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Nondeterministic walks

Motivation: Nondeterministic Dyck walks model en- and decapsulation

Prariny Pty [
Aeennr Aevnnr ey Aoy Aevenn e Aerenns

Every node is capable of either
m Encapsulating, or
m Decapsulating
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Nondeterministic walks

Motivation: Nondeterministic Dyck walks model en- and decapsulation

Prariny Pty [
Aeennr Aevnnr ey Aoy Aevenn e Aerenns

Every node is capable of either
m Encapsulating, or
m Decapsulating

Dyck
Steps {—1,1}

(1,1,-1,1,-1,-1)
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Nondeterministic walks

Motivation: Nondeterministic Dyck walks model en- and decapsulation

[— [ [
Prmannn D oo . P frmannn D Prars Prrnns
e v e s e e penenns

Every node is capable of either
m Encapsulating, or
m Decapsulating, or
m Both.

Dyck

N-Dyck
Steps {—1,1}

N-Steps {{—1},{1},{—1,1}}

RAAN

({1}’7 {_17 1}7 {_1}7 {1}’ {_17 1}7 {_1})

(1,1,-1,1,-1,-1)
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Nondeterministic walks

Dyck N-walks

Definition
m Start at 0 and use N-steps {{—1},{1},{-1,1}}
m N-walk: sequence of N-steps (e.g., ({1},{-1,1},{-1,1},{-1}))
m Length: number of steps (above: length 4)
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Dyck N-walks

Definition
m Start at 0 and use N-steps {{—1},{1},{-1,1}}
m N-walk: sequence of N-steps (e.g., ({1},{-1,1},{-1,1},{-1}))
m Length: number of steps (above: length 4)

All Dyck-N walks of
m length 1
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Nondeterministic walks

Dyck N-walks

Definition
m Start at 0 and use N-steps {{—1},{1},{-1,1}}
m N-walk: sequence of N-steps (e.g., ({1},{-1,1},{-1,1},{-1}))
m Length: number of steps (above: length 4)

All Dyck-N walks of
m length 1

4 R K

m length 2

SN S AN
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Four types of N-Walks

Classical Nondeterministic

Walk: unconstrained N-walk: contains a walk

N-walk
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Four types of N-Walks

Classical Nondeterministic
Walk: unconstrained N-walk: contains a walk
Bridge: ends at 0 N-bridge: contains a bridge
N-walk N-bridge
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Four types of N-Walks

Classical Nondeterministic
Walk: unconstrained N-walk: contains a walk
Bridge: ends at 0 N-bridge: contains a bridge
Meander:  stays nonnegative N-meander:  contains a meander
N-walk N-bridge N-meander
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Four types of N-Walks

Classical Nondeterministic
Walk: unconstrained N-walk: contains a walk
Bridge: ends at 0 N-bridge: contains a bridge
Meander:  stays nonnegative N-meander:  contains a meander
Excursion: ends at 0 and stays nonneg. N-excursion: contains an excursion
N-walk N-bridge N-meander N-excursion

0l [ A I IR
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Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition

m Length |w|:=n

m N-step set S C P(Z) s.t. |S| < o0
m N-Walk w = (s, 5, - . -,

Sn), Si €S

Dyck N-walks

nS= {{_1}7 {1}7 {_17 1}}
mw=({-1}{-1,1}{-1,1})

m|w|=3
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition

m Length |w|:=n

m Reachable points

r(w):=s +-

m N-step set S C P(Z) s.t. |S| < o0
m N-Walk w = (s, 5, - . -,

Sn), Si €S

o+ Sy

Dyck N-walks

nS= {{_1}7 {1}7 {_17 1}}
mw=({-1}{-1,1}{-1,1})
m|w|=3

= r(w) {—1}—|—1{—1, 1}+{-1,1}
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition

m Length |w|:=n

m Reachable points

r(w):=s +-

= min(w) := min(r(w))

m N-step set S C P(Z) s.t. |S| < o0
m N-Walk w = (s, 5, - . -,

Sn), Si €S

o+ Sy

Dyck N-walks

nS= {{_1}7 {1}7 {_17 1}}
mw=({-1}{-1,1}{-1,1})

m|w|=3
mr(w)={-1}+{-1,1} +{-1,1}
= {_ =1, 1}
= min(w) = -3

Michael Wallner = TU Graz/TU Wien = 15.01.2026




Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition

m Length |w|:=n

m Reachable points

r(w):=s +-

= min(w) := min(r(w))
m max(w) := max(r(w))

m N-step set S C P(Z) s.t. |S| < o0
m N-Walk w = (s, 5, - . -,

Sn), Si €S

o+ Sy

Dyck N-walks

nS= {{_1}7 {1}7 {_17 1}}
mw=({-1}{-1,1}{-1,1})
m|w|=3

= r(w) {—1}—|—1{—1, 1}+{-1,1}

= min(w) = -3
m max(w) =1
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition Dyck N-walks
m N-step set S C P(Z) s.t. |S| < o0 S ={{-1},{1},{-1,1}}
m N-Walk w = (s1,8,...,5,), SS €S mw=({-1},{-1,1},{-1,1})
m Length |w|:=n m|w|=3
m Reachable points r(w ):{ 1}—|-{ 1,1} +{-1,1}

r(w):=s;+---+s

= min(w) := min(r(w))
m max(w) := max(r(w))

