

# Reachable endpoint sets and algebraic enumeration of nondeterministic walks

Enumerative Combinatorics Workshop – Oberwolfach

Élie de Panafieu  
(Nokia, Bell Labs, FR)

Mohamed Lamine Lamali  
(Univ. de Bordeaux, FR)

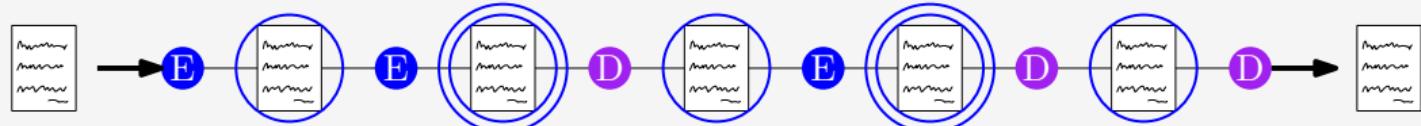
Michael Wallner  
(TU Graz/TU Wien, AT)

January 15, 2026

(Partially supported by the Austrian Science Fund (FWF): P 34142 and J 4162,  
and the EU-funded RandNET project 101007705.)

I have an open PhD and Postdoc position to offer in my project “Universal Phenomena in Analytic Combinatorics” starting in Fall 2026. Feel free to contact me if you are interested!

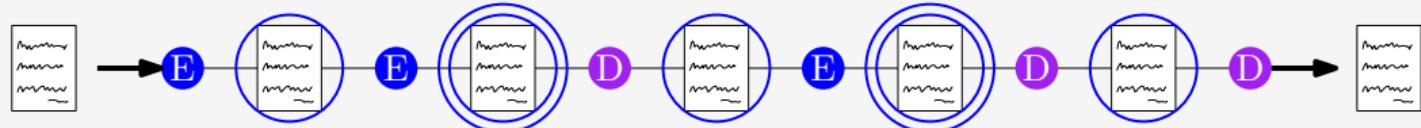
# Motivation: Nondeterministic Dyck walks model en- and decapsulation



Every node is capable of either

- Encapsulating, or
- Decapsulating

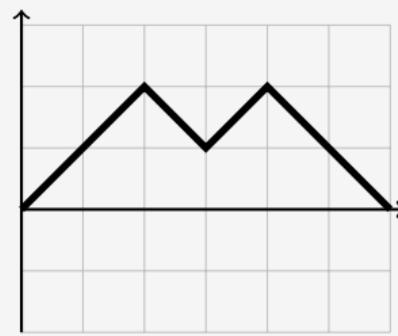
# Motivation: Nondeterministic Dyck walks model en- and decapsulation



Every node is capable of either

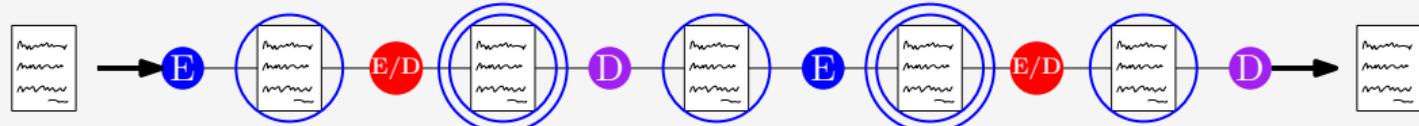
- Encapsulating, or
- Decapsulating

**Dyck**  
Steps  $\{-1, 1\}$



$(1, 1, -1, 1, -1, -1)$

# Motivation: Nondeterministic Dyck walks model en- and decapsulation



Every node is capable of either

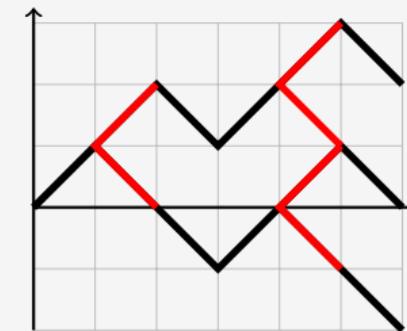
- Encapsulating, or
- Decapsulating, or
- Both.

**Dyck**  
Steps  $\{-1, 1\}$



$(1, 1, -1, 1, -1, -1)$

**N-Dyck**  
N-Steps  $\{\{1\}, \{-1, 1\}, \{-1\}, \{1\}, \{-1, 1\}, \{-1\}\}$

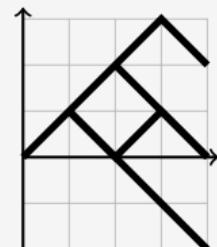


$(\{1\}, \{-1, 1\}, \{-1\}, \{1\}, \{-1, 1\}, \{-1\})$

# Dyck N-walks

## Definition

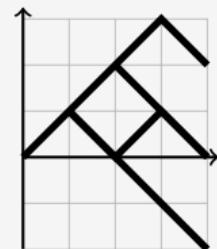
- Start at 0 and use N-steps  $\{\{-1\}, \{1\}, \{-1, 1\}\}$
- *N-walk*: sequence of N-steps (e.g.,  $(\{1\}, \{-1, 1\}, \{-1, 1\}, \{-1\})$ )
- *Length*: number of steps (above: length 4)



# Dyck N-walks

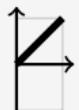
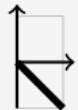
## Definition

- Start at 0 and use N-steps  $\{-1\}, \{1\}, \{-1, 1\}\}$
- *N-walk*: sequence of N-steps (e.g.,  $(\{1\}, \{-1, 1\}, \{-1, 1\}, \{-1\})$ )
- *Length*: number of steps (above: length 4)



## All Dyck-N walks of

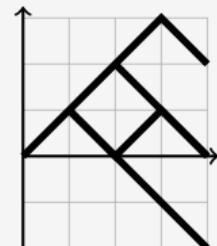
- length 1



# Dyck N-walks

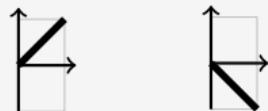
## Definition

- Start at 0 and use N-steps  $\{ \{-1\}, \{1\}, \{-1, 1\} \}$
- N-walk*: sequence of N-steps (e.g.,  $(\{1\}, \{-1, 1\}, \{-1, 1\}, \{-1\})$ )
- Length*: number of steps (above: length 4)

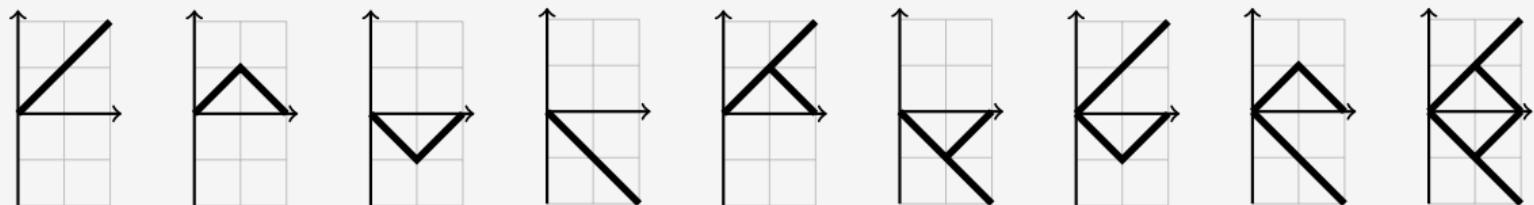


## All Dyck-N walks of

- length 1



- length 2



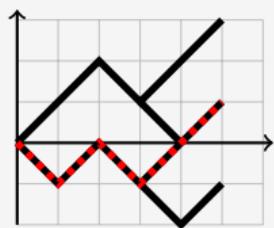
# Four types of N-Walks

---

|       | Classical     | Nondeterministic |                 |
|-------|---------------|------------------|-----------------|
| Walk: | unconstrained | N-walk:          | contains a walk |

---

N-walk



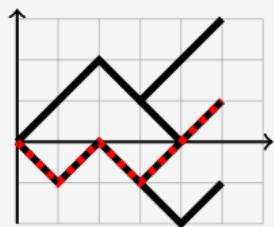
# Four types of N-Walks

---

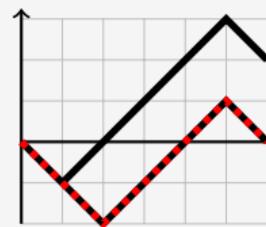
|                | Classical     | Nondeterministic |                   |
|----------------|---------------|------------------|-------------------|
| <b>Walk:</b>   | unconstrained | <b>N-walk:</b>   | contains a walk   |
| <b>Bridge:</b> | ends at 0     | <b>N-bridge:</b> | contains a bridge |

---

N-walk



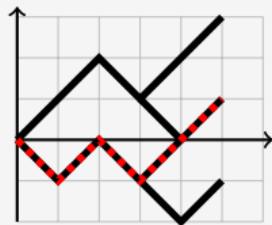
N-bridge



# Four types of N-Walks

| Classical       |                   | Nondeterministic  |                    |
|-----------------|-------------------|-------------------|--------------------|
| <b>Walk:</b>    | unconstrained     | <b>N-walk:</b>    | contains a walk    |
| <b>Bridge:</b>  | ends at 0         | <b>N-bridge:</b>  | contains a bridge  |
| <b>Meander:</b> | stays nonnegative | <b>N-meander:</b> | contains a meander |

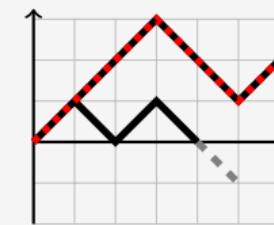
N-walk



N-bridge



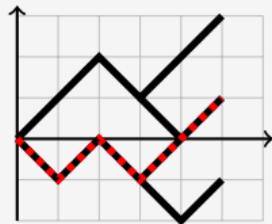
N-meander



# Four types of N-Walks

| Classical         |                             | Nondeterministic    |                       |
|-------------------|-----------------------------|---------------------|-----------------------|
| <b>Walk:</b>      | unconstrained               | <b>N-walk:</b>      | contains a walk       |
| <b>Bridge:</b>    | ends at 0                   | <b>N-bridge:</b>    | contains a bridge     |
| <b>Meander:</b>   | stays nonnegative           | <b>N-meander:</b>   | contains a meander    |
| <b>Excursion:</b> | ends at 0 and stays nonneg. | <b>N-excursion:</b> | contains an excursion |

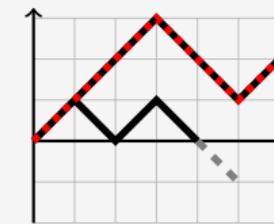
N-walk



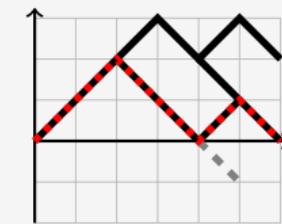
N-bridge



N-meander



N-excursion



## Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

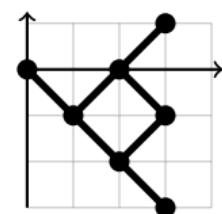
$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$



# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

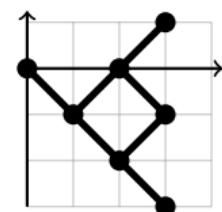
$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$
- **Reachable points**  
 $r(w) := s_1 + \dots + s_n$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $r(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$   
 $= \{-3, -1, 1\}$



# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

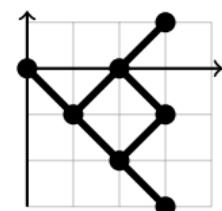
- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$
- **Reachable points**

$$r(w) := s_1 + \dots + s_n$$
  - $\min(w) := \min(r(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $r(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$ 

$$= \{-3, -1, 1\}$$
  - $\min(w) = -3$



# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

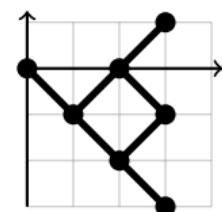
- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$
- **Reachable points**

$$\mathbf{r}(w) := s_1 + \dots + s_n$$
  - $\min(w) := \min(\mathbf{r}(w))$
  - $\max(w) := \max(\mathbf{r}(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $\mathbf{r}(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$ 

$$= \{-3, -1, 1\}$$
  - $\min(w) = -3$
  - $\max(w) = 1$



# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$
- **Reachable points**

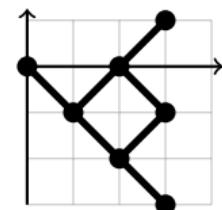
$$\mathbf{r}(w) := s_1 + \dots + s_n$$

- $\min(w) := \min(\mathbf{r}(w))$
- $\max(w) := \max(\mathbf{r}(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $\mathbf{r}(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$ 

$$= \{-3, -1, 1\}$$
  - $\min(w) = -3$
  - $\max(w) = 1$



## Generating function of Dyck N-walks

$$D(x, y; t) = \sum_w x^{\min(w)} y^{\max(w)} t^{|w|}$$

# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$
- **Reachable points**

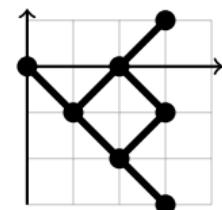
$$r(w) := s_1 + \dots + s_n$$

- $\min(w) := \min(r(w))$
- $\max(w) := \max(r(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $r(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$ 

$$= \{-3, -1, 1\}$$
  - $\min(w) = -3$
  - $\max(w) = 1$



## Generating function of Dyck N-walks

$$D(x, y; t) = \sum_w x^{\min(w)} y^{\max(w)} t^{|w|} = \frac{1}{1 - t(\searrow + \nearrow + \nwarrow)}$$

# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$
- Length  $|w| := n$

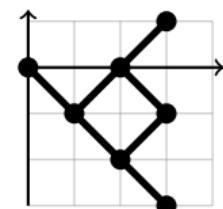
### Reachable points

$$\mathbf{r}(w) := s_1 + \dots + s_n$$

- $\min(w) := \min(\mathbf{r}(w))$
- $\max(w) := \max(\mathbf{r}(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$
- $|w| = 3$
- $\mathbf{r}(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$   
 $= \{-3, -1, 1\}$
- $\min(w) = -3$
- $\max(w) = 1$



## Generating function of Dyck N-walks

$$D(x, y; t) = \sum_w x^{\min(w)} y^{\max(w)} t^{|w|} = \frac{1}{1 - t(\searrow + \nearrow + \nwarrow)} = \frac{1}{1 - t(x^{-1}y^{-1} + xy + x^{-1}y)}$$

# Reachable points for N-walks

For two sets  $A$  and  $B$  we define the **Minkowski sum**  $+$  as

$$A + B := \{a + b : a \in A, b \in B\}.$$

## Definition

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Walk  $w = (s_1, s_2, \dots, s_n)$ ,  $s_i \in \mathcal{S}$ 
  - Length  $|w| := n$

### Reachable points

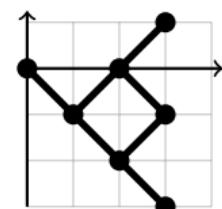
$$\mathbf{r}(w) := s_1 + \dots + s_n$$

- $\min(w) := \min(\mathbf{r}(w))$
- $\max(w) := \max(\mathbf{r}(w))$

## Dyck N-walks

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $w = (\{-1\}, \{-1, 1\}, \{-1, 1\})$ 
  - $|w| = 3$
- $\mathbf{r}(w) = \{-1\} + \{-1, 1\} + \{-1, 1\}$ 

$$= \{-3, -1, 1\}$$
  - $\min(w) = -3$
  - $\max(w) = 1$



## Generating function of Dyck N-walks

$$D(x, y; t) = \sum_w x^{\min(w)} y^{\max(w)} t^{|w|} = \frac{1}{1 - t(\searrow + \nearrow + \nwarrow)} = \frac{1}{1 - t(x^{-1}y^{-1} + xy + x^{-1}y)}$$

- Obviously, there are  $3^n$  Dyck  $N$ -walks of length  $n$ .
- In general, there are  $|\mathcal{S}|^n$  many  $N$ -walks for a given  $N$ -step set  $\mathcal{S}$ .

# Bijection to two-dimensional lattice paths

## Generating function of Dyck N-walks

$$D(x, y; t) = \frac{1}{1 - t(\searrow + \nearrow + \nwarrow)} = \frac{1}{1 - t(x^{-1}y^{-1} + xy + x^{-1}y)}$$

## Bijection to two-dimensional lattice paths

### Generating function of Dyck N-walks

$$D(x, y; t) = \frac{1}{1 - t(\nwarrow + \nearrow + \swarrow)} = \frac{1}{1 - t(x^{-1}y^{-1} + xy + x^{-1}y)}$$

Interpret change in min. and max. of reachable points, as a change in  $x$ - and  $y$ -direction:

$$\{-1\} \mapsto (-1, -1), \quad \{1\} \mapsto (1, 1), \quad \{-1, 1\} \mapsto (-1, 1).$$

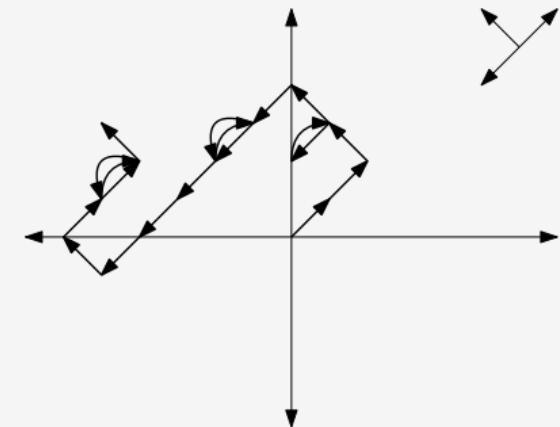
# Bijection to two-dimensional lattice paths

## Generating function of Dyck N-walks

$$D(x, y; t) = \frac{1}{1 - t(\nwarrow + \nearrow + \swarrow)} = \frac{1}{1 - t(x^{-1}y^{-1} + xy + x^{-1}y)}$$

Interpret change in min. and max. of reachable points, as a change in  $x$ - and  $y$ -direction:

$$\{-1\} \mapsto (-1, -1), \quad \{1\} \mapsto (1, 1), \quad \{-1, 1\} \mapsto (-1, 1).$$

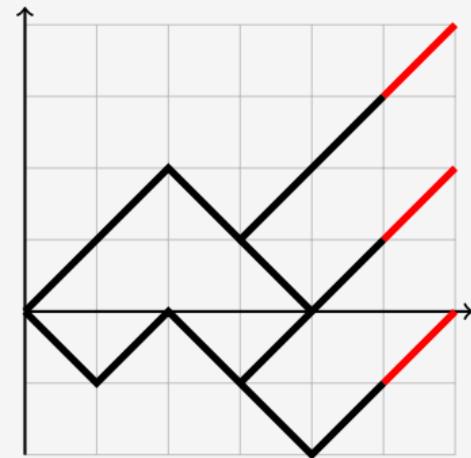


# Reachable points for Dyck N-bridges

- N-step set  $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- N-bridge is an N-walk containing a bridge (returns to 0)

## Key observation

The reachable points are finite intervals of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$ .  
⇒ uniquely characterized by  $\min(w)$  and  $\max(w)$ !

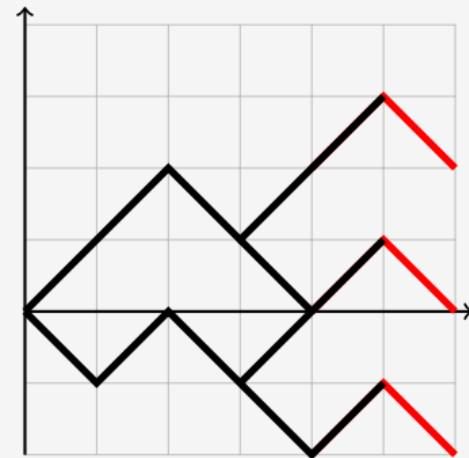


# Reachable points for Dyck N-bridges

- N-step set  $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- N-bridge is an N-walk containing a bridge (returns to 0)

## Key observation

The reachable points are finite intervals of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$ .  
⇒ uniquely characterized by  $\min(w)$  and  $\max(w)$ !

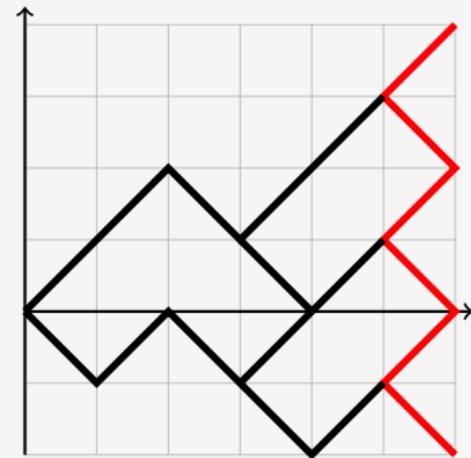


# Reachable points for Dyck N-bridges

- N-step set  $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- N-bridge is an N-walk containing a bridge (returns to 0)

## Key observation

The reachable points are finite intervals of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$ .  
⇒ uniquely characterized by  $\min(w)$  and  $\max(w)$ !



# Reachable points for Dyck N-bridges

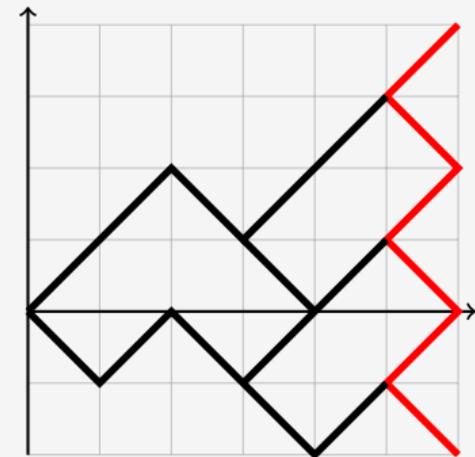
- N-step set  $\mathcal{S} = \{-1\}, \{1\}, \{-1, 1\}\}$
- N-bridge is an N-walk containing a bridge (returns to 0)

## Key observation

The reachable points are finite intervals of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$ .  
⇒ uniquely characterized by  $\min(w)$  and  $\max(w)$ !

## Characterizing N-bridges in N-walks

- N-bridges have even length and
- $\min(w) \leq 0$  and  $\max(w) \geq 0$ .



# Dyck N-bridges

## Theorem

The GF of Dyck  $N$ -bridges  $B(x, y; t)$  is **algebraic of degree 4**.

Moreover,  $B(1, 1; t)$  has degree 2:

$$B(1, 1, t) = \frac{1 - 6t^2}{\sqrt{1 - 8t^2}(1 - 9t^2)} = 1 + 7t^2 + 63t^4 + 583t^6 + 5407t^8 + \dots$$

The number  $[t^{2n}]B(1, 1, t)$  of Dyck  $N$ -bridges of even length is asymptotically equal to

$$3^{2n} - \frac{2}{\sqrt{\pi}} \frac{8^n}{\sqrt{n}} + \mathcal{O}\left(\frac{8^n}{n^{3/2}}\right).$$

# Dyck N-bridges

## Theorem

The GF of Dyck  $N$ -bridges  $B(x, y; t)$  is **algebraic of degree 4**.

Moreover,  $B(1, 1; t)$  has degree 2:

$$B(1, 1, t) = \frac{1 - 6t^2}{\sqrt{1 - 8t^2}(1 - 9t^2)} = 1 + 7t^2 + 63t^4 + 583t^6 + 5407t^8 + \dots$$

The number  $[t^{2n}]B(1, 1, t)$  of Dyck  $N$ -bridges of even length is asymptotically equal to

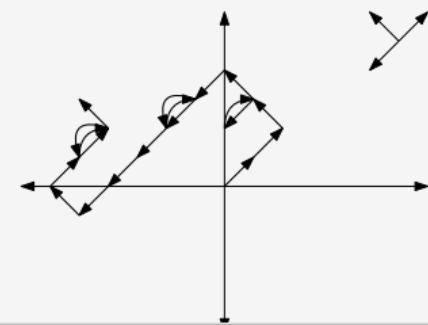
$$3^{2n} - \frac{2}{\sqrt{\pi}} \frac{8^n}{\sqrt{n}} + \mathcal{O}\left(\frac{8^n}{n^{3/2}}\right).$$

## Proof:

- $N$ -walks of **even length** have a rational generating function

$$D_2(x, y; t) = \frac{D(x, y; t) + D(x, y; -t)}{2}.$$

- We need  $[x^{\leq 0} y^{\geq 0}]D_2(x, y; t)$  (Two coefficient extractions: D-finite but in general **not** algebraic!)



