Bivariate Linear Recurrences in Enumeration – Asymptotics and Application

Michael Wallner

TU Graz, Austria

Enumerative combinatorics and effective aspects of differential equations Combinatoire énumérative et aspects effectifs des équations différentielles

February 24-28, 2025

- 1 Part I: Bivariate Recurrences
- 2 Part II: The Stretched Exponential Method
- 3 Part III: Applications in Computer Science and Mathematical Biology

Part I Bivariate Recurrences

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

i.	i i	i	i i	i i
i.	i i	i	i.	i i
1	L L	1	1	1 I I
\vdash		+ -	⊢	
1	L L	I.	I.	I I
1	I I	1	I.	I I
1	I I	1	I.	I I
-				
1	I I			1 1
1	I I			1 1
1				
	ii-	<u>+</u> -		i i
1	I I I	1	1	I I
1	L L	I.	1	I I
1	L L	I.	1	I I
L			L	

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

Let $a_{m,n}$ be the number of paths from (0,0) to (m, n). Then,

 $\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{for } m, n > 0, \end{cases}$

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{for } m, n > 0, \\ a_{m,0} = a_{m-1,0} & \text{for } m > 0, \end{cases}$$

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	1 for $m, n > 0$,
$\int a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
l	

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for $m, n > 0$,
$a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

$\int a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for <i>m</i> , <i>n</i> > 0
$a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

$(a_{m,n} = a_{m-1,n} + a_{m,n-1})$	for $m, n > 0$,
$\int a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

Let $a_{m,n}$ be the number of paths from (0,0) to (m, n). Then,

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for <i>m</i> , <i>n</i> > 0
$a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

• Here, it is easy to see that $a_{m,n} = \binom{m+n}{m}$.

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

Let $a_{m,n}$ be the number of paths from (0,0) to (m, n). Then,

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for <i>m</i> , <i>n</i> > 0
$a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

• Here, it is easy to see that $a_{m,n} = \binom{m+n}{m}$.

But what happens if we change the domain and add polynomial weights?

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$$
 for $m \ge n > 0$

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

Let $a_{m,n}$ be the number of paths from (0,0) to (m, n). Then,

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for $m, n > 0$
$\int a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

• Here, it is easy to see that $a_{m,n} = \binom{m+n}{m}$.

But what happens if we change the domain and add polynomial weights?

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$$
 for $m \ge n > 0$

Answer: We don't know (a lot)!

A counting problem

Consider a $m \times n$ grid. We start in the lower left corner. In how many ways can we cross the grid using the steps E = (1,0) and N = (0,1)?

Let $a_{m,n}$ be the number of paths from (0,0) to (m, n). Then,

$a_{m,n} = a_{m-1,n} + a_{m,n-1}$	for <i>m</i> , <i>n</i> > 0
$a_{m,0} = a_{m-1,0}$	for $m > 0$,
$a_{0,n} = a_{0,n-1}$	for $n > 0$,
$a_{0,0} = 1.$	

• Here, it is easy to see that $a_{m,n} = \binom{m+n}{m}$.

But what happens if we change the domain and add polynomial weights?

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$$
 for $m \ge n > 0$

Answer: We don't know (a lot)!

ightarrow In this course you will learn what *asymptotic* information we can deduce!

Landau notation

Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$, $b_n > 0$ be two sequences.

$$a_n = \mathcal{O}(b_n) \quad \text{if } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n = \Theta(b_n) \quad \text{if } 0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n} \text{ and } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n \sim b_n \qquad \text{if } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$$

Landau notation Let $(a_n)_{n \ge 0}$ and $(b_n)_{n \ge 0}$, $b_n > 0$ be two sequences. **a**_n = $\mathcal{O}(b_n)$ if $\limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$ **a**_n = $\Theta(b_n)$ if $0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n}$ and $\limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$ **a**_n $\sim b_n$ if $\lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$

Examples:

Stirling's formula

$$\bullet n! = \mathcal{O}(n^n)$$

$$\blacksquare n! = \Theta\left(n^{n+1/2} e^{-n}\right)$$

$$\blacksquare n! \sim \sqrt{2\pi n} n^n e^{-n}$$

Landau notation Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$, $b_n > 0$ be two sequences. $a_n = \mathcal{O}(b_n)$ if $\limsup_{n\to\infty} \frac{|a_n|}{b_n} < \infty$

$$a_n = \Theta(b_n) \quad \text{if } 0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n} \text{ and } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n \sim b_n \qquad \text{if } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$$

Examples:

Stirling's formula $n! = O(n^{n})$ $n! = \Theta(n^{n+1/2}e^{-n})$ $n! \sim \sqrt{2\pi n}n^{n}e^{-n}$

Landau notation

Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$, $b_n > 0$ be two sequences.

$$a_n = \mathcal{O}(b_n) \quad \text{if } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n = \Theta(b_n) \quad \text{if } 0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n} \text{ and } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n \sim b_n \qquad \text{if } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$$

Examples:

Stirling's formula

 $\blacksquare n! = \mathcal{O}(n^n)$

$$\blacksquare n! = \Theta\left(n^{n+1/2} e^{-n}\right)$$

$$n! \sim \sqrt{2\pi n} n^n e^{-n}$$

Binomial coeffs

Why asymptotics?

