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Nondeterministic walks

Motivation: Nondeterministic Dyck walks model en- and decapsulation

E E ED D D

Every node is capable of either
Encapsulating, or
Decapsulating

, or
Both.

Dyck
Steps {−1, 1}

(1, 1, −1, 1, −1, −1)

N-Dyck
N-Steps {{−1}, {1}, {−1, 1}}

({1}, {−1, 1}, {−1}, {1}, {−1, 1}, {−1})
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Nondeterministic walks

Dyck N-walks

Definition
Start at 0 and use N-steps {{−1}, {1}, {−1, 1}}
N-walk: sequence of N-steps (e.g., ({1}, {−1, 1}, {−1, 1}, {−1}))
Length: number of steps (above: length 4)

All Dyck-N walks of
length 1

length 2
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Nondeterministic walks

Four types of N-Walks

Classical Nondeterministic

Walk: unconstrained N-walk: contains a walk

Bridge: ends at 0 N-bridge: contains a bridge
Meander: stays nonnegative N-meander: contains a meander
Excursion: ends at 0 and stays nonneg. N-excursion: contains an excursion

N-walk

N-bridge N-meander N-excursion
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Nondeterministic walks

Reachable points for N-walks
For two sets A and B we define the Minkowski sum + as

A + B := {a + b : a ∈ A, b ∈ B}.

Definition
N-step set S ⊆ P(Z) s.t. |S| < ∞
N-Walk w = (s1, s2, . . . , sn), si ∈ S

Length |w | := n

Reachable points
r(w) := s1 + · · · + sn

min(w) := min(r(w))
max(w) := max(r(w))

Dyck N-walks
S = {{−1}, {1}, {−1, 1}}
w = ({−1}, {−1, 1}, {−1, 1})

|w | = 3

r(w) = {−1}+{−1, 1}+{−1, 1}
= {−3, −1, 1}

min(w) = −3
max(w) = 1

Generating function of Dyck N-walks

D(x , y ; t) =
∑

w
xmin(w)ymax(w)t |w |

= 1
1 − t( + + )

= 1
1 − t(x−1y−1 + xy + x−1y)

Obviously, there are 3n Dyck N-walks of length n.
In general, there are |S|n many N-walks for a given N-step set S.
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Nondeterministic walks

Bijection to two-dimensional lattice paths
Generating function of Dyck N-walks

D(x , y ; t) = 1
1 − t( + + )

= 1
1 − t(x−1y−1 + xy + x−1y)

Interpret change in min. and max. of reachable points, as a change in x - and y -direction:
{−1} 7→ (−1, −1), {1} 7→ (1, 1), {−1, 1} 7→ (−1, 1).

Michael Wallner | TU Graz/TU Wien | 15.01.2026 6
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Nondeterministic walks

Reachable points for Dyck N-bridges

N-step set S = {{−1}, {1}, {−1, 1}}
N-bridge is an N-walk containing a bridge (returns to 0)

Key observation
The reachable points are finite intervals of 2Z or 2Z + 1.
⇒ uniquely characterized by min(w) and max(w)!

Characterizing N-bridges in N-walks
N-bridges have even length and
min(w) ≤ 0 and max(w) ≥ 0.
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Nondeterministic walks

Dyck N-bridges

Theorem
The GF of Dyck N-bridges B(x , y ; t) is algebraic of degree 4.
Moreover, B(1, 1; t) has degree 2:

B(1, 1, t) = 1 − 6t2
√

1 − 8t2(1 − 9t2)
= 1 + 7t2 + 63t4 + 583t6 + 5407t8 + . . . .

The number [t2n]B(1, 1, t) of Dyck N-bridges of even length is asymptotically equal to

32n − 2√
π

8n
√

n
+ O

(
8n

n3/2

)
.

Proof:
N-walks of even length have a rational generating function

D2(x , y ; t) = D(x , y ; t) + D(x , y ; −t)
2 .

We need [x≤0y≥0]D2(x, y ; t) (Two coefficient extractions: D-finite
but in general not algebraic!)

However,
B(x , y , t) = D2(x , y ; t) − [x>0]D2(x , y , t) − [y<0]D2(x , y , t).

