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1 Introduction

We are interested in the study of multivariate integration, more precisely, we
want to approximate the s-dimensional integral

∫
[0,1)s f(x) dx by a quadrature

rule. This is done by calculating the average of the values f(xh) for a point
set {x0, . . . , xn−1}. For Monte Carlo rules the point set is chosen randomly,
whereas for quasi-Monte Carlo (QMC) rules the point set is chosen determin-
istically with the aim to obtain quadrature points which can fully exploit the
smoothness of the integrand.

There are two major branches with respect to QMC rules. Lattice rules, which
are due to Korobov [10] and Hlawka [9], are designed for the integration of
high dimensional periodic functions. There they can, under suitable conditions
on the integrand, achieve arbitrary high convergence rates (even exponential
convergence) [14]. Though it has been shown that randomly shifted lattice
rules can achieve a convergence of N−1+ε for any ε > 0, and if one also applies
the Baker’s transformation a convergence of N−2+ε for all ε > 0, see [8] and
the references therein, for non-periodic functions higher convergence rates for
smoother functions are not known.

Digital nets on the other hand have only been known to achieve a convergence
of N−1+ε for all ε > 0 for functions with bounded variation [14]. In [3,4]
these results have been extended to yield explicit constructions of generalized
digital nets which can achieve arbitrary high convergence rates under suitable
conditions on the integrands. The analysis in [3,4] is based on Walsh functions,
in particular the behaviour of the Walsh coefficients of the reproducing kernel
[3] and, in general, of smooth functions [4] was analyzed and used to obtain
explicit constructions of generalized digital nets.

In this paper we use the insights obtained from [3,4] to also generalize poly-
nomial lattice rules. Polynomial lattices first introduced in [13], which are the
quadrature points used in a polynomial lattice rule, are very similar to lattice
rules and have been shown to achieve the optimal rate of convergence for inte-
gration in Sobolev spaces with partial mixed derivatives up to order one square
integrable [5]. In this paper we give the correct generalization of polynomial
lattices which also achieve the optimal rate of convergence for Sobolev spaces
with higher order mixed partial derivatives. Indeed we can even show the ex-
istence of polynomial lattice rules which automatically adjust themselves to
the smoothness of the integrand in terms of the convergence of the integration
error within a certain (arbitrary high) range. Note that an analogous result
for lattice rules is not known, hence for the time being polynomial lattice rules
have an upper hand for the integration of non-periodic smooth functions.

Strong tractability roughly means that the worst-case error in a sequence of
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spaces of increasing dimension goes to zero independently of the dimension.
In [6] digital nets and in [5] polynomial lattice rules have already been shown
to achieve strong tractability results in Sobolev spaces with partial mixed
derivatives up to order one square integrable. Here we extend these results
for higher order Sobolev spaces by showing the existence of polynomial lattice
rules which also achieve strong tractability results in this case.

In the following section we generalize the classical definitions of digital nets
and polynomial lattice rules. In Section 3 we briefly introduce Walsh functions
and in Section 4 we consider numerical integration in Sobolev spaces. Section 5
finally deals with (strong) tractability.

2 Digital nets and polynomial lattice rules for arbitrary smooth
functions

In this section we introduce digital nets and polynomial lattice rules which can
achieve arbitrary high convergence rates of the integration error for suitably
smooth functions, see [3,4]. This is achieved by a slight generalization of the
classical definition of digital nets, see [12–14], and [15] for a very recent survey
article on digital nets. The following generalization appeared first in [4].

Definition 2.1 (Digital nets) Let b be a prime and let s ≥ 1 and m, n ≥ 1
be integers. Let C1, . . . , Cs be n × m matrices over the finite field Zb. We
construct bm points in [0, 1)s in the following way: for 0 ≤ h < bm let h =
h0 + h1b + · · · + hm−1b

m−1 be the b-adic expansion of h. Identify h with the
vector ~h = (h0, . . . , hm−1)

> ∈ Zm
b , where > means the transpose of the vector.

For 1 ≤ j ≤ s multiply the matrix Cj by ~h, i.e.,

Cj
~h =: (yj,1(h), . . . , yj,n(h))> ∈ Z

n
b ,

and set

xh,j :=
yj,1(h)

b
+ · · ·+ yj,n(h)

bn
.

We call the point set

{xh = (xh,1, . . . , xh,s) : 0 ≤ h < bm}

a digital net over Zb, or shortly a digital net. The matrices C1, . . . , Cs are
called the generating matrices of the digital net.

In [13] (see also [14, Section 4.4]) Niederreiter introduced a special family of
digital nets over Zb. Those nets are obtained from rational functions over finite
fields. For a prime b let Zb((x

−1)) be the field of formal Laurent series over Zb.
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Elements of Zb((x
−1)) are formal Laurent series,

L =
∞∑

l=w

tlx
−l,

where w is an arbitrary integer and all tl ∈ Zb. Note that Zb((x
−1)) contains

the field of rational functions over Zb as a subfield. Further let Zb[x] be the
set of all polynomials over Zb.

