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Abstract

In this paper we consider Smolyak algorithms based on quasi-Monte Carlo rules for
high-dimensional numerical integration. The quasi-Monte Carlo rules employed here
use digital (t, α, β, σ, d)-sequences as quadrature points. We consider the worst-case er-
ror for multivariate integration in certain Sobolev spaces and show that our quadrature
rules achieve the optimal rate of convergence. By randomizing the underlying digital
sequences we can also obtain a randomized Smolyak algorithm. The bound on the
worst-case error holds also for the randomized algorithm in a statistical sense. Further
we also show that the randomized algorithm is unbiased and that the integration error
can be approximated as well. Numerical integration, quasi-Monte Carlo algorithm,
Smolyak algorithm

1 Introduction

In this paper we consider numerical integration of functions over the unit cube, that is, we
want to approximate an integral

∫
[0,1]s

f(x) dx by a quadrature rule
∑N−1

i=0 ωif(xi), where

x0, . . . , xN−1 are the deterministic quadrature points and ω0, . . . , ωN−1 the weights. For high
dimensions there are two main quadrature methods:

1. Quasi-Monte Carlo rules are quadrature rules where ωi = 1/N for all i = 0, . . . , N − 1
and are hence equal-weight quadrature rules (see for example [3, 5, 6, 10, 11, 13] and
the references therein). Here the properties of the quadrature rule depend entirely on
the choice of the quadrature points.

2. Another method is based on Smolyak’s construction principle [14] (see also [8, 12, 16]
and the references therein) are also known by the name sparse grids. Here one nor-
mally uses a one-dimensional quadrature rule and out of this builds a high-dimensional
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quadrature rule by adding up certain differences of tensor products of the one-dimensional
quadrature rule. The quadrature rules obtained this way are generally not equal-weight
quadrature rules.

Note that a straightforward tensor product of a one-dimensional quadrature rule is bound
to fail, because if the one-dimensional quadrature rule uses n quadrature points, then the
s-dimensional rule would use ns quadrature points. In large dimensions, say s = 100, even
a quadrature rule in one dimension which uses only 2 points would then use 2100 ≈ 1030

points, making such a computation unfeasible.
Traditionally those two methods are viewed as competing, i.e. one either uses a quasi-

Monte Carlo rule or a sparse grid. In this paper we consider a hybrid of those two methods
and show that they can be combined in different ways. There are several interesting points to
be made on such a combination. It allows us to compare those two methods in terms of their
performance on integrals. The difference to other comparisons here is that in one dimension
both methods start off with the same quadrature rule, but are generalized in different ways.
Actually, one does not need to use a one-dimensional rule as starting point for the sparse
grid, but can use a d-dimensional rule – in our case a d-dimensional quasi-Monte Carlo rule
– and thereby obtain an s = dl -dimensional quadrature rule. For example for s = 4 one can
obtain various combinations of quasi-Monte Carlo and sparse grid (see the examples in the
numerical section at the end of the paper).

Another point to be made is that this combination allows us to obtain randomized sparse
grids. Randomization has been common practice for quasi-Monte Carlo rules, see for example
[3, 11]. Using a randomized quasi-Monte Carlo rule as the underlying quadrature rule we
obtain also randomized sparse grids. Randomization for quasi-Monte Carlo rules has some
advantages, for example one obtains an unbiased estimator of the integral – a property which
we show here also holds for our randomized sparse grids. Further one can also obtain an
estimator of the integration error, which is also possible for sparse grids using a randomized
quasi-Monte Carlo rule as underlying quadrature rule. A drawback is on the other hand that
the upper bounds on the worst-case error only hold in a statistical sense. Here worst-case
error means the supremum of the absolute value of the integration error over the unit ball
of some Banach space (which will be made precise in Section 4). Such a setting has been
considered frequently when analysing quadrature rules for numerical integration.

In this paper we also analyse the worst-case error for multivariate integration in certain
Sobolev spaces. We show that the hybrid method achieves the optimal rate of convergence for
every combination of an l-fold sparse grid based on a certain d-dimensional quasi-Monte Carlo
rule (yielding an s = dl-dimensional quadrature rule). This result holds for deterministic and
also randomized quadrature rules. For fixed s, the only possible difference in the error bounds
lies in a possible difference in the unknown constant, which shows that their performance is
of the same order.

The paper is organized as follows. In the following section we introduce digital sequences
which are the building blocks for our algorithms. In Section 3 we introduce the deterministic
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and the randomized algorithm and in Section 4 we analyze the worst-case error for those
algorithms. We conclude the paper with some numerical results in Section 5.

2 Digital (t, α, β, σ, d)-sequences

The following definition gives the digital construction scheme, which was first considered in
[5] and is a slight variation on the ideas of Niederreiter [10].

