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Abstract

The dyadic diaphony is a quantitative measure for the irregularity of distribution
of a sequence in the unit cube. In this paper we give formulae for the dyadic
diaphony of digital (0, s)-sequences over Z2, s = 1, 2. These formulae show that
for fixed s ∈ {1, 2}, the dyadic diaphony has the same values for any digital (0, s)-
sequence. For s = 1, it follows that the dyadic diaphony and the diaphony of special
digital (0, 1)-sequences are up to a constant the same. We give the exact asymptotic
order of the dyadic diaphony of digital (0, s)-sequences and show that for s = 1 it
satisfies a central limit theorem.

1 Introduction

The diaphony FN (see [13] or [4, Definition 1.29] or [8, Exercise 5.27, p. 162]) of the first
N elements of a sequence ω = (xn)n≥0 in [0, 1)s is given by

FN(ω) =






∑

k∈Zs

k6=0

1

ρ(k)2

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

e2πi〈k,xn〉

∣
∣
∣
∣
∣

2





1/2

,

where for k = (k1, . . . , ks) ∈ Z
s it is ρ(k) =

∏s
i=1 max(1, |ki|) and 〈·, ·〉 denotes the usual

inner product in R
s. It is well known that the diaphony is a quantitative measure for the

irregularity of distribution of the first N points of a sequence. In fact, a sequence ω is
uniformly distributed modulo 1 if and only if limN→∞ FN (ω) = 0. Throughout this paper
we will call the diaphony the classical diaphony.

In [7] Hellekalek and Leeb introduced the notion of dyadic diaphony which is similar to
the classical diaphony but with the trigonometric functions replaced by Walsh functions.
Before we give the exact definition of the dyadic diaphony recall that Walsh-functions in
base 2 can be defined as follows: for a non-negative integer k with base 2 representation
k = κm2m + · · · + κ12 + κ0 and a real x with (canonical) base 2 representation x =
x1

2
+ x2

22 + · · · the k-th Walsh function in base 2 is defined as

walk(x) := (−1)x1κ0+x2κ1+···+xm+1κm .

For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define

walk1,...,ks
(x1, . . . , xs) :=

s∏

j=1

walkj
(xj).

∗The author is supported by the Austrian Science Foundation (FWF), Project S9609, that is part of
the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory”.
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For vectors k = (k1, . . . , ks) ∈ N
s
0 and x = (x1, . . . , xs) ∈ R

s we write

walk(x) := walk1,...,ks
(x1, . . . , xs).

Now we can give the definition of the dyadic diaphony (see Hellekalek and Leeb [7]).

Definition 1 The dyadic diaphony F2,N of the first N elements of a sequence ω = (xn)n≥0

in [0, 1)s is defined by

F2,N(ω) =






1

3s − 1

∑

k∈Ns
0

k6=0

1

ψ(k)

∣
∣
∣
∣
∣

1

N

N−1∑

n=0

walk(xn)

∣
∣
∣
∣
∣

2





1/2

,

where for k = (k1, . . . , ks) ∈ N
2
0 it is ψ(k) =

∏s
i=1 ψ(ki) and for k ∈ N0,

ψ(k) =

{
1 if k = 0,
22r if 2r ≤ k < 2r+1 with r ∈ N0.

Throughout the paper we will write r(k) = r if r is the unique determined integer such
that 2r ≤ k < 2r+1.

It is shown in [7, Theorem 3.1] that the dyadic diaphony is a quantitative measure
for the irregularity of distribution of the first N points of a sequence: a sequence ω is
uniformly distributed modulo 1 if and only if limN→∞ F2,N(ω) = 0. Further it was shown
in [2] that the dyadic diaphony is — up to a factor depending only on s — the worst-case
error for quasi-Monte Carlo integration of functions from a certain Hilbert space.

We consider the dyadic diaphony of a special class of sequences in [0, 1)s, namely
of so-called digital (0, s)-sequences over Z2 for s = 1, 2. Digital (0, s)-sequences or more
generally digital (t, s)-sequences were introduced by Niederreiter [10, 11] and they provide
at the moment the most efficient method to generate sequences with excellent distribution
properties. We remark that a digital (0, s)-sequence over Z2 only exists if s = 1 or s = 2.
For higher dimensions s ≥ 3 the concept of digital (t, s)-sequence over Z2 with t > 0 has
to be stressed (see [10] or [11]).

Before we give the definition of digital (0, s)-sequences we introduce some notation:
for a vector ~c = (γ1, γ2, . . .) ∈ Z

∞
2 and for m ∈ N we denote the vector in Z

m
2 consisting

of the first m components of ~c by ~c(m), i.e., ~c(m) = (γ1, . . . , γm). Further for an N × N

matrix C over Z2 and for m ∈ N we denote by C(m) the left upper m×m submatrix of
C.

Definition 2 For s ∈ {1, 2}, choose s N×N matrices C1, . . . , Cs over Z2 with the following
property: for every m ∈ N and every 0 ≤ n ≤ m the vectors

~c
(1)
1 (m), . . . ,~c (1)

n (m),~c
(s)
1 (m), . . . ,~c

(s)
m−n(m)

are linearly independent in Z
m
2 . Here ~c

(j)
i is the i-th row vector of the matrix Cj. (In

particular for any m ∈ N the matrix Cj(m) has full rank over Z2 for all j ∈ {1, . . . , s}.)
For n ≥ 0 let n = n0 + n12 + n22

2 + · · · be the base 2 representation of n. For
j ∈ {1, . . . , s} multiply the vector ~n = (n0, n1, . . .)