Michael Wallner | TU Graz/TU Wien | 15.01.2026 8
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Nondeterministic walks

Dyck N-meanders
N-step set S = {{−1}, {1}, {−1, 1}}
N-meander is an N-walk containing a meander (staying non-negative)

({1}, {−1, 1}, {−1}, {−1, 1}, {−1, 1}, {1})
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Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum ⊕ as
A ⊕ B := (A + B) ∩ Z≥0

Reachable points for N-meanders
N-step set S ⊆ P(Z) s.t. |S| < ∞
N-Meander m = (s1, . . . , sn), si ∈ S

Reachable points
r+(m) := s1 ⊕ . . . ⊕ sn

min+(m) := min(r+(m))
max+(m) := max(r+(m))

Dyck N-meander

S = {{−1}, {1}, {−1, 1}}
m = ({−1, 1}, {1}, {−1, 1})

r+(m) = {−1, 1} ⊕ {1} ⊕ {−1, 1}
= {1, 3}

min+(m) = 1
max+(m) = 3

Generating function of Dyck N-meanders
D+(x , y ; t) =

∑
m

xmin+(m)ymax+(m)t |m|

Michael Wallner | TU Graz/TU Wien | 15.01.2026 10
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Nondeterministic walks

The generating function of Dyck N-meanders
Generating function of Dyck N-meanders

D+(x , y ; t) =
∑

m
xmin+(m)ymax+(m)t |m|

Theorem
The generating function D+(x , y ; t) of Dyck N-meanders is algebraic of degree 4 and equal to

D+(x , y ; t) = x − X (y , t)
1 − X (y , t)2

y − xY (t) + (xy − Y (t))X (y , t)
xy D(x , y ; t),

where

X (y , t) =
1 −

√
1 − 4(1 + y2)t2

2yt and Y (t) = 1 −
√

1 − 8t2

4t .

Underlying decomposition:

D+(x , y ; t) = 1 + t(D+(x , y ; t) − D+(0, y ; t))
(

+ +
)

+ t(D+(0, y ; t) − D+(0, 0; t))
(

+ +
)

+ tD+(0, 0; t)
(

+
)

.

Then we use the kernel method twice: first in y and then in x (next slide).
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Nondeterministic walks

Proof: We use the kernel method twice

Rewrite functional equation into
K (x , y)D+(x , y ; t) = xy + t(x2 − 1)(y2 + 1)D+(0, y ; t) − tx2D+(0, 0; t). (1)

Substituting x = 1 the unknown D+(0, y ; t) vanishes, and we get
K (1, y)D+(1, y ; t) = y − tD+(0, 0; t).

Now, we use the kernel method.
Note that Y (t) is chosen that K (1, Y (t)) = 0.
Hence, we get

D+(0, 0; t) = Y (t)
t and D+(1, y ; t) = y − Y (t)

K (1, y) .

Substituting this back into (1) and using the kernel method again in x , such that
K (X (y , t), y) = 0, the claim follows.
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Nondeterministic walks

The counting generating functions
For x = y = 1, the GFs of Dyck N-meanders, N-excursions, and N-excursions ending in {0} are
algebraic of degree 2:

D+(1, 1, t) = −1 − 4t −
√

1 − 8t2

4t(1 − 3t) = 1 + 2t + 6t2 + 16t3 + 48t4 + . . . , (A151281)

D+(0, 1, t) = 1 − 8t2 − (1 − 12t2)
√

1 − 8t2

8t2(1 − 9t2) = 1 + 4t2 + 28t4 + 224t6 + 1888t8 + . . . , (A368234)

D+(0, 0, t) = 1 −
√

1 − 8t2

4t2 = 1 + 2t2 + 8t4 + 40t6 + 224t8 + . . . . (A151374)

Asymptotically, we get

[tn]D+(1, 1, t) = 3n

2 +
(

3
√

2(1 + (−1)n) + 4(1 − (−1)n)
) 8n/2

√
πn3

+ O
(

8n/2

n5/2

)
,

[tn]D+(0, 1, t) = 1 + (−1)n

2

(
3n

4 +
√

8 8n/2
√

πn3
+ O

(
8n/2

n5/2

))
,

[tn]D+(0, 0, t) =
√

2(1 + (−1)n) 8n/2
√

πn3

(
1 − 9

4n + O
(

1
n2

))
.
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Application in Networking
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Nondeterministic walks | Application in Networking

Networking: Classical excursions contained in N-excursions
Dyck

Steps {−1, 1}
N-Dyck

N-Steps {{−1}, {1}, {−1, 1}}

Let c2n be the total number of classical excursions contained in all N-excursions of length 2n.
Interpret every {−1, 1}-N-step either as a classical up- or down-step
⇒ c2n = 4n 1

n+1
(2n

n
)
.