Definition 1 (Digital net) Let b be a prime and let n, m, d ≥ 1 be integers. Let C1, . . . , Cd

be n × m matrices over the finite field Zb = {0, 1, . . . , b − 1} of order b. Now we construct
bm points in [0, 1)d: for 0 ≤ h ≤ bm − 1 let h = h0 + h1b + · · · + hm−1b

m−1 be the b-adic

expansion of h. Identify h with the vector ~h = (h0, . . . , hm−1)
> ∈ Zm

b , where > means the

transpose of the vector. For 1 ≤ j ≤ d multiply the matrix Cj by ~h, i.e.,

Cj
~h =: (yj,1(h), . . . , yj,n(h))> ∈ Z

n
b ,

and set

xh,j :=
yj,1(h)

b
+ · · ·+ yj,n(h)

bn
and xh := (xh,1, . . . , xh,d).

The point set {x0, . . . , xbm−1} is called a digital net (over Zb) (with generating matrices
C1, . . . , Cd).

For n, m = ∞ we obtain a sequence {x0, x1, . . .}, which is called a digital sequence (over
Zb) (with generating matrices C1, . . . , Cd).

In the following we define special digital nets and digital sequences, which were first
introduced in [5].

Definition 2 Let n, m, α ≥ 1 be natural numbers, let 0 < β ≤ αm/n be a real number
and let 0 ≤ t ≤ βn be a natural number. Let Zb be the finite field of prime order b and let
C1, . . . , Cd ∈ Z

n×m
b with Cj = (cj,1, . . . , cj,n)

>. If for all 1 ≤ ij,νj
< · · · < ij,1 ≤ m, where

0 ≤ νj ≤ n for all j = 1, . . . , d, with

i1,1 + · · · + i1,min(ν1,α) + · · ·+ id,1 + · · ·+ id,min(νd,α) ≤ βn − t

the vectors
c1,i1,ν1

, . . . , c1,i1,1
, . . . , cd,id,νd

, . . . , cd,id,1

are linearly independent over Zb, then the digital net with generating matrices C1, . . . , Cd is
called a digital (t, α, β, n× m, d)-net over Zb. Further we call a digital (t, α, β, n×m, d)-net
over Zb with the largest possible value of β, i.e., β = αm/n, a digital (t, α, n×m, d)-net over
Zb.
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We can also define sequences of points for which the first bm points form a digital
(t, α, β, σ, n × m, d)-net, see [5].

Definition 3 Let α, σ ≥ 1 and t ≥ 0 be integers and let 0 < β ≤ α/σ be a real number. Let
Zb be the finite field of prime order b and let C1, . . . , Cd ∈ Z

∞×∞
b with Cj = (cj,1, cj,2, . . .)

>.
Further let Cj,σm×m denote the left upper σm × m submatrix of Cj. If for all m > t/(βσ)
the matrices C1,σm×m, . . . , Cd,σm×m generate a digital (t, α, β, σm×m, d)-net then the digital
sequence with generating matrices C1, . . . , Cd is called a digital (t, α, β, σ, d)-sequence over
Zb. Further we call a digital (t, α, 1, α, d)-sequence over Zb a digital (t, α, d)-sequence over
Zb.

Explicit constructions of such sequences were also given in [5]. There it was shown that
one can, for any given integer σ ≥ 1, construct a sequence Sσ = {x0, x1, . . .} such that this
sequence is a digital (t, α, min(1, α/σ), σ, d)-sequence for all α ≥ 1. Note that the value of σ
has to be chosen in advance and cannot be changed for a given sequence Sσ. The sequences
Sσ can now be used to approximate the integral

∫
[0,1]d

f(x) dx of a function f : [0, 1)d → R

by the sum

Aσ,m(f) = b−m
bm−1∑

n=0

f(xn).

Dick [5] showed that this approximation of the integral is of order O(b−min(σ,δ)mmdδ) for
functions whose mixed partial derivatives of order δ in each variable are square integrable.
This result holds in the worst-case sense and for the randomized sequence y0, y1, . . . in the
root mean square sense (see [5, Corollary 5.5] and the discussion thereafter).

The randomized digital sequence is obtained in the following way: let ν = (ν1, . . . , νd) ∈
[0, 1)d with νi = νi,1b

−1 + νi,2b
−2 + · · · be given. Let xn = (xn,1, . . . , xn,d) and xn,i =

xn,i,1b
−1 + xn,i,2b

−2 + · · · . Then we obtain the digitally shifted point yn = (yn,1, . . . , yn,d)
with yn,i = yn,i,1b

−1 + yn,i,2b
−2 + · · · by setting yn,i,j = xn,i,j + νi,j (mod b) for all n ≥ 0

and j ≥ 1 and 1 ≤ i ≤ d. By choosing ν ∈ [0, 1)d i.i.d. we obtain a randomized digital
(t, α, β, σ, d)-sequence. In this case we approximate the integral

∫
[0,1]d

f(x) dx by

Aσ,m,ν(f) = b−m
bm−1∑

n=0

f(yn).

These sequences form the basic building block for the construction of our quadrature
rules which we introduce in the following section.

3 Smolyak algorithms and randomized Smolyak algo-

rithms based on digital (t, α, min(1, α/σ), σ, d)-sequences

In this section we introduce l fold sparse grids using d dimensional digital sequences.
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3.1 The deterministic algorithm

We now consider functions f : [0, 1]s → R, where s = dl. For 1 ≤ j ≤ l let Aσ,m,j denote the
algorithm Aσ,m applied to the coordinates (j−1)d+1, . . . , jd. Then we define ∆σ,0,j = Aσ,0,j

and for m ≥ 1 we set ∆σ,m,j = Aσ,m,j −Aσ,m−1,j for all j = 1, . . . , l and σ ≥ 1. The algorithm
is now given by

Aσ,q,s =
∑

m1,...,ml∈N0
m1+···+ml≤q

l⊗

j=1

∆σ,mj ,j.

