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Abstract

Let F be the class of all 1-periodic real functions with absolutely convergent
Fourier series expansion and let (xn)n≥0 be the van der Corput sequence. In this
paper results on the boundedness of

∑N−1
n=0 f(xn) for f ∈ F are given. We give a

criterion on the convergence rate of the Fourier coefficients of f such that the above
sum is bounded independently of N . Further we show that our result is also best
possible.

1 Introduction

In the theory of uniform distribution modulo 1 the van der Corput sequence is the pro-
totype for a uniformly distributed sequence. This sequence, analyzed in a multitude of
papers, is defined as follows:

Definition 1 Let p ≥ 2 be an integer. For any n ∈ N0 with p-adic expansion n =∑
i≥0 nip

i (note that this expansion is finite) the radical inverse function to the base p
is defined as ϕp(n) =

∑
i≥0 nip

−i−1. Now the van der Corput sequence in base p is the
sequence (xn)n≥0 with xn = ϕp(n) for all n ∈ N0.

In this paper we consider the following question stated by Johannes Schoissengeier
(private communication): let F be the class of all 1-periodic functions f : R → R with

an absolutely convergent Fourier series expansion and
∫ 1

0
f(x)dx = 0. Further let (xn)n≥0

be the van der Corput sequence in base p. Under which smoothness condition on the
functions from F do we have

∣∣∣∣∣

N−1∑

n=0

f(xn)

∣∣∣∣∣ � 1 ∀f ∈ F ? (1)

For convenience we will call the sum in (1) the remainder of the function f .
We remark that it follows from the Koksma-Hlawka inequality, and since the star

discrepancy D∗
N of the van der Corput sequence is of order log N , that

∣∣∣
∑N−1

n=0 f(xn)
∣∣∣ �

log N for any f with bounded total variation (see, for example, [1, 4, 6]).
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It follows from a result of Hellekalek and Larcher [3, Theorem 2] that if F is the space
of 1-periodic functions for which the first derivative is Lipschitz continuous, then we have

∣∣∣∣∣

N−1∑

n=0

f(xn)

∣∣∣∣∣ � 1 ∀f ∈ F.

(We remark that Hellekalek and Larcher also showed that the periodicity of the function
is necessary.)

Recall that the Theorem of Rademacher states that every Lipschitz continuous func-
tion on an interval is continuously differentiable in almost every point of the interval (in
the sense of Lebesgue measure). Hence for the functions considered in [3] we obtain (by
using partial integration) that for h 6= 0 we have

f̂(h) =

∫ 1

0

f(x)e−2πihxdx

=
1

2πih

∫ 1

0

f ′(x)e−2πihxdx =
1

(2πih)2

∫ 1

0

f ′′(x)e−2πihxdx,

and therefore |f̂(h)| � |h|−2.
This motivates the following

Definition 2 Let Fα be the class of all 1-periodic functions f : R → R with an absolutely
convergent Fourier series expansion with |f̂(h)| � |h|−α for all h 6= 0 and

∫ 1

0
f(x)dx = 0.

In this paper we show that (1) holds for all functions f ∈ Fα whenever α > 1. Further

we show that there exists a function g ∈ F1 such that
∣∣∣
∑N−1

n=0 g(xn)
∣∣∣ is not bounded as N

tends to infinity.
Moreover we consider functions f ∈ F whose Fourier coefficients decrease with order∏L

j=0 χj(h) where for j ≥ 1, χj(h) := (logp . . . logp h)−1, where we apply the logp function

j times on h, and for j = 0 we set χ0(h) := h−1. Here logp denotes the logarithm to the
base p, p ≥ 2.

The main results are stated in the subsequent Section 2 and the proofs are presented
in Section 3 and Section 4.

Throughout the paper we assume that f : [0, 1] → R is a 1-periodic function with∫ 1

0
f(x)dx = 0 and

∑
h∈Z

|f̂(h)| < ∞.