- Simpler formulas
- Approximations
- Universality like n^{-1/2}
- Large-scale behavior:
 - limit laws
 - phase transitions
 - (non-)Brownian limiting objects

Landau notation

Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$, $b_n > 0$ be two sequences.

$$a_n = \mathcal{O}(b_n) \quad \text{if } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n = \Theta(b_n) \quad \text{if } 0 < \liminf_{n \to \infty} \frac{|a_n|}{b_n} \text{ and } \limsup_{n \to \infty} \frac{|a_n|}{b_n} < \infty$$
$$a_n \sim b_n \qquad \text{if } \lim_{n \to \infty} \frac{|a_n|}{b_n} = 1$$

Examples:

Stirling's formula

 $\blacksquare n! = \mathcal{O}(n^n)$

$$\blacksquare n! = \Theta\left(n^{n+1/2} e^{-n}\right)$$

$$\blacksquare n! \sim \sqrt{2\pi n} n^n e^{-n}$$

Binomial coeffs

• $\binom{2n}{n} = \mathcal{O}(4^n)$ • $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$ • $\binom{2n}{n} \sim \frac{4^n}{\sqrt{n}}$

Why asymptotics?

- Simpler formulas
- Approximations
- Universality like n^{-1/2}
- Large-scale behavior:
 - limit laws
 - phase transitions
 - (non-)Brownian limiting objects

Allows to prove

- transcendence (i.e., non-algebraic, non-D-finite) [Bostan, Raschel, Salvy 2014]
- ambiguity of context-free languages [Flajolet 1987]
- transience of drunkard walk in 3D and higher [Pólya 1921]
- capacity of a channel/needed bits for encoding [MacKay 2003]

Linear recurrences

In this course we will only consider finite order linear recurrences

$$a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d} \quad \text{for } (m,n) \in \mathcal{C}$$
(1)

where the coefficients are polynomials in *m* and *n* and $C \subseteq \mathbb{Z}^2$.

Linear recurrences

In this course we will only consider finite order linear recurrences

$$a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d} \quad \text{for } (m,n) \in \mathcal{C}$$
(1)

where the coefficients are polynomials in *m* and *n* and $C \subseteq \mathbb{Z}^2$.

Theorem [Bousquet-Mélou, Petkovšek 2000]

Let $H = \{(i_1, j_1), \dots, (i_d, j_d)\}$ and $C = \mathbb{Z}_{\geq 0}^2$. Then (1) has a unique solution if $\mathbb{R}_{\geq 0}^2 \cap \operatorname{conv} H = \emptyset$.

B Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.

Linear recurrences

In this course we will only consider finite order linear recurrences

$$a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d} \quad \text{for } (m,n) \in \mathcal{C}$$
(1)

where the coefficients are polynomials in *m* and *n* and $C \subseteq \mathbb{Z}^2$.

Theorem [Bousquet-Mélou, Petkovšek 2000]

Let $H = \{(i_1, j_1), \dots, (i_d, j_d)\}$ and $C = \mathbb{Z}_{\geq 0}^2$. Then (1) has a unique solution if $\mathbb{R}_{\geq 0}^2 \cap \operatorname{conv} H = \emptyset$.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.

- The recurrence $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ has a unique solution in the following two cones:
 - **1** For m, n > 0 we have $H = \{(-1, 0), (0, -1)\}$

Linear recurrences

In this course we will only consider finite order linear recurrences

$$a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d} \quad \text{for } (m,n) \in \mathcal{C}$$
(1)

where the coefficients are polynomials in *m* and *n* and $C \subseteq \mathbb{Z}^2$.

Theorem [Bousquet-Mélou, Petkovšek 2000]

Let $H = \{(i_1, j_1), \dots, (i_d, j_d)\}$ and $C = \mathbb{Z}_{\geq 0}^2$. Then (1) has a unique solution if $\mathbb{R}_{\geq 0}^2 \cap \operatorname{conv} H = \emptyset$.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.

- The recurrence $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ has a unique solution in the following two cones:
 - 1 For m, n > 0 we have $H = \{(-1, 0), (0, -1)\}$
 - **2** For $m \ge n > 0$ we first transform the cone to $\mathbb{Z}^2_{>0}$ This gives

$$ilde{a}_{m,n} = ilde{a}_{m-1,n} + ilde{a}_{m+1,n-1}$$
 for $m,n \ge 0$.

Therefore, we have $H = \{(-1, 0), (1, -1)\}.$

Linear recurrences

In this course we will only consider finite order linear recurrences

$$a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d} \quad \text{for } (m,n) \in \mathcal{C}$$
(1)

where the coefficients are polynomials in *m* and *n* and $C \subseteq \mathbb{Z}^2$.

Theorem [Bousquet-Mélou, Petkovšek 2000]

Let $H = \{(i_1, j_1), \dots, (i_d, j_d)\}$ and $C = \mathbb{Z}_{\geq 0}^2$. Then (1) has a unique solution if $\mathbb{R}_{\geq 0}^2 \cap \operatorname{conv} H = \emptyset$.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.

- The recurrence $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ has a unique solution in the following two cones:
 - 1 For m, n > 0 we have $H = \{(-1, 0), (0, -1)\}$
 - **2** For $m \ge n > 0$ we first transform the cone to $\mathbb{Z}^2_{>0}$ This gives

$$ilde{a}_{m,n} = ilde{a}_{m-1,n} + ilde{a}_{m+1,n-1}$$
 for $m, n \ge 0$.