Here and throughout this paper let N0 denote the set of non-negative integers.

3.2 The randomized algorithm

We consider again functions f : [0, 1]s → R, where s = dl. Now for 1 ≤ j ≤ l let Aσ,m,νj ,j

denote the algorithm Aσ,m,νj
applied to the coordinates (j − 1)d+ 1, . . . , jd. Then we define

∆σ,0,νj ,j = Aσ,0,νj ,j and for m ≥ 1 we set ∆σ,m,νj ,j = Aσ,m,νj ,j −Aσ,m−1,νj ,j for all j = 1, . . . , s
and σ ≥ 1. The algorithm is now given by

Aσ,q,ν,s =
∑

m1 ,...,ml∈N0
m1+···+ml≤q

l⊗

j=1

∆σ,mj ,νj ,j, (3.1)

where ν = (ν1, . . . , ν l) ∈ [0, 1)dl. By choosing ν ∈ [0, 1)dl uniformly i.i.d. we obtain a
randomized Smolyak type algorithm.

4 Error analysis

For a given function f the error of approximating the integral Is(f) =
∫
[0,1]s

f(x) dx, s = dl,

using Aσ,q,ν,s is given by
eσ,q,ν,d,l(f) = Is(f) −Aσ,q,ν,s(f).

Specifically we consider functions f : [0, 1]s → R from the Sobolev space Hs,δ, where
s ≥ 1 denotes the dimension and δ ≥ 1 refers to the smoothness requirements for functions
in Hs,δ, i.e., the functions are required to have partial mixed derivatives of order up to δ in
each variable which are square integrable. For the one-dimensional space the inner product
in Hs,δ is given by

〈f, g〉H1,δ
=

δ−1∑

τ=0

∫ 1

0

f (τ)(x) dx

∫ 1

0

g(τ)(x) dx +

∫ 1

0

f (δ)(x)g(δ)(x) dx,
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where f (τ) denotes the τ -th derivative of f and where f (0) = f . The reproducing kernel (see
[1] for more information about reproducing kernels) for this space is given by

K1,δ(x, y) =
δ∑

τ=0

Bτ (x)Bτ (y)

(τ !)2
+ (−1)δ+1 B2δ(|x − y|)

(2δ)!
,

where Bτ denotes the Bernoulli polynomial of degree τ . For example we have B0(x) = 1,
B1(x) = x − 1/2, B2(x) = x2 − x + 1/6 and so on.

The reproducing kernel for the s-dimensional Sobolev space Hs,δ is now given by

Ks,δ(x, y) =

s∏

j=1

(
δ∑

τ=0

Bτ (xj)Bτ (yj)

(τ !)2
+ (−1)δ+1 B2δ(|xj − yj|)

(2δ)!

)
.

In the following we consider functions f ∈ Hs,δ. Note that in this case we have (see [1])

f(y) = 〈f,Ks,δ(·, y)〉Hs,δ
. (4.1)

We are now ready to analyze the error for functions in the space Hs,δ.

4.1 Worst-case error analysis

Using the reproducing property (4.1) together with the linearity of the inner product it
follows that

l⊗

j=1

∆σ,mj ,νj ,j(f) =

〈
f,

l⊗

j=1

∆σ,mj ,νj ,j(Ks,δ(·, y))

〉

Hs,δ

=

〈
f,

l∏

j=1

∆σ,mj ,νj ,j(Kd,δ(·, (y(j−1)d+1, . . . , yjd)))

〉

Hs,δ

,

where the inner product is with respect to the first variable of Ks,δ and the operator ∆σ,mj ,νj ,j

is applied to the second variable of Kd,δ.
Note that for any x ∈ [0, 1]s we have

∫

[0,1]s
Ks,δ(x, y) dy = 1.

Hence we have

eσ,q,ν,s(f) =

〈
f,

∫

[0,1]s
Ks,δ(·, y) dy −

∑

m1,...,ml∈N0
m1+···+ml≤q

l∏

j=1

∆σ,mj ,νj ,j(Kd,δ(·, (y(j−1)d+1, . . . , yjd)))

〉

Hs,δ
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=

〈
f, 1 −

∑

m1,...,ml∈N0
m1+···+ml≤q

l∏

j=1

∆σ,mj ,νj ,j(Kd,δ(·, (y(j−1)d+1, . . . , yjd)))

〉

Hs,δ

. (4.2)

Consider now the unit ball Bs,δ = {f ∈ Hs,δ : ‖f‖Hs,δ
≤ 1} in the space Hs,δ. Then it

follows from (4.2) that the function f ∈ Bs,δ for which |eσ,q,ν,s(f)| is largest is given by the
normalization of the function

fwce(x) = 1 −
∑

m1,...,ml∈N0
m1+···+ml≤q

l∏

j=1

∆σ,mj ,νj ,j(Kd,δ((x(j−1)d+1, . . . , xjd), (y(j−1)d+1, . . . , yjd))),

where x = (x1, . . . , xs), i.e., by the function fwce‖fwce‖−1
Hs,δ

.