## Dyck N-bridges

## Theorem

The GF of Dyck  $N$ -bridges  $B(x, y; t)$  is **algebraic of degree 4**

Moreover,  $B(1, 1; t)$  has degree 2:

$$B(1,1,t) = \frac{1 - 6t^2}{\sqrt{1 - 8t^2(1 - 9t^2)}} = 1 + 7t^2 + 63t^4 + 583t^6 + 5407t^8 + \dots$$

The number  $[t^{2n}]B(1,1,t)$  of Dyck  $N$ -bridges of even length is asymptotically equal to

$$3^{2n} - \frac{2}{\sqrt{\pi}} \frac{8^n}{\sqrt{n}} + \mathcal{O}\left(\frac{8^n}{n^{3/2}}\right).$$

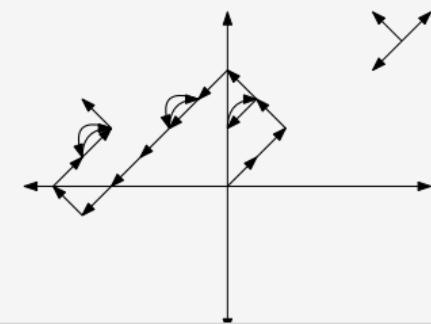
Proof:

- N-walks of **even length** have a rational generating function

$$D_2(x, y; t) = \frac{D(x, y; t) + D(x, y; -t)}{2}$$

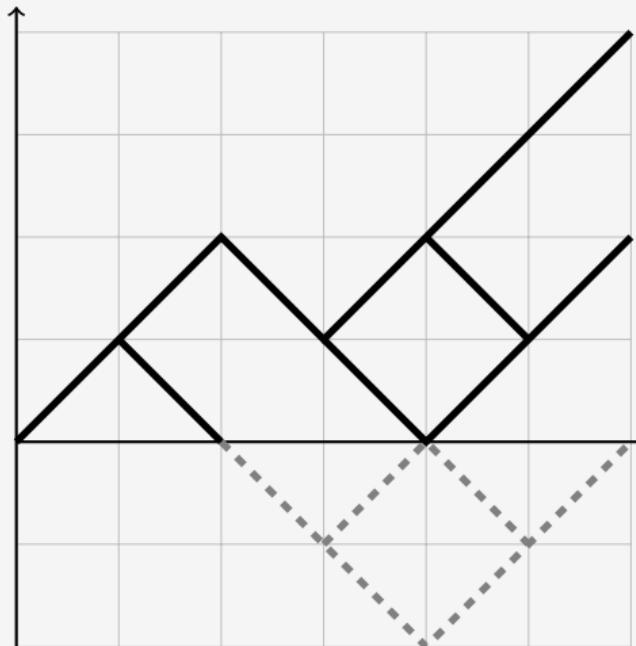
- We need  $[x^{\leq 0} y^{\geq 0}] D_2(x, y; t)$  (Two coefficient extractions: D-finite but in general **not** algebraic!)
- However

$$B(x, y, t) = D_2(x, y; t) - [x^{>0}]D_2(x, y, t) - [y^{<0}]D_2(x, y, t).$$



# Dyck N-meanders

- N-step set  $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- N-meander is an N-walk containing a meander (staying non-negative)



$(\{1\}, \{-1, 1\}, \{-1\}, \{-1, 1\}, \{-1, 1\}, \{1\})$

# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

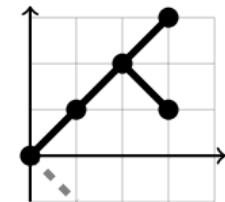
$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

## Reachable points for N-meanders

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Meander  $m = (s_1, \dots, s_n)$ ,  $s_i \in \mathcal{S}$

## Dyck N-meander

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $m = (\{-1, 1\}, \{1\}, \{-1, 1\})$



# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

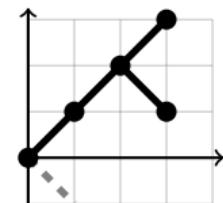
## Reachable points for N-meanders

- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Meander  $m = (s_1, \dots, s_n)$ ,  $s_i \in \mathcal{S}$
- **Reachable points**

$$r^+(m) := s_1 \oplus \dots \oplus s_n$$

## Dyck N-meander

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $m = (\{-1, 1\}, \{1\}, \{-1, 1\})$
- $r^+(m) = \{-1, 1\} \oplus \{1\} \oplus \{-1, 1\}$   
 $= \{1, 3\}$



# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

## Reachable points for N-meanders

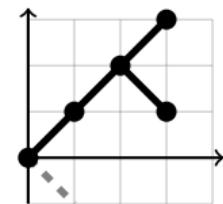
- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Meander  $m = (s_1, \dots, s_n)$ ,  $s_i \in \mathcal{S}$
- **Reachable points**

$$r^+(m) := s_1 \oplus \dots \oplus s_n$$

$$\blacksquare \quad \min^+(m) := \min(r^+(m))$$

## Dyck N-meander

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $m = (\{-1, 1\}, \{1\}, \{-1, 1\})$
- $r^+(m) = \{-1, 1\} \oplus \{1\} \oplus \{-1, 1\}$   
 $= \{1, 3\}$
- $\min^+(m) = 1$



# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

## Reachable points for N-meanders

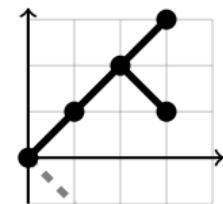
- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Meander  $m = (s_1, \dots, s_n)$ ,  $s_i \in \mathcal{S}$
- **Reachable points**

$$\mathbf{r}^+(m) := s_1 \oplus \dots \oplus s_n$$

- $\min^+(m) := \min(\mathbf{r}^+(m))$
- $\max^+(m) := \max(\mathbf{r}^+(m))$

## Dyck N-meander

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $m = (\{-1, 1\}, \{1\}, \{-1, 1\})$
- $\mathbf{r}^+(m) = \{-1, 1\} \oplus \{1\} \oplus \{-1, 1\}$   
 $= \{1, 3\}$
- $\min^+(m) = 1$
- $\max^+(m) = 3$



# Reachable points for Dyck N-meanders and N-excursions

For two sets  $A$  and  $B$  we define the **non-negative sum**  $\oplus$  as

$$A \oplus B := (A + B) \cap \mathbb{Z}_{\geq 0}$$

## Reachable points for N-meanders

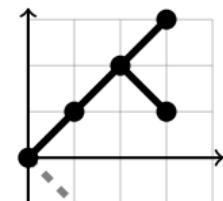
- N-step set  $\mathcal{S} \subseteq \mathcal{P}(\mathbb{Z})$  s.t.  $|\mathcal{S}| < \infty$
- N-Meander  $m = (s_1, \dots, s_n)$ ,  $s_i \in \mathcal{S}$
- **Reachable points**

$$\mathbf{r}^+(m) := s_1 \oplus \dots \oplus s_n$$

- $\min^+(m) := \min(\mathbf{r}^+(m))$
- $\max^+(m) := \max(\mathbf{r}^+(m))$

## Dyck N-meander

- $\mathcal{S} = \{\{-1\}, \{1\}, \{-1, 1\}\}$
- $m = (\{-1, 1\}, \{1\}, \{-1, 1\})$
- $\mathbf{r}^+(m) = \{-1, 1\} \oplus \{1\} \oplus \{-1, 1\}$   
 $= \{1, 3\}$
- $\min^+(m) = 1$
- $\max^+(m) = 3$



## Generating function of Dyck N-meanders

$$D^+(x, y; t) = \sum_m x^{\min^+(m)} y^{\max^+(m)} t^{|m|}$$

# The generating function of Dyck N-meanders

Generating function of Dyck N-meanders

$$D^+(x, y; t) = \sum_m x^{\min^+(m)} y^{\max^+(m)} t^{|m|}$$

## Theorem

The generating function  $D^+(x, y; t)$  of Dyck N-meanders is **algebraic of degree 4** and equal to

$$D^+(x, y; t) = \frac{x - X(y, t)}{1 - X(y, t)^2} \frac{y - xY(t) + (xy - Y(t))X(y, t)}{xy} D(x, y; t),$$

where

$$X(y, t) = \frac{1 - \sqrt{1 - 4(1 + y^2)t^2}}{2yt} \quad \text{and} \quad Y(t) = \frac{1 - \sqrt{1 - 8t^2}}{4t}.$$

# The generating function of Dyck N-meanders

Generating function of Dyck N-meanders

$$D^+(x, y; t) = \sum_m x^{\min^+(m)} y^{\max^+(m)} t^{|m|}$$

## Theorem

The generating function  $D^+(x, y; t)$  of Dyck N-meanders is **algebraic of degree 4** and equal to

$$D^+(x, y; t) = \frac{x - X(y, t)}{1 - X(y, t)^2} \frac{y - xY(t) + (xy - Y(t))X(y, t)}{xy} D(x, y; t),$$

where

$$X(y, t) = \frac{1 - \sqrt{1 - 4(1 + y^2)t^2}}{2yt} \quad \text{and} \quad Y(t) = \frac{1 - \sqrt{1 - 8t^2}}{4t}.$$

Underlying decomposition:

$$\begin{aligned} D^+(x, y; t) &= 1 + t(D^+(x, y; t) - D^+(0, y; t)) \left( \rightarrow + \nearrow + \nwarrow \right) \\ &\quad + t(D^+(0, y; t) - D^+(0, 0; t)) \left( \rightarrow + \nearrow + \nwarrow \right) \\ &\quad + tD^+(0, 0; t) \left( \nearrow + \nwarrow \right). \end{aligned}$$

# The generating function of Dyck N-meanders

Generating function of Dyck N-meanders

$$D^+(x, y; t) = \sum_m x^{\min^+(m)} y^{\max^+(m)} t^{|m|}$$

## Theorem

The generating function  $D^+(x, y; t)$  of Dyck N-meanders is **algebraic of degree 4** and equal to

$$D^+(x, y; t) = \frac{x - X(y, t)}{1 - X(y, t)^2} \frac{y - xY(t) + (xy - Y(t))X(y, t)}{xy} D(x, y; t),$$

where

$$X(y, t) = \frac{1 - \sqrt{1 - 4(1 + y^2)t^2}}{2yt} \quad \text{and} \quad Y(t) = \frac{1 - \sqrt{1 - 8t^2}}{4t}.$$

Underlying decomposition:

$$\begin{aligned} D^+(x, y; t) &= 1 + t(D^+(x, y; t) - D^+(0, y; t)) \left( x^{-1}y^{-1} + xy + x^{-1}y \right) \\ &\quad + t(D^+(0, y; t) - D^+(0, 0; t)) \left( xy^{-1} + xy + xy \right) \\ &\quad + tD^+(0, 0; t) \left( xy + xy \right). \end{aligned}$$

## Proof: We use the kernel method twice

- Rewrite functional equation into

$$K(x, y)D^+(x, y; t) = xy + t(x^2 - 1)(y^2 + 1)D^+(0, y; t) - tx^2D^+(0, 0; t). \quad (1)$$

## Proof: We use the kernel method twice

- Rewrite functional equation into

$$K(x, y)D^+(x, y; t) = xy + t(x^2 - 1)(y^2 + 1)D^+(0, y; t) - tx^2D^+(0, 0; t). \quad (1)$$

- Substituting  $x = 1$  the unknown  $D^+(0, y; t)$  vanishes, and we get

$$K(1, y)D^+(1, y; t) = y - tD^+(0, 0; t).$$

## Proof: We use the kernel method twice

- Rewrite functional equation into

$$K(x, y)D^+(x, y; t) = xy + t(x^2 - 1)(y^2 + 1)D^+(0, y; t) - tx^2D^+(0, 0; t). \quad (1)$$

- Substituting  $x = 1$  the unknown  $D^+(0, y; t)$  vanishes, and we get

$$K(1, y)D^+(1, y; t) = y - tD^+(0, 0; t).$$

- Now, we use the **kernel method**.