Average number of classical excursions in all N-excursions of length 2n
c2n

[t2n]D+(0, 1, t) ∼ 4√
πn3

(
4
3

)2n
.
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Nondeterministic walks | Application in Networking

Probability of a random N-walk to be an N-excursion

Each N-step gets a probability
p−1, p1, p−1,1 ∈ [0, 1] such that p−1 + p1 + p−1,1 = 1.

Weight of N-walk is product of its weights

Theorem
The probability of a random Dyck N-walk of length 2n
to be an N-excursion is for n → ∞ asymptotically
equivalent to (where p−1 and p1 are interchangeable):

(1−2p1)(1−2p−1)
(1−p1)(1−p−1) if 0 ≤ p1 ≤ p−1 < 1

2 ,

1−2p1
(1−p1)

√
πn if 0 ≤ p1 < 1

2 and p−1 = 1
2 ,

1√
πn3 if p1 = p−1 = 1

2 ,

γ (4p−1(1−p−1))n
√

n3 if 0 ≤ p1 < 1
2 < p−1 < 1

and p−1 + p1 ≤ 1.
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Path length

p1 = p−1 = 1/3 (simulation)
p1 = p−1 = 1/3 (th. expec.)

p1 = 1/3, p−1 = 1/2 (simulations)
p1 = 1/3, p−1 = 1/2 (th. expec.)

p1 = 1/5, p−1 = 3/5 (simulations)
p1 = 1/5, p−1 = 3/5 (th. expec.)
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Limit laws and two-dimensional lattice paths
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Dyck N-meanders and two-dimensional lattice paths

N-meanders admit again an interpretation in terms of two-dimensional lattice paths:

Previous bijection for N-walks plus spatial constraints

Paths remain in the first quadrant;
x -axis acts as an absorbing boundaries;
y -axis as a reflecting boundaries.

In particular, N-excursions are mapped to walks that
end on the nonnegative y -axis (since min+ = 0).

Both boundaries absorbing:
GF is algebraic [Bousquet-Mélou, Mishna 2010]
Walks ending on y -axis: distance to origin
obeys a binomial distribution, i.e., normal in
the limit

Absorbing

Reflecting

p−1,1 p1p1 + p−1,1

p−1

p−1,1 p1

p−1

p1 + p−1,1
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Nondeterministic walks | Limit laws and two-dimensional lattice paths

Limit law I: Final maximal point
We define the x-drift δx = E(x) and the y-drift δy = E(y). The drift is given by δ = (δx , δy ) and for
Dyck N-walks we have

δx = p1 − p−1,1 − p−1 = 2p1 − 1,

δy = p1 + p−1,1 − p−1 = 1 − 2p−1.

Theorem
For p−1,1 ̸= 0 let Xn be the r.v. of the final maximal point of an
N-excursion of length 2n drawn uniformly at random:

P (Xn = k) := [t2ny2k ]D+(0, y ; t)
[t2n]D+(0, 1; t) .

Then, Xn admits a limit distribution that depends on the drift δ:
The limit law is either

discrete,
normal N ,
Rayleigh R, or
the convolution N ∗ R− of N and R with negative support.

N

R

N ∗R−

Discrete

δ

Drift δ = (−1/3, 1/3) for
p−1 = p1 = p−1,1 = 1

3 .

Michael Wallner | TU Graz/TU Wien | 15.01.2026 19



Nondeterministic walks | Limit laws and two-dimensional lattice paths

Limit law I: Final maximal point
We define the x-drift δx = E(x) and the y-drift δy = E(y). The drift is given by δ = (δx , δy ) and for
Dyck N-walks we have

δx = p1 − p−1,1 − p−1 = 2p1 − 1,

δy = p1 + p−1,1 − p−1 = 1 − 2p−1.

Theorem
For p−1,1 ̸= 0 let Xn be the r.v. of the final maximal point of an
N-excursion of length 2n drawn uniformly at random:

P (Xn = k) := [t2ny2k ]D+(0, y ; t)
[t2n]D+(0, 1; t) .

Then, Xn admits a limit distribution that depends on the drift δ:
The limit law is either

discrete,
normal N ,
Rayleigh R, or
the convolution N ∗ R− of N and R with negative support.

N

R

N ∗R−

Discrete

δ

Drift δ = (−1/3, 1/3) for
p−1 = p1 = p−1,1 = 1

3 .

