moreover α2, . . . , αn ∈ I0

so that (α2, . . . , αn)[X] = Xn−1. Now we define α1 ∈ O(1) by

α1(x) =

{
d , (α2, . . . , αn)(x) ∈ Γ
c , otherwise.

Clearly, α1 ∈ χ ⊆ L . Now it is enough to set g = f(α1, . . . , αn) and observe that
g[X] = f [{c} × (Xn−1 \ Γ)] ∪ f [{d} × Γ] is large and co-large.
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Lemma 108. Let f ∈ O(n) \U . Then for all A ⊆ X there exists h ∈ 〈{f} ∪L 〉 with
h[X] = A.

Proof. By Lemma 107 there exists g ∈ 〈{f} ∪L 〉 having a large and co-large range.
Now taking any δ ∈ I0 ⊆ L with δ[g[X]] = A and setting h = δ ◦ g proves the
assertion.

Lemma 109. If f ∈ O(n) \U , then 〈{f} ∪L 〉 contains all generous functions.

Proof. Let any generous g ∈ O(1) be given and take with the help of the preceding
lemma h ∈ 〈{f} ∪L 〉 with h[X] = g[X]. By setting h′ = h ◦ δ, where δ ∈ I0 ⊆ L is
arbitrary, we obtain a generous function with the same property. Now it is clear that
there exists a bijection σ ∈ S ⊆ L such that g = h′ ◦ σ.

Now that we know that we have all generous functions we want to make them
injective. We start by reducing the class of functions f under consideration.

Lemma 110. If f ∈ O(n) \U is so that for all 1 ≤ i ≤ n and for all a, b ∈ X the set
of all tuples (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Xn−1 with f(x1, . . . , xi−1, a, xi+1, . . . , xn) 6=
f(x1, . . . , xi−1, b, xi+1, . . . , xn) is small, then 〈{f} ∪L 〉 ⊇ O(1).

Proof. Since f /∈ U we can for every 1 ≤ i ≤ n choose ci ∈ X such that f [Xi−1×{ci}×
Xn−i] is large. Choose moreover for every 1 ≤ i ≤ n large sets Ai ⊆ f [Xi−1 × {ci} ×
Xn−i] such that

⋃n
i=1 Ai is co-large and such that Ai ∩Aj = ∅ for i 6= j. Write each Ai

as a disjoint union of many large sets: Ai =
⋃

x∈X Ax
i . Let / be any well-order of Xn

of type κ. Define Γ ⊆ Xn by x ∈ Γ iff there exists 1 ≤ i ≤ n such that f(x) ∈ Axi
i and

whenever y / x and y ∈ Γ then f(x) 6= f(y). Observe that the latter condition ensures
that f ¹Γ is injective.

Now observe that for all 1 ≤ i ≤ n, all c ∈ X and all large B ⊆ Ai we have that
f [Xi−1×{c}×Xn−i]∩B is large. Indeed, say without loss of generality i = 1 and set D =
{(x2, . . . , xn) : f(c, x2, . . . , xn) 6= f(c1, x2, . . . , xn)}. Then D is small by our assumption.
Now |f [{c}×Xn−1]∩B| ≥ |f [{c}×(Xn−1\D)]∩B| = |f [{c1}×(Xn−1\D)]∩B| = κ. In
particular, this observation is true for B = Ac

i . This implies that the set {x ∈ Γ : xi = c}
is large for all 1 ≤ i ≤ n and all c ∈ X. Moreover, Γ itself is large.

Therefore there exists a bijection α : X → Γ. By the preceding observation, the
components αi = πn

i ◦ α are onto and generous, so αi ∈ I0 ⊆ L for all 1 ≤ i ≤ n.
Since α is injective, α[X] = Γ and f ¹Γ is injective, we have that g = f(α1, . . . , αn) ∈
〈{f} ∪ L 〉 is injective. Furthermore, g[X] = f [Γ] ⊆ ⋃n

i=1 Ai is co-large. Whence
O(1) ⊆ 〈{g} ∪L 〉 ⊆ 〈{f} ∪L 〉 by Lemma 104 and we are done.
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Lemma 111. If f ∈ O(n) \ U is so that for all 1 ≤ i ≤ n there exist c ∈ X and
S ⊆ Xn with πn

i [S] = {c} such that f [S] large and such that for all b ∈ X the set
{x ∈ S : f(x) 6= f(x1, . . . , xi−1, b, xi+1, . . . , xn)} is small, then 〈{f} ∪L 〉 ⊇ O(1).

Proof. Fix for every 1 ≤ i ≤ n an element ci ∈ X and a set Si ⊆ Xn such that
πn

i [Si] = {ci} and such that f [Si] large and such that for all b ∈ X the set {x ∈ Si :
f(x) 6= f(x1, . . . , xi−1, b, xi+1, . . . , xn)} is small. Set Ai = f [Si], 1 ≤ i ≤ n. By thinning
out the Si we can assume that the Ai are disjoint and that

⋃n
i=1 Ai is co-large. Now

one follows the proof of the preceding lemma.