Note that  $Y(t)$  is chosen that  $K(1, Y(t)) = 0$ .

Hence, we get

$$D^+(0, 0; t) = \frac{Y(t)}{t} \quad \text{and} \quad D^+(1, y; t) = \frac{y - Y(t)}{K(1, y)}.$$

## Proof: We use the kernel method twice

- Rewrite functional equation into

$$K(x, y)D^+(x, y; t) = xy + t(x^2 - 1)(y^2 + 1)D^+(0, y; t) - tx^2D^+(0, 0; t). \quad (1)$$

- Substituting  $x = 1$  the unknown  $D^+(0, y; t)$  vanishes, and we get

$$K(1, y)D^+(1, y; t) = y - tD^+(0, 0; t).$$

- Now, we use the **kernel method**.

Note that  $Y(t)$  is chosen that  $K(1, Y(t)) = 0$ .

Hence, we get

$$D^+(0, 0; t) = \frac{Y(t)}{t} \quad \text{and} \quad D^+(1, y; t) = \frac{y - Y(t)}{K(1, y)}.$$

- Substituting this back into (1) and using the **kernel method again** in  $x$ , such that  $K(X(y, t), y) = 0$ , the claim follows. □

# The counting generating functions

For  $x = y = 1$ , the GFs of Dyck N-meanders, N-excursions, and N-excursions ending in  $\{0\}$  are **algebraic of degree 2**:

$$D^+(1, 1, t) = -\frac{1 - 4t - \sqrt{1 - 8t^2}}{4t(1 - 3t)} = 1 + 2t + 6t^2 + 16t^3 + 48t^4 + \dots, \quad (\text{A151281})$$

$$D^+(0, 1, t) = \frac{1 - 8t^2 - (1 - 12t^2)\sqrt{1 - 8t^2}}{8t^2(1 - 9t^2)} = 1 + 4t^2 + 28t^4 + 224t^6 + 1888t^8 + \dots, \quad (\text{A368234})$$

$$D^+(0, 0, t) = \frac{1 - \sqrt{1 - 8t^2}}{4t^2} = 1 + 2t^2 + 8t^4 + 40t^6 + 224t^8 + \dots. \quad (\text{A151374})$$

# The counting generating functions

For  $x = y = 1$ , the GFs of Dyck N-meanders, N-excursions, and N-excursions ending in  $\{0\}$  are **algebraic of degree 2**:

$$D^+(1, 1, t) = -\frac{1 - 4t - \sqrt{1 - 8t^2}}{4t(1 - 3t)} = 1 + 2t + 6t^2 + 16t^3 + 48t^4 + \dots, \quad (\text{A151281})$$

$$D^+(0, 1, t) = \frac{1 - 8t^2 - (1 - 12t^2)\sqrt{1 - 8t^2}}{8t^2(1 - 9t^2)} = 1 + 4t^2 + 28t^4 + 224t^6 + 1888t^8 + \dots, \quad (\text{A368234})$$

$$D^+(0, 0, t) = \frac{1 - \sqrt{1 - 8t^2}}{4t^2} = 1 + 2t^2 + 8t^4 + 40t^6 + 224t^8 + \dots. \quad (\text{A151374})$$

Asymptotically, we get

$$[t^n]D^+(1, 1, t) = \frac{3^n}{2} + \left(3\sqrt{2}(1 + (-1)^n) + 4(1 - (-1)^n)\right) \frac{8^{n/2}}{\sqrt{\pi n^3}} + \mathcal{O}\left(\frac{8^{n/2}}{n^{5/2}}\right),$$

$$[t^n]D^+(0, 1, t) = \frac{1 + (-1)^n}{2} \left( \frac{3^n}{4} + \sqrt{8} \frac{8^{n/2}}{\sqrt{\pi n^3}} + \mathcal{O}\left(\frac{8^{n/2}}{n^{5/2}}\right) \right),$$

$$[t^n]D^+(0, 0, t) = \sqrt{2}(1 + (-1)^n) \frac{8^{n/2}}{\sqrt{\pi n^3}} \left( 1 - \frac{9}{4n} + \mathcal{O}\left(\frac{1}{n^2}\right) \right).$$

# **Application in Networking**

# Networking: Classical excursions contained in N-excursions

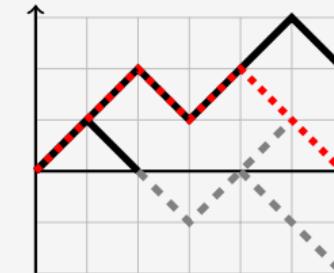
**Dyck**

Steps  $\{-1, 1\}$

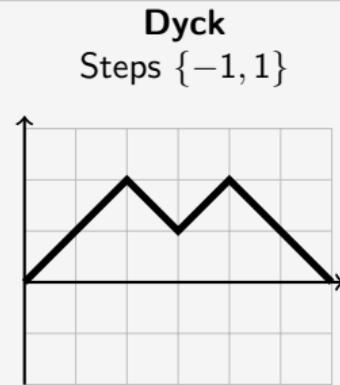
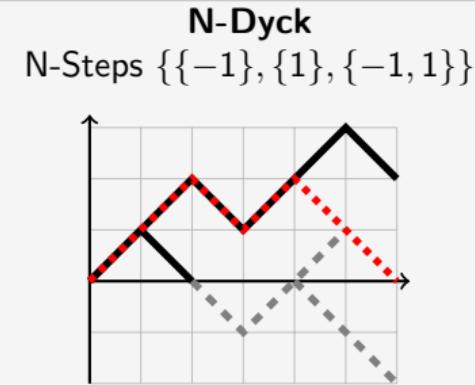


**N-Dyck**

N-Steps  $\{\{-1\}, \{1\}, \{-1, 1\}\}$



# Networking: Classical excursions contained in N-excursions



- Let  $c_{2n}$  be the total number of classical excursions contained in all N-excursions of length  $2n$ .
- Interpret every  $\{-1, 1\}$ -N-step either as a classical up- or down-step
- $\Rightarrow c_{2n} = 4^n \frac{1}{n+1} \binom{2n}{n}$ .

# Networking: Classical excursions contained in N-excursions



- Let  $c_{2n}$  be the total number of classical excursions contained in all N-excursions of length  $2n$ .
- Interpret every  $\{-1, 1\}$ -N-step either as a classical up- or down-step
- $\Rightarrow c_{2n} = 4^n \frac{1}{n+1} \binom{2n}{n}$ .

Average number of classical excursions in all N-excursions of length  $2n$

$$\frac{c_{2n}}{[t^{2n}]D^+(0, 1, t)} \sim \frac{4}{\sqrt{\pi n^3}} \left(\frac{4}{3}\right)^{2n}.$$

# Probability of a random N-walk to be an N-excursion

- Each N-step gets a **probability**

$$p_{-1}, p_1, p_{-1,1} \in [0, 1] \quad \text{such that} \quad p_{-1} + p_1 + p_{-1,1} = 1.$$

- Weight of N-walk is product of its weights

# Probability of a random N-walk to be an N-excursion

- Each N-step gets a **probability**

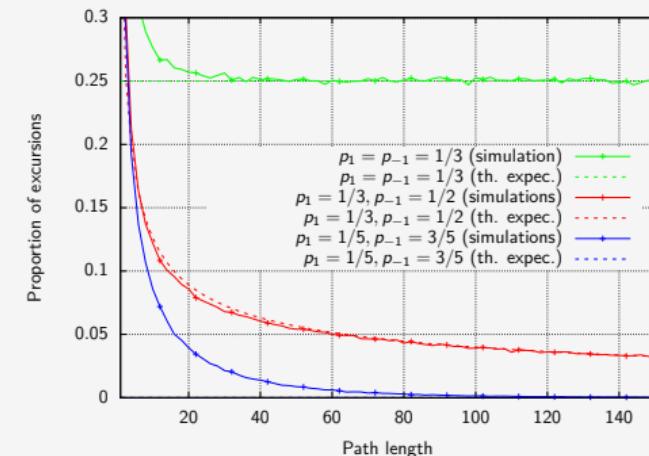
$$p_{-1}, p_1, p_{-1,1} \in [0, 1] \quad \text{such that} \quad p_{-1} + p_1 + p_{-1,1} = 1.$$

- Weight of N-walk is product of its weights

## Theorem

The probability of a random Dyck N-walk of length  $2n$  to be an  $N$ -excursion is for  $n \rightarrow \infty$  asymptotically equivalent to (where  $p_{-1}$  and  $p_1$  are interchangeable):

$$\left\{ \begin{array}{ll} \frac{(1-2p_1)(1-2p_{-1})}{(1-p_1)(1-p_{-1})} & \text{if } 0 \leq p_1 \leq p_{-1} < \frac{1}{2}, \\ 0 & \text{otherwise.} \end{array} \right.$$



# Probability of a random N-walk to be an N-excursion

- Each N-step gets a **probability**

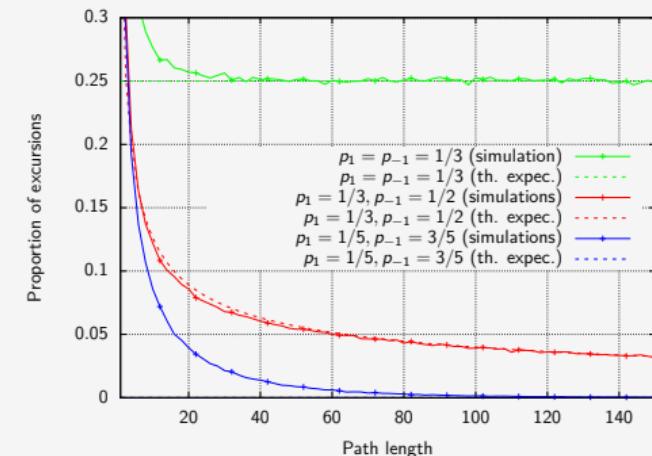
$$p_{-1}, p_1, p_{-1,1} \in [0, 1] \quad \text{such that} \quad p_{-1} + p_1 + p_{-1,1} = 1.$$

- Weight of N-walk is product of its weights

## Theorem

The probability of a random Dyck N-walk of length  $2n$  to be an N-excursion is for  $n \rightarrow \infty$  asymptotically equivalent to (where  $p_{-1}$  and  $p_1$  are interchangeable):

$$\left\{ \begin{array}{ll} \frac{(1-2p_1)(1-2p_{-1})}{(1-p_1)(1-p_{-1})} & \text{if } 0 \leq p_1 \leq p_{-1} < \frac{1}{2}, \\ \frac{1-2p_1}{(1-p_1)\sqrt{\pi n}} & \text{if } 0 \leq p_1 < \frac{1}{2} \text{ and } p_{-1} = \frac{1}{2}, \end{array} \right.$$



# Probability of a random N-walk to be an N-excursion

- Each N-step gets a **probability**

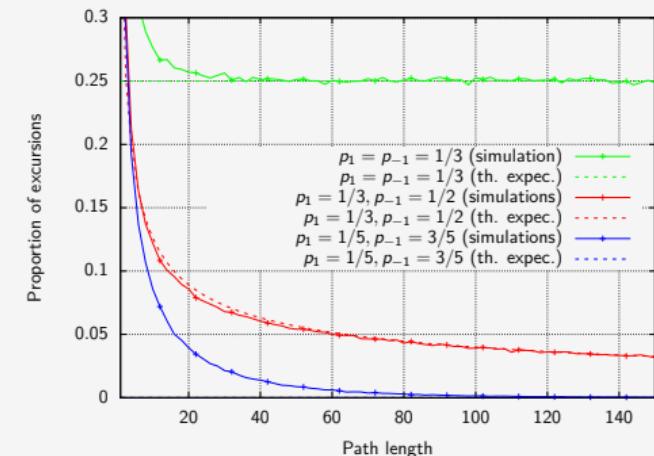
$$p_{-1}, p_1, p_{-1,1} \in [0, 1] \quad \text{such that} \quad p_{-1} + p_1 + p_{-1,1} = 1.$$