Therefore, we have $H = \{(-1, 0), (1, -1)\}.$

But **not** the recurrence $b_{m,n} = b_{m-1,n} + b_{m,n-1} + b_{m+1,n} + b_{m,n+1}$ for m, n > 0. Here $H = \{(\pm 1, 0), (0, \pm 1)\}$

General shape

 $a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \cdots + c_d a_{m+i_d,n+j_d}$

How can we reach (m, n)? From $(m + i_1, n + j_1)$ with step $(-i_1, -j_1)$, or from $(m + i_2, n + j_2)$ with step $(-i_2, -j_2)$, or ... from $(m + i_d, n + j_d)$ with step $(-i_d, -j_d)$.

Knight variation

Let $a_{0,0} = 1$ and for $m, n \ge 0$:

$$a_{m,n} = a_{m+1,n-2} + 2a_{m-2,n+1} + 3a_{m-1,n} + 4a_{m,n-1}$$

The four steps are

(-1, 2), (2, -1), (1, 0), (0, 1)

General shape

 $a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \cdots + c_d a_{m+i_d,n+j_d}$

How can we reach (m, n)? From $(m + i_1, n + j_1)$ with step $(-i_1, -j_1)$, or from $(m + i_2, n + j_2)$ with step $(-i_2, -j_2)$, or ...

from
$$(m + i_d, n + j_d)$$
 with step $(-i_d, -j_d)$.

Knight variation

Let $a_{0,0} = 1$ and for $m, n \ge 0$:

$$a_{m,n} = a_{m+1,n-2} + 2a_{m-2,n+1} + 3a_{m-1,n} + 4a_{m,n-1}$$

The four steps are

$$(-1,2),(2,-1),(1,0),(0,1)$$

General shape

 $a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d}$

How can we reach (m, n)? From $(m + i_1, n + j_1)$ with step $(-i_1, -j_1)$, or from $(m + i_2, n + j_2)$ with step $(-i_2, -j_2)$, or ...

from
$$(m + i_d, n + j_d)$$
 with step $(-i_d, -j_d)$.

What is the weight of a path ending at (m, n)?

1 Each step has a weight:

Step
$$(-i_d, -j_d)$$
 has weight c_d

The weight of a path is the product of the weights of its steps.

Knight variation

Let $a_{0,0} = 1$ and for $m, n \ge 0$:

$$a_{m,n} = a_{m+1,n-2} + 2a_{m-2,n+1} + 3a_{m-1,n} + 4a_{m,n-1}$$

The four steps are

$$(-1, 2), (2, -1), (1, 0), (0, 1)$$

with the weights 1, 2, 3, 4, resp.

General shape

 $a_{m,n} = c_1 a_{m+i_1,n+j_1} + c_2 a_{m+i_2,n+j_2} + \dots + c_d a_{m+i_d,n+j_d}$

How can we reach (m, n)? From $(m + i_1, n + j_1)$ with step $(-i_1, -j_1)$, or from $(m + i_2, n + j_2)$ with step $(-i_2, -j_2)$, or · . . .

from
$$(m + i_d, n + j_d)$$
 with step $(-i_d, -j_d)$.

What is the weight of a path ending at (m, n)?

Each step has a weight:

Step
$$(-i_d, -j_d)$$
 has weight c_d

The weight of a path is the product of the weights of its steps.

Knight variation

Let $a_{0,0} = 1$ and for $m, n \ge 0$:

$$a_{m,n} = a_{m+1,n-2} + 2a_{m-2,n+1} + 3a_{m-1,n} + 4a_{m,n-1}$$

The four steps are

$$(-1, 2), (2, -1), (1, 0), (0, 1)$$

with the weights 1, 2, 3, 4, resp.

- All weights to 1: OEIS A356692 Pascal-like triangle; family of permutations?
- Asymptotics not known! (Similar models: [Bostan, Bousquet-Mélou, Melczer 2021])
- Knight only: [Bousquet-Mélou, Petkovšek 2000]

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

Consider the recurrence

$$a_{m,n;k} = a_{m-1,n-1;k-1} + a_{m-1,n+1;k-1} + a_{m+1,n-1;k-1} + a_{m+1,n+1;k-1}$$
 for $m, n \in \mathbb{Z}, k > 0$

where $a_{0,0,0} = 1$ and $a_{m,n,0} = 0$ otherwise.

Popular models:

Starting point: (0,0)

Small steps:
$$\mathcal{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$$

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

 $a_{m,n;k+1} = a_{m-1,n-1;k} + a_{m-1,n;k} + a_{m-1,n+1;k} + a_{m,n-1;k} + a_{m,n+1;k} + a_{m+1,n-1;k} + a_{m+1,n;k} + a_{m+1,n+1;k} + a_{m+1$

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

 $a_{m,n;k+1} = a_{m-1,n-1;k} + a_{m-1,n;k} + a_{m-1,n+1;k} + a_{m,n-1;k} + a_{m,n+1;k} + a_{m+1,n-1;k} + a_{m+1,n;k} + a_{m+1,n+1;k} + a_{m+1$

 $\begin{aligned} & \underbrace{ \text{Quarter plane}} \\ \mathcal{Q} = \{(m,n): m \geq 0 \text{ and } n \geq 0 \} \\ & \text{[Bousquet-Mélou, Mishna 2010]} \end{aligned}$

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

 $a_{m,n;k+1} = a_{m-1,n-1;k} + a_{m-1,n;k} + a_{m-1,n+1;k} + a_{m,n-1;k} + a_{m,n+1;k} + a_{m+1,n-1;k} + a_{m+1,n;k} + a_{m+1,n+1;k} + a_{m+1$

Let $p_{k,n}$ be the number of integer partitions of *n* into exactly *k* parts. For example, $p_{2,4} = 2$ since 4 = 3 + 1 and 4 = 2 + 2.