For y = (y1, . . . , ys) we write yd,j = (y(j−1)d+1, . . . , yjd) and similarly for z.
Let the worst-case error in the space Hs,δ now be given by

wce(Hs,δ,Aσ,q,ν,s) = sup
f∈Bs,δ

|eσ,q,ν,s(f)|.

Then the above results imply that

wce(Hs,δ,Aσ,q,ν,s) = ‖fwce‖Hs,δ

and hence

wce2(Hs,δ,Aσ,q,ν,s) = 〈fwce, fwce〉Hs,δ

= −1 +
∑

m∈Nl
0

‖m‖1≤q

∑

k∈Nl
0

‖k‖1≤q

l∏

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(〈
Kd,δ(·, yd,j),Kd,δ(·, zd,j)

〉
Hd,δ

)

= −1 +
∑

m∈Nl
0

‖m‖1≤q

∑

k∈Nl
0

‖k‖1≤q

l∏

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)
, (4.3)

where the operator ∆σ,mj ,νj ,j is applied to yd,j and ∆σ,kj ,νj ,j is applied to zd,j and where for
m = (m1, . . . , ml) ∈ Ns

0 we write ‖m‖1 = m1 + · · ·+ml and analogously for k. Furthermore,
here and in the sequel for two operators T and S we will write ST (·) instead of S(T (·)).

In the following we show that
∑

m∈N0

∑

k∈N0

∆σ,m,ν∆σ,k,ν (Kd,δ(z, y)) (4.4)

with y, z ∈ [0, 1)d, converges absolutely. To this end let m, k ≥ −1 and let

Zm,k = (I
(y)
d − A(y)

σ,m,ν)(I
(z)
d − A

(z)
σ,k,ν) (Kd,δ(z, y)) ,
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where A
(y)
σ,−1,ν(f) = 0 and where I

(y)
d (resp. A

(y)
σ,m,ν)) is the integral operator (resp. the

randomized algorithm) with respect to y and similarly for I
(z)
d and A

(z)
σ,k,ν . Note that

∆σ,m,ν∆σ,k,ν (Kd,δ(z, y)) = Zm,k−Zm−1,k−Zm,k−1+Zm−1,k−1. Further observe that Zm,k also
depends on δ and σ, but as those parameters are fixed, i.e. σ is fixed from the construction
and δ is the smoothness of the function, we do not make this dependence explicit. We need
some lemmas, but first we recall the definition of Walsh functions which will be used in the
following.

Definition 4 (Walsh functions) Let b ≥ 2 be an integer. For a non-negative integer k
with base b representation

k = κ0 + κ1b + · · ·+ κab
a,

with κi ∈ {0, . . . , b − 1}, we define the Walsh function bwalk : [0, 1) → C by

bwalk(x) := e2πi(x1κ0+···+xa+1κa)/b,

for x ∈ [0, 1) with base b representation x = x1

b
+ x2

b2
+ · · · (unique in the sense that infinitely

many of the xi must be different from b − 1). If it is clear which base b is chosen we will
simply write walk.

Definition 5 (Multivariate Walsh functions) Let b ≥ 2 be an integer. For dimension
s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 we define bwalk1,...,ks

: [0, 1)s → C by

bwalk1,...,ks
(x1, . . . , xs) :=

s∏

j=1

bwalkj
(xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we write

bwalk(x) := bwalk1,...,ks
(x1, . . . , xs).

Again, if it is clear which base we mean we simply write walk(x).

It is clear from the definitions that Walsh functions are piecewise constant. It can be shown
that for any integers s ≥ 1 and b ≥ 2 the system {bwalk1,...,ks

: k1, . . . , ks ≥ 0} is a complete
orthonormal system in L2([0, 1)s), see, for example, [2, 9]. More information on Walsh
functions can be found, for example, in [2, 5, 7, 15].

We note that if Walsh functions, digital shifts or digital sequences are used in conjunction
with each other, they are always in the same base b. Therefore we will often omit the b.

For the next lemma we introduce some notation: for a vector u ∈ Nd
0 and ∅ 6= X ⊆

{1, . . . , d} we write (uX , 0) for the vector u with all components whose index is not in X
replaced by 0. For an ∞×∞ matrix C we write C(m) for the ∞×m matrix which consists
of the first m columns of the matrix C and where for X = {x1, . . . , xe} ⊆ {1, . . . , d}, e = |X|,

D∗
m,X = {l ∈ N

|X| : Cx1
(m)>~l1 + · · ·+ Cxe

(m)>~le = ~0}
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with the vector l = (l1, . . . , le) and where each coordinate has base b representation lj =

lj,0 + lj,1b + · · · and where ~lj = (lj,0, lj,1, . . .)
> for j = 1, . . . , d. Further

K̂(u, w) =

∫

[0,1]d

∫

[0,1]d
Kd,δ(x, y)walu(x)walw(y) dxdy.