[ mln(w) = —3
m max(w) =1

Generating function of Dyck N-walks

X LV t) _ mem w)  max(w thl
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition Dyck N-walks
m N-step set S C P(Z) s.t. |S| < o0 S ={{-1},{1},{-1,1}}
m N-Walk w = (s1,8,...,5,), SS €S mw=({-1},{-1,1},{-1,1})
m Length |w|:=n m|w|=3
m Reachable points r(w ):{ 1}—|-{ 1,1} +{-1,1}

r(w):=s;+---+s

= min(w) := min(r(w))
m max(w) := max(r(w))

[ mln(w) = —3
m max(w) =1

Generating function of Dyck N-walks

Xy,t)_zxmmw maxwt|w|: 1

1-t(a+ 7 +%)
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition Dyck N-walks
m N-step set S C P(Z) s.t. |S| < o0 S ={{-1},{1},{-1,1}}
m N-Walk w = (s1,8,...,5,), SS €S mw=({-1},{-1,1},{-1,1})
m Length |w|:=n m|w|=3
m Reachable points r(w ):{ 1}—|-{ 1,1} +{-1,1}

r(w):=s;+---+s

= min(w) := min(r(w))
m max(w) := max(r(w))

[ mln(w) = —3
m max(w) =1

Generating function of Dyck N-walks

Xy,t)_zxmmw maxwt|w|: 1 1

-ttt 7 +Q)  I-tlxyTixy+xly)
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Nondeterministic walks

Reachable points for N-walks

For two sets A and B we define the Minkowski sum -+ as
A+B:={a+b : acA, be B}

Definition

m Length |w|:=n

m Reachable points

r(w):=s +-

= min(w) := min(r(w))
m max(w) := max(r(w))

m N-step set S C P(Z) s.t. |S| < o0
m N-Walk w = (s, 5, - . -,

Sn), Si €S

o+ Sy

Dyck N-walks

nS= {{_1}7 {1}7 {_17 1}}
mw=({-1}{-1,1}{-1,1})

m|w|=3

= r(w) = {—1}—|—1{—1, 1}+{-1,1}

= min(w) = -3
m max(w) =1

Generating function of Dyck N-walks

D(X,y; t) _ mein(w)ymax(w)t|w| _
w

1 1

-ttt 7 +Q)  I-tlxyTixy+xly)

m Obviously, there are 3" Dyck N-walks of length n.
m In general, there are |S|” many N-walks for a given N-step set S.
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Bijection to two-dimensional lattice paths

Generating function of Dyck N-walks

1 1
Dby ) = T T 719 - 1=ty oy 5 L)
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Bijection to two-dimensional lattice paths

Generating function of Dyck N-walks
1 1

Ca+ 7 +<) T l-t(xly Toxy+xly)

D(x,y; t) =
1-t

Interpret change in min. and max. of reachable points, as a change in x- and y-direction:
{-1} — (-1,-1), {1} — (1,1), {-1,1} — (-1,1).
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Nondeterministic walks

Bijection to two-dimensional lattice paths

Generating function of Dyck N-walks
1 1

Ca+ 7 +<) T l-t(xly Toxy+xly)

D(x,y; t) =
1-t

Interpret change in min. and max. of reachable points, as a change in x- and y-direction:
{-1} — (-1,-1), {1} — (1,1), {-1,1} — (-1,1).

gt o
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Reachable points for Dyck N-bridges

m N-step set S = {{—1},{1},{-1,1}}
m N-bridge is an N-walk containing a bridge (returns to 0)

Key observation

The reachable points are finite intervals of 2Z or 27Z + 1.
= uniquely characterized by min(w) and max(w)!
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Reachable points for Dyck N-bridges

m N-step set S = {{—1},{1},{-1,1}}
m N-bridge is an N-walk containing a bridge (returns to 0)

Key observation

The reachable points are finite intervals of 2Z or 27Z + 1.
= uniquely characterized by min(w) and max(w)!

Characterizing N-bridges in N-walks
m N-bridges have even length and
m min(w) < 0 and max(w) > 0.
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Nondeterministic walks

Dyck N-bridges

Theorem
The GF of Dyck N-bridges B(x,y; t) is algebraic of degree 4.
Moreover, B(1,1;t) has degree 2:

1—6t2
B(1,1,t) = =14 7t% +63t* +583t° 4 5407t° 4 . ...
( ) V1 —8t%(1 — 9t?)

The number [t>"]B(1, 1, t) of Dyck N-bridges of even length is asymptotically equal to

2 8" 8"
2n _ = 2 -
3 ﬁﬁw(nm).

Michael Wallner = TU Graz/TU Wien = 15.01.2026 8



Nondeterministic walks

Dyck N-bridges

Theorem
The GF of Dyck N-bridges B(x,y; t) is algebraic of degree 4.
Moreover, B(1,1;t) has degree 2:

1—6t2
B(1,1,t) = =14 7t% +63t* +583t° 4 5407t° 4 . ...
( ) V1 —8t%(1 — 9t?)

The number [t>"]B(1, 1, t) of Dyck N-bridges of even length is asymptotically equal to
2 8" 8"
3 10— ).
vt n)
Proof:

m N-walks of even length have a rational generating function
D(x,y;t)+ D(x,y; —t
Dyt 1) = DOViD) + Dy =t) b

2
m We need [xS0y20]Dy(x, y; t) (Two coefficient extractions: D-finite /ﬁ/
but in general not algebraic!) <
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Nondeterministic walks

Dyck N-bridges

Theorem
The GF of Dyck N-bridges B(x,y; t) is algebraic of degree 4.
Moreover, B(1,1;t) has degree 2:

1—6t2
B(1,1,t) = =14 7t% +63t* +583t° 4 5407t° 4 . ...
( ) V1 —8t%(1 — 9t?)