Let $p_{k,n}$ be the number of integer partitions of *n* into exactly *k* parts. For example, $p_{2,4} = 2$ since 4 = 3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

 $p_{k,n} = p_{k,n-k} + p_{k-1,n-1}$ for n, k > 0,

where $p_{0,0} = 1$ and $p_{k,n} = 0$ for $n \le 0$ or $k \le 0$.

Let $p_{k,n}$ be the number of integer partitions of *n* into exactly *k* parts. For example, $p_{2,4} = 2$ since 4 = 3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

$$p_{k,n} = p_{k,n-k} + p_{k-1,n-1}$$
 for $n, k > 0$,

where $p_{0,0} = 1$ and $p_{k,n} = 0$ for $n \le 0$ or $k \le 0$.

Let $\tau(n, g)$ be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved

$$(n+1)\tau(n,g) = 4n(3n-2)(3n-4)\tau(n-2,g-1) + 4(3n-1)\tau(n-1,g) \\ + 4\sum_{\substack{i+j=n-2\\i,j>0}}\sum_{\substack{g_1,g_2\geq 0\\g_1,g_2\geq 0}} (3i+2)(3j+2)\tau(i,g_1)\tau(j,g_2) + 2\mathbb{1}_{n=g=1},$$

 $n \ge 1$ and $0 \le g \le \frac{n+1}{2}$, where $\tau(n,g) = 0$ otherwise except for $\tau(0,0) = 1$.

Let $p_{k,n}$ be the number of integer partitions of *n* into exactly *k* parts. For example, $p_{2,4} = 2$ since 4 = 3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

$$p_{k,n} = p_{k,n-k} + p_{k-1,n-1}$$
 for $n, k > 0$,

where $p_{0,0} = 1$ and $p_{k,n} = 0$ for $n \le 0$ or $k \le 0$.

Let $\tau(n, g)$ be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved

$$(n+1)\tau(n,g) = 4n(3n-2)(3n-4)\tau(n-2,g-1) + 4(3n-1)\tau(n-1,g) + 4\sum_{\substack{i+j=n-2\\i,j>0}}\sum_{\substack{g_1,g_2\geq 0\\g_1,g_2\geq 0}} (3i+2)(3j+2)\tau(i,g_1)\tau(j,g_2) + 2\mathbb{1}_{n=g=1},$$

 $n \ge 1$ and $0 \le g \le \frac{n+1}{2}$, where $\tau(n,g) = 0$ otherwise except for $\tau(0,0) = 1$.

The sampling without replacement Pólya urn has replacement matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. We sample until all black balls are gone.

Let $p_{k,n}$ be the number of integer partitions of *n* into exactly *k* parts. For example, $p_{2,4} = 2$ since 4 = 3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

$$p_{k,n} = p_{k,n-k} + p_{k-1,n-1}$$
 for $n, k > 0$,

where $p_{0,0} = 1$ and $p_{k,n} = 0$ for $n \le 0$ or $k \le 0$.

Let $\tau(n, g)$ be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved

$$(n+1)\tau(n,g) = 4n(3n-2)(3n-4)\tau(n-2,g-1) + 4(3n-1)\tau(n-1,g) + 4\sum_{\substack{i+j=n-2\\i,j\geq 0}}\sum_{\substack{g_1,g_2=g\\g_1,g_2\geq 0}} (3i+2)(3j+2)\tau(i,g_1)\tau(j,g_2) + 2\mathbb{1}_{n=g=1},$$

 $n \ge 1$ and $0 \le g \le \frac{n+1}{2}$, where $\tau(n,g) = 0$ otherwise except for $\tau(0,0) = 1$.

The sampling without replacement Pólya urn has replacement matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. We sample until all black balls are gone. Let $p_{w,b,k}$ be the probability that starting with w white and b black balls there remain k white balls. Then [Kuba, Panholzer, Prodinger 2009] analyzed the urn using

$$p_{w,b,k} = \frac{w}{w+b} p_{w-1,b,k} + \frac{b}{w+b} p_{w,b-1,k}$$
 for $w, b, k > 0$,

where $p_{w,0,k} = 1_{w=k}$ and $p_{0,b,k} = 1_{k=0}$ for $w, b, k \ge 0$.

We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let $(a_{m,n})_{(m,n)\in C}$ be a recursively defined sequence on a cone $C \subseteq \mathbb{Z}^2$. Throughout this course we assume

- $a_{0,0} = 1$ (initial condition)
- $a_{m,n} = 0$ for $(m, n) \notin C$ (boundary conditions).