Lemma 1 With the definition above we have Z−1,−1 = 1, Zm,−1 = Z−1,m = 0 for m ≥ 0 and
for m, k ≥ 0 we have

|Zm,k| ≤
∑

∅6=X⊆{1,...,d}

∑

u,w∈N
|X|

u∈D∗
m,X

,w∈D∗
k,X

∣∣∣K̂((uX , 0), (wX , 0))
∣∣∣ .

Proof. We can write Zm,k as

I
(y)
d I

(z)
d (Kd,δ(z, y))−I

(y)
d A

(z)
σ,k,ν (Kd,δ(z, y))−A(y)

σ,m,νI
(z)
d (Kd,δ(z, y))+A(y)

σ,m,νA
(z)
σ,k,ν (Kd,δ(z, y)) .

The reproducing kernel Kd,δ can be written as a Walsh series, i.e., we have

Kd,δ(z, y) =
∑

u,w∈Nd
0

K̂(u, w)walu(z)walw(y),

where K̂(u, w) is as above.
We consider several cases now. First let m = k = −1. Then we have

Z−1,−1 =

∫

[0,1]d

∫

[0,1]d
Kd,δ(z, y) dy dz = 1.

Further for m ≥ 0 we have

Zm,−1 = (I
(y)
d − A(y)

σ,m,ν)I
(z)
d (Kd,δ(z, y)) = (I

(y)
d − A(y)

σ,m,ν)(1) = 0

and the same applies for m = −1 and k ≥ 0, i.e., Z−1,k = 0. Now note that K̂(0, 0) = 1 and

K̂(u, v) = 0 if there exists an index 1 ≤ i ≤ d such that ui = 0 and vi 6= 0 or contrariwise.
Using Lemma 2 below, we can therefore write, for m, k ≥ 0,

|Zm,k| =

∣∣∣∣∣∣
A(y)

σ,m,νA
(z)
σ,k,ν


 ∑

∅6=X⊆{1,...,d}

∑

u,w∈N|X|

K̂((uX , 0), (wX , 0))wal(uX ,0)(z)wal(wX ,0)(y)



∣∣∣∣∣∣

≤
∑

∅6=X⊆{1,...,d}

∑

u,w∈N|X|

∣∣∣K̂((uX , 0), (wX , 0))A(y)
σ,m,νA

(z)
σ,k,ν

(
wal(uX ,0)(z)wal(wX ,0)(y)

)∣∣∣

=
∑

∅6=X⊆{1,...,d}

∑

u,w∈N
|X|

u∈D∗
m,X

,w∈D∗
k,X

∣∣∣K̂((uX , 0), (wX , 0))
∣∣∣ .

Hence the result follows. 2
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We need the following lemma.

Lemma 2 Let {x0, x1, . . .} be a digital sequence over Zb generated by the ∞×∞ matrices
C1, . . . , Cd over Zb. Then for any m ∈ N and for any vector k = (k1, . . . , kd) of non-negative
integers we have

bm−1∑

h=0

walk(xh) =

{
bm if k ∈ D∗

m ∪ {0},
0 otherwise.

Here D∗
m := D∗

m,{1,...,d}.

Proof. For short we write ωb := e2πi/b. We have

bm−1∑

h=0

walk(xh) =
bm−1∑

h=0

ω
〈C1(m)~h, ~k1〉+···+〈Cd(m)~h, ~kd〉
b =

bm−1∑

h=0

ω
〈~h,C1(m)> ~k1+···+Cd(m)> ~kd〉
b . (4.5)

Let C1(m)> ~k1 + · · ·+ Cd(m)> ~kd =: (z1, . . . , zm)> ∈ Zm
b . Then we have

bm−1∑

h=0

walk(xh) =

b−1∑

h0,...,hm−1=0

ω
h0z1+···+hm−1zm

b =

m∏

i=1

b−1∑

h=0

ωhzi

b . (4.6)

For z ∈ Zb (note that b is a prime) we have

b−1∑

h=0

ωhz
b =

{
b if z = 0,
0 if z 6= 0,

and the result follows. 2

The absolute convergence of (4.4) immediately follows from the following lemma.

Lemma 3 Let m, k ≥ 0, σ ≥ 1 and δ ≥ 2. Then there is a constant Cd,b,δ > 0 such that

|Zm,k| ≤ Cd,b,δ(min(δ, σ)m − t + δ)dδ(min(δ, σ)k − t + δ)dδb−min(δ,σ)(k+m)+2t.

Proof. From Lemma 1 together with [5, Eq. (6.3)] and a slight modification of [5, Lemma 5.2]
we obtain that there is some constant Cd,b,δ > 0 such that

|Zm,k| ≤
∑

∅6=X⊆{1,...,d}

∑

u,w∈N
|X|

u∈D∗
m,X

,w∈D∗
k,X

∣∣∣K̂((uX , 0), (wX , 0))
∣∣∣

≤
∑

∅6=X⊆{1,...,d}

C ′
|X|,b,δ(min(δ, σ)m − t + δ)|X|δ(min(δ, σ)k − t + δ)|X|δb−min(δ,σ)(k+m)+2t

≤ Cd,b,δb
−min(δ,σ)(k+m)+2t(min(δ, σ)m − t + δ)dδ(min(δ, σ)k − t + δ)dδ,

where C ′
|X|,b,δ > 0 is a constant appearing in [5]. Thus the result follows. 2
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Now we can write

1 =

∫

[0,1]s

∫

[0,1]s
Ks,δ(x, y) dxdy =

∑

m∈Nl
0

∑

k∈Nl
0

l⊗

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j (Ks,δ(z, y)) (4.7)

and further for any y ∈ [0, 1]s we have

1 =

∫

[0,1]s
Ks,δ(z, y) dz =

∑

m∈Nl
0

l⊗

j=1

∆σ,mj ,νj ,j (Ks,δ(z, y)) .