The number [t>"]B(1, 1, t) of Dyck N-bridges of even length is asymptotically equal to
2 8" 8"
3 10— ).
vt n)
Proof:

m N-walks of even length have a rational generating function
D(x,y;t)+ D(x,y; —t
Datys ) — DEyit) + Dlxyi—t) b

2
m We need [xS0y20]Dy(x, y; t) (Two coefficient extractions: D-finite /ﬁ/
but in general not algebraic!) <

= However,

B(X’y’ t) = DQ(X7y; t) - [X>O]D2(X,y, t) - [y<0]D2(X7y7 t)'
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Nondeterministic walks

Dyck N-meanders

m N-step set S = {{—1},{1},{-1,1}}
m N-meander is an N-walk containing a meander (staying non-negative)

0,'

({1}’ {_17 1}7 {_1}7 {_17 1}7 {_17 l}v {1})
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Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo
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Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo

Reachable points for N-meanders
m N-step set S C P(Z) s.t. |S| < >0
m N-Meander m = (s1,...,s,), SS€S

'Dyck N-meander

mS= {{_1}7 {1}7 {_17 1}}
m m=({-1,1} {1}, {-1,1})

Michael Wallner = TU Graz/TU Wien = 15.01.2026




Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo

 Reachable points for N-meanders
m N-step set S C P(Z) s.t. |S| < >0
m N-Meander m = (s1,...,s,), SS€S
m Reachable points
rfr(m):=s®...®s,

'Dyck N-meander

w S={{-1L {1}, {-1,1}}

mm=({-1,1},{1},{-1,1})

mrf(m)={-11}@{l}&{-1,1}
={1,3}
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Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo

 Reachable points for N-meanders
m N-step set S C P(Z) s.t. |S| < >0
m N-Meander m = (s1,...,s,), SS€S
m Reachable points
rfr(m):=s®...®s,

m mint(m) := min(rt(m))

'Dyck N-meander

w S={{-1L {1}, {-1,1}}

mm=({-1,1},{1},{-1,1})

mrf(m)={-11}@{l}&{-1,1}
={1,3}

m mint(m) =1
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Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo

 Reachable points for N-meanders
m N-step set S C P(Z) s.t. |S| < >0
m N-Meander m = (s1,...,s,), SS€S
m Reachable points
rfr(m):=s®...®s,

m mint(m) := min(rt(m))
m maxt(m) := max(rt(m))

'Dyck N-meander

w S={{-1L {1}, {-1,1}}

mm=({-1,1},{1},{-1,1})

mrf(m)={-11}@{l}&{-1,1}
={1,3}

m mint(m) =1
m max(m) =3
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Nondeterministic walks

Reachable points for Dyck N-meanders and N-excursions

For two sets A and B we define the non-negative sum & as
A@B: (A—|—B)ﬂZzo

 Reachable points for N-meanders 'Dyck N-meander
m N-step set S C P(Z) s.t. |S| < o0 mS={{-1}{1},{-1,1}}
m N-Meander m = (s1,...,s,), SS€S s m=({=1,1}, {1}, {=1,1})
m Reachable points - r+(m) = {-1,1}e{l}e{-1,1}
rfr(m):=s®...®s, ={1,3}

m mint(m) := min(rt(m)) m mint(m) =1
m maxt(m) := max(rt(m)) m maxt(m) =3

Generating function of Dyck N-meanders
D+(X,y; t) _ mein+(m)ymax+(m)t|m\
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The generating function of Dyck N-meanders

Generating function of Dyck N-meanders
D+(X,y; t) _ mein+(m)ymax+(m)t|m\
m

'Theorem

The generating function DV (x, y; t) of Dyck N-meanders is algebraic of degree 4 and equal to
x =Xy, t) y = xY(t) + xy — Y(£))X(y, 1)

DT ) = D 1),
(x,yit) 1= X(y. 07 v (x,yit)
where
1— /1 —4(1+ y?)t2 1—+/1-—8t2
X(y,t): 5 E‘ +y) and Y(t):T
Y
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The generating function of Dyck N-meanders

Generating function of Dyck N-meanders
D+(X,y; t) _ mein+(m)ymax+(m)t|m\
m

'Theorem

The generating function DV (x, y; t) of Dyck N-meanders is algebraic of degree 4 and equal to
x =Xy, t) y = xY(t) + xy — Y(£))X(y, 1)

DT ) = D 1),
(x,yit) 1= X(y. 07 v (x,yit)
where
1— /1 —4(1+ y?)t2 1—+/1-—8t2
X(y,t): 5 E‘ +y) and Y(t):T
Y

Underlying decomposition:

D*(x,yit) =1+ (D" (x, y: t) — D*(0,y: t)) (\q + 744 )

+ t(DF(0,y; t) — DF(0,0; £)) (\q + 744 )
+ tD*(0,0; t) (/7+< )
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The generating function of Dyck N-meanders

Generating function of Dyck N-meanders
D+(X,y; t) _ mein+(m)ymax+(m)t|m\
m

'Theorem

The generating function D+(X, y: t) of Dyck N-meanders is algebraic of degree 4 and equal to
X0y V(05 0y (X,