We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let $(a_{m,n})_{(m,n)\in C}$ be a recursively defined sequence on a cone $C \subseteq \mathbb{Z}^2$. Throughout this course we assume

- $a_{0,0} = 1$ (initial condition)
- $a_{m,n} = 0$ for $(m, n) \notin C$ (boundary conditions).

1 The following recurrence is defined on the nonnegative quadrant $C = \mathbb{Z}_{\geq 0}^2 =$

$$a_{m,n} = a_{m-1,n} + a_{m,n-1}$$
 for $m, n \ge 0$,

is a shorthand for

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{ for } m, n > 0, \\ a_{m,0} = a_{m-1,n} & \text{ for } m > 0, \\ a_{0,n} = a_{m,n-1} & \text{ for } n > 0, \\ a_{0,0} = 1. \end{cases}$$

We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let $(a_{m,n})_{(m,n)\in C}$ be a recursively defined sequence on a cone $C \subseteq \mathbb{Z}^2$. Throughout this course we assume

- $a_{0,0} = 1$ (initial condition)
- $a_{m,n} = 0$ for $(m, n) \notin C$ (boundary conditions).

1 The following recurrence is defined on the nonnegative quadrant $\mathcal{C}=\mathbb{Z}^2_{\geq 0}=$

$$a_{m,n} = a_{m-1,n} + a_{m,n-1}$$
 for $m, n \ge 0$,

is a shorthand for

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{for } m, n > 0, \\ a_{m,0} = a_{m-1,n} & \text{for } m > 0, \\ a_{0,n} = a_{m,n-1} & \text{for } n > 0, \\ a_{0,0} = 1. \end{cases}$$

2 The same recurrence on the triangular cone $C = \{(m, n) : m \ge n \ge 0\} = \square$:

$$b_{m,n} = b_{m-1,n} + b_{m,n-1}$$
 for $m \ge n \ge 0$

What we will study in this course: the diagonal entry $a_{n,n}$

Recurrences we will study

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$

Main goal

Determine *a*_{n,n}

 \rightarrow We focus on asymptotics for $n \rightarrow \infty$

What we will study in this course: the diagonal entry $a_{n,n}$

Recurrences we will study

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$

Main goal

Determine *a*_{n,n}

 \rightarrow We focus on asymptotics for $n \rightarrow \infty$

	E(m, n)	N(<i>m</i> , <i>n</i>)	Domair	ı	a _{n,n}	Description
(1)	1	1	$m,n \ge 0$		$\binom{2n}{n}$	Binomial coefficients
(2)	1	1	$m \ge n \ge 0$		$\frac{1}{n+1}\binom{2n}{n}$	Catalan numbers
(3)	<i>n</i> + 1	1	$m,n \ge 0$		S(2n+1, n+1)	Stirling numbers 2 nd kind
(4)	<i>n</i> + 1	1	$m \ge n \ge 0$		$\Theta\left(n!4^n e^{3a_1n^{1/3}}n\right)$	Compacted binary trees

(In the last case, $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) that is the unique function satisfying Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.)

What we will study in this course: the diagonal entry $a_{n,n}$

Recurrences we will study

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$

Main goal

Determine a_{n,n}

ightarrow We focus on asymptotics for $n
ightarrow\infty$

	E(m,n)	N(m, n)	Domair	n	a _{n,n}	Description
(1)	1	1	$m,n \ge 0$		$\binom{2n}{n}$	Binomial coefficients
(2)	1	1	$m \ge n \ge 0$		$\frac{1}{n+1}\binom{2n}{n}$	Catalan numbers
(3)	<i>n</i> + 1	1	$m,n \ge 0$		S(2n+1, n+1)	Stirling numbers 2 nd kind
(4)	<i>n</i> + 1	1	$m \ge n \ge 0$		$\Theta\left(n!4^n e^{3a_1n^{1/3}}n\right)$	Compacted binary trees

(In the last case, $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) that is the unique function satisfying Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.)

Outline of the course:

- Today: Solve Examples (1)–(3)
- Wednesday: Stretched exponential method to solve Example (4)
- Friday: Applications to computer science and phylogenetics solving open counting problems

Bivariate Linear Recurrences

Examples of different weights in a triangular cone

The recurrence includes many known sequences already for $a_{n,n}$ in

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$
 $m \ge n > 0$

E(m, n)	<i>N</i> (<i>m</i> , <i>n</i>)	Description	a _{n,n}	OEIS
1	1	Dyck paths	(1, 1, 2, 5, 14, 42, 132,)	A000108
<i>n</i> + 1	1	Automata/Compacted trees	(1, 1, 3, 16, 127,)	A082161
2 <i>m</i> + <i>n</i> - 1	1	Phylogenetic networks	(1, 1, 7, 106, 2575,)	A213863
2 <i>n</i> + 1	1	Matrix recursion	(1, 1, 4, 33, 436,)	A102321