> with the matrix Cj,

Cj~n =: (xj
n(1), xj

n(2), . . .)> ∈ Z
∞
2
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and set

x(j)
n :=

xj
n(1)

2
+
xj

n(2)

22
+ · · · .

Finally set xn := (x
(1)
n , . . . , x

(s)
n ).

Every sequence (xn)n≥0 constructed in this way is called digital (0, s)-sequence over
Z2. The matrices C1, . . . , Cs are called the generator matrices of the sequence.

To guarantee that the points xn belong to [0, 1)s (and not just to [0, 1]s) and also for
the analysis of the sequence we need the condition that for each n ≥ 0 and 1 ≤ j ≤ s, we
have xj

n(i) = 0 for infinitely many i. This condition is always satisfied if we assume that
for each 1 ≤ j ≤ s and r ≥ 0 we have cj

i,r = 0 for all sufficiently large i, where cji,r are the
entries of the matrix Cj. Throughout this paper we assume that the generator matrices
fulfill this condition (see [11, p.72] where this condition is called (S6)).

For example if s = 1 and if we choose as generator matrix the N × N identity matrix,
then the resulting digital (0, 1)-sequence over Z2 is the well known van der Corput sequence
in base 2. Hence the concept of digital (0, 1)-sequences over Z2 is a generalization of the
construction principle of the van der Corput sequence.

For the classical diaphony it was proved by Faure [5] that

(NFN (ω))2 = π2

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

, (1)

if ω is a digital (0, 1)-sequence over Z2 whose generator matrix C is a non-singular
upper triangular matrix. Faure (and we shall do so as well) called these sequences
NUT-sequences. Here ‖ · ‖ denotes the distance to the nearest integer function, i.e.,
‖x‖ := min(x − bxc, 1 − (x − bxc)). See also [1, 6, 12] for further results concerning the
classical diaphony of special 1-dimensional sequences.

The aim of this paper is to prove a similar formula for the dyadic diaphony of digital
(0, s)-sequences over Z2 for s ∈ {1, 2} (see Theorems 1 and 2). These formulae show that
for fixed s the dyadic diaphony is invariant for digital (0, s)-sequences over Z2. Further we
find that the dyadic diaphony and the classical diaphony of NUT-sequences (s = 1) only
differ by a multiplicative constant (Corollary 1). We obtain the exact asymptotic order
of the dyadic diaphony of digital (0, s)-sequences over Z2 (Corollary 2 and 4). Moreover
it follows from our formula that the squared dyadic diaphony of digital (0, 1)-sequences
over Z2 satisfies a central limit theorem (Corollary 3). For digital (0, 2)-sequences we will
obtain a similar, but weaker result (Corollary 5).

2 The Results for s = 1

First we give the formula for the dyadic diaphony of digital (0, 1)-sequences over Z2. This
formula shows that the dyadic diaphony is invariant for digital (0, 1)-sequences over Z2.

Theorem 1 Let ω be a digital (0, 1)-sequence over Z2. Then for any N ≥ 1 we have

(NF2,N (ω))2 = 3
∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

.
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We defer the proof of this formula to Section 4.

Remark 1 In Theorem 1 we have an infinite sum for the dyadic diaphony of a digital
(0, 1)-sequence over Z2. This formula can easily be made computable since for 1 ≤ N ≤ 2m

we have ‖N/2u‖ = N/2u for u ≥ m+ 1. Therefore we have

(NF2,N(ω))2 = 3

m∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

+

(
N

2m

)2

.

From Theorem 1 we find the surprising result that the classical diaphony and the
dyadic diaphony of a NUT-sequence are essentially the same.

Corollary 1 Let ω be a digital NUT-sequence over Z2. Then for any N ≥ 1 we have

F2,N (ω) =

√
3

π
FN(ω).

Proof. This follows from Theorem 1 together with Faures formula (1). 2

From Remark 1 one can see immediately that the dyadic diaphony of a digital (0, 1)-
sequence over Z2 is of order F2,N(ω) = O(

√
logN/N). But we can even be much more

precise. From a thorough analysis of the sum in Remark 1 we obtain the exact dependence
of the dyadic diaphony of digital (0, 1)-sequences over Z2 on

√
logN/N .

Corollary 2 Let ω be a digital (0, 1)-sequence over Z2. For N ≤ 2m we have

(NF2,N (ω))2 ≤ m

3
+

4

3
+

2(−1)m

9 · 2m
− 1

9 · 22m

and

lim sup
N→∞

(NF2,N (ω))2

logN
=

1

3 log 2
.

The proof of this result will be given in Section 5. We just remark that the result
for the lim sup follows also from a result of Chaix and Faure [1, Théoréme 4.13] for the
classical diaphony of the van der Corput sequence together with Corollary 1 and Theorem
1.

In [3] the authors showed that the star discrepancy and all Lp-discrepancies of the van
der Corput sequence in base 2 satisfy a central limit theorem. The same arguments as in
their proofs can now be used to obtain the subsequent result.