The following definition is a slight generalization of the definition from [13],
see also [14]. As we will see later, polynomial lattice rules as defined below
can achieve arbitrary high convergence rates and the generalization is based
on results in [3,4].

Definition 2.2 (Polynomial lattice rules) Let b be prime and 1 ≤ m ≤ n.
Let υn be the map from Zb((x

−1)) to the interval [0, 1) defined by

υn

(
∞∑

l=w

tlx
−l

)
=

n∑

l=max(1,w)

tlb
−l.

For a given dimension s ≥ 1, choose p ∈ Zb[x] with deg(p) = n ≥ 1 and let
q1, . . . , qs ∈ Zb[x]. For 0 ≤ h < bm let h = h0 + h1b + · · · + hm−1b

m−1 be the
b-adic expansion of h. With each such h we associate the polynomial

h(x) =
m−1∑

r=0

hrx
r ∈ Zb[x].

Then Sp,m,n(q) is the point set consisting of the bm points

xh =

(
υn

(
h(x)q1(x)

p(x)

)
, . . . , υn

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s,

for 0 ≤ h < bm. A quasi-Monte Carlo rule using the point set Sp,m,n(q) is
called a polynomial lattice rule.

Remark 2.3 The point set Sp,m,n(q) consists of the first bm points of Sp,n,n(q),
i.e., the first bm points of a classical polynomial lattice. Hence the definition
of a polynomial lattice in [13] is covered by choosing n = m in the definition
above.

Using similar arguments as for the classical case n = m, see [13,14], it can be
shown that the point set Sp,m,n(q) is a digital net in the sense of Definition 2.1.
The generating matrices C1, . . . , Cs of this digital net can be obtained in the
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following way: for 1 ≤ j ≤ s, consider the expansions

qj(x)

p(x)
=

∞∑

l=wj

u
(j)
l x−l ∈ Zb((x

−1))

where wj ∈ Z. Then the elements c
(j)
i,r of the n×m matrix Cj over Zb are given

by
c
(j)
i,r = u

(j)
r+i ∈ Zb, (2.1)

for 1 ≤ j ≤ s, 1 ≤ i ≤ n, 0 ≤ r ≤ m − 1.

Let x =
∑∞

i=1
xi

bi ∈ [0, 1) and let σ =
∑∞

i=1
σi

bi ∈ [0, 1), where xi, σi ∈ {0, . . . , b−
1}. We define the digital b-adic shifted point y by

y = x ⊕ σ =
∞∑

i=1

yi

bi ,

where yi = xi + σi ∈ Zb. For points x ∈ [0, 1)s and σ ∈ [0, 1)s the digital
b-adic shift x ⊕ σ is defined component wise.

Definition 2.4 (Shifted digital nets and polynomial lattice rules) A
digital net for which all points are digitally shifted by the same σ ∈ [0, 1)s

is called a digitally shifted digital net or simply shifted digital net and a
polynomial lattice rule for which the underlying quadrature points are digitally
shifted by the same σ ∈ [0, 1)s is called a digitally shifted polynomial lattice
rule or simply a shifted polynomial lattice rule.

Finally we introduce some notation: for arbitrary k = (k1, . . . , ks) ∈ Zb[x]s

and q = (q1, . . . , qs) ∈ Zb[x]s, we define the ‘inner product’

k · q =
s∑

j=1

kjqj ∈ Zb[x]

and we write q ≡ 0 (mod p) if p divides q in Zb[x]. Further, for b prime we
associate a non-negative integer k = κ0 +κ1b+ · · ·+κab

a with the polynomial
k(x) = κ0 + κ1x + · · ·+ κax

a ∈ Zb[x] and vice versa.

3 Walsh functions

We recall the definition of Walsh functions. Henceforth let N0 denote the set
of non-negative integers. We have the following definitions.

Definition 3.1 (Walsh functions) Let b ≥ 2 be an integer. For a non-
negative integer k with base b representation

k = κ0 + κ1b + · · ·+ κab
a,
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with κi ∈ {0, . . . , b − 1}, we define the Walsh function bwalk : [0, 1) −→ C by

bwalk(x) := e2πi(x1κ0+···+xa+1κa)/b,

for x ∈ [0, 1) with base b representation x = x1

b
+ x2

b2
+ · · · (unique in the sense

that infinitely many of the xi must be different from b− 1). If it is clear which
base b is chosen we will simply write walk.

Definition 3.2 (Multivariate Walsh functions) Let b ≥ 2 be an inte-
ger. For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define

bwalk1,...,ks : [0, 1)s −→ C by

bwalk1,...,ks(x1, . . . , xs) :=
s∏

j=1

bwalkj
(xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we write

bwalk(x) := bwalk1,...,ks(x1, . . . , xs).