Examples of different weights in a triangular cone

The recurrence includes many known sequences already for $a_{n,n}$ in

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$
 $m \ge n > 0$

E(m, n)	<i>N</i> (<i>m</i> , <i>n</i>)	Description	a _{n,n}	OEIS
1	1	Dyck paths	(1, 1, 2, 5, 14, 42, 132,)	A000108
<i>n</i> + 1	1	Automata/Compacted trees	(1, 1, 3, 16, 127,)	A082161
2 <i>m</i> + <i>n</i> - 1	1	Phylogenetic networks	(1, 1, 7, 106, 2575,)	A213863
2 <i>n</i> + 1	1	Matrix recursion	$(1, 1, 4, 33, 436, \dots)$	A102321
2(<i>m</i> – <i>n</i>) + 1	1	Class of four-regular maps	(1,3,24,297,)	A292186
<i>n</i> + 1	<i>m</i> +2	Polytope volumes	(1,3,40,1225,)	A012250
<i>n</i> + 1	8(m - n + 1)	Evaluated Riemann ζ fct.	(1,8,256,17408,)	A253165
2 <i>n</i> + 1	<i>m</i> – <i>n</i> + 1	Secant numbers	(1, 1, 5, 61, 1385,)	A000364
2 <i>n</i> + 2	<i>m</i> – <i>n</i> + 1	Tangent numbers	(1,2,16,272,)	A000182
<i>m</i> – <i>n</i> + 1	2 <i>n</i>	Connected Feynman diag.	(1,4,80,3552,)	A214298

Classical Methods Solving Examples (1)–(3)

Overview of methods

- Generating functions
- 2 Recurrence relations
- 3 Context free grammars
- 4 Bijections
- 5 Determinants
- 6 Continued fractions
- Kernel method
- Integral transforms
- Saddle point method
- 10 Singularity analysis
- Analytic Combinatorics
- 12 Analytic Combinatorics in Several Variables
- Probability Theory
- Guess-and-check
- 15 Stretched exponential method
- 16 Random walk method

An Invitation to Analytic Combinatorics The Concrete Tetrahedron

17 ...

Solving Example (1): Generating Functions

Unweighted model in the quarter plane

$$a_{m,n} = a_{m-1,n} + a_{m,n-1}$$
 for $m, n \ge 0$

First, we define the generating function

$$A(x,y) = \sum_{m\geq 0} \sum_{n\geq 0} a_{m,n} x^m y^n.$$

Solving Example (1): Generating Functions

Unweighted model in the quarter plane

 $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ for $m, n \ge 0$

First, we define the generating function

$$A(x,y)=\sum_{m\geq 0}\sum_{n\geq 0}a_{m,n}x^my^n.$$

Recall, $a_{0,0} = 1$ and $a_{m,n} = 0$ for $(m, n) \notin \mathbb{Z}^2_{>0}$. Therefore, we get

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{ for } m, n \ge 1, \\ a_{m,0} = a_{0,n} = 1 & \text{ for } m, n \ge 0. \end{cases}$$

Solving Example (1): Generating Functions

Unweighted model in the quarter plane

 $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ for $m, n \ge 0$

First, we define the generating function

$$A(x,y) = \sum_{m\geq 0} \sum_{n\geq 0} a_{m,n} x^m y^n.$$

Recall, $a_{0,0} = 1$ and $a_{m,n} = 0$ for $(m, n) \notin \mathbb{Z}^2_{\geq 0}$. Therefore, we get

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{ for } m, n \ge 1, \\ a_{m,0} = a_{0,n} = 1 & \text{ for } m, n \ge 0. \end{cases}$$

• We multiply by $x^m y^n$ and sum over $m, n \ge 1$. This gives

$$A(x, y) = xA(x, y) + yA(x, y) + 1.$$

Solving Example (1): Generating Functions

Unweighted model in the quarter plane

 $a_{m,n} = a_{m-1,n} + a_{m,n-1}$ for $m, n \ge 0$

First, we define the generating function

$$A(x,y)=\sum_{m\geq 0}\sum_{n\geq 0}a_{m,n}x^my^n.$$

Recall, $a_{0,0} = 1$ and $a_{m,n} = 0$ for $(m, n) \notin \mathbb{Z}^2_{\geq 0}$. Therefore, we get

$$\begin{cases} a_{m,n} = a_{m-1,n} + a_{m,n-1} & \text{ for } m, n \ge 1, \\ a_{m,0} = a_{0,n} = 1 & \text{ for } m, n \ge 0. \end{cases}$$

• We multiply by $x^m y^n$ and sum over $m, n \ge 1$. This gives

$$A(x,y) = xA(x,y) + yA(x,y) + 1.$$

Therefore, we get

$$A(x,y) = \frac{1}{1-x-y} = \sum_{k\geq 0} (x+y)^k = \sum_{m\geq 0} \sum_{n\geq 0} \binom{m+n}{n} x^m y^n. \quad \Box$$

Solving Example (2): Generating Functions

Unweighted model below the diagonal

$$b_{m,n} = b_{m-1,n} + b_{m,n-1}$$
 for $m \ge n \ge 0$

Again, we define the generating function

$$B(x,y)=\sum_{m=0}^{\infty}\sum_{n=0}^{m}b_{m,n}x^{m}y^{n}.$$

Solving Example (2): Generating Functions

Unweighted model below the diagonal

$$b_{m,n} = b_{m-1,n} + b_{m,n-1}$$
 for $m \ge n \ge 0$

Again, we define the generating function

$$B(x,y)=\sum_{m=0}^{\infty}\sum_{n=0}^{m}b_{m,n}x^{m}y^{n}.$$

■ Here, we need to be careful at the diagonal, due to the boundary conditions. As before, we multiply by $x^m y^n$ and sum over $m \ge n \ge 0$:

$$B(x, y) = 1 + xB(x, y) + y(B(x, y) - D(xy)),$$

where $D(z) = \sum_{n \ge 0} b_{n,n} z^n$ is the diagonal of B(x, y).