Lemma 112. If f ∈ O(n) \U , then there exists g ∈ 〈{f} ∪L 〉 having co-large range
and with the property that {x ∈ X : |g−1[x]| = 1} is large (that is, the kernel of g has
κ one-element classes).

Proof. There is nothing to prove if f satisfies the condition of Lemma 111, so assume
it does not, and let i = 1 witness this. Take c ∈ X such that f [{c} × Xn−1] is large
and choose S ⊆ Xn such that πn

1 [S] = {c}, such that f [S] is still large and such
that f ¹S is injective. By the lemma, there exists b ∈ X such that {x ∈ S : f(x) 6=
f(b, x2, . . . , xn)} is large. Thus, we can find a large A ⊆ S with the property that f [A]
and f [{(b, x2, . . . , xn) : x ∈ A}] are disjoint and such that the union of these two sets
is co-large. Choose now generous α2, . . . , αn ∈ O(1) such that (c, α2, . . . , αn)[X] = A.
Since 〈{f} ∪L 〉 contains all generous functions by Lemma 109, we have αj ∈ L for
2 ≤ j ≤ n. Take a large and co-large B ⊆ X such that (c, α2, . . . , αn) ¹B is injective.
Define

α1(x) =

{
c , x ∈ B

b , otherwise

and set g = f(α1, . . . , αn). Then g ∈ 〈{f}∪L 〉 as α1 ∈ χ ⊆ L . Clearly, (α1, . . . , αn) ¹B

is injective and so is g ¹B. Since g[B] and g[X \B] are disjoint we have that |g−1[x]| = 1
for all x ∈ g[B]. Moreover, g[X] ⊆ f [A] ∪ f [{(b, x2, . . . , xn) : x ∈ A}] is co-large.

Lemma 113. Let f ∈ O(n) \ U . If h ∈ O(1) is a function whose kernel has at
least one large equivalence class (that is, there exists x ∈ X with h−1[x] large), then
h ∈ 〈{f} ∪L 〉.

Proof. There exist a large B ⊆ X and b ∈ X such that h[B] = {b}. Let g be provided
by the preceding lemma. With the help of permutations of the base set we can assume
that |g−1[x]| = 1 for all x ∈ g[X \ B]. Since the range of g is co-large we can find
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δ : X \ g[X] → X onto and generous. Now define m ∈ O(1) by

m(x) =





δ(x) , x /∈ g[X]
b , x ∈ g[B]
h(g−1(x)) , x ∈ g[X \B].

Obviously m ∈ I0 ⊆ L and h = m ◦ g ∈ 〈{f} ∪L 〉.

Having found many functions which 〈{f} ∪L 〉 must contain, we are finally ready
to prove Lemma 106.

Proof of Lemma 106. There are c1, . . . , cn ∈ X such that f [Xi−1×{ci}×Xn−i] is large
for 1 ≤ i ≤ n. Take B1, . . . , Bn large such that πn

i [Bi] = {ci} for all 1 ≤ i ≤ n and
with the property that f ¹B is injective and f [B] is co-large, where B =

⋃n
i=1 Bi. Let

α : X → B be any bijection. Since α−1
i [ci] is large for every component αi = πn

i ◦α, the
preceding lemma yields αi ∈ 〈{f} ∪L 〉 for 1 ≤ i ≤ n. Whence, g = f(α1, . . . , αn) ∈
〈{f}∪L 〉. But g[X] = f [B] is co-large and g is injective by construction; thus Lemma
104 yields O(1) ⊆ 〈{g} ∪L 〉 ⊆ 〈{f} ∪L 〉.

This brings us back to our original goal.

Proof of Proposition 100. Since 〈O(1) ∪H 〉 = O, there must exist some f ∈ H \ U .
But then, since G ⊇ L , Lemma 106 implies 〈G ∪H 〉 ⊇ O(1) so that we infer 〈G ∪H 〉 =
O.

3.3 The proof of Theorem 78

We now determine on an infinite X all maximal submonoids of O(1) which contain the
permutations, proving Theorem 78. In a first section, we present the part of the proof
which works on all infinite sets; then follow one section specifically for the case of a
base set of regular cardinality and another section for the singular case. Throughout
all parts we will mention explicitly whenever a statement is true only on X of regular
or singular cardinality, respectively.

3.3.1 The part which works for all infinite sets

Proposition 114. Gλ is a maximal submonoid of O(1) for λ = 1 and ℵ0 ≤ λ ≤ κ.