Again, if it is clear which base we mean we simply write walk(x).

It is clear from the definitions that Walsh functions are piecewise constant. It
can be shown that for any integers s ≥ 1 and b ≥ 2 the system {bwalk1,...,ks :
k1, . . . , ks ≥ 0} is a complete orthonormal system in L2([0, 1)s), see for example
[2,11]. More information on Walsh functions can be found for example in
[2,4,7,19].

We note that if Walsh functions, digital shifts, digital nets or polynomial
lattice rules are used in conjunction with each other they are always in the
same base b. Therefore we will often omit the b.

4 Numerical integration in Sobolev spaces

We consider the Sobolev space Hs,α,γ for which s ≥ 1 and α ≥ 1. For the 1
dimensional case the inner product is given by

〈f, g〉H1,α,(γ)
=
∫ 1

0
f(x) dx

∫ 1

0
g(x) dx + γ−1

α−1∑

τ=1

∫ 1

0
f (τ)(x) dx

∫ 1

0
g(τ)(x) dx

+γ−1
∫ 1

0
f (α)(x)g(α)(x) dx, (4.1)

where f (τ) denotes the τ -th derivative of f , f (0) = f and γ > 0 denotes the
weight (see [18]). The corresponding norm in H1,α,(γ) is given by ‖f‖H1,α,(1)

=

〈f, f〉1/2
H1,α,(γ)

.
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The reproducing kernel (see [1] for more information about reproducing ker-
nels) for this space is given by

K1,α,(1)(x, y) =
α∑

τ=0

Bτ (x)Bτ (y)

(τ !)2
+ (−1)α+1 B2α(|x − y|)

(2α)!
,

where Bτ denotes the Bernoulli polynomial of degree τ . For example we have
B0(x) = 1, B1(x) = x − 1/2, B2(x) = x2 − x + 1/6 and so on.

The reproducing kernel for the s dimensional weighted Sobolev space Hs,α,γ

is now given by

Ks,α,γ(x, y) =
∑

u⊆S

γu

∏

j∈u

(
α∑

τ=1

Bτ (xj)Bτ (yj)

(τ !)2
+ (−1)α+1 B2α(|xj − yj|)

(2α)!

)
.

For example if γu =
∏

j∈u γj then the space Hs,α,γ is a tensor product space
of weighted one dimensional spaces. The inner product in this space is now
the s-fold product of (4.1) and the corresponding norm in Hs,α,γ is given by
‖f‖Hs,α,γ = 〈f, f〉Hs,α,γ .

Note that numerical integration in the Sobolev space with α = 1 using digital
nets and polynomial lattice rules has already been considered in [5,6,16].

As Ks,α,γ ∈ L2([0, 1)2s) it follows that Ks,α,γ can be represented by a Walsh
series, i.e., we have

Ks,α,γ(x, y) =
∑

k,l∈Ns
0

K̂s,α,γ(k, l) walk(x)wall(y),

where

K̂s,α,γ(k, l) =
∫

[0,1)2s
Ks,α,γ(x, y)walk(x)wall(y) dxdy.

Note that if γu = 0 for some u, then K̂s,α,γ(k, l) = 0 if kj = lj = 0 for j /∈ u
and kj, lj 6= 0 for j ∈ u.

For any α ≥ 1 there exists a constant Cb,α > 0 independent of k ∈ Ns
0 such

that ∣∣∣K̂s,α,γ(k, k)
∣∣∣ ≤ Cb,αr2

b,α(k) for all k ∈ N
s
0 (4.2)

where rb,α(k) =
∏s

j=1 rb,α(kj) and rb,α(0) = 1 and for k = κ1b
a1−1+· · ·+κvb

av−1

with v ≥ 1, 0 < av < · · · < a1 and κi ∈ {1, . . . , b − 1} we set rb,α(k) =
b−a1−···−amin(v,α) . For α = 1 this follows from [6, Section 6] and for α > 1 from
[3,4].

In the following we consider the worst-case error for multivariate integration
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in the Sobolev space Hs,α,γ for s ≥ 1 and α ≥ 1, i.e.,

e(Qbm,s,Hs,α,γ) = sup
f∈Hs,α,γ

‖f‖Hs,α,γ
≤1

|Is(f) − Qbm,s(f)| .

The initial error is given by

e(Q0,s,Hs,α,γ) = sup
f∈Hs,α,γ

‖f‖Hs,α,γ
≤1

|Is(f)| .

From [4, Theorem 15] we know that

e2(Q0,s,Hs,α,γ) = γ∅

and

e2(Qbm,s,Hs,α,γ) =−γ∅ +
1

b2m

bm−1∑

h,h′=0

Ks,α,γ(xh, xh′)

=
1

b2m

bm−1∑

h,h′=0

(Ks,α,γ(xh, xh′) − γ∅).