Corollary 3 Let ω be a digital (0, 1)-sequence over Z2. Then for every real y we have

1

M
#

{

N < M : (NF2,N(ω))2 ≤ 1

4
log2N + y

1

4
√

3

√

log2N

}

= Φ(y) + o(1),

where

Φ(y) =
1√
2π

∫ y

−∞

e−
t2

2 dt

denotes the normal distribution function and log2 denotes the logarithm to the base 2.
I.e., the squared dyadic diaphony of a digital (0, 1)-sequence over Z2 satisfies a central
limit theorem.
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Remark 2 Together with Corollary 1 we also obtain a central limit theorem for the
square of the classical diaphony of NUT-sequences.

Proof. As already mentioned, the proof follows exactly the lines of the proof of [3, Theorem
2]. One only has to compute the expectation and the variance of the random variable

Sm =

m∑

w=1

‖X2w‖2,

where X is uniformly distributed on [0, 1). By tedious but straightforward calculations
we obtain ESm = m/12 and VarSm = m/432 + 7(1 − 2−2m)/1620. 2

3 The Results for s = 2

We give the formula for the dyadic diaphony of digital (0, 2)-sequences over Z2 which
shows that the dyadic diaphony is invariant for digital (0, 2)-sequences as well.

Theorem 2 Let ω be a digital (0, 2)-sequence over Z2. Then for any N ≥ 1 we have

(NF2,N(ω))2 =
9

4

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

u.

We defer the proof of this formula to Section 4.

Remark 3 In Theorem 2 we have an infinite sum for the dyadic diaphony of a digital
(0, 2)-sequence over Z2. Again this formula can easily be made computable (compare with
Remark 1). For 1 ≤ N ≤ 2m we have

(NF2,N (ω))2 =
9

4

m∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

u+

(
N

2m

)2
4 + 3m

4
.

From Remark 3 one can see immediately that the dyadic diaphony of a digital (0, 2)-
sequence over Z2 is of order F2,N(ω) = O(logN/N). Also here we obtain from a thorough
analysis of the sum in Remark 3 the exact dependence of the dyadic diaphony of digital
(0, 2)-sequences over Z2 on logN/N .

Corollary 4 Let ω be a digital (0, 2)-sequence over Z2. Then for any N ≤ 2m we have

(NF2,N (ω))2 ≤ m2

8
+

7m

8
+

11

9
+O

(m

2m

)

and

lim sup
N→∞

(NF2,N(ω))2

(logN)2
=

1

8(log 2)2
.

The proof of this result will be given in Section 5. Following this proof the O(m/2m)-
term in the above bound can easily be made explicit.

Unfortunately we could not show that the squared dyadic diaphony of a digital (0, 2)-
sequence over Z2 satisfies a central limit theorem. However, we were able to prove the
following result.
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Corollary 5 Let ω be a digital (0, 2)-sequence over Z2. Then for any ε > 1 we have

lim
m→∞

{

N < 2m :
3

32
− ε <

(
NF2,N (ω)

log2N

)2

<
3

32
+ ε

}

= 1.

Proof. By tedious but straightforward calculations using Theorem 2 we obtain
2m−1∑

N=0

(NF2,N (ω))2 =
3

32
m22m +O(m2m)

and
2m−1∑

N=0

(NF2,N (ω))4 =
9

1024
m42m +O(m32m).

From this the result immediately follows. 2

4 The Proofs of Theorems 1 and 2

For the proofs of Theorems 1 and 2 we need the subsequent lemma. This result was
implicitly proved in [3]. For the sake of completeness we provide the short proof.

Lemma 1 Let the non-negative integer U have binary expansion U = U0 + U12 + · · · +
Um−12

m−1. For any non-negative integer n ≤ U − 1 let n = n0 + n12 + · · · + nm−12
m−1

be the binary representation of n. For 0 ≤ p ≤ m − 1 let U(p) := U0 + · · · + Up2
p. Let

b0, b1, . . . , bm−1 be arbitrary elements of Z2, not all zero. Then

U−1∑

n=0

(−1)b0n0+···+bm−1nm−1 = (−1)bw+1Uw+1+···+bm−1Um−12w+1

∥
∥
∥
∥

U

2w+1

∥
∥
∥
∥
,

where w is minimal such that bw = 1.

Proof. From splitting up the sum we obtain

U−1∑

n=0

(−1)b0n0+···+bm−1nm−1

=

2w+1(Uw+1+···+Um−12m−w−2)−1
∑

n=0

(−1)nw(−1)bw+1nw+1+···+bm−1nm−1

+

U(w)−1
∑

n=0

(−1)nw(−1)bw+1Uw+1+···+bm−1Um−1

= 0 + (−1)bw+1Uw+1+···+bm−1Um−1

U(w)−1
∑

n=0

(−1)nw

= (−1)bw+1Uw+1+···+bm−1Um−1 ×
{
U(w) if U(w) < 2w,
2w+1 − U(w) if U(w) ≥ 2w,

= (−1)bw+1Uw+1+···+bm−1Um−12w+1 ×
{
U(w)/2w+1 if U(w)/2w+1 < 1/2,
1 − U(w)/2w+1 if U(w)/2w+1 ≥ 1/2,