DT it i t),
where
1—4/1-4(1 2)t2 1—+v1-—8¢2
X(y, t) = 5 E‘ +y ) and Y(t) = T
y

Underlying decomposition:

D*(x,y;t) = 14 t(D*(x,y; t) — D(0,y; t)) (X Yyt xy 4+ xT y)

+t(D*(0,y; t) — D(0,0; t)) (xy‘1 + xy + xy)

+ tD*(0,0; t) (xy + xy) .
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Proof: We use the kernel method twice

m Rewrite functional equation into
K(x,y)D* (x,yit) = xy + t(x* = 1)(y* + 1)D*(0,y; t) — tx*D*(0,0; ¢). (1)
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Proof: We use the kernel method twice

m Rewrite functional equation into
K(x,y)Dt(x,y; t) = xy + t(x* — 1)(y*> + 1)D(0, y; t) — tx>DT(0, 0; t). (1)

m Substituting x = 1 the unknown DT (0, y; t) vanishes, and we get
K(1,y)D"(1,y;t) = y — tD*(0,0; ).
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Proof: We use the kernel method twice

m Rewrite functional equation into
K(x,y)Dt(x,y; t) = xy + t(x* — 1)(y*> + 1)D(0, y; t) — tx>DT(0, 0; t). (1)

m Substituting x = 1 the unknown DT (0, y; t) vanishes, and we get
K(1,y)D"(1,y;t) = y — tD*(0,0; ).

m Now, we use the kernel method.
Note that Y(t) is chosen that K(1, Y(t)) =0.
Hence, we get
Y (1)

D*(0,0; t) = — and D*(1,y;t) =

y = Y(t)
K(l,y) "
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Proof: We use the kernel method twice

m Rewrite functional equation into
K(x,y)Dt(x,y; t) = xy + t(x* — 1)(y*> + 1)D(0, y; t) — tx>DT(0, 0; t). (1)

m Substituting x = 1 the unknown DT (0, y; t) vanishes, and we get
K(1,y)D"(1,y;t) = y — tD*(0,0; ).

m Now, we use the kernel method.
Note that Y(t) is chosen that K(1, Y(t)) =0.

Hence, we get
Y(t) _y=Y()

D+(0,0, t) = T and D+(1,_y, t) = W

m Substituting this back into (1) and using the kernel method again in x, such that
K(X(y,t),y) =0, the claim follows. O]
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Nondeterministic walks

The counting generating functions

For x = y = 1, the GFs of Dyck N-meanders, N-excursions, and N-excursions ending in {0} are
algebraic of degree 2:

1—4t—+1-8t2
D*(1,1,t) = — 8

=1+42t+6t>+ 16> +48t* + ... A151281
4t(1 — 3t) retrors * T ( )
1—8t2 — (1 —12t%)v/1 — 8¢2
D*(0,1,t) = ( ) =1+4t% +28t* +224¢° - 1888t% + ..., (A368234)
8t2(1 — 9t2)
1—+1-38¢t2
D*(0,0,t) = —e =1t 2t 4 8t* +40t° +224¢% ... (A151374)
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Nondeterministic walks

The counting generating functions

Forx =y

=1, the GFs of Dyck N-meanders, N-excursions, and N-excursions ending in {0} are
algebraic of degree 2:

1—4t—+1-8t2
D*(1,1,t) = — 8

=1+42t+6t>+ 16> +48t* + ... A151281
4t(1 — 3t) retrors * T ( )
1—8t2 — (1 —12t%)v/1 — 8¢2
D*(0,1,t) = ( ) =1+4t% +28t* +224¢° - 1888t% + ..., (A368234)
8t2(1 — 9t2)
1—+1-38¢t2
D*(0,0,t) = —e =1t 2t 4 8t* +40t° +224¢% ... (A151374)

Asymptotically, we get

[tn]D+(1717 t) = % L (3\6(1 +(=1)") +4(1 - (_1)n)> gn/2 @ (8n/2> |

PTE n5/2
[£"]D*(0,1,t) = # (3n + \fﬁné (i;i)) :
[t"]DT (0,0, t) = v2(1 + (—1)”)% (1 = 43 +0 (,,12)> .
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Nondeterministic walks = Application in Networking

Application in Networking
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Networking: Classical excursions contained in N-excursions

Dyck N-Dyck
Steps {—1,1} N-Steps {{—1},{1},{-1,1}}
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Networking: Classical excursions contained in N-excursions

Dyck N-Dyck
Steps {—1,1} N-Steps {{—1},{1},{-1,1}}
0'."0
» o: >
’5 o’ ’5
-
Q’Q

m Let ¢, be the total number of classical excursions contained in all N-excursions of length 2n.
m Interpret every {—1,1}-N-step either as a classical up- or down-step

B = O, = 4n n-}-l (2:)
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Networking: Classical excursions contained in N-excursions

Dyck
Steps {—1,1}

N-Dyck

N-Steps {{—-1}, {1},{-1,1}}

m Let ¢, be the total number of classical excursions contained in all N-excursions of length 2n.
m Interpret every {—1,1}-N-step either as a classical up- or down-step

B = O, = 4"%(2:)

Average number of classical excursions in all N-excursions of length 2n

[t27]D+(0,1, t)

42n
§ .
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Probability of a random N-walk to be an N-excursion

m Each N-step gets a probability
p-1,P1,p-1,1 € [0,1] such that p-1+p1+po11=1
m Weight of N-walk is product of its weights
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Probability of a random N-walk to be an N-excursion

m Each N-step gets a probability
p-1,P1,p-1,1 € [0,1] such that p-1+p1+po11=1
m Weight of N-walk is product of its weights