For a digital net which has generating matrices C1, . . . , Cs ∈ Z
n×m
b let D =

D(C1, . . . , Cs) = {k ∈ Ns
0 \ {0} : C>

1
~k1 + · · · + C>

s
~ks ≡ 0}, where k =

(k1, . . . , ks) and for kj = κ0 +κ1b + · · · let ~kj = (κ0, . . . , κn−1)
>. For u ⊆ S let

Du = Du((Cj)j∈u) be the projection of the vectors in D to the coordinates in
u and let D∗

u = D∗
u((Cj)j∈u) = Du ∩ N|u|.

Using the same arguments as in [6, Section 6] we can now obtain a formula for
the mean square worst-case error ê2(Qbm,s,Hs,α,γ) of randomly shifted digital
nets (see Definition 2.4) where the expectation value of the square worst-case
error is taken over all random i.i.d. σ ∈ [0, 1)s, i.e.,

ê2(Qbm,s,Hs,α,γ) = Eσ

[
e2(Qbm,s(σ),Hs,α,γ)

]
,

where Qbm,s(σ) denotes the quadrature rule for which all quadrature points
are digitally shifted by σ ∈ [0, 1)s. Using [4, Theorem 15] together with the
results from [6, Section 6] we obtain that for any α ≥ 1 we have

ê2(Qbm,s,Hs,α,γ) =
∑

∅6=u⊆S

γu

∑

ku∈D∗
u

K̂s,α,γ((ku, 0), (ku, 0))

and by applying (4.2) we obtain for any α ≥ 1 that

ê2(Qbm,s,Hs,α,γ) ≤
∑

∅6=u⊆S

γuC
|u|
b,α

∑

ku∈D∗
u

r2
b,α(ku). (4.3)
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Compare this result with its deterministic version [4, Lemma 9].

The subsequent lemma now states a similar result for polynomial lattice rules.
From a slight generalization of [13, Lemma 4.40] we obtain that the analogous
definition of the dual space for a polynomial lattice is given by

D = Dp(q) = {k ∈ N
s
0 \ {0} : q · k̄ ≡ a (mod p) with deg(a) < n − m},

where for k = (k1, . . . , ks) ∈ Ns
0 we associate the vector of polynomials k̄ =

(k̄1, . . . , k̄s)
> where for kj = κ0 + κ1b + · · · we define k̄j(x) = κ0 + κ1x + · · ·+

κn−1x
n−1 and where we set deg(0) = −1. Hence for m = n we obtain the usual

definition of the dual space, see [5,14], and for m < n we obtain a superset. As
above, for any u ⊆ S, we also define the projections of the vectors in D to the
coordinates in u by Du = Du,p(q) and further we set D∗

u = D∗
u,p(q) = Du∩N

|u|.
A proof of the following lemma can be obtained by using a slight generalization
of [14, Lemma 4.40] and (4.3).

Lemma 4.1 Let b be a prime and α ≥ 1 be an integer. Then there exists a
constant Cb,α > 0 depending only on b and α (and not on s and m) such that
the mean square worst-case error for multivariate integration in the Sobolev
space Hs,α,γ using a randomly shifted polynomial lattice rule Qbm,s can be
bounded by

ê2(Qbm,s,Hs,α,γ) ≤
∑

∅6=u⊆{1,...,s}

γuC
|u|
b,α

∑

ku∈D∗
u,p(q)

r2
b,α(ku).

Further, we need the following lemma.

Lemma 4.2 Let α ≥ 1 be an integer. Then for every 1
2α

< λ ≤ 1 there exists
a constant 0 < Cb,α,λ < ∞ such that

∞∑

l=1

r2λ
b,α(l) ≤ Cb,α,λ.

Proof. Note that it is enough to show the result for λ satisfying 1
2α

< λ <

min
(
1, 1

2(α−1)

)
as
∑∞

l=1 r2λ
b,α(l) is a monotonically decreasing function in λ, i.e.,

we can use the constant Cb,α,λ to bound
∑∞

l=1 r2λ′

b,α(l) for all λ < λ′ ≤ 1.

In the following let l = λ1b
a1−1 + · · ·+ λvb

av−1 where v ≥ 1, 0 < av < · · · < a1

and λi ∈ {1, . . . , b − 1}. We divide the sum over all l ∈ N into two parts,
namely firstly where 1 ≤ v ≤ α and secondly where v > α. For the first part
we have
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α∑

v=1

(b − 1)v
∑

0<av<···<a1

b−2λ(a1+···+av)

=
α∑

v=1

(b − 1)v
∞∑

a1=v

b−2λa1

a1−1∑

a2=v−1

b−2λa2 · · ·
av−1−1∑

av=1

b−2λav

≤
α∑

v=1

(
b − 1

b2λ − 1

)v

=
(b − 1)((b − 1)α − (b2λ − 1)α)

(b − b2λ)(b2λ − 1)α
.