2 The main results

Let the function class Fα be defined as in Section 1.

Theorem 1 Let (xn)n≥0 be the van der Corput sequence in base p. For α > 1 we have

∣∣∣∣∣

N−1∑

n=0

f(xn)

∣∣∣∣∣ � 1 ∀f ∈ Fα. (2)
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Remark 1 It can be shown that the above result remains true if the sequence (xn)n≥0 is
a digital (0, 1)-sequence over Zp, p a prime, which is generated by a non-singular upper
triangular N × N matrix with entries from Zp and with one entries in the main diagonal.
(We call such sequences short NUT-sequence in base p.) For the definition of digital
(0, 1)-sequences over Zp see [5] or [6].

Remark 2 1. Note that if f is a 1-periodic function whose first derivative satisfies a
Hölder condition with coefficient 0 < λ ≤ 1 then it follows from [8, Theorem 4.7]

that the Fourier coefficients of f satisfy |f̂(h)| � |h|−1−λ. Thus f ∈ F1+λ and the
above theorem shows that the remainder of f is bounded.

2. Let Flin be the class of all 1-periodic, continuous, piecewise linear functions f :
R → R with

∫ 1

0
f(x)dx = 0. Then it can be easily shown that f̂(h) � h−2 for

any f ∈ Flin. Thus Flin ⊆ F2 and Theorem 1 shows that any function in Flin has
bounded remainder.

We introduce some further notation. Let

supp(f̂) = {h ∈ Z : f̂(h) 6= 0}

denote the support of the Fourier coefficients of f . Note that
∫ 1

0
f(x)dx = 0 implies that

0 6∈ supp(f̂). Further, as f is a real function it follows that f̂(h) = f̂(−h) and hence

h ∈ supp(f̂) implies that −h ∈ supp(f̂). For a non-empty subset E ⊆ Z \ {0} we define
M(E) in the following way: if for every M ∈ N there is an h ∈ E with pM |h we set
M(E) = ∞, otherwise let M(E) ≥ 0 denote the largest integer such that there exists an
h ∈ E with pM |h. Further, for p ≥ 2, j ≥ 0 and h ∈ Z let

δpj(h) :=

{
1 if h ≡ 0 (mod pj),
0 if h 6≡ 0 (mod pj).

From the proof of Theorem 1 we obtain actually the following result:

Theorem 2 Let (xn)n≥0 be the van der Corput sequence in base p. If the Fourier coeffi-
cients of f satisfy

M(supp( bf))∑

j=0

pj
∑

h∈supp( bf)

|f̂(h)|δpj(h) < ∞,

then
∣∣∣∣∣

N−1∑

n=0

f(xn)

∣∣∣∣∣ � 1.

Remark 3 1. It follows from Theorem 2 that if M(supp(f̂)) < ∞ then
∑

h∈supp( bf)

|f̂(h)| <

∞ is enough to ensure that the remainder of f is bounded.
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2. It follows also from Theorem 2 that the remainder of f is bounded if |f̂(h)| ≤ ϕ(|h|),
for all h ∈ Z with |h| ∈ Dc := {k ∈ N : k ≥ c}, where c ∈ N and ϕ : Dc ⊆ N → R

+
0

is a function such that
∞∑

n,k=0
pnk∈Dc

pnϕ(pnk) < ∞.

Of course g(x) = x−α, α > 1, fulfills this condition, but also

g(x) =
1

x(log x)β
with β > 2 for x > 1.

In the following we shall show that the result of Theorem 1 is not true anymore if
α = 1.

Theorem 3 Let (xn)n≥0 be the van der Corput sequence in base p. Then there exists a
function g ∈ F1 such that

lim sup
N→∞

∣∣∣∣∣

N−1∑

n=0

g(xn)

∣∣∣∣∣ = ∞.