Theorem
The probability of a random Dyck N-walk of length 2n 03 \
to be an N-excursion is for n — oo asymptotically 0os 1 . .
equivalent to (where p_y1 and py are interchangeable): 2 \
g 02 p1 = p-1 = 1/3 (simulation) ——
£ 1 = p_1 =1/3 (th. expec.) ------
(1—2p1)(1-2p_1) : 1 3 \ 3 a1/ (simulations) ——
A—p 1—p_1) if OSP1SP71<’ g @b P11:1ép11:12 h. expec) ------ 1
(1*P1)(17P71) 2’ é \\ pT = 1/épi: = S/é (iitm.ulatii)onég —_—
s 01 % : p1=1/5p_1 =3/5 (th. expec.) ------
0.05 R T
20 40 60 80 100 120 140
Path length
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Probability of a random N-walk to be an N-excursion

m Each N-step gets a probability
p-1,P1,p-1,1 € [0,1] such that p-1+p1+po11=1
m Weight of N-walk is product of its weights

Theorem
The probability of a random Dyck N-walk of length 2n 03 \
to be an N-excursion is for n — oo asymptotically 0os 1 . .
equivalent to (where p_y1 and py are interchangeable): 2 \
g 02 p1 = p-1 = 1/3 (simulation) ——
£ 1 = p_1 =1/3 (th. expec.) ------
(1—2p1)(1-2p_1) : 1 3 \ 3 a1/ (simulations) ——
A=p))(1=p_1) if OSP1SP71<’ g @b P11:1ép11:12 h. expec.) ------ 1
(1*P1)(17P71) 2’ é \\ pT = 1/épi: = S/é (iitm.ulatii)onég —_—
1-2p; . 1 _ 1 g 01 e p1=1/5p_1=3/5 (th. expec.) ------
Aop)/mn if 0<pi1<3andp_1=s3, 3 \\ ]
0.05 R T
20 40 60 80 100 120 140
Path length

Michael Wallner = TU Graz/TU Wien = 15.01.2026 16



Probability of a random N-walk to be an N-excursion

m Each N-step gets a probability
p-1,P1,p-1,1 € [0,1] such that p-1+p1+po11=1
m Weight of N-walk is product of its weights

Theorem
The probability of a random Dyck N-walk of length 2n 03 \
to be an N-excursion is for n — oo asymptotically 0os 1 . .
equivalent to (where p_y1 and py are interchangeable): 2 \
[ 02 p1 = p_1 = 1/3 (simulation)
£ 1 = p_1 =1/3 (th. expec.) ------
(1—2p1)(1-2p_1) : 1 3 \ —Unp 1= 1/2 (simulations) ——
’f 0§p1§p71<7 3 @b PllzléP11:12 h. expec.) ------ 7
(1*P1)(17P71) 2’ é \\ pT = 1/épi: = S/é (iitm.ulatii)onég —_—
1-2p; . 1 _ 1 g 01 e p1=1/5p_1=3/5 (th. expec.) ------
A—p1)/mn if 0<p1<jandp1=3, 8 \\ .y
1 . 1 0.05 A
if =p_1=+3 — ]
n3 p1 p-1 27 0 \*\._\
20 40 60 80 100 120 140
Path length
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Probability of a random N-walk to be an N-excursion

m Each N-step gets a probability
p-1,P1,p-1,1 € [0,1] such that p-1+p1+po11=1
m Weight of N-walk is product of its weights

Theorem
The probability of a random Dyck N-walk of length 2n 03 \
to be an N-excursion is for n — oo asymptotically o 1 X N
equivalent to (where p_y1 and py are interchangeable): 2 \
E 02 p=pa1= 1;3 Esimulationg ==
£ = p_1= h. expec.) ------
(1—2p1)(1-2p_1) p 1 g \ I Sy i e
Coipn 1 OsAsPusy N
1—2p; , 1 1 ; an LN p1=1/5,p_1 =3/5 (th. expec) ------
=) if0spi<zandpi=3 | ¢ SIS
1 ; _ 1 : D e R N W
Ve if pr=p-1=3, ~
’YW if O S pl < % < p—l < 1 0 20 40 GOP h‘SO . 100 120 140
ath lengt|
and p_1+p1 < 1.
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Nondeterministic walks = Limit laws and two-dimensional lattice paths

Limit laws and two-dimensional lattice paths
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Nondeterministic walks = Limit laws and two-dimensional lattice paths

Dyck N-meanders and two-dimensional lattice paths

N-meanders admit again an interpretation in terms of two-dimensional lattice paths:

Previous bijection for N-walks plus spatial constraints

m Paths remain in the first quadrant;
m x-axis acts as an absorbing boundaries; /

m y-axis as a reflecting boundaries. /
In particular, N-excursions are mapped to walks that
end on the nonnegative y-axis (since min* = 0).