For the second part we have

(b − 1)α
∑

0<aα<···<a1

b−2λ(a1+···+aα)baα−1

=(b − 1)αb−1
∞∑

a1=α

b−2λa1

a1−1∑

a2=α−1

b−2λa2 · · ·
aα−1−1∑

aα=1

b−2λaαbaα .

All the above sums are geometric series and can therefore easily be simplified.
Indeed we have

aα−1−1∑

aα=1

b−2λaαbaα ≤ b(1−2λ)aα−1

b1−2λ − 1
.

Next we can estimate the sum
∑aα−2−1

aα−1=2 b−2λaα−1b(1−2λ)aα−1 in a similar way as
above. By continuing in this way we obtain that the second part is bounded
by

(b − 1)α
α−1∏

i=1

(b1−2iλ − 1)−1
∞∑

a1=1

b−2λa1b(1−2(α−1)λ)a1 .

Now the sum above can be written as
∑∞

a1=1 b(1−2αλ)a1 . This sum is finite as
long as 1 − 2αλ < 0, that is, as long as λ > 1/(2α). In this case we have

∞∑

a1=1

b(1−2αλ)a1 = (b2αλ−1 − 1)−1.

The result now follows. 2

From the proof above an explicit constant in Lemma 4.2 can easily be obtained.

For an irreducible polynomial p in Zb[x] we denote the mean square worst-
case error using shifted polynomial lattice rules generated from the vector q

by ê2
p(q). We now define the average of ê2λ

p (q) over all polynomials q1, . . . , qs

in Gb,n = {q ∈ Zb[x] : deg(q) < n} by

Am,n,s =
1

bns

∑

q1,...,qs∈Gb,n

ê2λ
p (q),

where q = (q1, . . . , qs), n = deg(p) and 1
2α

< λ ≤ 1.
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With Lemma 4.1 together with Jensen’s inequality we obtain

Am,n,s ≤
∑

∅6=u⊆S

γλ
uC

λ|u|
b,α

1

bns

∑

q1,...,qs∈Gb,n

∑

ku∈D∗
u,p(q)

r2λ
b,α(ku).

In the following we estimate the term

1

bns

∑

q1,...,qs∈Gb,n

∑

ku∈D∗
u,p(q)

r2λ
b,α(ku) =

∑

ku∈N|u|

r2λ
b,α(ku)

1

bn|u|

∑

qu∈G
|u|
b,n

k̄u·qu≡a (mod p)
deg(a)<n−m

1. (4.4)

The last sum is equal to the number of solutions qu of the equation k̄u ·qu ≡ a
(mod p) for some polynomial a with deg(a) < n − m. This number depends
of course on ku.

First consider the case where all components of k̄u are multiples of p. Then
every qu trivially satisfies the equation k̄u ·qu ≡ 0 (mod p). Hence in this case
we have

1

bn|u|

∑

qu∈G
|u|
b,n

k̄u·qu≡a (mod p)
deg(a)<n−m

1 = 1

and the sum over all ku which satisfy this condition is therefore bounded by

∑

ku∈N
|u|

k̄j≡0 (mod p)

r2λ
b,α(ku) =




∞∑

k=1
p|k̄

r2λ
b,α(k)




|u|

.

Now we have

∞∑

k=1
p|k̄

r2λ
b,α(k) =

∞∑

l=1

r2λ
b,α(bnl) +

∞∑

l=0

bn−1∑

k=1
p|k̄

r2λ
b,α(k + bnl).

We note that for l > 0 we have rb,α(bnl) ≤ b−nrb,α(l). Further for 1 ≤ k < bn

the polynomial p never divides k̄ since deg(p) = n. Hence

∞∑

k=1
p|k̄

r2λ
b,α(k) =

∞∑

l=1

r2λ
b,α(bnl) ≤ b−2λn

∞∑

l=1

r2λ
b,α(l).

It remains to consider the case where there is at least one component of k̄u
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which is not a multiple of p. In this case we have

1

bn|u|

∑

qu∈G
|u|
b,n

k̄u·qu≡a (mod p)
deg(a)<n−m

1 =
1

bm

and therefore this part of (4.4) is bounded by

b−m

(
∞∑

l=1

r2λ
b,α(l)

)|u|

.

Altogether we now obtain that

Am,n,s ≤
∑

∅6=u⊆S

γλ
uC

λ|u|
b,α

(
∞∑

l=1

r2λ
b,α(l)

)|u| (
b−m + b−2λn|u|

)
.

Using Lemma 4.2 we now obtain the following result.

Proposition 4.3 Let α ≥ 1, 1
2α

< λ ≤ 1 and 1 ≤ m ≤ n. Then

Am,n,s ≤
∑

∅6=u⊆S

γλ
uC

λ|u|
b,α C

|u|
b,α,λ

(
b−m + b−2λn|u|

)
.

The following theorem now establishes the existence of good shifted polyno-
mial lattice rules.