The result of Theorem 2 can be improved, we have

Theorem 4 Let (xn)n≥0 be the van der Corput sequence in base p. For every L ∈ N there
exists a function g ∈ F with

|ĝ(h)| ≤ C
L∏

j=0

χj(|h|)

for all h ∈ Z with |h| ≥ c(L), where c(L) is the smallest natural number such that
1/χL(c(L)) > 1, and where C > 0 is an absolute constant, such that

lim sup
N→∞

∣∣∣∣∣

N−1∑

n=0

g(xn)

∣∣∣∣∣ = ∞.

Note that using Remark 3, item 1, one can easily construct a function which satisfies
the conditions of Theorem 3 and Theorem 4 but for which the remainder is bounded.
Hence those two theorems cannot hold for all 1-periodic functions which satisfy the as-
sumptions in those theorems.

3 Functions with bounded remainder

For a sequence σ = (xn)n≥0, h ∈ Z and N ∈ N we define

SN(σ, h) :=

N−1∑

n=0

e2πihxn .
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Lemma 1 Let σ = (xn)n≥0 the van der Corput sequence in base p (or a NUT-sequence
over Zp if p is prime). Let h ∈ Z and let N ∈ N with p-adic representation

N =

∞∑

j=0

Njp
j,

where Nj ∈ {0, 1, . . . , p − 1} for j ≥ 0. Then we have

|SN(σ, h)| ≤

∞∑

j=0

Njp
jδpj(h).

Proof. For the van der Corput sequence this lemma is proved in [7, Lemma 3]. The proof
for the NUT-sequence is similar and can be found in [2, Lemma 3.3]. 2

Lemma 2 Let n ∈ N0 and α > 1. Then we have

∞∑

h=1

1

hα
δpn(h) =

ζ(α)

pαn
,

where ζ(α) denotes the Riemann zeta function and δpj (h) is defined as in Section 2.

Proof. This is easy calculation,

∞∑

h=1

1

hα
δpn(h) =

∞∑

h=1
h≡0 (mod pn)

1

hα
=

∞∑

h=1

1

(pnh)α
=

ζ(α)

pαn
.

2

Now we can give the

Proof of Theorem 1. We have f(x) =
∑

h∈Z
f̂(h)e2πihx. Hence

N−1∑

n=0

f(xn) =
∑

h∈Z

f̂(h)SN (σ, h).

Let now N = a1p
n1+a2p

n2+· · ·+asp
ns with 0 ≤ n1 < n2 < · · · < ns and aj ∈ {1, . . . , p−1}.

Then from Lemma 1 we obtain

|SN(σ, h)| ≤
s∑

j=1

ajp
njδpnj (h) ≤ (p − 1)

s∑

j=1

pnjδpnj (h).
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Since f ∈ Fα, α > 1, there is a constant C > 0 such that |f̂(h)| ≤ C/|h|α. Therefore we
have

∣∣∣∣∣

N−1∑

n=0

f(xn)

∣∣∣∣∣ ≤
∑

h∈Z

|f̂(h)| · |SN(σ, h)|

≤ (p − 1)C
∑

h∈Z

h6=0

1

|h|α

s∑

j=1

pnjδpnj (h)

= 2(p − 1)C

s∑

j=1

pnj

∞∑

h=1

1

hα
δpnj (h)

= 2(p − 1)Cζ(α)
s∑

j=1

pnj
1

pαnj

≤ 2(p − 1)Cζ(α)

∞∑

n=0

1

p(α−1)n
= 2(p − 1)Cζ(α)

pα−1

pα−1 − 1
.

4 Functions with unbounded remainder

We first give the

Proof of Theorem 3. Let

g(x) =

∞∑

r=1
r odd

p−r sin(2πprx), x ∈ [0, 1).

First note that the sum converges absolutely and the function g is bounded, as

|g(x)| ≤
∞∑

r=1
r odd

p−r| sin(2πprx)| ≤
∞∑

r=1
r odd

p−r =
p

p2 − 1
.