Thus we also have

1 =
∑

m∈Nl
0

∑

k∈N
l
0

‖k‖1≤q

l⊗

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j (Ks,δ(z, y)) (4.8)

and

1 =
∑

m∈Nl
0

‖m‖1≤q

∑

k∈Nl
0

l⊗

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j (Ks,δ(z, y)) . (4.9)

Thus using (4.3), (4.7), (4.8) and (4.9) we obtain

wce2(Hs,δ,Aσ,q,ν,s) =
∑

m∈Nl
0

‖m‖1>q

∑

k∈Nl
0

‖k‖1>q

l∏

j=1

∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)
. (4.10)

Using the formula for the worst-case error above we obtain

wce2(Hs,δ,Aσ,q,ν,s) ≤
∑

m∈N
l
0

‖m‖1>q

∑

k∈N
l
0

‖k‖1>q

l∏

j=1

∣∣∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)∣∣ .

Lemma 3 now implies that there exists a constant cb,d,σ > 0 such that
∣∣∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)∣∣
≤ c2

b,d,σ(min(δ, σ)mj − t + δ)dδ(min(δ, σ)kj − t + δ)dδb−min(δ,σ)(kj+mj)+2t

for mj, kj ≥ 0. Thus we obtain

wce(Hs,δ,Aσ,q,ν,s) ≤ btlcl
b,d,σ

∑

m∈Nl
0

‖m‖1>q

b−min(δ,σ)‖m‖1

l∏

j=1

(δmj + δ)dδ.

11



Using the arithmetic-geometric mean inequality we obtain that (note that s = dl),

l∏

j=1

(mj + 1)dδ ≤ l−sδ (m1 + · · ·+ ml + l)sδ ≤ (‖m‖1 + 1)sδ .

Therefore we have

wce(Hs,δ,Aσ,q,ν,s) ≤ δsδbtlcl
b,d,σ

∞∑

m=q+1

b−min(δ,σ)m (m + 1)sδ

(
m + s − 1

s − 1

)

≤ δsδbtl+min(δ,σ)cl
b,d,σ

∞∑

m=q+2

b−min(δ,σ)mms(δ+1)−1.

It can be shown that there is a constant c′s,δ > 0 such that

∞∑

m=q+2

b−min(δ,σ)mms(δ+1)−1 ≤ c′s,δq
s(δ+1)−1b−min(δ,σ)q

and hence we obtain the following theorem.

Theorem 1 There is a constant C = C(s, d, σ, δ, t, b) > 0 (which does not depend on q)
such that the worst-case error for multivariate integration in the space Hs,δ, δ ≥ 2, using the
algorithm Aσ,q,ν,s is bounded by

wce(Hs,δ,Aσ,q,ν,s) ≤ C · qs(δ+1)−1 1

bmin(δ,σ)q
.

Let N be the number of points used by the algorithm Aσ,q,ν,s. Then we have

bq ≤ N ≤ bq

(
q + l

l

)
.

Here the left inequality follows as the algorithm requires bq points already in dimension one
and the right inequality follows as

⊗l
j=1 ∆σ,mj ,νj ,j requires bm1+···+ml points and the sum in

(3.1) has
(

q+l
l

)
summands. Hence we have logb N > q and

b−q ≤ N−1

(
q + l

l

)
≤ N−1(1 + logb N)l.

Thus we have the following result.

Corollary 1 There is a constant C = C(s, d, σ, δ, t, b) > 0 (which does not depend on q)
such that the worst-case error for multivariate integration in the space Hs,δ, δ ≥ 2, using the
algorithm Aσ,q,ν,s is bounded by

wce(Hs,δ,Aσ,q,ν,s) ≤ C · (1 + logb N)s(δ+1)−1+l min(δ,σ) 1

Nmin(δ,σ)
,

where N is the number of points used by the algorithm Aσ,q,ν,s.

12



4.2 Random case error analysis

Let now ν = (ν1, . . . , ν l) ∈ [0, 1)dl, s = dl, uniformly i.i.d. and f : [0, 1]s → R be a Lebesgue
integrable function. Then for all mj ≥ 0 and σ ≥ 1 we have

∫

[0,1]s

l⊗

j=1

Aσ,mj ,νj ,j(f) dν =

∫

[0,1]s
f(x) dx.

Thus it follows that ∫

[0,1]s

l⊗

j=1

∆σ,mj ,νj ,j(f) dν = 0

if there is at least one mj > 0 and further

∫

[0,1]s

l⊗

j=1

∆σ,0,νj ,j(f) dν =

∫

[0,1]s
f(x) dx.