Theorem 4.4 Let b ≥ 2 be prime, α ≥ 1, 1 ≤ m ≤ n be integers and let
p ∈ Zb[x] be an irreducible polynomial with deg(p) = n. Then there exists a
digitally shifted polynomial lattice rule Q(q∗) with generating vector q∗ ∈ Gs

b,n

such that

e(Q(q∗),Hs,α,γ) ≤ 1

bmin(τm,n)


2

∑

∅6=u⊆S

γ1/(2τ)
u C

|u|/(2τ)
b,α C

|u|
b,α,1/(2τ)




τ

for all 1
2
≤ τ < α.

Proof. For a given irreducible polynomial p with deg(p) = n let q∗ ∈ Gs
b,n

satisfy êp(q
∗) ≤ êp(q) for all q ∈ Gs

b,n. Then follows from Proposition 4.3 that
for every 1

2α
< λ ≤ 1 we have

ê2λ
p (q∗) ≤ 1

bns

∑

q∈Gs
b,n

ê2λ
p (q) ≤

∑

∅6=u⊆S

γλ
uC

λ|u|
b,α C

|u|
b,α,λ

(
b−m + b−2λn|u|

)
.
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By using the estimation b−m + b−2λn|u| ≤ 2 max(b−m, b−2λn) we obtain

êp(q
∗) ≤ 21/(2λ) max(b−m/(2λ), b−n)



∑

∅6=u⊆S

γλ
uC

λ|u|
b,α C

|u|
b,α,λ




1/(2λ)

.

As the root mean square worst-case error êp(q
∗) taken over all digital shifts

satisfies the above bound it is clear that there must exist a shift σ∗ such that
the worst-case error using the σ∗-shifted polynomial lattice rule generated
from q∗ satisfies this bound as well.

The result now follows by a change of variables together with the fact that
max(b−τm, b−n) = b−min(τm,n). 2

Remark 4.5 Note that the upper bound in the above theorem is essentially
best possible which follows from the lower bound in [17].

The polynomial lattice rule considered in the above theorem is only shown
to work for a fixed α ≥ 1. In the following we also show the existence of
polynomial lattice rules which work well for a range of possible α’s.

Let ν be the equiprobable measure on the set Gs
b,n, i.e., ν(q) = b−ns. For c ≥ 1

and 1
2
≤ τ < α we define

Cb,α(c, τ) =



q ∈ Gs

b,n : êp(q) ≤ cτ

bmin(τm,n)


2

∑

∅6=u⊆S

γ1/(2τ)
u C

|u|/(2τ)
b,α C

|u|
b,α,1/(2τ)




τ
 .

We obtain the following result.

Lemma 4.6 Let c ≥ 1 and 1
2
≤ τ < α. Then we have

ν(Cb,α(c, τ)) > 1 − c−1.

Proof. The result follows from the fact that for any 1
2α

< λ ≤ 1 we have

Am,n,s >
c

bmin(m,2λn)


2

∑

∅6=u⊆S

γλ
uC

λ|u|
b,α C

|u|
b,α,λ


 ν

(
Gs

b,n \ Cb,α

(
c, 1

2λ

))

together with Proposition 4.3 and ideas from the proof of Theorem 4.4. 2

The above lemma shows that, for any given α ≥ 1, there are many good
polynomial lattice rules. Hence it is not surprising that there also exists a
polynomial lattice rule which works well for a range of α’s. This is shown in
the following theorem.
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Theorem 4.7 Let α, m ≥ 1. Then there exists a q∗ ∈ Gs
b,αm such that

êp,β(q∗) ≤ ατβ

bτβm


2

∑

∅6=u⊆S

γ1/(2τβ)
u C

|u|/(2τβ)
b,α C

|u|
b,α,1/(2τβ)




τβ

for all 1 ≤ β ≤ α and all 1
2
≤ τβ < β. Here êp,β(q

∗) means the root mean
square worst-case error êp(q

∗) for integration in the space Hs,β,γ.

Proof. Let 0 < ε < 1
2
. By choosing c = α in Lemma 4.6 we obtain that

ν(Cb,β(α, β − ε)) > 1 − α−1.

Thus it follows that

ν




α⋂

β=1

Cb,β(α, β − ε)


 > 0.

By choosing n = αm we have now shown that for a given 0 < ε < 1/2 there
exists a q∗ ∈ Gs

b,αm for which

êp,β(q
∗) ≤ αβ−ε

b(β−ε)m


2

∑

∅6=u⊆S

γ1/(2(β−ε))
u C

|u|/(2(β−ε))
b,α C

|u|
b,α,1/(2(β−ε))




β−ε

.

Since Gs
b,m is a finite set it follows that there exists a q∗ which works for all

choices of 0 < ε < 1/2. Thus the result follows. 2

In the following we also show the existence of deterministic quadrature rules
which work well for all spaces up to smoothness α.