= (−1)bw+1Uw+1+···+bm−1Um−12w+1

∥
∥
∥
∥

U(w)

2w+1

∥
∥
∥
∥
.
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Since
∥
∥
∥

U(w)
2w+1

∥
∥
∥ =

∥
∥ U

2w+1

∥
∥ the result follows. 2

Now we can give the

Proof of Theorem 1. Let 2r ≤ k < 2r+1. Then k = k0 + k12 + · · · + kr2
r with ki ∈ {0, 1},

0 ≤ i < r and kr = 1. Let 〈·, ·〉 denote the usual inner product in Z
∞
2 and let ~ci ∈ Z

∞
2 be

the i-th row vector of the generator matrix C of the digital (0, 1)-sequence (for short we
write C instead of C1 here). Since the i-th digit xn(i) of the point xn, i ∈ N, n ∈ N0, is
given by 〈~ci, ~n〉 (see Definition 2) we have

N−1∑

n=0

walk(xn) =
N−1∑

n=0

(−1)k0〈~c1,~n〉+···+kr〈~cr+1,~n〉 =
N−1∑

n=0

(−1)〈k0~c1+···+kr~cr+1,~n〉. (2)

Let C = (ci,j)i,j≥1. For k ∈ N, k = k0 + k12 + · · · + kr2
r, ki ∈ {0, 1}, 0 ≤ i < r and

kr = 1 define u(k) := min{l ≥ 1 : k0c1,l+· · ·+krcr+1,l = 1}. Note that since C generates a
digital (0, 1)-sequence over Z2 we obviously have u(k) ≤ r+ 1. For fixed k, 2r ≤ k < 2r+1

let ~b = (b0, b1, . . .)
> := k0~c1 + · · · + kr~cr+1. Let N = N0 + N12 + · · · + Nm−12

m−1. If
u(k) ≤ m we obtain from (2) together with Lemma 1,

N−1∑

n=0

walk(xn) =

N−1∑

n=0

(−1)〈
~b,~n〉 =

N−1∑

n=0

(−1)n0b0+···+nm−1bm−1

=
N−1∑

n=0

(−1)nu(k)−1+··· = (−1)Nu(k)bu(k)+···2u(k)

∥
∥
∥
∥

N

2u(k)

∥
∥
∥
∥
.

But if u(k) > m the above equality is trivially true. Therefore we have

2(NF2,N(ω))2 =
∞∑

k=1

1

22r(k)

(

2u(k)

∥
∥
∥
∥

N

2u(k)

∥
∥
∥
∥

)2

=
∞∑

r=0

1

22r

2r+1−1∑

k=2r

22u(k)

∥
∥
∥
∥

N

2u(k)

∥
∥
∥
∥

2

=

∞∑

r=0

1

22r

r+1∑

u=1

22u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2 2r+1−1∑

k=2r

u(k)=u

1

=
∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

22u
∞∑

r=u−1

1

22r

2r+1−1∑

k=2r

u(k)=u

1.
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Now we have to evaluate the sum
2r+1−1∑

k=2r

u(k)=u

1 for r ≥ u− 1 and u ≥ 1. This is the number of

vectors (k0, . . . , kr−1)
> ∈ Z

r
2 such that

C(r + 1)>








k0
...
kr−1

1








=














0
...
0
1
xu+1
...
xr+1














∈ Z
r+1
2 (3)

for arbitrary xu+1, . . . , xr+1 ∈ Z2. (Recall that for an integer m ≥ 1 we denote by C(m)
the left upper m×m submatrix of the matrix C, see Section 1.)

We consider two cases:

1. Assume that r = u− 1. Then system (3) becomes

C(r + 1)>








k0
...
kr−1

1








=








0
...
0
1







.

Since the (r + 1) × (r + 1) matrix C(r + 1)> is regular over Z2 it is clear that

there exists a vector ~k = (k0, . . . , kr) ∈ Z
r+1
2 such that C(r + 1)>~k = (0, . . . , 0, 1)>.

Assume that kr = 0, then we have C(r)>(k0, . . . , kr−1)
> = (0, . . . , 0)>. Again we

know that C(r)> is regular over Z2 and therefore we obtain k0 = · · · = kr−1 = 0.

Hence ~k = ~0, the zero vector in Z
r+1
2 . This is now a contradiction since ~k is a

solution of the system C(r + 1)>~k = (0, . . . , 0, 1)>. Therefore we have

2u−1∑

k=2u−1

u(k)=u

1 = 1.

2. Assume that r ≥ u. Since C(r) is regular over Z2 it is clear that D(r) := (C(r)>)−1

is regular over Z2. Hence for any vector ~k ∈ Z
r
2 there is a vector ~l ∈ Z

r
2 such that

~k = D(r)~l. Therefore system (3) can be rewritten as

C(r + 1)>
(

D(r)~l
1

)

=














0
...
0
1
xu+1
...
xr+1
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with ~l ∈ Z
r
2. Now we use the definition of the matrix D(r) and find that the above

system is equivalent to the system











1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . 0 1
d1 d2 . . . dr−1 dr
















l0
...
lr−1




 =














0
...
0
1
xu+1
...
xr+1














+ ~cr+1(r + 1)>,

where (d1, . . . , dr) := (c1,r+1, . . . , cr,r+1)D(r). Now one can easily see that for ar-

bitrary xu+1, . . . , xr there exists exactly one solution ~l = (l0, . . . , lr−1)
> ∈ Z

r
2 such

that the first r lines of the above system are fulfilled. Further there is exactly one
possible choice of xr+1 ∈ Z2 such that this vector ~l is a solution of the above system.
Therefore we obtain

2r+1−1∑

k=2r

u(k)=u

1 = 2r−u.