Obviously the function g is periodic with period 1,
∫ 1

0
g(x)dx = 0 and the Fourier coeffi-

cients satisfy |ĝ(h)| � |h|−1. Hence g ∈ F1 but g 6∈ Fα for any α > 1.
For η ∈ N let now N = N(η) = p2η + p2η−2 + p2η−4 + · · · + 1. We consider now

N−1∑

n=0

g(xn) =

∞∑

r=1
r odd

p−r

N−1∑

n=0

sin(2πprxn).

We divide the above some in several parts, namely, for 0 ≤ ν < η we have

p2η+···+p2η−2(ν+1)−1∑

n=p2η+···+p2η−2ν

g(xn) =

∞∑

r=1
r odd

p−r

p2η+···+p2η−2(ν+1)−1∑

n=p2η+···+p2η−2ν

sin(2πprxn)

=
∞∑

r=1
r odd

p−r

p2η−2(ν+1)−1∑

n=0

sin(2πpr(np−2η+2(ν+1) + p−2η+2ν + · · ·+ p−2η)).
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We now simplify the last sum. First observe that for r ≥ 2η we have

sin(2π(npr−2η+2(ν+1) + pr−2η+2ν + · · · + pr−2η)) = 0

for arbitrary 0 ≤ n < p2η−2(ν+1). Let now r < 2η−2(ν+1). Then we have r−2η+2(ν+1) <
0 and hence

p2η−2(ν+1)−1∑

n=0

e2πi(npr−2η+2(ν+1)+pr−2η+2ν+···+pr−2η)

= e2πi(pr−2η+2ν+···+pr−2η)

p2η−2(ν+1)−1∑

n=0

(e2πipr−2η+2(ν+1)

)n

= 0.

As sin(πx) = (2i)−1(eiπx − e−iπx) we have in this case

p2η−2(ν+1)−1∑

n=0

sin(2π(npr−2η+2(ν+1) + pr−2η+2ν + · · · + pr−2η)) = 0.

Note that from the above it also follows that
2η−1∑

n=0

g(xn) = 0.

Thus we only need to consider odd r which satisfy 2η − 2(ν + 1) ≤ r < 2η. Note that
in this case r − 2η + 2(ν + 1) ≥ 1 and hence

sin(2π(npr−2η+2(ν+1) + pr−2η+2ν + · · ·+ pr−2η)) = sin(2π(pr−2η+2ν + · · ·+ pr−2η)).

Altogether we now obtain

p2η+···+p2η−2(ν+1)−1∑

n=p2η+···+p2η−2ν

g(xn) =

2η−1∑

r=2η−2ν−1
r odd

p−rp2η−2(ν+1) sin(2π(pr−2η+2ν + · · · + pr−2η))

=

2ν+1∑

r=1
r odd

p−r sin(2π(pr−2 + · · ·+ pr−2(ν+1))).

Thus we have

N(η)−1∑

n=0

g(xn) =

η−1∑

ν=0

2ν+1∑

r=1
r odd

p−r sin(2π(pr−2 + pr−4 + · · ·+ pr−2(ν+1)))

=

η−1∑

ν=0

∞∑

r=1
r odd

p−r sin(2π(pr−2 + pr−4 + · · ·+ pr−2(ν+1)))

=

∞∑

r=1
r odd

p−r

η−1∑

ν=0

sin(2π(pr−2 + pr−4 + · · ·+ pr−2(ν+1)))

=

2η−1∑

r=1
r odd

p−r

η−1∑

ν=(r−1)/2

sin(2π(pr−2 + pr−4 + · · · + pr−2(ν+1))).
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We now estimate the value of the sine function. As 1 ≤ r ≤ 2η − 1 is odd, we have

sin(2π(pr−2 + pr−4 + · · · + pr−2(ν+1))) ≥ sin(2π(p−1 + p−3 + · · · )) = sin(2πp/(p2 − 1))

for p = 2, 3, 4 and

sin(2π(pr−2 + pr−4 + · · ·+ pr−2(ν+1))) ≥ sin(2π/p)

for p ≥ 5. Let cp = sin(2πp/(p2 − 1)) for p = 2, 3, 4 and cp = sin(2π/p) for p ≥ 5. Then
we have

N(η)−1∑

n=0

g(xn) ≥ cp

2η−1∑

r=1
r odd

p−r(η − (r − 1)/2) = η
cpp

p2 − 1
−

cpp(1 − p−2η)

(p2 − 1)2
.