Let µ be the Lebesgue measure on the set [0, 1)s. Let q∗ be taken from Theo-
rem 4.4. For σ ∈ [0, 1)s let ep(q

∗, σ) denote the worst-case error of a polyno-
mial lattice rule with generating vector q∗ which is digitally shifted by σ. For
c ≥ 1 we define

Eb,α(c) = {σ′ ∈ [0, 1)s : ep(q
∗, σ′) ≤ c · êp(q

∗)} .

Further let

Fb,α(c)=



σ′ ∈ [0, 1)s : ep(q

∗, σ′) ≤ c

bmin(τm,n)
×


2

∑

∅6=u⊆S

γ1/(2τ)
u C

|u|/(2τ)
b,α C

|u|
b,α,1/(2τ)




τ

for all
1

2
≤ τ < α



.

Then we have Eb,α(c) ⊆ Fb,α(c). This follows from the proof of Theorem 4.4.
From standard arguments from probability theory we obtain the following
result.

14



Lemma 4.8 Let c ≥ 1 and α ∈ N. Then we have

µ(Fb,α(c)) ≥ µ(Eb,α(c)) > 1 − c−2.

We can now also show that there exists a digital shift which can be used for
a range of choices of α’s.

Theorem 4.9 Let α, m ≥ 1. Then there exists a q∗ ∈ Gs
b,αm and a σ∗ ∈ [0, 1)s

such that the worst-case error for the polynomial lattice rule with generating
vector q∗ and shifted by σ∗ is bounded by

ep,β(q
∗, σ∗) ≤ b−τβm

√
α


2

∑

∅6=u⊆S

γ1/(2τβ)
u C

|u|/(2τβ)
b,α C

|u|
b,α,1/(2τβ)




τβ

for all 1 ≤ β ≤ α and all 1
2
≤ τβ < β.

This result follows from Lemma 4.8. We omit a detailed proof since it is very
similar to the proof of Theorem 4.7.

Remark 4.10 The above results can also be shown for the digital nets intro-
duced in Definition 2.1, in fact the proofs are simpler for this case. Polynomial
lattice rules for which the generating vector q is of the form (1, q, . . . , qs−1)
with q ∈ Gb,m are called Korobov polynomial lattice rules. Similar results as
for polynomial lattice rules can also be shown for this case, with the difference
that we have an additional factor of s − 1 in the upper bounds of the above
results (see also [5]). Further, instead of considering 1 ≤ β ≤ α, one could
also consider a finite set A ⊂ Ns

0 and obtain the existence of a digitally shifted
polynomial lattice rule which works well for all choices α ∈ A.

5 Tractability

In this section we study the dependence of the worst-case error on the dimen-
sion. This commonly goes by the name of tractability [18].

We would like to reduce the initial error of QMC integration in the Sobolev
space Hs,α,γ by a factor of ε ∈ (0, 1). For ε ∈ (0, 1) let n(ε,Hs,α,γ) denote the
minimal number of sample points used by a QMC-algorithm such that the
initial error is reduced by a factor of ε, i.e.,

n(ε,Hs,α,γ) := min{n : ∃Qn,s such that e(Qn,s,Hs,α,γ) ≤ εe(Q0,s,Hs,α,γ)}.

Definition 5.1 (Tractability) (1) We say that multivariate integration in
the sequence of spaces {Hs,α,γ}s≥1 is QMC-tractable if there exist non-
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negative C, p and q such that

n(ε,Hs,α,γ) ≤ C sq ε−p

holds for all dimensions s = 1, 2, . . . and for all ε ∈ (0, 1).
(2) We say that multivariate integration in the sequence of spaces {Hs,α,γ}s≥1

is strongly QMC-tractable if the inequality above holds with q = 0.
(3) The minimal (infimum) q and p are called the s-exponent and the ε-

exponent of (strong) QMC-tractability.

For τ ∈ [1/2, α) and q ≥ 0 define

Bτ,q := sup
s=1,2,...


 1

sq

∑

∅6=u⊆S

γ1/(2τ)
u C |u|


 ,

where C = C
1/(2τ)
b,α Cb,α,1/(2τ) is from the bound in Theorem 4.9.

Theorem 5.2 Let α ≥ 1. We have:

(1) For some τ ∈ [1/2, α) assume that

Bτ,0 < ∞. (5.1)

Then the integration problem in the sequence of spaces {Hs,α,γ}s≥1 is
strongly QMC-tractable. Let τ0 be the supremum over all τ which sat-
isfy (5.1). Then the ε-exponent of strong tractability lies in the interval
[1/α, 1/τ0]. If (5.1) holds for all τ ∈ [1/2, α), then the ε-exponent of
strong tractability has the value 1/α (which is optimal).

(2) Under the assumption
B1/2,q < ∞ (5.2)

for some non-negative q we obtain that the integration problem in the
sequence of spaces {Hs,α,γ}s≥1 is QMC-tractable. If Bτ,q < ∞, then the
ε-exponent of tractability is the interval [1/α, 1/τ ] and the s-exponent is
at most q.