Thus it follows that the expectation with respect to the random digital shift ν ∈ [0, 1)s of
our approximation is the exact integral, i.e.,

Eν (Aσ,q,ν,s(f)) =

∫

[0,1]s
f(x) dx,

which means that our approximation is an unbiased estimator of the integral.
The advantage of the randomization is that one can now obtain an estimate of the

integration error via Chebychev’s inequality, see [13, Remark 2]. For a positive integer w
and ν1, . . . , νw ∈ [0, 1)s uniformly i.i.d., let

Aσ,q,ν1,...,νw ,s(f) :=
1

w

w∑

k=1

Aσ,q,νk,s(f).

Then Aσ,q,ν1,...,νw ,s(f) is an unbiased estimator of the integral with variance

V = w−1
Eν

(
(Aσ,q,ν,s(f) − Is(f))2

)
.

Chebyshev’s inequality then yields

P

(∣∣Aσ,q,ν1,...,νw ,s(f) − Is(f)
∣∣ < k

√
V
)
≥ 1 − k−2 ∀k > 0.

Note that the bound from the previous case can be used to obtain a bound on the
root-mean-square worst-case error, i.e.,

ŵce(Hs,δ,Aσ,q,s) =

(∫

[0,1)s

wce2(Hs,δ,Aσ,q,ν,s) dν

)1/2

,
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as the bound from the previous section holds for all shifts ν ∈ [0, 1)s.
On the other hand a better bound can be obtained by dealing directly with the mean-

square worst-case error ŵce2(Hs,δ,Aσ,q,s). Using (4.10) and the definition of the mean-square
worst-case error we obtain that

ŵce2(Hs,δ,Aσ,q,s) =
∑

m∈Nl
0

‖m‖1>q

∑

k∈Nl
0

‖k‖1>q

l∏

j=1

∫

[0,1]d
∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)
dνj.

For y, z ∈ [0, 1)d we define Ẑm,k =
∫
[0,1]d

(I
(y)
d −A

(y)
σ,m,ν)(I

(z)
d −A

(z)
σ,k,ν) (Kd,δ(z, y)) dν. We

obtain that Ẑ−1,−1 = 1, Ẑm,−1 = Ẑ−1,m = 0 for m ≥ 0 and for m, k ≥ 0 we have

Ẑm,k =
∑

∅6=X⊆{1,...,d}

∑

u∈N
|X|

u∈D∗
m,X

∩D∗
k,X

K̂((uX , 0), (uX , 0)).

Using results from [4] for δ ≥ 2 and from [6] for δ = 1 we obtain that there is a constant
C2 > 0 such that

|Ẑm,k| ≤ C2(min(δ, σ) max(m, k) + δ)2dδb−2 min(δ,σ) max(m,k)+2t.

Hence there is a constant c > 0 such that
∣∣∣∣
∫

[0,1]d
∆σ,mj ,νj ,j∆σ,kj ,νj ,j

(
Kd,δ(zd,j, yd,j)

)
dνj

∣∣∣∣ ≤ c2(min(δ, σ) max(mj, kj) + δ)2dδ

×b−2 min(δ,σ) max(mj ,kj)+2t

and therefore we have

ŵce2(Hs,δ,Aσ,q,s) ≤ c2l
∑

m∈Nl
0

‖m‖1>q

∑

k∈Nl
0

‖k‖1>q

l∏

j=1

(min(δ, σ) max(mj, kj) + δ)2dδb−2 min(δ,σ) max(mj ,kj)+2t

≤ c2lb2tlδ2δs
∑

m∈N
l
0

‖m‖1>q

∑

k∈N
l
0

‖k‖1>q

1

bmin(δ,σ)‖m‖1

1

bmin(δ,σ)‖k‖1

l∏

j=1

(max(mj, kj) + 1)2δd.

Again using the arithmetic-geometric mean inequality we obtain that

l∏

j=1

(max(mj, kj) + 1)2δd ≤ (‖m‖1 + 1)2sδ(‖k‖1 + 1)2sδ.

Hence

ŵce(Hs,δ,Aσ,q,s) ≤ clbtlδδs
∑

m∈Nl
0

‖m‖1>q

1

bmin(δ,σ)‖m‖1
(‖m‖1 + 1)2sδ
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= clbtlδδs
∞∑

m=q+1

1

bmin(δ,σ)m
(m + 1)2sδ

(
m + s − 1

s − 1

)

≤ clbtl+δδδs
∞∑

m=q+2

1

bmin(δ,σ)m
ms(2δ+1)−1.

Again it can be shown that there exists a constant c′s,δ > 0 such that

∞∑

m=q+2

b−min(δ,σ)mms(2δ+1)−1 ≤ c′s,δq
s(2δ+1)−1 1

bmin(δ,σ)q

and hence we obtain the following theorem.

Theorem 2 There is a constant C̃ = C̃(s, d, σ, δ, t, b) > 0 (which does not depend on q)
such that the root-mean-square worst-case error for multivariate integration in the space
Hs,δ, δ ≥ 1, using the algorithm Aσ,q,ν,s, with ν ∈ [0, 1)s uniformly i.i.d., is bounded by

ŵce(Hs,δ,Aσ,q,ν,s) ≤ C̃ · qs(2δ+1)−1 1

bmin(δ,σ)q
.