Thus we have

lim
η→∞

N(η)−1∑

n=0

g(xn) = ∞

and therefore
∣∣∣
∑N−1

n=0 g(xn)
∣∣∣ cannot be bounded independently of N . This proves Theo-

rem 3. 2

Remark 4 It follows from the above proof that for every p ≥ 2 there are infinitely many
N ∈ N such that

N−1∑

n=0

g(xn) ≥ logp N
cpp

2(p2 − 1)
+

cpp

2(p2 − 1)2
((p2 − 1) logp(1 − p−2) − (1 − N−1)/2).

The above counterexample can be improved to yield a stronger result. This is done in
the following.

Proof of Theorem 4. Let γ = (γ1, γ3, γ5, . . .) be a sequence of non-negative real numbers.
Then we set

gγ(x) =

∞∑

r=1
r odd

p−rγr sin(2πprx), x ∈ [0, 1).

By proceeding the same way as above we obtain

N(η)−1∑

n=0

gγ(xn) ≥ cp

2η−1∑

r=1
r odd

p−r

η−1∑

ν=(r−1)/2

γ2η−2(ν+1)+r ≥
cp

p

η∑

ν=1

γ2ν−1.

From this it follows that if
∑∞

ν=1 γ2ν−1 is not bounded then
∑N(η)−1

n=0 gγ(xn) cannot be
bounded independently of N .

The Fourier series representation of gγ is given by

gγ(x) =
∑

h∈Z

ĝγ(h)e2πihx,
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where

ĝγ(h) =





− i

2h
γr if h = pr, r > 0 odd,

− i

2h
γr if h = −pr, r > 0 odd,
0 otherwise.

For |h| = pr, r > 0 odd, we have r = logp |h|. By choosing for example γν = ν−1 for

odd ν we see that
∑N−1

n=0 gγ(xn) cannot be bounded independently of N . In this case we
have

ĝγ(h) = −
i

2h logp |h|

for infinitely many h.
Hence we have just shown that in the space of functions f for which

|f̂(h)| �
1

|h| logp |h|

there is a function g for which
∣∣∣
∑N−1

n=0 g(xn)
∣∣∣ cannot be bounded independently of N .

For j ≥ 0 let χj(h) be defined as in Section 1. Then by using a similar argument as
above we obtain that, for every L ∈ N, the function space for which

|f̂(h)| ≤ C
L∏

j=0

χj(|h|) for all h ∈ Z with |h| ≥ c(L),

where c(L) is the smallest natural number such that χ−1
L (c(L)) > 1, there is a function g

for which
∣∣∣
∑N−1

n=0 g(xn)
∣∣∣ cannot be bounded independently of N . This proves Theorem 4.2

Remark 5 For example it follows from the above proof, that in the space of functions
for which |f̂(h)| � (|h| logp |h|)

−1 there is a function g and a constant Cp > 0 for which

∣∣∣∣∣

N−1∑

n=0

g(xn)

∣∣∣∣∣ ≥ Cp logp logp N

for infinitely many values of N ∈ N. More generally, for every L ∈ N the space of functions
for which |f̂(h)| �

∏L−1
j=0 χj(|h|), for all h such that χ−1

L−1(|h|) > 1, contains a function g
such that there is a constant Cp,L > 0 with

∣∣∣∣∣

N−1∑

n=0

g(xn)

∣∣∣∣∣ ≥ Cp,Lχ−1
L (N)

for infinitely many values of N ∈ N.
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