- Weight of N-walk is product of its weights

## Theorem

The probability of a random Dyck N-walk of length  $2n$  to be an N-excursion is for  $n \rightarrow \infty$  asymptotically equivalent to (where  $p_{-1}$  and  $p_1$  are interchangeable):

$$\left\{ \begin{array}{ll} \frac{(1-2p_1)(1-2p_{-1})}{(1-p_1)(1-p_{-1})} & \text{if } 0 \leq p_1 \leq p_{-1} < \frac{1}{2}, \\ \frac{1-2p_1}{(1-p_1)\sqrt{\pi n}} & \text{if } 0 \leq p_1 < \frac{1}{2} \text{ and } p_{-1} = \frac{1}{2}, \\ \frac{1}{\sqrt{\pi n^3}} & \text{if } p_1 = p_{-1} = \frac{1}{2}, \end{array} \right.$$



# Probability of a random N-walk to be an N-excursion

- Each N-step gets a **probability**

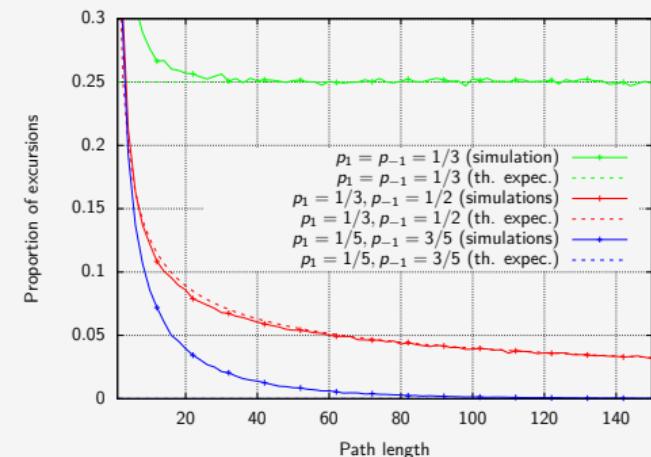
$$p_{-1}, p_1, p_{-1,1} \in [0, 1] \quad \text{such that} \quad p_{-1} + p_1 + p_{-1,1} = 1.$$

- Weight of N-walk is product of its weights

## Theorem

The probability of a random Dyck N-walk of length  $2n$  to be an  $N$ -excursion is for  $n \rightarrow \infty$  asymptotically equivalent to (where  $p_{-1}$  and  $p_1$  are interchangeable):

$$\left\{ \begin{array}{ll} \frac{(1-2p_1)(1-2p_{-1})}{(1-p_1)(1-p_{-1})} & \text{if } 0 \leq p_1 \leq p_{-1} < \frac{1}{2}, \\ \frac{1-2p_1}{(1-p_1)\sqrt{\pi n}} & \text{if } 0 \leq p_1 < \frac{1}{2} \text{ and } p_{-1} = \frac{1}{2}, \\ \frac{1}{\sqrt{\pi n^3}} & \text{if } p_1 = p_{-1} = \frac{1}{2}, \\ \gamma \frac{(4p_{-1}(1-p_{-1}))^n}{\sqrt{n^3}} & \text{if } 0 \leq p_1 < \frac{1}{2} < p_{-1} < 1 \\ & \text{and } p_{-1} + p_1 \leq 1. \end{array} \right.$$



# **Limit laws and two-dimensional lattice paths**

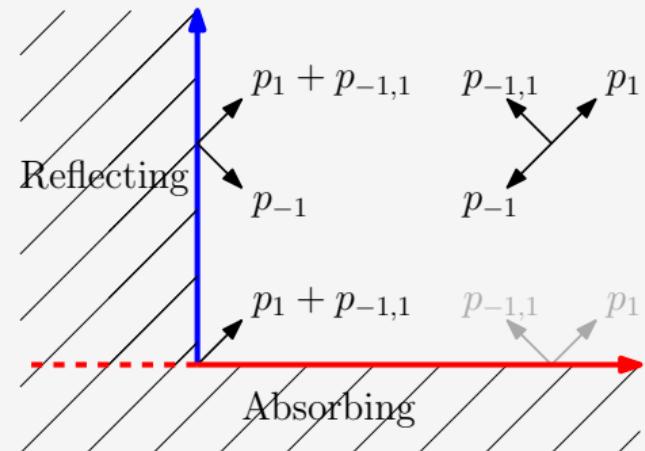
# Dyck N-meanders and two-dimensional lattice paths

N-meanders admit again an interpretation in terms of two-dimensional lattice paths:

Previous bijection for N-walks      plus      **spatial constraints**

- Paths remain in the first quadrant;
- **x-axis acts as an absorbing boundaries;**
- **y-axis as a reflecting boundaries.**

In particular, N-excursions are mapped to walks that end on the nonnegative  $y$ -axis (since  $\min^+ = 0$ ).



# Dyck N-meanders and two-dimensional lattice paths

N-meanders admit again an interpretation in terms of two-dimensional lattice paths:

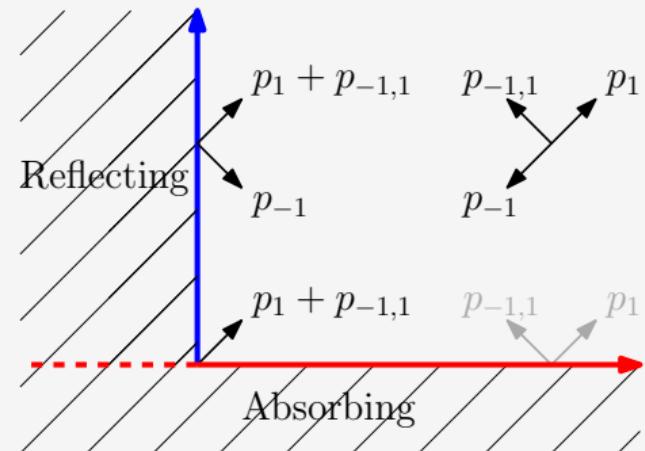
Previous bijection for N-walks      plus      **spatial constraints**

- Paths remain in the first quadrant;
- $x$ -axis acts as an absorbing boundaries;
- $y$ -axis as a reflecting boundaries.

In particular, N-excursions are mapped to walks that end on the nonnegative  $y$ -axis (since  $\min^+ = 0$ ).

Both boundaries absorbing:

- GF is algebraic [Bousquet-Mélou, Mishna 2010]
- Walks ending on  $y$ -axis: distance to origin obeys a binomial distribution, i.e., normal in the limit



## Limit law I: Final maximal point

We define the **x-drift**  $\delta_x = \mathbb{E}(x)$  and the **y-drift**  $\delta_y = \mathbb{E}(y)$ . The **drift** is given by  $\delta = (\delta_x, \delta_y)$  and for Dyck N-walks we have

$$\delta_x = p_1 - p_{-1,1} - p_{-1} = 2p_1 - 1,$$

$$\delta_y = p_1 + p_{-1,1} - p_{-1} = 1 - 2p_{-1}.$$

## Limit law I: Final maximal point

We define the **x-drift**  $\delta_x = \mathbb{E}(x)$  and the **y-drift**  $\delta_y = \mathbb{E}(y)$ . The **drift** is given by  $\delta = (\delta_x, \delta_y)$  and for Dyck N-walks we have

$$\begin{aligned}\delta_x &= p_1 - p_{-1,1} - p_{-1} = 2p_1 - 1, \\ \delta_y &= p_1 + p_{-1,1} - p_{-1} = 1 - 2p_{-1}.\end{aligned}$$

### Theorem

For  $p_{-1,1} \neq 0$  let  $X_n$  be the r.v. of the *final maximal point* of an  $N$ -excursion of length  $2n$  drawn uniformly at random:

$$\mathbb{P}(X_n = k) := \frac{[t^{2n}y^{2k}]D^+(0, y; t)}{[t^{2n}]D^+(0, 1; t)}.$$

## Limit law I: Final maximal point

We define the **x-drift**  $\delta_x = \mathbb{E}(x)$  and the **y-drift**  $\delta_y = \mathbb{E}(y)$ . The **drift** is given by  $\delta = (\delta_x, \delta_y)$  and for Dyck N-walks we have

$$\begin{aligned}\delta_x &= p_1 - p_{-1,1} - p_{-1} = 2p_1 - 1, \\ \delta_y &= p_1 + p_{-1,1} - p_{-1} = 1 - 2p_{-1}.\end{aligned}$$

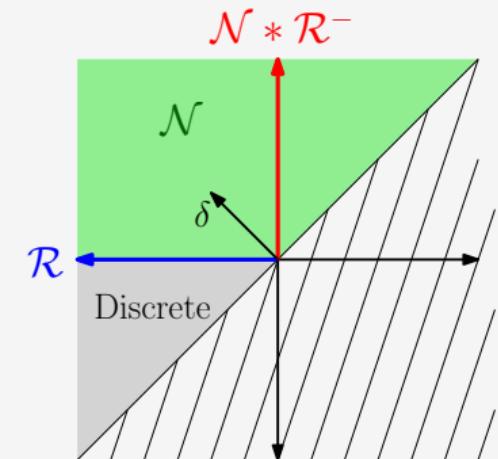
### Theorem

For  $p_{-1,1} \neq 0$  let  $X_n$  be the r.v. of the **final maximal point** of an  $N$ -excursion of length  $2n$  drawn uniformly at random:

$$\mathbb{P}(X_n = k) := \frac{[t^{2n} y^{2k}] D^+(0, y; t)}{[t^{2n}] D^+(0, 1; t)}.$$

Then,  $X_n$  admits a limit distribution that depends on the drift  $\delta$ :  
The limit law is either

- discrete,
- normal  $\mathcal{N}$ ,
- Rayleigh  $\mathcal{R}$ , or
- the convolution  $\mathcal{N} * \mathcal{R}^-$  of  $\mathcal{N}$  and  $\mathcal{R}$  with negative support.



Drift  $\delta = (-1/3, 1/3)$  for  $p_{-1} = p_1 = p_{-1,1} = \frac{1}{3}$ .

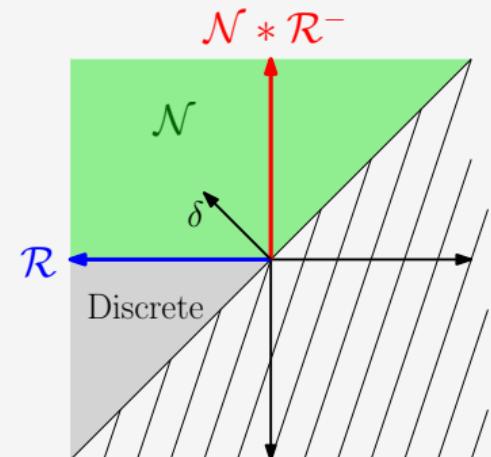
# Limit law I: Final maximal point (Proof)

## Theorem

For  $p_{-1,1} \neq 0$  let  $X_n$  be the r.v. of the *final maximal point* of an  $N$ -excursion of length  $2n$  drawn uniformly at random:

$$\mathbb{P}(X_n = k) := \frac{[t^{2n}y^{2k}]D^+(0, y; t)}{[t^{2n}]D^+(0, 1; t)}.$$

Then,  $X_n$  admits a limit distribution that depends on the drift  $\delta$ : The limit law is either discrete, normal  $\mathcal{N}$ , Rayleigh  $\mathcal{R}$ , or the convolution  $\mathcal{N} * \mathcal{R}^-$  of  $\mathcal{N}$  and  $\mathcal{R}$  with negative support.