P-11

b1

P

eflecting
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Nondeterministic walks = Limit laws and two-dimensional lattice paths

Dyck N-meanders and two-dimensional lattice paths

N-meanders admit again an interpretation in terms of two-dimensional lattice paths:

Previous bijection for N-walks plus spatial constraints

m Paths remain in the first quadrant;

m x-axis acts as an absorbing boundaries; /

m y-axis as a reflecting boundaries. /
In particular, N-excursions are mapped to walks that
end on the nonnegative y-axis (since min* = 0).

pr+p-11 pP-11 D1

eflectipg P s
Both boundaries absorbing:
m GF is algebraic [Bousquet-Mélou, Mishna 2010] e
m Walks ending on y-axis: distance to origin / /X{?‘{% /
obeys a binomial distribution, i.e., normal in /
the limit
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Nondeterministic walks = Limit laws and two-dimensional lattice paths

Limit law |: Final maximal point

We define the x-drift d, = E(x) and the y-drift 6, = E(y). The drift is given by § = (d«,d,) and for
Dyck N-walks we have

0x =p1 — p-11— P-1=12p1 — 1,
d0y=p1+p_11—p-1=1-2p_;.
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Limit law |: Final maximal point

We define the x-drift d, = E(x) and the y-drift 6, = E(y). The drift is given by § = (d«,d,) and for
Dyck N-walks we have
0x =p1 — p-11— P-1=12p1 — 1,
d0y=p1+p_11—p-1=1-2p_;.

Theorem
For p_11 # 0 let X,, be the r.v. of the final maximal point of an
N-excursion of length 2n drawn uniformly at random:
[£27y*]D*(0, y: t)

[£27D+(0,1; ¢t)

P (X, =k):=
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Limit law |: Final maximal point

We define the x-drift d, = E(x) and the y-drift 6, = E(y). The drift is given by § = (d«,d,) and for
Dyck N-walks we have

0x =p1 — p-11— P-1=12p1 — 1,
d0y=p1+p_11—p-1=1-2p_;.

Theorem N *\ R™
For p_11 # 0 let X,, be the r.v. of the final maximal point of an N
N-excursion of length 2n drawn uniformly at random:
2n, 2k| D+ :
P(Xn:k) — [t Yy ] (07yvt). )
[£27D+(0,1; ¢t) R -

Then, X, admits a limit distribution that depends on the drift §: Diseiciie
The limit law is either
m discrete,
m normal N, /

m Rayleigh R, or Drift 6 = (-1/3,1/3) for

m the convolution N xR~ of N and R with negative support. | p | — p — p11=1.
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Nondeterministic walks = Limit laws and two-dimensional lattice paths

Limit law I: Final maximal point (Proof)

N xR~

Theorem \
For p_11 # 0 let X, be the r.v. of the final maximal point of an N
N-excursion of length 2n drawn uniformly at random:

t27y2K1D*(0, y; t )

]P)(Xn:k):[ .y ] (7.y' ) | -~
[t27]D*(0,1; t) R =
Then, X,, admits a limit distribution that depends on the drift §: Discrete
The limit law is either discrete, normal N, Rayleigh R, or the
convolution N x R~ of N" and R with negative support. /
Proof:

m We start from the explicit shape of D7(0, y, t).
m Three candidates for the dominant singularity (polar and square-root type):
: ) : ) ’
Pl = —F—— P2\Y) = y P3\Y) = .
Vap-1(1—p_1) VAap1(p—1+(1 — pr—p_1)y?) (p—1+(1—p-1)y?)
m At most 2 coalesce.

m Methods: Singularity analysis [Flajolet, Odlyzko 90|, quasi power-theorem [Hwang 98], square-root
scheme on generating functions [Drmota, Soria 97]. O
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Limit law Il: Returns to {0}

VTheorem

Let Y, be the r.v. of the number of returns to {0} in an N-excursion of length 2n drawn uniformly at
random. Then, Y, admits a discrete limit law of geometric, negative binomial, or mixed type.
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Limit law Il: Returns to {0}

Theorem

Let Y, be the r.v. of the number of returns to {0} in an N-excursion of length 2n drawn uniformly at
random. Then, Y, admits a discrete limit law of geometric, negative binomial, or mixed type.

K
1 1 : 1
D7 (0,0.0) (1 - D+(o,o;1)> if0<p<p1<3,
(1—p-1)p*, ifO<p_y<3andp =3,
1 : 1 _1
P(Y, = k) = T l.f0§p1<5andp_1—§,
SeT ifpr+p-1=1,
K
m(l_m) I'f0§p,1<%<p1<1andp,1+P1<1,
(1—n)3tx +n5er ifO<pi<i<pi<landp_i+p <1,
_1(p1—p1)—/P_1(1—p_1)(A—p1—p_1)(p_1—
where py = m andn = p-1(p_1—p1)—+/p ;}71(113721() pi—p-1)(P—1—p1) € [0,1].
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Simulations of the limit laws: Expectations

Limit Law I: Final maximal point

100 T T T T
p=p1=1/3 ——
p=1/2,p1=1/4 —— /
p=1/4p1=1/2 ——
80 Vo

\

60 V

40 o

s vl

Maximum at the end

20
i+
// S R SR P
et

20 40 60 80 100 120 140 160
Path length

Depends on y-drift: §, =1 —2p_1:
m J, > 0: linear
md,=0:n

m §, < 0: constant

180 200

Number of times max = 0 again

15

0.5

Limit Law II: Returns to {0}

! ! ! !
pr=p1=1/3 ——
pr=1/2,p_.1=1/4 ——
p=1/4p1=1/2 ——
p=1/4=p=1/4
e e i e + Loy -
A bty o et
\*\—A\W\,ML«,\,\ ORGP VI WSS SN AN

20 40 60 80 100 120 140 160 180 200
Path length
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Nondeterministic walks = Other N-step sets

Other N-step sets
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Nondeterministic walks = Other N-step sets

Motzkin N-steps
N-step set S = {{—1}, {0}, {1}, {-1,0},{-1,1},{0, 1}, {~1,0, 1}}

Theorem

The generating functions of Motzkin N-bridges, N-meanders, and N-excursions are algebraic. of
degree at most 16.