Now we have

2(NF2,N (ω))2 =

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

22u

(

1

22(u−1)
+

∞∑

r=u

1

22r
2r−u

)

= 6

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

.

The result follows. 2

Proof of Theorem 2. Let ω = (xn)n≥0 be a digital (0, 2)-sequence over Z2. Let xn =
(xn, yn) for n ≥ 0. Clearly the sequences (xn)n≥0 and (yn)n≥0 are digital (0, 1)-sequences
over Z2. We have

(NF2,N(ω))2 =
1

8

∑

k∈N2
0

k6=0

1

ψ(k)

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)

∣
∣
∣
∣
∣

2

=
1

8

∞∑

k=1

1

22r(k)

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)

∣
∣
∣
∣
∣

2

+
1

8

∞∑

l=1

1

22r(l)

∣
∣
∣
∣
∣

N−1∑

n=0

wall(yn)

∣
∣
∣
∣
∣

2

+
1

8

∞∑

k,l=1

1

22r(k)+2r(l)

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)wall(yn)

∣
∣
∣
∣
∣

2

=
3

2

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

+
1

8

∞∑

k,l=1

1

22r(k)+2r(l)

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)wall(yn)

∣
∣
∣
∣
∣

2

, (4)

where for the last equality we used Theorem 1. We have to consider

Σ :=

∞∑

k,l=1

1

22r(k)+2r(l)

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)wall(yn)

∣
∣
∣
∣
∣

2

.
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Assume that 2r ≤ k < 2r+1 and 2t ≤ l < 2t+1. Then k = k0 + k12 + · · · + kr2
r with

ki ∈ {0, 1}, 0 ≤ i < r and kr = 1 and l = l0 + l12 + · · · + lt2
t with lj ∈ {0, 1}, 0 ≤ j < t

and lt = 1. Let ~ci ∈ Z
∞
2 be the i-th row vector of the generator matrix C1 and let ~di ∈ Z

∞
2

be the i-th row vector of the generator matrix C2, i ∈ N. Since the i-th digit xn(i) of xn

is given by 〈~ci, ~n〉 and the i-th digit yn(i) of yn is given by 〈~di, ~n〉 (see Definition 2) we
have

N−1∑

n=0

walk(xn)wall(yn) =

N−1∑

n=0

(−1)k0〈~c1,~n〉+···+kr〈~cr+1,~n〉+l0〈~d1,~n〉+···+lt〈~dt+1,~n〉

=
N−1∑

n=0

(−1)〈k0~c1+···+kr~cr+1+l0 ~d1+···+lt ~dt+1,~n〉.

Let C1 = (ci,j)i,j≥1 and C2 = (di,j)i,j≥1. Define

u(k, l) := min{j ≥ 1 : k0c1,j + · · ·+ krcr+1,j + l0d1,j + · · · + lsds+1,j = 1}.

Since C1, C2 generate a digital (0, 2)-sequence over Z2 we obviously have u(k, l) ≤ r+s+2.
As in the proof of Theorem 1 we now apply Lemma 1 and obtain

∣
∣
∣
∣
∣

N−1∑

n=0

walk(xn)wall(yn)

∣
∣
∣
∣
∣
= 2u(k,l)

∥
∥
∥
∥

N

2u(k,l)

∥
∥
∥
∥
.

Therefore we have

Σ =
∞∑

k,l=1

1

22r(k)+2r(l)
22u(k,l)

∥
∥
∥
∥

N

2u(k,l)

∥
∥
∥
∥

2

=

∞∑

r,t=0

1

22r+2t

2r+1−1∑

k=2r

2t+1−1∑

l=2t

22u(k,l)

∥
∥
∥
∥

N

2u(k,l)

∥
∥
∥
∥

2

=
∞∑

r,t=0

1

22r+2t

r+t+2∑

u=1

22u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2 2r+1−1∑

k=2r

2t+1−1∑

l=2t

︸ ︷︷ ︸

u(k,l)=u

1.

We have to evaluate the double-sum

2r+1−1∑

k=2r

2t+1−1∑

l=2t

︸ ︷︷ ︸

u(k,l)=u

1 for 1 ≤ u ≤ r + t + 2. This is the

number of k0, . . . , kr−1, l0, . . . , lt−1 ∈ Z2 such that







c1,1 . . . cr+1,1 d1,1 . . . dt+1,1

c1,2 . . . cr+1,2 d1,2 . . . dt+1,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+2 . . . cr+1,r+t+2 d1,r+t+2 . . . dt+1,r+t+2






















k0
...
kr−1

1
l0
...
lt−1

1
















=














0
...
0
1
xu+1
...
xr+t+2














(5)
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for arbitrary xu+1, . . . , xr+t+2 ∈ Z2. Note that the above matrix — we denote it by C(r, t)
— is an (r + t + 2) × (r + t + 2) matrix. Since C1, C2 generate a digital (0, 2)-sequence
over Z2, it follows that C(r, t) is regular. Now we consider three cases:

1. Assume that u = r + t+ 2. Then system (5) becomes

C(r, t)~h =








0
...
0
1







. (6)

Since C(r, t) is regular there exists a vector ~h = (k0, . . . , kr, l0, . . . , lt)
> ∈ Z

r+z+2
2 ,

~h 6= ~0, such that C(r, t)~h = (0, . . . , 0, 1)>. Assume that lt = 0. Then







c1,1 . . . cr+1,1 d1,1 . . . dt,1

c1,2 . . . cr+1,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+2 . . . cr+1,r+t+2 d1,r+t+2 . . . dt,r+t+2


















k0
...
kr

l0
...
lt−1












=








0
...
0
1








But then







c1,1 . . . cr+1,1 d1,1 . . . dt,1

c1,2 . . . cr+1,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t+1 . . . cr+1,r+t+1 d1,r+t+1 . . . dt,r+t+1


















k0
...
kr

l0
...
lt−1












=






0
...
0




 .

Since the above matrix is again regular we obtain that (k0, . . . , kr, l0, . . . , lt−1) =

(0, . . . , 0) and therefore ~h = ~0, a contradiction. Hence lt = 1 and in the same way
one can show that kr = 1. We have shown that system (6) has exactly one solution
and therefore we have

2r+1−1∑

k=2r

2s+1−1∑

l=2s

︸ ︷︷ ︸

u(k,l)=u

1 = 1.

2. Assume that u = r + t + 1. Let x ∈ Z2. Since C(r, t) is regular there exists exactly

one vector ~h ∈ Z
r+t+2
2 such that

C(r, t)~h = (0, . . . , 0, 1, x)>

Assume that ~h is of the form ~h = (k0, . . . , kr−1, 1, l0, . . . , lt−1, 1)> ∈ Z
r+t+2
2 . In

particular we have






c1,1 . . . cr+1,1 d1,1 . . . dt+1,1

c1,2 . . . cr+1,2 d1,2 . . . dt+1,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr+1,r+t d1,r+t . . . dt+1,r+t






~h =






0
...
0




 . (7)
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Since 





c1,1 . . . cr,1 d1,1 . . . dt,1

c1,2 . . . cr,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr,r+t d1,r+t . . . dt,r+t







is regular we find that ~h is the unique solution of (7). Hence ~h is exactly the same

vector as in the first case where u = r + t + 2. But then ~h cannot be a solution of
C(r, t)~h = (0, . . . , 0, 1, x)>. Therefore we obtain

2r+1−1∑

k=2r

2s+1−1∑

l=2s

︸ ︷︷ ︸

u(k,l)=u

1 = 0.

3. Assume that 1 ≤ u ≤ r + t. We rewrite system (5) in the form











c1,1 . . . cr,1 d1,1 . . . dt,1

c1,2 . . . cr,2 d1,2 . . . dt,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c1,r+t . . . cr,r+t d1,r+t . . . dt,r+t

c1,r+t+1 . . . cr,r+t+1 d1,r+t+1 . . . dt,r+t+1

c1,r+t+2 . . . cr,r+t+2 d1,r+t+2 . . . dt,r+t+2






















k0
...
kr−1

l0
...
lt−1












=


















0
...
0
1
xu+1
...
xr+t

xr+t+1

xr+t+2


















+ ~yr,t

where ~yr,t = (cr+1,1 + dt+1,1, . . . , cr+1,r+t+2 + dt+1,r+t+2)
> ∈ Z

r+t+2
2 . Since the upper

(r + t) × (r + t) sub-matrix of the above matrix is regular we find for arbitrary
xu+1, . . . , xr+t exactly one solution of the first r + t rows of the above system. This
solution can be made a solution of the whole system by an adequate choice of xr+t+1

and xr+t+2. Therefore we have

2r+1−1∑

k=2r

2s+1−1∑

l=2s

︸ ︷︷ ︸

u(k,l)=u

1 = 2r+t−u.
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Now we have

Σ =

∞∑

r,t=0

1

22r+2t

(
r+t∑

u=1

22u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

2r+t−u + 22(r+t+2)

∥
∥
∥
∥

N

2r+t+2

∥
∥
∥
∥

2
)

=

∞∑

r,t=0

1

2r+t

r+t∑

u=1

2u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

+ 16

∞∑

r,t=0

∥
∥
∥
∥

N

2r+t+2

∥
∥
∥
∥

2

=

∞∑

u=1

2u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2 ∞∑

r,t=0
r+t≥u

1

2r+t
+ 16

∞∑

u=2

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2 ∞∑

r,t=0
r+t=u−2

1

=

∞∑

u=1

2u

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2 ∞∑

w=u

w + 1

2w
+ 16

∞∑

u=2

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

(u− 1)

=

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

(2u+ 4) + 16

∞∑

u=2

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

(u− 1)

=

∞∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

(18u− 12).