As in the previous section we obtain the following result.

Corollary 2 There is a constant C̃ = C̃(s, d, σ, δ, t, b) > 0 (which does not depend on q)
such that the root-mean-square worst-case error for multivariate integration in the space Hs,δ,
δ ≥ 1, using the algorithm Aσ,q,ν,s, with ν ∈ [0, 1)s uniformly i.i.d., is bounded by

ŵce(Hs,δ,Aσ,q,ν,s) ≤ C̃ · (1 + logb N)s(2δ+1)−1+lδ 1

Nmin(δ,σ)
,

where N is the number of points used by the algorithm Aσ,q,ν,s.

5 Numerical results

In this section we provide some numerical experiments where we try our algorithms on some
sample functions. We consider the following functions:

ExpSum : f(x1, . . . , xs) := exp(x1 + · · · + xs)

SingSum : f(x1, . . . , xs) := s! log(s − (x1 + · · ·+ xs))

WedgeSum : f(x1, . . . , xs) := (s + 1)!(x1 + · · · + xs − s/2)1[s/2,s](x1 + · · ·+ xs)

ProdCos : f(x1, . . . , xs) := cos(x1) · · · cos(xs)

Mix1 : ExpSum + ProdCos

15



-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  1  2  3  4  5  6  7

f=Mix1, s=4, dependence on alpha, pure Smolyak

HR-1-1
HR-1-2
HR-1-3

1/N

Figure 1: Log-error for rules with different degrees.

All our figures show the logarithmic relative error of integration drawn against the loga-
rithm of the integration nodes used. Here logarithm means decadic logarithm. In the legends
to the graphs, HR−k−a means that we use a hybrid Smolyak quasi-Monte Carlo rule where
the corresponding nested integration rule is a k-dimensional Faure rule with degree α = a
(i.e., a (t, α, k)-sequence constructed as in [4] based on a kα-dimensional Faure sequence).

Figure 1 shows the error for different values of α. One can see that higher values of α
lead to faster convergence, as can be expected due to the smoothness of the integrand. It
appears from Figures 2 and 3 that a pure quasi-Monte Carlo algorithm does better than the
(hybrid) Smolyak algorithm based on a quasi-Monte Carlo rule. (It is of course possible that
a Smolyak algorithm based on some different rule might perform better.) Figures 4 and 5
show the errors for a function with a singularity at one edge of the 4-dimensional unit cube.
It seems that in that case greater values of α do not necessarily give better convergence
rates. The convergence rates lie close to the 1

N
-line and pure quasi-Monte Carlo yields better

results than pure Smolyak. A very similar behaviour is observed for a non-differentiable
function in Figures 6 and 7. Figures 8 and 9 show how the dimension of the problem affects
the convergence rate when using a pure Smolyak algorithm based on a (t, α, 1)-sequence with
α = 1 for Figure 8 and α = 2 for Figure 9. (Note also that in dimension 8 we need more than
105 integration nodes to build a Smolyak rule for which q ≥ s.) As is to be expected, the
error increases with increasing dimension and using an underlying digital (t, 2, 1)-sequence
improves the convergence (compared to hybrid rules based on a digital (t, 1, 1)-sequence).
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Figure 2: Log-error for rules with different hybridities.
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Figure 3: Log-error for rules with different hybridities.
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Figure 4: Log-error for rules with different α, singular function.
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Figure 5: Log-error for rules with different α, singular function.
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Figure 6: Log-error for rules with different α, non-differentiable function.
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Figure 7: Log-error for rules with different α, non-differentiable function.
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Figure 8: Log-error for different dimensions α = 1.
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Figure 9: Log-error for different dimensions α = 2.

20



References

[1] N. Aronszajn: Theory of reproducing kernels. Trans. Amer. Math. Soc., 68 (1950),
337–404.

[2] H.E. Chrestenson: A class of generalized Walsh functions. Pacific J. Math., 5 (1955),
17–31.

[3] R. Cranley and T.N.L. Patterson: Randomization of number theoretic methods for
multiple integration. SIAM J. Numer. Anal., 13 (1976), 904–914.

[4] J. Dick: Explicit constructions of quasi-Monte Carlo rules
of arbitrary high order. (2006), submitted. (available at
http://www2.maths.unsw.edu.au/Contacts/profile.php?logname=josi)

[5] J. Dick: Walsh spaces containing smooth functions and quasi-Monte
Carlo rules of arbitrary high order. (2006), submitted. (available at
http://www2.maths.unsw.edu.au/Contacts/profile.php?logname=josi)

[6] J. Dick and F. Pillichshammer: Multivariate integration in weighted Hilbert spaces
based on Walsh functions and weighted Sobolev spaces. J. Complexity, 21 (2005), 149–
195.

[7] N.J. Fine: On the Walsh functions. Trans. Amer. Math. Soc., 65 (1949), 372–414.

[8] T. Gerstner and M. Griebel: Dimension-adaptive tensor-product quadrature. Comput-
ing, 71 (2003), 65–87.

[9] K. Niederdrenk: Die endliche Fourier- und Walshtransformation mit einer Einführung
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