N

N
N
N\
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Nondeterministic walks = Other N-step sets

Motzkin N-steps

N-step set S = {{—1}, {0}, {1}, {-1,0},{-1,1},{0, 1}, {~1,0, 1}}

Theorem

The generating functions of Motzkin N-bridges, N-meanders, and N-excursions are algebraic. of

degree at most 16.

N

N
N\
Nl

The reachable point pattern changes:
m 2-periodic: finite intervals in 2Z or 2Z + 1; or
m l-periodic: finite intervals in Z
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Proof idea for Motzkin N-steps

m Reachable points have 2 types

Type |: interval of Z (1-periodic)
Type II: interval of 2Z or 2Z + 1 (2-periodic)
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Nondeterministic walks = Other N-step sets

Proof idea for Motzkin N-steps

m Reachable points have 2 types
Type |: interval of Z (1-periodic)
Type II: interval of 2Z or 2Z + 1 (2-periodic)
m Translate interaction of types into automaton whose alphabet are the N-steps

m Walks and bridges
~ — <K

~ — 7 N
N2 <& @D<4<

Michael Wallner = TU Graz/TU Wien = 15.01.2026



Nondeterministic walks = Other N-step sets

Proof idea for Motzkin N-steps

m Reachable points have 2 types
Type |: interval of Z (1-periodic)
Type II: interval of 2Z or 2Z + 1 (2-periodic)
m Translate interaction of types into automaton whose alphabet are the N-steps
m Walks and bridges
~ — <K
~N — <

—> EEE——
N =<

m Meanders and excursions
= <

~ if max >0
< if max =0

~ 1fmax>0
~ if max > 1
— > = ZF =
< =2 <

\1fmdx—1
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Nondeterministic walks = Other N-step sets

Proof idea for Motzkin N-steps

m Reachable points have 2 types
Type |: interval of Z (1-periodic)
Type II: interval of 2Z or 2Z + 1 (2-periodic)

m Translate interaction of types into automaton whose alphabet are the N-steps
m Walks and bridges

~ — <K
~ — - =
—> EE——
N =<

m Meanders and excursions
= <

~ if max > 0
< if max =0

~ 1fmax>0
~ if max > 1
— > = ZF =
< =2 <

~ 1f max = 1
m Translate into system of generating of 2 generating functions

m Use vectorial extension of kernel method twice
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Nondeterministic walks = Other N-step sets

N-Motzkin paths with arbitrary weights

The generating functions are algebraic wiht with arbitrary weights:
N-step set

§ = {{-11.{0}, {1}, {-1,0, {-1,1},{0,1}, {-1,0,1} }

with weights

ps € {0,1}.
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N-Motzkin paths with arbitrary weights

The generating functions are algebraic wiht with arbitrary weights:

N-step set
§ = {{-11.{0}, {1}, {-1,0, {-1,1},{0,1}, {-1,0,1} }
with weights
ps € {0,1}.
pL p-1 Po  P-10 Po1  P-11 P—1,0,1 OEIS Domain Steps
1 0 0 1 0 0 1 Nonnegative
o 1 o 0 . = ) A151281 M {-1,11,15}
1 0 1 1 0 0 1
0 1 1 0 1 0 1 Triangular
1 0 0 1 1 0 1 A129637 s {W,SE,SW,NW}
0 1 0 1 1 0 1
1 0 1 1 1 0 1 First {(0,0,1),(0,1,0), (1,1,0),
0 1 1 1 1 0 1 ALSI25L tant N3 (1,1,1),(~1,-1,0)}

Table: N-Motzkin excursions related to (higher-dimensional) paths that start at the origin and remain in the
given domain.
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General N-bridges

Theorem

For any finite N-step set S, the generating function B(x,y;t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.
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Nondeterministic walks = Other N-step sets

General N-bridges

Theorem

For any finite N-step set S, the generating function B(x,y;t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.

Understand reachable points and how they interact:
m Consider the N-walk ({—1,2},{-1,2},{-1,2},{0,4}) on the right

Michael Wallner = TU Graz/TU Wien = 15.01.2026



General N-bridges

Theorem

For any finite N-step set S, the generating function B(x,y;t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.

Understand reachable points and how they interact:
m Consider the N-walk ({—1,2},{—1,2},{—1,2},{0,4}) on the right
m We say that this N-walk is of type(A, B, C)
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General N-bridges

Theorem

For any finite N-step set S, the generating function B(x,y;t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.

Understand reachable points and how they interact:
m Consider the N-walk ({—1,2},{—1,2},{—1,2},{0,4}) on the right
m We say that this N-walk is of type(A, B, C)

m Main tool: Additive Combinatorics

Michael Wallner = TU Graz/TU Wien = 15.01.2026



General N-bridges

Theorem

For any finite N-step set S, the generating function B(x,y;t) of
N-bridges (with respect to length, minimal, and maximal reachable
point) is algebraic.