Solving Example (2): Generating Functions

Unweighted model below the diagonal

$$b_{m,n} = b_{m-1,n} + b_{m,n-1}$$
 for $m \ge n \ge 0$

Again, we define the generating function

$$B(x,y)=\sum_{m=0}^{\infty}\sum_{n=0}^{m}b_{m,n}x^{m}y^{n}.$$

Here, we need to be careful at the diagonal, due to the boundary conditions. As before, we multiply by $x^m y^n$ and sum over $m \ge n \ge 0$:

$$B(x, y) = 1 + xB(x, y) + y (B(x, y) - D(xy)),$$

where $D(z) = \sum_{n \ge 0} b_{n,n} z^n$ is the diagonal of B(x, y).

Simplifies a bit more, but two unknowns and only one equation:

$$(1-x-y)B(x,y)=1-yD(xy).$$

Solving Example (2): Generating Functions

Unweighted model below the diagonal

$$b_{m,n} = b_{m-1,n} + b_{m,n-1}$$
 for $m \ge n \ge 0$

Again, we define the generating function

$$B(x,y)=\sum_{m=0}^{\infty}\sum_{n=0}^{m}b_{m,n}x^{m}y^{n}.$$

Here, we need to be careful at the diagonal, due to the boundary conditions. As before, we multiply by $x^m y^n$ and sum over $m \ge n \ge 0$:

$$B(x,y) = 1 + xB(x,y) + y \left(B(x,y) - D(xy)\right),$$

where $D(z) = \sum_{n \ge 0} b_{n,n} z^n$ is the diagonal of B(x, y).

Simplifies a bit more, but two unknowns and only one equation:

$$(1-x-y)B(x,y)=1-yD(xy).$$

- Two important ideas:
 - Capture time evolution by change of coordinates
 - 2 Solve it using the kernel method

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Capture time evolution

i Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y, we track the total number of steps in t and the distance to the diagonal in u:

$$x = tu$$
 and $y = \frac{t}{u}$.

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Capture time evolution

i Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y, we track the total number of steps in t and the distance to the diagonal in u:

$$x = tu$$
 and $y = \frac{t}{u}$.

This gives

$$\left(\underbrace{1-tu-\frac{t}{u}}_{=:K(t,u)}\right)\hat{B}(t,u)=1-\frac{t}{u}D(t^2).$$

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Capture time evolution

i Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y, we track the total number of steps in t and the distance to the diagonal in u:

$$x = tu$$
 and $y = \frac{t}{u}$.

This gives

$$\left(\underbrace{1-tu-\frac{t}{u}}_{=:K(t,u)}\right)\hat{B}(t,u) = 1 - \frac{t}{u}D(t^2)$$

2 Solve it using the kernel method

Idea: Bind u and t such that the left-hand side vanishes. Let $u_1(t)$ and $u_2(t)$ be the solutions of $K(t, u_i(t)) = 0$:

$$u_1(t) = \frac{1 - \sqrt{1 - 4t^2}}{2t} = t + \mathcal{O}(t^3) \qquad \qquad u_2(t) = \frac{1 + \sqrt{1 - 4t^2}}{2t} = \frac{1}{t} + \mathcal{O}(t).$$

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Capture time evolution

i Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y, we track the total number of steps in t and the distance to the diagonal in u:

$$x = tu$$
 and $y = \frac{t}{u}$.

This gives

$$\left(\underbrace{1-tu-\frac{t}{u}}_{=:K(t,u)}\right)\hat{B}(t,u) = 1 - \frac{t}{u}D(t^2)$$

2 Solve it using the kernel method

Idea: Bind u and t such that the left-hand side vanishes. Let $u_1(t)$ and $u_2(t)$ be the solutions of $K(t, u_i(t)) = 0$:

$$u_1(t) = \frac{1 - \sqrt{1 - 4t^2}}{2t} = t + \mathcal{O}(t^3) \qquad \qquad u_2(t) = \frac{1 + \sqrt{1 - 4t^2}}{2t} = \frac{1}{t} + \mathcal{O}(t).$$

Since $\hat{B}(t, u) \in \mathbb{Q}[u][[t]]$ we may substitute $u = u_1(t)$. (For $u = u_2(t)$ the equation is not valid in $\mathbb{Q}[[t]]!$)

Solving Example (2): Kernel Method

We continue with

$$(1-x-y)B(x,y)=1-yD(xy).$$

Capture time evolution

i Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y, we track the total number of steps in t and the distance to the diagonal in u:

$$x = tu$$
 and $y = \frac{t}{u}$.