Michael Wallner | TU Graz/TU Wien | 15.01.2026 19



Nondeterministic walks | Limit laws and two-dimensional lattice paths

Limit law I: Final maximal point
We define the x-drift δx = E(x) and the y-drift δy = E(y). The drift is given by δ = (δx , δy ) and for
Dyck N-walks we have

δx = p1 − p−1,1 − p−1 = 2p1 − 1,

δy = p1 + p−1,1 − p−1 = 1 − 2p−1.

Theorem
For p−1,1 ̸= 0 let Xn be the r.v. of the final maximal point of an
N-excursion of length 2n drawn uniformly at random:

P (Xn = k) := [t2ny2k ]D+(0, y ; t)
[t2n]D+(0, 1; t) .

Then, Xn admits a limit distribution that depends on the drift δ:
The limit law is either

discrete,
normal N ,
Rayleigh R, or
the convolution N ∗ R− of N and R with negative support.

N

R

N ∗R−

Discrete

δ

Drift δ = (−1/3, 1/3) for
p−1 = p1 = p−1,1 = 1

3 .

Michael Wallner | TU Graz/TU Wien | 15.01.2026 19



Nondeterministic walks | Limit laws and two-dimensional lattice paths

Limit law I: Final maximal point (Proof)

Theorem
For p−1,1 ̸= 0 let Xn be the r.v. of the final maximal point of an
N-excursion of length 2n drawn uniformly at random:

P (Xn = k) := [t2ny2k ]D+(0, y ; t)
[t2n]D+(0, 1; t) .

Then, Xn admits a limit distribution that depends on the drift δ:
The limit law is either discrete, normal N , Rayleigh R, or the
convolution N ∗ R− of N and R with negative support.

N

R

N ∗R−

Discrete

δ

Proof:
We start from the explicit shape of D+(0, y , t).
Three candidates for the dominant singularity (polar and square-root type):

ρ1 = 1√
4p−1(1−p−1)

, ρ2(y) = 1√
4p1(p−1+(1 − p1−p−1)y2)

, ρ3(y) = u
(p−1+(1−p−1)y2) .

At most 2 coalesce.
Methods: Singularity analysis [Flajolet, Odlyzko 90], quasi power-theorem [Hwang 98], square-root
scheme on generating functions [Drmota, Soria 97].
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Nondeterministic walks | Limit laws and two-dimensional lattice paths

Limit law II: Returns to {0}

Theorem
Let Yn be the r.v. of the number of returns to {0} in an N-excursion of length 2n drawn uniformly at
random. Then, Yn admits a discrete limit law of geometric, negative binomial, or mixed type.

P (Yn = k) =



1
D+(0,0;1)

(
1 − 1

D+(0,0;1)

)k
if 0 ≤ p1 ≤ p−1 < 1

2 ,

(1 − p−1)pk
−1 if 0 ≤ p−1 < 1

2 and p1 = 1
2 ,

1
2k+1 if 0 ≤ p1 < 1

2 and p−1 = 1
2 ,

k
2k+1 if p1 + p−1 = 1,

1
D+(0,0;ρ2)

(
1 − 1

D+(0,0;ρ2)

)k
if 0 ≤ p−1 < 1

2 < p1 < 1 and p−1 + p1 < 1,

(1 − η) 1
2k+1 + η k

2k+1 if 0 ≤ p1 < 1
2 < p−1 < 1 and p−1 + p1 < 1,

where ρ2 = 1
4p1(1−p1) and η = p−1(p−1−p1)−

√
p−1(1−p−1)(1−p1−p−1)(p−1−p1)

p−1(1−p1) ∈ [0, 1].
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Nondeterministic walks | Limit laws and two-dimensional lattice paths

Simulations of the limit laws: Expectations
Limit Law I: Final maximal point
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Other N-step sets
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Nondeterministic walks | Other N-step sets

Motzkin N-steps
N-step set S =

{
{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}

}
Theorem
The generating functions of Motzkin N-bridges, N-meanders, and N-excursions are algebraic. of
degree at most 16.

The reachable point pattern changes:
2-periodic: finite intervals in 2Z or 2Z + 1; or
1-periodic: finite intervals in Z
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Nondeterministic walks | Other N-step sets

Proof idea for Motzkin N-steps
Reachable points have 2 types

1 Type I: interval of Z (1-periodic)
2 Type II: interval of 2Z or 2Z + 1 (2-periodic)

Translate interaction of types into automaton whose alphabet are the N-steps
Walks and bridges

Meanders and excursions

Translate into system of generating of 2 generating functions
Use vectorial extension of kernel method twice
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Nondeterministic walks | Other N-step sets

N-Motzkin paths with arbitrary weights
The generating functions are algebraic wiht with arbitrary weights:
N-step set