Understand reachable points and how they interact:
m Consider the N-walk ({—1,2},{—1,2},{—1,2},{0,4}) on the right
m We say that this N-walk is of type(A, B, C)

m Main tool: Additive Combinatorics

Proposition

For any finite subset S C Z, there is a finite set of types

(A;, Bi, Gi)i<i<k such that for any N-walk w = (sy,...,s,) € 8", the
sumset s; + - - - + s, belongs to type (A;, B, ;) for some 1 < < k.
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General N-meanders and N-excursions

Theorem (Algebraic subfamilies of N-meanders)

m The GF D*(1,y;t) (y marks the maximal reachable point and t the length) is algebraic.
m The GF D*(0,0; t) (reachable point set {0}) is algebraic.
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General N-meanders and N-excursions

Theorem (Algebraic subfamilies of N-meanders)

m The GF D*(1,y;t) (y marks the maximal reachable point and t the length) is algebraic.
m The GF D*(0,0; t) (reachable point set {0}) is algebraic.

Algebraicity Conjecture

For any N-step set, the generating function of N-excursions is algebraic.

m We developed a python package to experimentally find the types and the automaton
m We also implemented a Maple worksheet to analyze this data (e.g., guessing).
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Example of an N-excursion with finitely many types

N-steps States Types
,,,,,,,, (1} {0} type(0,0,0, {0}, 0)
— E:;y }% {0,2} type(U,O,@,{0,2}7®)

I type(1,6, {1}, {0}, {1})
I type(1,4,0, {0}, {1})
I1 type(2,2,0,{0},0)
111 type(3,1,0,{0},0)
Ir type(3,1,0,{0,2},0)
I type(3,1,{0},{0,2},0)
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Nondeterministic walks = Other N-step sets

Example of an N-excursion with finitely many types

min < 1
min = 0
N-steps States Types MRSE
ffffffff {-1} {o} type(0,0,0,{0},0)
""""" 02 wpe000.0.2,0) ,
’ 1 type(1,6,{1},{0},{1}) min = 0
T et 4.0,{0h (1) V/ I
11 type(2,2,0,{0},0) S minsl =7 ' min =1 "

I type(3,1,0,{0},0) ~nax = 3
I type(3,1,0,{0,2},0)

1 type(3, 1, {0}, {0, 2}, 0)

.
{imin = 0
{imax = 4
| min = 0.~~~
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Nondeterministic walks = Other N-step sets

Example of an N-excursion with finitely many types

N-steps States Types
,,,,,,,, (1} {0} type(0,0,0, {0}, 0)
_ E:;, }% {0,2} type(O,O,@,{U,z}:m

I type(1,6, {1}, {0}, {1})
I type(1,4,0, {0}, {1})
I1 type(2,2,0,{0},0)
111 type(3,1,0,{0},0)
Ir type(3,1,0,{0,2},0)
I type(3,1,{0},{0,2},0)

N-Excursions
DT(0,1;t) = 1+ 4t2 + 4¢3 +28t* + ...

Guess: algebraic of degree 4! Proof?
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min = 0
max = 3

- max = 3

min = 0 f i 3 ==
{¥ min = ( i < N
i 3
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{imin = 0
{imax = 4
| min = 0.~~~

max =
min =
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Nondeterminism and context-free grammars

The following holds for arbitrary N-step sets.

N-walks can be described by context-free grammars

m Context-free languages are recognized by (nondeterministic) pushdown automata with a single
stack

m Use nondeterminism to follow all trajectories in parallel

m Use stack to track current altitude
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Nondeterminism and context-free grammars

The following holds for arbitrary N-step sets.

N-walks can be described by context-free grammars

m Context-free languages are recognized by (nondeterministic) pushdown automata with a single
stack

m Use nondeterminism to follow all trajectories in parallel

m Use stack to track current altitude

m Important result by [Chomsky, Schiitzenberger 63]: The GF of the number of words of unambiguous
context-free grammars is algebraic

m Problems:

m difficult to find grammar
m difficult to solve associated system

m Our approach: lattice paths and the kernel method

Michael Wallner = TU Graz/TU Wien = 15.01.2026 31



Nondeterministic walks =~ Context-free grammars and outlook

Future work

m Other topologies: e.g., series-parallel graphs
m More protocols: So far we considered only one protocol

m Underlying context-free grammars
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m Other topologies: e.g., series-parallel graphs
m More protocols: So far we considered only one protocol
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c walks  Backup

Backup
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Interesting OEIS connections for Motzkin N-meanders

Pt p-1 P0  P-10 P01 P-11 P-1,0,1 OEIS Steps

1 1 0 0 1 1 0

1 1 0 0 1 0 1 {(-1,0,0),(1,0,0),

1 1 0 0 0 1 1 AL51162 (1,0,1),(1,1,0)}

0 1 0 0 1 1 1

1 1 1 1 1 0 0

1 1 1 1 0 1 0

0 1 1 1 1 1 0 {(-1,-1,0),(0,0,1),(0,1,0),
1 1 1 1 0 0 1 AL51251 (1,1,0),(1,1,1)}

0 1 1 1 1 0 1

0 1 1 1 0 1 1

1 1 1 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 0 1

1 1 0 1 1 0 1 {(-1,0,0),(0,0,1),(1,0,0),
1 1 1 0 0 1 1 LA (1,0,1),(1,1,0)}

1 1 0 1 0 1 1

0 1 1 0 1 1 1

0 1 0 1 1 1 1

1 1 0 0 1 1 1 A151254 {1, ,0), (1, 8,0, (5, 1,

(1,1,0),(1,1,1)}

Table: N-Motzkin meanders related to 3D paths that start at the origin and remain in the first octant N3,
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http://oeis.org/A151162
http://oeis.org/A151251
http://oeis.org/A151253
http://oeis.org/A151254
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