## Proof:

- We start from the explicit shape of  $D^+(0, y, t)$ .
- Three candidates for the dominant singularity (polar and square-root type):

$$\rho_1 = \frac{1}{\sqrt{4p_{-1}(1-p_{-1})}}, \quad \rho_2(y) = \frac{1}{\sqrt{4p_1(p_{-1}+(1-p_1-p_{-1})y^2)}}, \quad \rho_3(y) = \frac{u}{(p_{-1}+(1-p_{-1})y^2)}.$$

- At most 2 coalesce.
- Methods: Singularity analysis [Flajolet, Odlyzko 90], quasi power-theorem [Hwang 98], square-root scheme on generating functions [Drmota, Soria 97].

□

## Limit law II: Returns to $\{0\}$

### Theorem

Let  $Y_n$  be the r.v. of the **number of returns to  $\{0\}$**  in an  $N$ -excursion of length  $2n$  drawn uniformly at random. Then,  $Y_n$  admits a discrete limit law of **geometric, negative binomial, or mixed type**.

## Limit law II: Returns to $\{0\}$

### Theorem

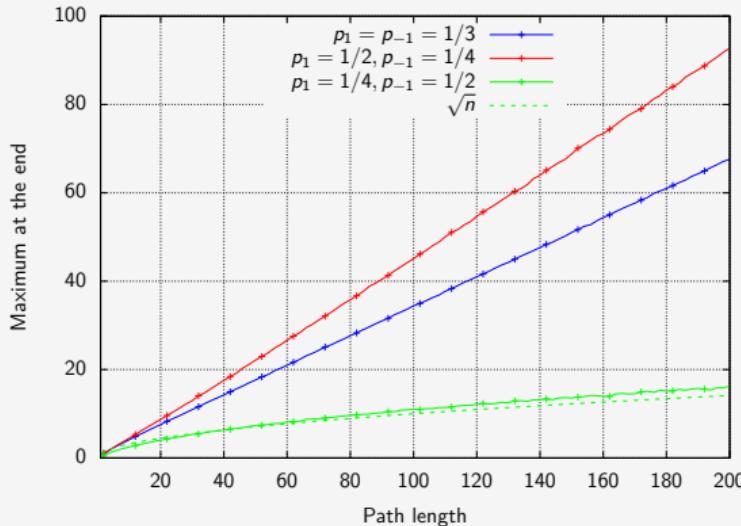
Let  $Y_n$  be the r.v. of the **number of returns to  $\{0\}$**  in an  $N$ -excursion of length  $2n$  drawn uniformly at random. Then,  $Y_n$  admits a discrete limit law of **geometric, negative binomial, or mixed type**.

$$\mathbb{P}(Y_n = k) = \begin{cases} \frac{1}{D^+(0,0;1)} \left(1 - \frac{1}{D^+(0,0;1)}\right)^k & \text{if } 0 \leq p_1 \leq p_{-1} < \frac{1}{2}, \\ (1 - p_{-1})p_{-1}^k & \text{if } 0 \leq p_{-1} < \frac{1}{2} \text{ and } p_1 = \frac{1}{2}, \\ \frac{1}{2^{k+1}} & \text{if } 0 \leq p_1 < \frac{1}{2} \text{ and } p_{-1} = \frac{1}{2}, \\ \frac{k}{2^{k+1}} & \text{if } p_1 + p_{-1} = 1, \\ \frac{1}{D^+(0,0;\rho_2)} \left(1 - \frac{1}{D^+(0,0;\rho_2)}\right)^k & \text{if } 0 \leq p_{-1} < \frac{1}{2} < p_1 < 1 \text{ and } p_{-1} + p_1 < 1, \\ (1 - \eta)\frac{1}{2^{k+1}} + \eta\frac{k}{2^{k+1}} & \text{if } 0 \leq p_1 < \frac{1}{2} < p_{-1} < 1 \text{ and } p_{-1} + p_1 < 1, \end{cases}$$

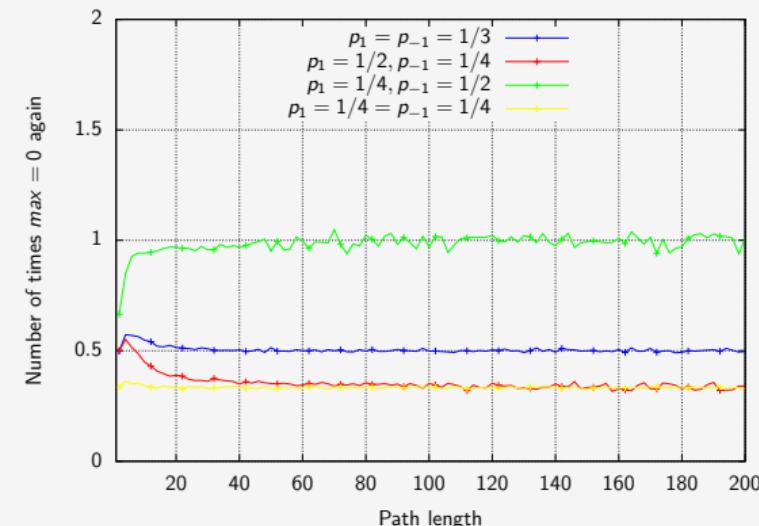
where  $\rho_2 = \frac{1}{4p_1(1-p_1)}$  and  $\eta = \frac{p_{-1}(p_{-1}-p_1)-\sqrt{p_{-1}(1-p_{-1})(1-p_1-p_{-1})(p_{-1}-p_1)}}{p_{-1}(1-p_1)} \in [0, 1]$ .

# Simulations of the limit laws: Expectations

Limit Law I: Final maximal point



Limit Law II: Returns to  $\{0\}$



Depends on  $y$ -drift:  $\delta_y = 1 - 2p_{-1}$ :

- $\delta_y > 0$ : linear
- $\delta_y = 0$ :  $\sqrt{n}$
- $\delta_y < 0$ : constant

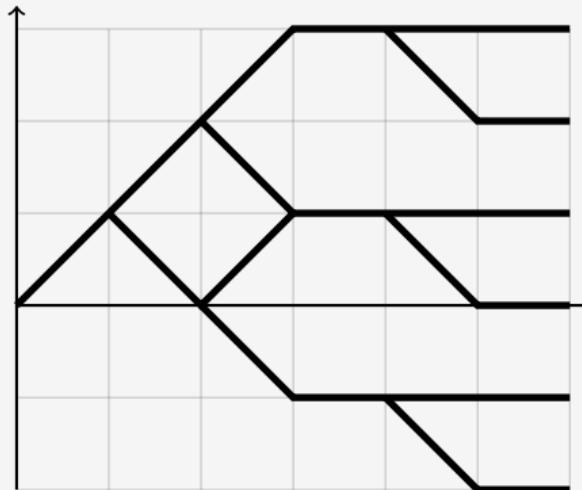
# Other N-step sets

# Motzkin N-steps

$$\text{N-step set } \mathcal{S} = \left\{ \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\} \right\}$$

## Theorem

*The generating functions of Motzkin N-bridges, N-meanders, and N-excursions are **algebraic**. of degree at most 16.*

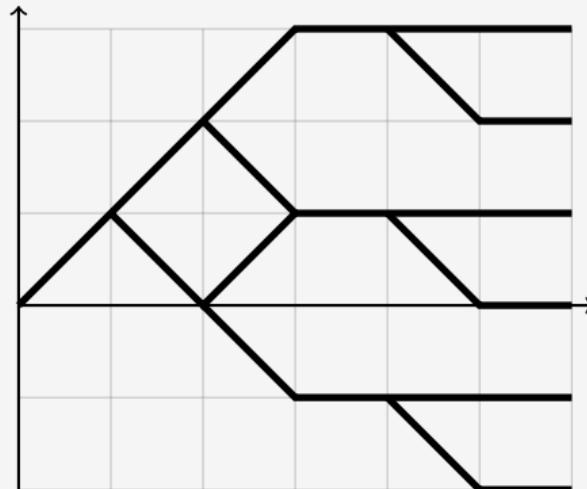


# Motzkin N-steps

$$\text{N-step set } \mathcal{S} = \left\{ \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\} \right\}$$

## Theorem

*The generating functions of Motzkin N-bridges, N-meanders, and N-excursions are **algebraic**. of degree at most 16.*



The **reachable point pattern changes**:

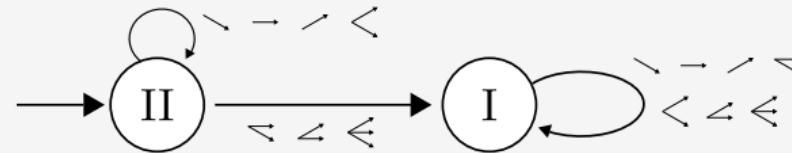
- 2-periodic: finite intervals in  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$ ; or
- 1-periodic: finite intervals in  $\mathbb{Z}$

# Proof idea for Motzkin N-steps

- Reachable points have 2 types
  - 1 Type I: interval of  $\mathbb{Z}$  (1-periodic)
  - 2 Type II: interval of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$  (2-periodic)

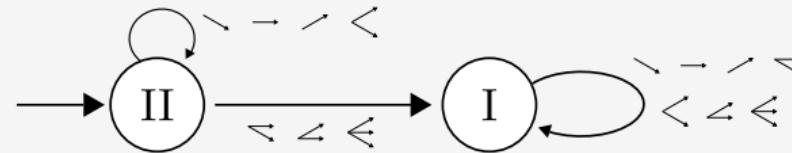
# Proof idea for Motzkin N-steps

- Reachable points have 2 types
  - 1 Type I: interval of  $\mathbb{Z}$  (1-periodic)
  - 2 Type II: interval of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$  (2-periodic)
- Translate interaction of types into **automaton** whose alphabet are the N-steps
  - Walks and bridges

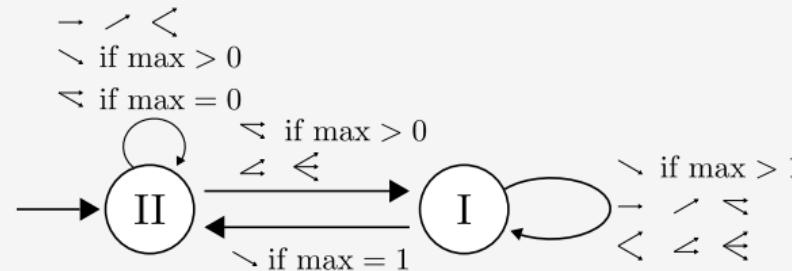


# Proof idea for Motzkin N-steps

- Reachable points have 2 types
  - Type I: interval of  $\mathbb{Z}$  (1-periodic)
  - Type II: interval of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$  (2-periodic)
- Translate interaction of types into **automaton** whose alphabet are the N-steps
  - Walks and bridges

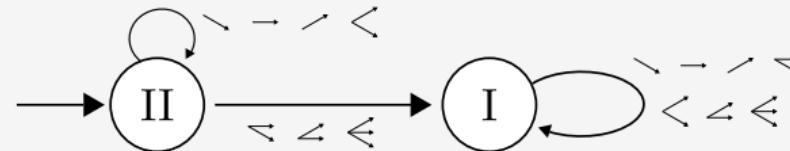


- Meanders and excursions

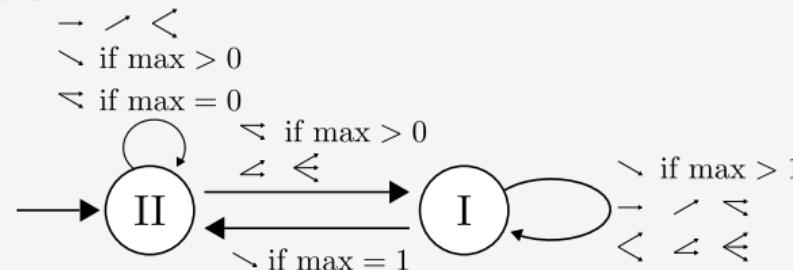


# Proof idea for Motzkin N-steps

- Reachable points have 2 types
  - Type I: interval of  $\mathbb{Z}$  (1-periodic)
  - Type II: interval of  $2\mathbb{Z}$  or  $2\mathbb{Z} + 1$  (2-periodic)
- Translate interaction of types into **automaton** whose alphabet are the N-steps
  - Walks and bridges