The result follows by inserting this expression into (4). 2

5 The Proofs of Corollaries 2 and 4

We will say that a real β in [0, 1) is m-bit if β = b1
2

+ · · · + bm

2m with bi ∈ {0, 1}. I.e., an
m-bit number is of the form k/2m with k ∈ {0, 1, . . . , 2m − 1}.

The essential technical tool for the proof of Corollary 2 is provided by

Lemma 2 Assume that β = 0, b1b2 . . . (this here and in the following always means base 2
representation) has two equal consecutive digits bibi+1 with i ≤ m−1 and let i be minimal
with this property, i.e.,

β = 0, 01 . . .0100bi+2 . . . or

β = 0, 10 . . .0100bi+2 . . . or

β = 0, 01 . . .1011bi+2 . . . or

β = 0, 10 . . .1011bi+2 . . . .

Replace β by

γ = 0, 10 . . .1010bi+2 . . . resp.

γ = 0, 01 . . .1010bi+2 . . . resp.

γ = 0, 10 . . .0101bi+2 . . . resp.

γ = 0, 01 . . .0101bi+2 . . . .

Then

m−1∑

u=0

‖2uγ‖2 =
m−1∑

u=0

‖2uβ‖2 +







1
9

(

1 − (−1)i

2i

)2

(1 − τ) in the first two cases,

1
9

(

1 − (−1)i

2i

)2

τ in the last two cases,
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where τ := 0, bi+2bi+3 . . ..

Remark 4 In any case we have
∑m−1

u=0 ‖2uγ‖2 ≥∑m−1
u=0 ‖2uβ‖2 with equality iff τ = 1 in

the first two cases and iff τ = 0 in the last two cases.

Proof of Lemma 2. This is simple calculation. We just handle the first case here.

m−1∑

u=0

(‖2uγ‖2 − ‖2uβ‖2) = ‖γ‖2 − ‖2iβ‖2 +

i−1∑

u=0

(‖2u(2γ)‖2 − ‖2uβ‖2). (8)

Here ‖γ‖ = 1
3

(
1 + 1

2i

)
− τ

2i+1 and ‖2iβ‖ = τ
2
. Further, for even u we have

‖2u(2γ)‖ =
1

3

(

1 − 2u+1

2i

)

+
τ

2i−u
and ‖2uβ‖ =

1

3

(

1 − 2u+1

2i

)

+
τ

2i+1−u
,

and for odd u we have

‖2u(2γ)‖ =
1

3

(

1 +
2u+1

2i

)

− τ

2i−u
and ‖2uβ‖ =

1

3

(

1 +
2u+1

2i

)

− τ

2i+1−u
.

Inserting this into (8) we obtain

m−1∑

u=0

(‖2uγ‖2 − ‖2uβ‖2) =
1

9

(

1 +
1

2i

)2

(1 − τ).

The other cases are calculated in the same way. 2

From Lemma 2 we obtain the subsequent result concerning the maximum of
∑m−1

u=0 ‖2uβ‖2

over all β. We remark that in [9] the authors considered the same problem without the
square at the ‖ · ‖-function.

Lemma 3 Consider β ∈ R with the canonical base 2 representation (i.e., with infinitely
many digits equal to zero). Then there exists

max
β

m−1∑

u=0

‖2uβ‖2 =
m

9
+

1

9
− (−1)m 2

27 · 2m
− 1

27 · 22m

and it is attained if and only if β is of the form β0 with

β0 =
2

3

(

1 −
(

−1

2

)m+1
)

or β0 =
1

3

(

1 −
(

−1

2

)m)

.

Remark 5 Note that

2

3

(

1 −
(

−1

2

)m+1
)

=

{
0, 1010 . . .101 if m is odd,
0, 1010 . . .011 if m is even,

and

1

3

(

1 −
(

−1

2

)m)

=

{
0, 0101 . . .011 if m is odd,
0, 0101 . . .101 if m is even.
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Proof of Lemma 3. For any γ = 0, c1c2 . . . cmcm+1 . . . with fixed c1, . . . , cm the sum
∑m−1

u=0 ‖2uγ‖2 obviously becomes maximal if cm = 0 and cm+1 = cm+2 = · · · = 1, or if
cm = 1 and cm+1 = cm+2 = · · · = 0. Hence by Lemma 2 the

sup
β

m−1∑

u=0

‖2uβ‖2

only can be attained, respectively approached by

β1 = 0, 1010 . . .10 111 . . . or

(bm is the last zero)

β2 = 0, 0101 . . .01 or

β3 = 0, 1010 . . .11

(bm is the last one)

if m is even, and by

β4 = 0, 0101 . . .10 111 . . . or

(bm is the last zero)

β5 = 0, 1010 . . .01 or

β6 = 0, 0101 . . .11

(bm is the last one)

if m is odd.
Now we check easily that

m−1∑

u=0

‖2uβk‖2 =
m

9
+

1

9
− (−1)m 2

27 · 2m
− 1

27 · 22m

for k = 1, . . . , 6 and the result follows. 2

We give the Proof of Corollary 2. We have

max
N≤2m

m∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

= max
β m−bit

m−1∑

u=0

‖2uβ‖2 =
m

9
+

1

9
− (−1)m 2

27 · 2m
− 1

27 · 22m

by Lemma 3. The result follows now together with Remark 1. 2

For the proof of Corollary 4 we can in principle proceed as for the proof of Corollary
2. However, in this case the detailed computations are by far more involved than above.
First we have

Lemma 4 Assume that β = 0, b1b2 . . . has two equal consecutive digits bibi+1 with i ≤
m− 1 and let i be minimal with this property, i.e.,

β = 0, 01 . . .0100bi+2 . . . or

β = 0, 10 . . .0100bi+2 . . . or

β = 0, 01 . . .1011bi+2 . . . or

β = 0, 10 . . .1011bi+2 . . . .
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Replace β by

γ = 0, 10 . . .1010bi+2 . . . resp.