Proof. As already mentioned in Lemma 92, the maximality of the Gλ for λ = 1 or
infinite has been proved in [Ros74] (Proposition 5.2).
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The maximal monoids of Proposition 114 already appeared in the preceding section
since they give rise to maximal clones via Pol. We shall now expose maximal monoids
above the permutations which do not have this property. Recall that Mλ consists of
all functions which are either λ-surjective or not λ-injective.

Proposition 115. Let λ = 1 or ℵ0 ≤ λ ≤ κ. Then Mλ is a maximal submonoid of
O(1).

Proof. We show first that Mλ is closed under composition. Let therefore f, g ∈ Mλ,
that is, those functions are either λ-surjective or not λ-injective; we claim that f ◦g has
either of these properties. It is clear that if g is not λ-injective, then f ◦ g has the same
property. So let g be λ-surjective. It is easy to see that if f is λ-surjective, then so is
f ◦ g. So assume finally that f is not λ-injective. We claim that f ◦ g is not λ-injective
either. For λ = 1 this is just the statement that if f is not injective, and g is surjective,
then f ◦ g is not injective, which is obvious. Now consider the infinite case. There exist
disjoint A,B ⊆ X of size λ such that f [A] = f [B]. Set A′ = A ∩ g[X]; A′ still has
size λ as g misses less than λ values. Clearly B′ = {x ∈ B : ∃y ∈ A′(f(x) = f(y))}
has size λ as well and so does B′′ = B′ ∩ g[X]. But now for the sets C = g−1[A′] and
D = g−1[B′′] it is true that |C|, |D| ≥ λ, C ∩ D = ∅, and f ◦ g[C] = f ◦ g[D]; hence
f ◦ g is not λ-injective.
Now we prove that Mλ is maximal in O(1). Consider for this reason any m /∈ Mλ, that
is, m is λ-injective and misses at least λ values. There exists A ⊆ X so that |X \A| < λ

and such that the restriction of m to A is injective. Take any injection i ∈ O(1) with
i[X] = A. Then i ∈ Mλ as i is λ-surjective. Now let f ∈ O(1) be arbitrary. Define

g(x) =

{
f((m ◦ i)−1(x)) , x ∈ m ◦ i[X]
a , otherwise

where a ∈ X is any fixed element of X. Being constant on the complement of the range
of m, g it is not λ-injective and whence an element of Mλ. Therefore f = g ◦m ◦ i ∈
〈Mλ ∪ {m}〉 so that we infer 〈Mλ ∪ {m}〉 ⊇ O(1).

Lemma 116. There are no other maximal monoids above S ∪I0 except the Mλ (λ = 1
or ℵ0 ≤ λ ≤ κ).

Proof. Let G ⊇ I0 ∪S be a submonoid of O(1) which is not contained in any of the
Mλ; we prove that G = O(1). To do this, we show that G contains an injective function
u ∈ O(1) with co-large range; then the lemma follows from Lemma 104. Fix for every
λ a function mλ ∈ G \Mλ. Since mκ is κ-injective, there exists a cardinal λ1 < κ and
a set A1 ⊆ X of size λ1 such that the restriction of mκ to the complement of A1 is
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injective. If λ1 is infinite, then consider mλ1 . Not being an element of Mλ1 , mλ1 misses
at least λ1 values. Hence by adjusting it with a suitable permutation we can assume
that mλ1 [X] ⊆ X \A1. There exists a cardinal λ2 < λ1 and a subset A2 of X of size λ2

such that the restriction of mλ1 to the complement of A2 is injective. Hence, writing
λ0 = κ we obtain that mλ0 ◦mλ1 ∈ G is injective on X \ A2 and misses κ values. We
can iterate this to arrive after a finite number of steps at a set An of finite size λn

such that the restriction of mλ0 ◦ . . . ◦mλn−1 ∈ G to X \ An is injective and misses κ

values. Since m1 /∈ M1 is injective and misses at least one value we conclude that the
iterate mλn

1 ∈ G is injective and misses at least λn values. Modulo permutations we
may assume that mλn

1 [X] ⊆ X \An. But now we have that mλ0 ◦ . . .◦mλn−1 ◦mλn
1 ∈ G

is injective and misses κ values, implying that G = O(1).

3.3.2 The case of a base set of regular cardinality

We now finish the proof of Theorem 78 for the case when X has regular cardinality.
The proof for this case comprises Propositions 114, 115, 117 and 118.

Proposition 117. If X is of regular cardinality, then A is a maximal submonoid of
O(1).

Proof. This has been proved in [Ros74] (Proposition 4.1).

Proposition 118. Let X have regular cardinality. There exist no other maximal sub-
monoids of O(1) containing the permutations except those listed in Theorem 78 for the
regular case.