S =
{

{−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}
}

with weights
ps ∈ {0, 1}.

p1 p−1 p0 p−1,0 p0,1 p−1,1 p−1,0,1 OEIS Domain Steps

1 0 0 1 0 0 1 A151281 Nonnegative {−1, 11, 12}0 1 0 0 1 0 1 line N

1 0 1 1 0 0 1

A129637 {W , SE , SW , NW }0 1 1 0 1 0 1 Triangular
1 0 0 1 1 0 1 lattice
0 1 0 1 1 0 1

1 0 1 1 1 0 1 A151251 First {(0, 0, 1), (0, 1, 0), (1, 1, 0),
0 1 1 1 1 0 1 octant N3 (1, 1, 1), (−1, −1, 0)}

Table: N-Motzkin excursions related to (higher-dimensional) paths that start at the origin and remain in the
given domain.
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General N-bridges

Theorem
For any finite N-step set S, the generating function B(x , y ; t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.

Understand reachable points and how they interact:
Consider the N-walk ({−1, 2}, {−1, 2}, {−1, 2}, {0, 4}) on the right

We say that this N-walk is of type(A, B, C)
Main tool: Additive Combinatorics

Proposition
For any finite subset S ⊂ Z, there is a finite set of types
(Ai , Bi , Ci)1≤i≤k such that for any N-walk w = (s1, . . . , sn) ∈ Sn, the
sumset s1 + · · · + sn belongs to type (Ai , Bi , Ci) for some 1 ≤ i ≤ k.

A

B

B

B

C
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General N-meanders and N-excursions

Theorem (Algebraic subfamilies of N-meanders)
The GF D+(1, y ; t) (y marks the maximal reachable point and t the length) is algebraic.
The GF D+(0, 0; t) (reachable point set {0}) is algebraic.

Algebraicity Conjecture
For any N-step set, the generating function of N-excursions is algebraic.

We developed a python package to experimentally find the types and the automaton
We also implemented a Maple worksheet to analyze this data (e.g., guessing).
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Example of an N-excursion with finitely many types

N-Excursions
D+(0, 1; t) = 1 + 4t2 + 4t3 + 28t4 + . . .

Guess: algebraic of degree 4! Proof?
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Context-free grammars and outlook
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Nondeterministic walks | Context-free grammars and outlook

Nondeterminism and context-free grammars

The following holds for arbitrary N-step sets.

N-walks can be described by context-free grammars
Context-free languages are recognized by (nondeterministic) pushdown automata with a single
stack
Use nondeterminism to follow all trajectories in parallel
Use stack to track current altitude

Important result by [Chomsky, Schützenberger 63]: The GF of the number of words of unambiguous
context-free grammars is algebraic
Problems:

difficult to find grammar
difficult to solve associated system

Our approach: lattice paths and the kernel method
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Nondeterministic walks | Context-free grammars and outlook

Future work

Other topologies: e.g., series-parallel graphs
More protocols: So far we considered only one protocol
Underlying context-free grammars

THANK YOU!
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Backup
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Nondeterministic walks | Backup

Interesting OEIS connections for Motzkin N-meanders
p1 p−1 p0 p−1,0 p0,1 p−1,1 p−1,0,1 OEIS Steps

1 1 0 0 1 1 0

A1511621 1 0 0 1 0 1 {(−1, 0, 0), (1, 0, 0),
1 1 0 0 0 1 1 (1, 0, 1), (1, 1, 0)}
0 1 0 0 1 1 1
1 1 1 1 1 0 0

A151251

1 1 1 1 0 1 0
0 1 1 1 1 1 0 {(−1, −1, 0), (0, 0, 1), (0, 1, 0),
1 1 1 1 0 0 1 (1, 1, 0), (1, 1, 1)}
0 1 1 1 1 0 1
0 1 1 1 0 1 1
1 1 1 0 1 1 0

A151253

1 1 0 1 1 1 0
1 1 1 0 1 0 1
1 1 0 1 1 0 1 {(−1, 0, 0), (0, 0, 1), (1, 0, 0),
1 1 1 0 0 1 1 (1, 0, 1), (1, 1, 0)}
1 1 0 1 0 1 1
0 1 1 0 1 1 1
0 1 0 1 1 1 1

1 1 0 0 1 1 1 A151254 {(−1, 0, 0), (1, 0, 0), (1, 0, 1),
(1, 1, 0), (1, 1, 1)}

Table: N-Motzkin meanders related to 3D paths that start at the origin and remain in the first octant N3.
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