γ = 0, 01 . . .1010bi+2 . . . resp.

γ = 0, 10 . . .0101bi+2 . . . resp.

γ = 0, 01 . . .0101bi+2 . . . .

Then

m−1∑

u=0

‖2uγ‖2(m− u) =

m−1∑

u=0

‖2uβ‖2(m− u)

+







(

m
9

(

1 − (−1)i

2i

)2

− i
9

+ 4
27·2i

(
1
2i − (−1)i

)
)

(1 − τ) in the first two cases,
(

m
9

(

1 − (−1)i

2i

)2

− i
9

+ 4
27·2i

(
1
2i − (−1)i

)
)

τ in the last two cases,

where τ := 0, bi+2bi+3 . . ..

Remark 6 In any case, for m > 3, we have
∑m−1

u=0 ‖2uγ‖2(m−u) ≥∑m−1
u=0 ‖2uβ‖2(m−u).

Proof of Lemma 4. We have

m−1∑

u=0

(‖2uγ‖2 − ‖2uβ‖2)(m− u)

= m‖γ‖2 − (m− i)‖2iβ‖2 +

i−1∑

u=0

(
‖2u(2γ)‖2(m− u− 1) − ‖2uβ‖2(m− u)

)
.

The result now follows as in the proof of Lemma 2 by some tedious but straightforward
algebra. 2

With Lemma 4 we obtain

Lemma 5 We have

max
β m−bit

m−1∑

u=0

‖2uβ‖2(m− u)

=

{
m2

18
+ m

18
+ 8

81
+ 1

2m

(
4
27

(
1 − 1

2m

) (
m + 2

3

)
− 8

81·2m

)
if m is even,

m2

18
+ m

18
+ 8

81
+ 1

2m

(
m
27

+ 1
27

(
1 − 1

2m

) (
m + 4

3

))
if m is odd.

For even m the maximum is attained if and only if

β =

{
0, 0101 . . .0110 = 1

3

(
1 + 1

2m−1

)
and

0, 1010 . . .1010 = 2
3

(
1 − 1

2m

)
.

For odd m the maximum is attained if and only if

β =

{
0, 0101 . . .011 = 1

3

(
1 + 1

2m

)
and

0, 1010 . . .101 = 2
3

(
1 − 1

2m+1

)
.
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Proof. For short we write fm(β) :=
∑m−1

u=0 ‖2uβ‖2(m− u). Let m ≥ 2 be even. It follows
from Lemma 4 that the m-bit number β which maximizes our sum has to be of the form

β1 = 0, 0101 . . .01bm−1bm or β2 = 0, 1010 . . .10bm−1bm.

First we deal with β1 = 0, 0101 . . . 01bm−1bm. Now we consider four cases corresponding
to the possible choices for bm−1 and bm.

• If (bm−1, bm) = (0, 0), then

fm(β1) =
m2

18
+
m

18
− 1

81
− 8

27

m

2m
− 16

27

m

22m
− 16

81

1

2m
− 64

81

1

22m
.

• If (bm−1, bm) = (1, 1), then

fm(β1) =
m2

18
+
m

18
− 1

81
+

10

27

m

2m
− 25

27

m

22m
+

20

81

1

2m
− 100

81

1

22m
.

• If (bm−1, bm) = (1, 0), then

fm(β1) =
m2

18
+
m

18
+

8

81
+

4

27

m

2m
− 4

27

m

22m
+

8

81

1

2m
− 16

81

1

22m
.

• If (bm−1, bm) = (0, 1), then

fm(β1) =
m2

18
+
m

18
+

8

81
− 2

27

m

2m
− 1

27

m

22m
− 4

81

1

2m
− 4

81

1

22m
.

Therefore we find that the choice (bm−1bm) = (1, 0) gives the maximal value, i.e., β1 =
0, 0101 . . .0110. For β2 = 0, 1010 . . . 10bm−1bm we find in the same way that (bm−1, bm) =
(1, 0) gives the maximal value, i.e., β1 = 0, 1010 . . .1010. Since

fm(β1) = fm(β2) =
m2

18
+
m

18
+

8

81
+

1

2m

(
4

27

(

1 − 1

2m

)(

m+
2

3

)

− 8

81 · 2m

)

the result follows for even m ≥ 2.
For odd m ≥ 3 the result can be proved analogously. 2

We give the Proof of Corollary 4. We have

max
N≤2m

m∑

u=1

∥
∥
∥
∥

N

2u

∥
∥
∥
∥

2

u = max
β m−bit

m−1∑

u=0

‖2uβ‖2(m− u) =
m2

18
+
m

18
+

8

81
+O

(m

2m

)

by Lemma 5. The result follows now together with Remark 3. 2
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