Proof. Assume that G ⊇ S is a submonoid of O(1) not contained in any of the monoids
of the theorem; we show that G = O(1). Indeed, since G * A , Proposition 90 tells us
that there exists a cardinal λ ≤ κ such that Iλ is contained in G . Choose λ minimal
with this property. If λ was greater than 0, then G ⊆ Gλ for otherwise Lemma 93 would
yield a contradiction to the minimality of λ. But this is impossible as we assumed that
G is not contained in any of the Gλ, so we conclude that λ = 0. Now Lemma 116
implies that G = O(1).

3.3.3 The case of a base set of singular cardinality

The only problem with base sets of singular cardinality is that the set A is not closed
under composition; in fact, 〈A 〉 = O. A slight adjustment of the definition of A works
in this case. We will refer to results from preceding sections; this might look unsafe
since there we restricted ourselves to base sets of regular cardinality. However, when
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proving the particular results cited here we did not use the regularity of the base set.
The proof of Theorem 78 for singular cardinals comprises Propositions 114, 115, 122
and 123.

Definition 119. A function f ∈ O(1) is said to be harmless iff there exists λ < κ such
that the set of all x ∈ X for which |f−1[x]| > λ is small. With this definition, A ′ as
defined in Theorem 78 is the set of all harmless functions.

Lemma 120. A ′ is a monoid and A ′ ⊆ A . Moreover, A = A ′ iff κ is a successor
cardinal.

Proof. It is obvious that A ′ ⊆ A and that A = A ′ iff κ is a successor cardinal. To
prove that A ′ is closed under composition, let f, g ∈ A ′; we show h = f ◦ g ∈ A ′.
There exist λf , λg < κ witnessing that f and g are harmless. Set λ to be max(λf , λg);
we claim that the set of x ∈ X for which |h−1[x]| > λ is small. For if |h−1[x]| > λ, then
either |g−1[x]| > λ or there exists y ∈ g−1[x] such that |f−1[y]| > λ. Both possibilities
occur only for a small number of x ∈ X and so h is harmless.

Lemma 121. Let X have singular cardinality. If g /∈ A ′, then g together with S

generate a function not in A .

Proof. Set λ < κ to be the cofinality of κ. Because g is not harmless, there exist distinct
sequences (x0

ξ)ξ<λ, . . . , (xκ
ξ )ξ<λ of distinct elements of X such that

⋃
ξ<λ g−1[xζ

ξ ] is large
for all ζ < κ. Indeed, if (µξ)ξ<λ is any cofinal sequence of cardinalities in κ, then the
fact that g is not harmless allows us to pick for every ξ < λ an element x0

ξ ∈ X such that
|g−1[x0

ξ ]| > µξ; it is also no problem to choose the elements distinct. This yields the
first sequence and since with every sequence we are using up only λ < κ elements, the
definition of harmlessness ensures that we can repeat the process κ times. By throwing
away half of the sequences, we may assume that the set of all y ∈ X which do not
appear in any of the sequences is large.
There exists a permutation α ∈ S such that g ◦ α(xζ1

ξ1
) = g ◦ α(xζ2

ξ2
) if and only if

ζ1 = ζ2, for all ζ1, ζ2 < κ and all ξ1, ξ2 < λ. For we can map every sequence (xζ
ξ)ξ<λ

injectively into an equivalence class of the kernel of g of size greater than λ; since there
are many such classes every sequence can be assigned an own class, and we choose
the classes so that a large number of classes are not hit at all. This partial injective
mapping we can then extend to the permutation α as it is defined on a co-large set and
has co-large range.
Set yζ = g ◦ α(xζ

0) for all ζ < κ. Then the yζ are pairwise distinct and for all ζ < κ we
have that (g ◦ α ◦ g)−1[yζ ] ⊇ ⋃

ξ<λ g−1[xζ
ξ ] is large. Hence, g ◦ α ◦ g /∈ A .
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Proposition 122. Let X have singular cardinality. Then A ′ is a maximal submonoid
of O(1).

Proof. Let g ∈ O(1) \A ′. We know that g together with A ′ generate a function not in
A . Then by Lemma 89, we obtain a function which is generous and has large range,
call it h. Now take any f ∈ O(1) such that f ◦h[X] = X which is injective on h[X] and
constant on X \h[X]. Then f ∈ A ′ and f ◦h ∈ I0. Thus, I0 ⊆ 〈{g}∪A ′〉 and since all
injections are elements of A ′ we can apply Lemma 104 to prove 〈{g}∪A ′〉 ⊇ O(1).

Proposition 123. Let X have singular cardinality. There exist no other maximal
submonoids of O(1) containing the permutations except those listed in Theorem 78 for
the singular case.

Proof. If G ⊇ S is a submonoid of O(1) which is not contained in A ′, then it is not
contained in A by Lemma 121. From this point, one can follow the proof of Proposition
118.
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