- Meanders and excursions



- Translate into system of generating of 2 generating functions
- Use vectorial extension of kernel method twice

## N-Motzkin paths with arbitrary weights

The generating functions are algebraic with with **arbitrary weights**:

N-step set

$$\mathcal{S} = \left\{ \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\} \right\}$$

with weights

$$p_s \in \{0, 1\}.$$

# N-Motzkin paths with arbitrary weights

The generating functions are algebraic with with **arbitrary weights**:

N-step set

$$\mathcal{S} = \left\{ \{-1\}, \{0\}, \{1\}, \{-1, 0\}, \{-1, 1\}, \{0, 1\}, \{-1, 0, 1\} \right\}$$

with weights

$$p_s \in \{0, 1\}.$$

| $p_1$ | $p_{-1}$ | $p_0$ | $p_{-1,0}$ | $p_{0,1}$ | $p_{-1,1}$ | $p_{-1,0,1}$ | OEIS    | Domain                           | Steps                                                              |
|-------|----------|-------|------------|-----------|------------|--------------|---------|----------------------------------|--------------------------------------------------------------------|
| 1     | 0        | 0     | 1          | 0         | 0          | 1            | A151281 | Nonnegative<br>line $\mathbb{N}$ | $\{-1, 1_1, 1_2\}$                                                 |
| 0     | 1        | 0     | 0          | 1         | 0          | 1            |         |                                  |                                                                    |
| 1     | 0        | 1     | 1          | 0         | 0          | 1            | A129637 | Triangular<br>lattice            | $\{W, SE, SW, NW\}$                                                |
| 0     | 1        | 1     | 0          | 1         | 0          | 1            |         |                                  |                                                                    |
| 1     | 0        | 0     | 1          | 1         | 0          | 1            |         |                                  |                                                                    |
| 0     | 1        | 0     | 1          | 1         | 0          | 1            |         |                                  |                                                                    |
| 1     | 0        | 1     | 1          | 1         | 0          | 1            | A151251 | First<br>octant $\mathbb{N}^3$   | $\{(0, 0, 1), (0, 1, 0), (1, 1, 0),$<br>$(1, 1, 1), (-1, -1, 0)\}$ |
| 0     | 1        | 1     | 1          | 1         | 0          | 1            |         |                                  |                                                                    |

**Table:** N-Motzkin excursions related to (higher-dimensional) paths that start at the origin and remain in the given domain.

# General N-bridges

## Theorem

For any finite  $N$ -step set  $S$ , the generating function  $B(x, y; t)$  of  $N$ -bridges (with respect to length, minimal, and maximal reachable point) is **algebraic**.

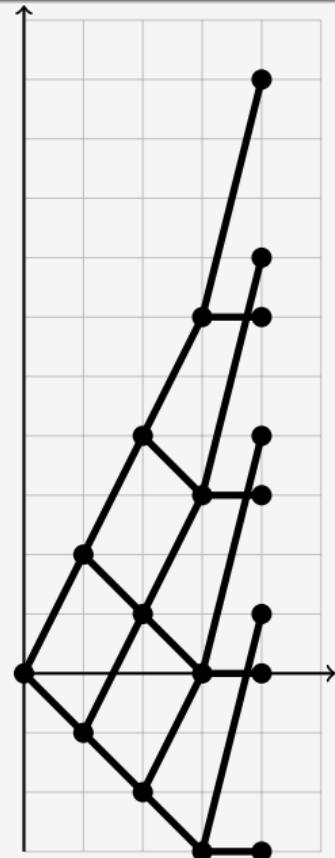
# General N-bridges

## Theorem

For any finite  $N$ -step set  $S$ , the generating function  $B(x, y; t)$  of  $N$ -bridges (with respect to length, minimal, and maximal reachable point) is **algebraic**.

Understand reachable points and how they interact:

- Consider the  $N$ -walk  $(\{-1, 2\}, \{-1, 2\}, \{-1, 2\}, \{0, 4\})$  on the right



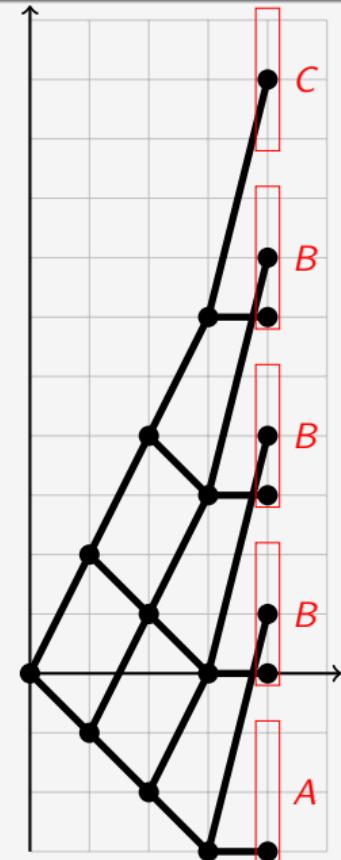
# General N-bridges

## Theorem

For any finite  $N$ -step set  $S$ , the generating function  $B(x, y; t)$  of  $N$ -bridges (with respect to length, minimal, and maximal reachable point) is **algebraic**.

Understand reachable points and how they interact:

- Consider the  $N$ -walk  $(\{-1, 2\}, \{-1, 2\}, \{-1, 2\}, \{0, 4\})$  on the right
- We say that this  $N$ -walk is of **type(A, B, C)**



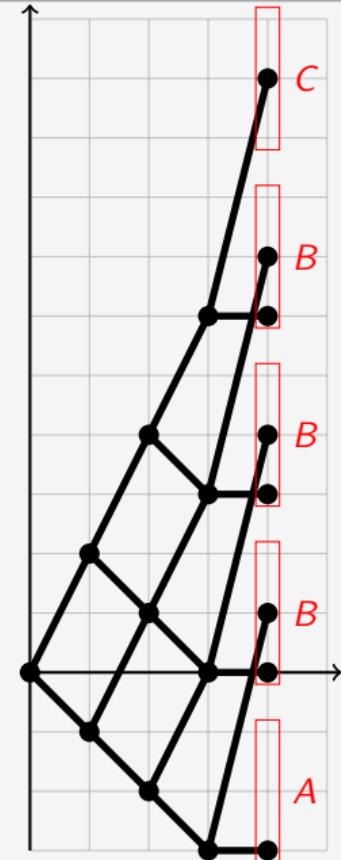
# General N-bridges

## Theorem

For any finite  $N$ -step set  $S$ , the generating function  $B(x, y; t)$  of  $N$ -bridges (with respect to length, minimal, and maximal reachable point) is **algebraic**.

Understand reachable points and how they interact:

- Consider the  $N$ -walk  $(\{-1, 2\}, \{-1, 2\}, \{-1, 2\}, \{0, 4\})$  on the right
- We say that this  $N$ -walk is of **type(A, B, C)**
- Main tool: Additive Combinatorics



# General N-bridges

## Theorem

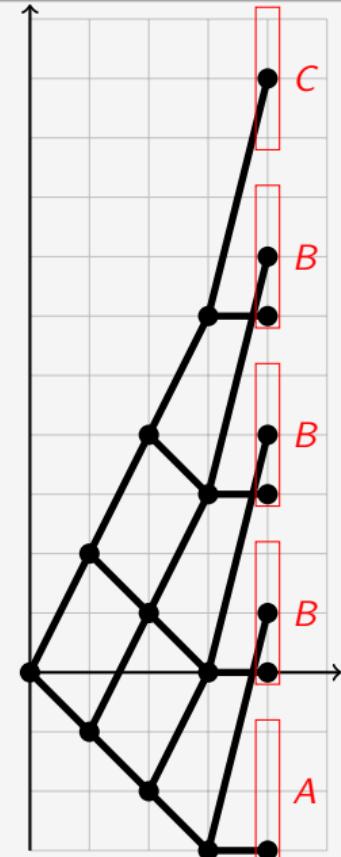
For any finite  $N$ -step set  $S$ , the generating function  $B(x, y; t)$  of  $N$ -bridges (with respect to length, minimal, and maximal reachable point) is **algebraic**.

Understand reachable points and how they interact:

- Consider the  $N$ -walk  $(\{-1, 2\}, \{-1, 2\}, \{-1, 2\}, \{0, 4\})$  on the right
- We say that this  $N$ -walk is of **type(A, B, C)**
- Main tool: Additive Combinatorics

## Proposition

For any finite subset  $S \subset \mathbb{Z}$ , there is a **finite set of types**  $(A_i, B_i, C_i)_{1 \leq i \leq k}$  such that for any  $N$ -walk  $w = (s_1, \dots, s_n) \in S^n$ , the sumset  $s_1 + \dots + s_n$  belongs to type  $(A_i, B_i, C_i)$  for some  $1 \leq i \leq k$ .



## General N-meanders and N-excursions

### Theorem (Algebraic subfamilies of N-meanders)

- The GF  $D^+(1, y; t)$  ( $y$  marks the maximal reachable point and  $t$  the length) is algebraic.
- The GF  $D^+(0, 0; t)$  (reachable point set  $\{0\}$ ) is algebraic.

# General N-meanders and N-excursions

## Theorem (Algebraic subfamilies of N-meanders)

- The GF  $D^+(1, y; t)$  ( $y$  marks the maximal reachable point and  $t$  the length) is algebraic.
- The GF  $D^+(0, 0; t)$  (reachable point set  $\{0\}$ ) is algebraic.

## Algebraicity Conjecture

For any N-step set, the generating function of N-excursions is algebraic.

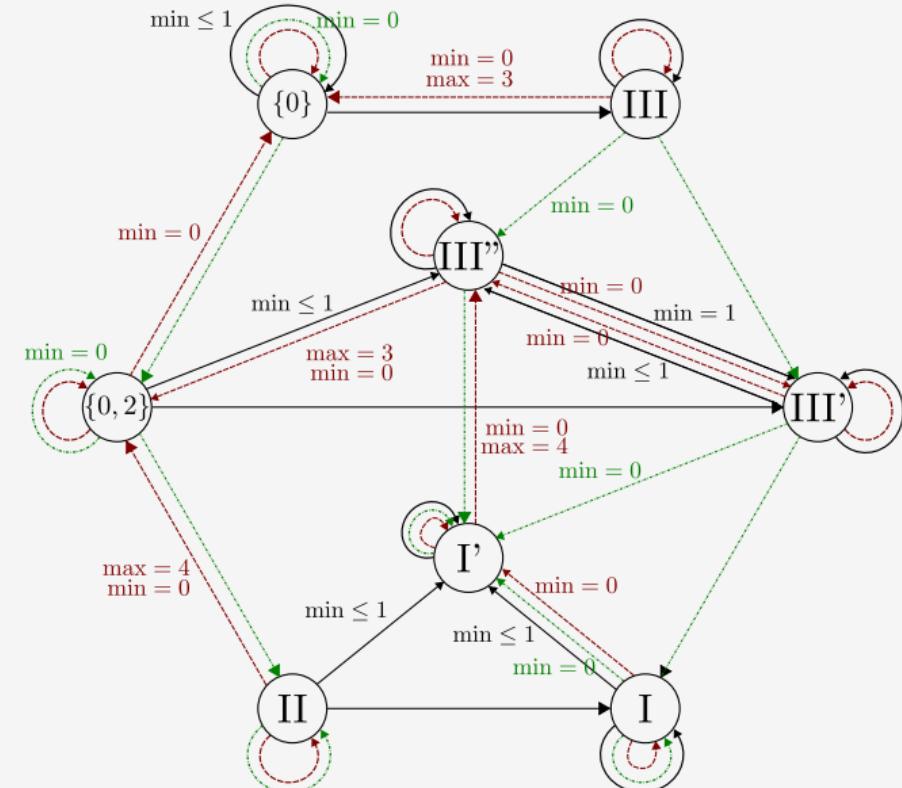
- We developed a python package to experimentally find the types and the automaton
- We also implemented a Maple worksheet to analyze this data (e.g., guessing).