Moreover the corresponding upper bounds on the worst-case error can be achieved
by digitally shifted polynomial lattice rules.

Proof. Note that here the initial error e(Q0,s,Hs,α,γ) =
√

γ∅, which is chosen
in advance and can therefore be viewed as a constant. Let α ≥ 1. For any
τ ∈ [1/2, α) and q ≥ 0 we know from Theorem 4.9 the existence of a quasi-
Monte Carlo integration rule Qn,s such that

e(Qn,s,Hs,α,γ) ≤ 1

nτ

√
α2τ (Bτ,qs

q)τ ∀s ≥ 1,

and for all n = bm.
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(1) If Bτ,0 < ∞, then we obtain e(Qn,s,Hs,α,γ) ≤ c · nτ for some c > 0
independent of s and n. Therefore the integration problem in the sequence
of spaces {Hs,α,γ}s≥1 is strongly QMC-tractable. From this it is clear, that
if τ0 is the supremum over all τ which satisfy (5.1), then the ε-exponent
of strong tractability lies in the interval [1/α, 1/τ0]. If (5.1) holds for all
τ ∈ [1/2, α), then τ0 = α which proves the last assertion of item (1).

(2) If B1/2,q < ∞ for some non-negative q, then we have e(Qn,s,Hs,α,γ) ≤
c · sq/2 · n−1/2 for some c > 0 independent of s and n and it follows that
the integration problem in the sequence of spaces {Hs,α,γ}s≥1 is QMC-
tractable. If Bτ,q < ∞, then we have e(Qn,s,Hs,α,γ) ≤ c · sqτ ·n−τ and the
assertion concerning ε- and s-exponent follows.

As the proof is based on the result from Theorem 4.9 it is clear that the
corresponding bounds on the worst-case error can be achieved by digitally
shifted polynomial lattice rules. 2

In the sequel we will consider a special choice of weights, namely so-called
product weights. Here we have a sequence γ1, γ2, . . . of non-negative reals and
the weight corresponding to the projection given by u ⊆ {1, . . . , s} is given by
γu =

∏
j∈u γj for u 6= ∅ and γ∅ = 1. In this case for any τ < α it follows from

Theorem 4.9 that there exists a digitally shifted polynomial lattice rule such
that

e(Qn,s,Hs,α,γ) ≤ 1

nτ

√
α2τ


−1 +

s∏

j=1

(
1 + Cγ

1/(2τ)
j

)



τ

, (5.3)

where C = C
1/(2τ)
b,α Cb,α,1/(2τ) is from the bound in Theorem 4.9 and where

n = bm.

Theorem 5.3 Let α ≥ 1. We have:

(1) For some τ ∈ [1/2, α) assume that

∞∑

j=1

γ
1/(2τ)
j < ∞. (5.4)

Then the integration problem in the sequence of spaces {Hs,α,γ}s≥1 is
strongly QMC-tractable. Let τ0 be the supremum over all τ which sat-
isfy (5.4). Then the ε-exponent of strong tractability lies in the interval
[1/α, 1/τ0]. If (5.4) holds for all τ ∈ [1/2, α), then the ε-exponent of
strong tractability has the value 1/α (which is optimal).

(2) Under the assumption

A := lim sup
s→∞

∑∞
j=1 γj

log s
< ∞

we obtain that the integration problem in the sequence of spaces {Hs,α,γ}s≥1
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is QMC-tractable. If

Aτ := lim sup
s→∞

∑∞
j=1 γ

1/(2τ)
j

log s
< ∞,

then the ε-exponent of tractability is in the interval [1/α, 1/τ ] and the
s-exponent is at most C · Aτ .

Moreover the corresponding upper bounds on the worst-case error can be achieved
by digitally shifted polynomial lattice rules.

Proof. (1) This part of the theorem follows from Theorem 5.2, part (1), since
for product weights we have

Bτ,0 ≤ exp


C

∞∑

j=1

γ
1/(2τ)
j


 ,

if the sum in the above expression is finite.
(2) For any δ > 0 there exists a positive sδ such that

s∑

j=1

γ
1/(2τ)
j ≤ (Aτ + δ) log s ∀s ≥ sδ.

From (5.3) we obtain

e(Qn,s,Hs,α,γ)≤ n−τ
√

α2τs
τ
∑s

j=1
log

(
1+Cγ

1/(2τ)
j

)
/ log s

≤ n−τ
√

α2τs
τC

(∑s

j=1
γ
1/(2τ)
j

)
/ log s

≤ n−τ
√

α2τsτC(Aτ +δ)

for any δ > 0 and all s ≥ sδ. The result follows.

As the proof is based on the result from Theorem 4.9 it is clear that the
corresponding bounds on the worst-case error can be achieved by digitally
shifted polynomial lattice rules. The result follows. 2

Remark 5.4 Note that the conditions for (strong) tractability in the case of
product weights are independent of the smoothness parameter α.
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