## Example of an N-excursion with finitely many types

| N-steps      | States | Types                                          |
|--------------|--------|------------------------------------------------|
| ----- {-1}   | {0}    | type(0, 0, $\emptyset$ , {0}, $\emptyset$ )    |
| ---- {-1, 1} | {0, 2} | type(0, 0, $\emptyset$ , {0, 2}, $\emptyset$ ) |
| — {-2, 1}    | I      | type(1, 6, {1}, {0}, {1})                      |
|              | I'     | type(1, 4, $\emptyset$ , {0}, {1})             |
|              | II     | type(2, 2, $\emptyset$ , {0}, $\emptyset$ )    |
|              | III    | type(3, 1, $\emptyset$ , {0}, $\emptyset$ )    |
|              | III'   | type(3, 1, $\emptyset$ , {0, 2}, $\emptyset$ ) |
|              | III''  | type(3, 1, {0}, {0, 2}, $\emptyset$ )          |

# Example of an N-excursion with finitely many types

| N-steps       | States | Types                                          |
|---------------|--------|------------------------------------------------|
| ----- {-1}    | {0}    | type(0, 0, $\emptyset$ , {0}, $\emptyset$ )    |
| ----- {-1, 1} | {0, 2} | type(0, 0, $\emptyset$ , {0, 2}, $\emptyset$ ) |
| — {-2, 1}     | I      | type(1, 6, {1}, {0}, {1})                      |
|               | I'     | type(1, 4, $\emptyset$ , {0}, {1})             |
|               | II     | type(2, 2, $\emptyset$ , {0}, $\emptyset$ )    |
|               | III    | type(3, 1, $\emptyset$ , {0}, $\emptyset$ )    |
|               | III'   | type(3, 1, $\emptyset$ , {0, 2}, $\emptyset$ ) |
|               | III''  | type(3, 1, {0}, {0, 2}, $\emptyset$ )          |



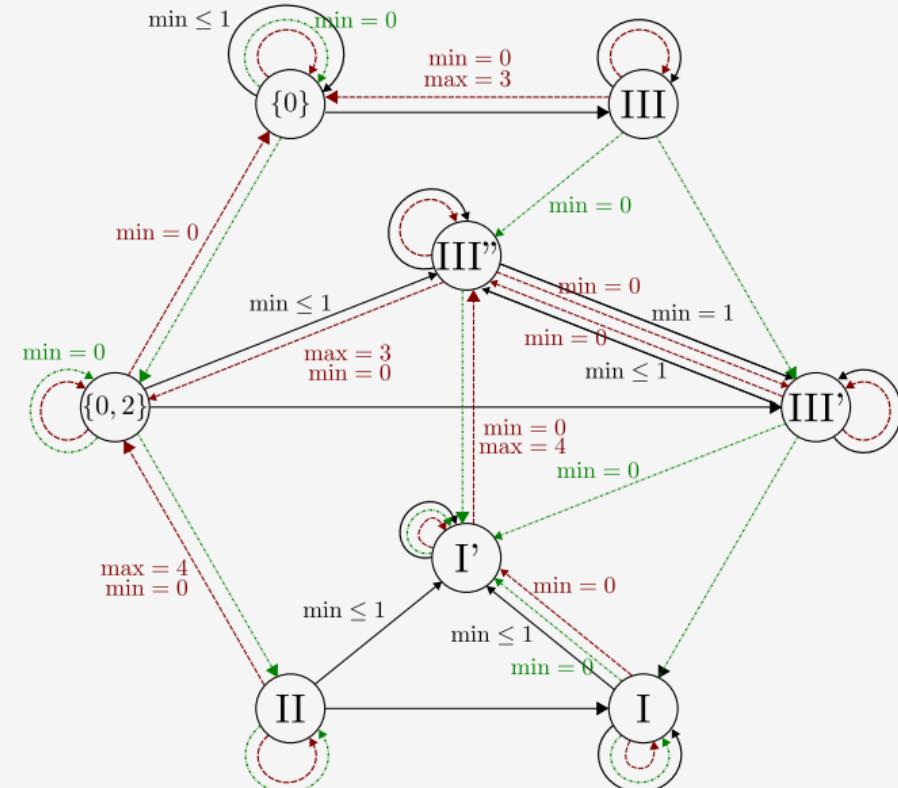
# Example of an N-excursion with finitely many types

| N-steps       | States | Types                                          |
|---------------|--------|------------------------------------------------|
| ----- {-1}    | {0}    | type(0, 0, $\emptyset$ , {0}, $\emptyset$ )    |
| ----- {-1, 1} | {0, 2} | type(0, 0, $\emptyset$ , {0, 2}, $\emptyset$ ) |
| — {-2, 1}     | I      | type(1, 6, {1}, {0}, {1})                      |
|               | I'     | type(1, 4, $\emptyset$ , {0}, {1})             |
|               | II     | type(2, 2, $\emptyset$ , {0}, $\emptyset$ )    |
|               | III    | type(3, 1, $\emptyset$ , {0}, $\emptyset$ )    |
|               | III'   | type(3, 1, $\emptyset$ , {0, 2}, $\emptyset$ ) |
|               | III''  | type(3, 1, {0}, {0, 2}, $\emptyset$ )          |

## N-Excursions

$$D^+(0, 1; t) = 1 + 4t^2 + 4t^3 + 28t^4 + \dots$$

Guess: algebraic of **degree 4!** Proof?



# **Context-free grammars and outlook**

# Nondeterminism and context-free grammars

The following holds for arbitrary N-step sets.

## N-walks can be described by context-free grammars

- Context-free languages are recognized by (nondeterministic) **pushdown automata** with a single stack
- Use nondeterminism to follow all trajectories in parallel
- Use stack to track current altitude

# Nondeterminism and context-free grammars

The following holds for arbitrary N-step sets.

## N-walks can be described by context-free grammars

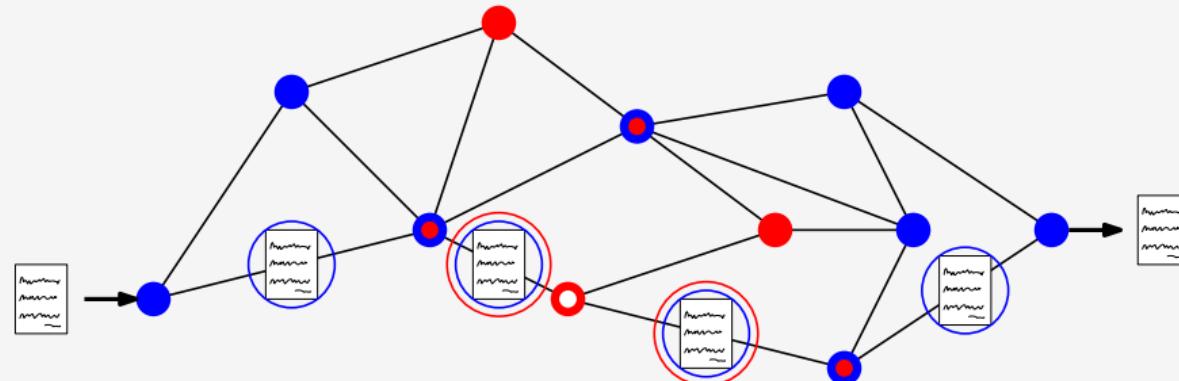
- Context-free languages are recognized by (nondeterministic) **pushdown automata** with a single stack
- Use nondeterminism to follow all trajectories in parallel
- Use stack to track current altitude

- Important result by **[Chomsky, Schützenberger 63]**: The GF of the number of words of **unambiguous context-free grammars** is algebraic
- Problems:
  - difficult to find grammar
  - difficult to solve associated system
- Our approach: **lattice paths** and the **kernel method**

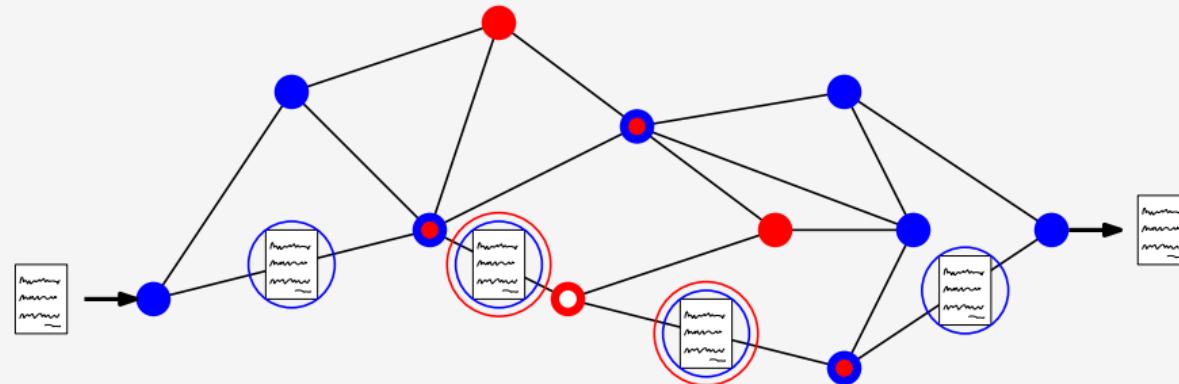
# Future work

- **Other topologies:** e.g., series-parallel graphs
- **More protocols:** So far we considered only one protocol
- Underlying **context-free grammars**



## Future work

- **Other topologies:** e.g., series-parallel graphs
- **More protocols:** So far we considered only one protocol
- Underlying **context-free grammars**



# THANK YOU!

# Backup

# Interesting OEIS connections for Motzkin N-meanders

| $p_1$ | $p_{-1}$ | $p_0$ | $p_{-1,0}$ | $p_{0,1}$ | $p_{-1,1}$ | $p_{-1,0,1}$ | OEIS    | Steps                                                         |
|-------|----------|-------|------------|-----------|------------|--------------|---------|---------------------------------------------------------------|
| 1     | 1        | 0     | 0          | 1         | 1          | 0            | A151162 | $\{(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)\}$             |
| 1     | 1        | 0     | 0          | 1         | 0          | 1            |         |                                                               |
| 1     | 1        | 0     | 0          | 0         | 1          | 1            |         |                                                               |
| 0     | 1        | 0     | 0          | 1         | 1          | 1            |         |                                                               |
| 1     | 1        | 1     | 1          | 1         | 0          | 0            | A151251 | $\{(-1, -1, 0), (0, 0, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1)\}$ |
| 1     | 1        | 1     | 1          | 0         | 1          | 0            |         |                                                               |
| 0     | 1        | 1     | 1          | 1         | 1          | 0            |         |                                                               |
| 1     | 1        | 1     | 1          | 0         | 0          | 1            |         |                                                               |
| 0     | 1        | 1     | 1          | 1         | 0          | 1            |         |                                                               |
| 0     | 1        | 1     | 1          | 0         | 1          | 1            |         |                                                               |
| 1     | 1        | 1     | 0          | 1         | 1          | 0            | A151253 | $\{(-1, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)\}$  |
| 1     | 1        | 0     | 1          | 1         | 1          | 0            |         |                                                               |
| 1     | 1        | 1     | 0          | 1         | 0          | 1            |         |                                                               |
| 1     | 1        | 0     | 1          | 1         | 0          | 1            |         |                                                               |
| 1     | 1        | 1     | 0          | 0         | 1          | 1            |         |                                                               |
| 1     | 1        | 0     | 1          | 0         | 1          | 1            |         |                                                               |
| 0     | 1        | 1     | 0          | 1         | 1          | 1            | A151254 | $\{(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}$  |
| 0     | 1        | 0     | 1          | 1         | 1          | 1            |         |                                                               |
| 1     | 1        | 0     | 0          | 1         | 1          | 1            |         |                                                               |

Table: N-Motzkin meanders related to 3D paths that start at the origin and remain in the first octant  $\mathbb{N}^3$ .