This gives

$$\left(\underbrace{1-tu-\frac{t}{u}}_{=:K(t,u)}\right)\hat{B}(t,u) = 1 - \frac{t}{u}D(t^2)$$

2 Solve it using the kernel method

Idea: Bind u and t such that the left-hand side vanishes. Let $u_1(t)$ and $u_2(t)$ be the solutions of $K(t, u_i(t)) = 0$:

$$u_1(t) = \frac{1 - \sqrt{1 - 4t^2}}{2t} = t + \mathcal{O}(t^3) \qquad \qquad u_2(t) = \frac{1 + \sqrt{1 - 4t^2}}{2t} = \frac{1}{t} + \mathcal{O}(t).$$

Since $\hat{B}(t, u) \in \mathbb{Q}[u][[t]]$ we may substitute $u = u_1(t)$. (For $u = u_2(t)$ the equation is not valid in $\mathbb{Q}[[t]]!$) We get the generating function of the Catalan numbers:

$$D(t^2) = \frac{u_1(t)}{t} = \frac{1 - \sqrt{1 - 4t^2}}{2t^2} = 1 + t^2 + 2t^4 + 5t^6 + 14t^8 + 42t^{10} + 132t^{12} + 429t^{14} + \dots$$

Solving Example (2): Final result

Final result for (prefixes) of Dyck paths

$$\hat{B}(t,u) = \frac{1 - 2ut - \sqrt{1 - 4t^2}}{2t(u^2t - u + t)}$$
$$B(x,y) = -\frac{1 - 2x - \sqrt{1 - 4xy}}{2x(1 - x - y)}.$$

or equivalently

Solving Example (2): Final result

Direct corollaries:

• Paths with a fixed number of E = (1, 0) steps and an arbitrary number of N = (0, 1) steps:

$$B(x,1) = \frac{1-2x-\sqrt{1-4x}}{2x^2} = \sum_{n\geq 0} \frac{1}{n+2} \binom{2(n+1)}{n+1} x^n$$

Solving Example (2): Final result

Direct corollaries:

• Paths with a fixed number of E = (1, 0) steps and an arbitrary number of N = (0, 1) steps:

$$B(x,1) = \frac{1-2x-\sqrt{1-4x}}{2x^2} = \sum_{n\geq 0} \frac{1}{n+2} \binom{2(n+1)}{n+1} x^n$$

The total number of paths of length n:

$$\hat{B}(t,1) = \frac{1-2t-\sqrt{1-4t^2}}{2t(2t-1)} = \sum_{n\geq 0} \binom{2n}{n} t^{2n} + \sum_{n\geq 1} \frac{1}{2} \binom{2n}{n} t^{2n-1}$$

The formal power series C(t) is

rational if it can be written as

$$C(t)=rac{P(t)}{Q(t)},$$

where P(t) and Q(t) are polynomials in t.

The formal power series C(t) is

rational if it can be written as

$$C(t)=rac{P(t)}{Q(t)},$$

where P(t) and Q(t) are polynomials in t.

algebraic (over $\mathbb{Q}(t)$) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

The formal power series C(t) is

rational if it can be written as

$$C(t)=rac{P(t)}{Q(t)},$$

where P(t) and Q(t) are polynomials in t.

algebraic (over $\mathbb{Q}(t)$) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

D-finite if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$p_k(t)C^{(k)}(t) + \cdots + p_0(t)C(t) = 0.$$

The formal power series C(t) is

rational if it can be written as

$$C(t)=rac{P(t)}{Q(t)},$$

where P(t) and Q(t) are polynomials in t.

algebraic (over $\mathbb{Q}(t)$) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

D-finite if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$p_k(t)C^{(k)}(t) + \cdots + p_0(t)C(t) = 0.$$

Why is it important to be D-finite?

- Nice and effective closure properties (sum, product, differentiation, ...)
- Fast algorithms to compute coefficients
- Asymptotics of coefficients

Weighted model in the quarter plane

 $c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$ for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \text{ and } \{\{3\}, \{1,2\}\}$

Weighted model in the quarter plane

 $c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$ for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

• Number of set partitions of $\{1, 2, ..., n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, ..., n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\},$ and $\{\{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1,n+1)$$

1 Interpretation as boxed paths:

• *N* gets weight 1 and *E* weight n + 1 if it is at height *n*

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

• Number of set partitions of $\{1, 2, ..., n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1,n+1)$$

1 Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

1 Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1,n+1)$$

1 Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

2 Bijection between boxed paths and set partitions:

Path starts at (-1, 0) and first step is N to (0, 0).

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\},$ and $\{\{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1,n+1)$$

Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

- Path starts at (-1, 0) and first step is N to (0, 0).
- If the *i*th step is N: create a new set $\{i\}$.

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

- Path starts at (-1, 0) and first step is *N* to (0, 0).
- If the *i*th step is N: create a new set $\{i\}$.
- If the *i*th step is *E* with cross in row *j*: add the element *i* to the set containing *j*.

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\}, \{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

- Path starts at (-1, 0) and first step is *N* to (0, 0).
- If the *i*th step is N: create a new set $\{i\}$.
- If the *i*th step is *E* with cross in row *j*: add the element *i* to the set containing *j*.

Weighted model in the quarter plane

$$c_{m,n} = (n+1)c_{m-1,n} + c_{m,n-1}$$
 for $m, n \ge 0$

Stirling numbers S(n, k) of the second kind

Number of set partitions of $\{1, 2, \dots, n\}$ into k nonemtpy sets

For example, S(3,2) = 3 due to $\{\{1\}, \{2,3\}\}, \{\{2\}, \{1,3\}\},$ and $\{\{3\}, \{1,2\}\}$

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

1 Interpretation as boxed paths:

- **•** *N* gets weight 1 and *E* weight n + 1 if it is at height *n*
- For each *E* mark one unit box below it and y = -1.
- \Rightarrow $c_{m,n}$ = number of boxed paths from (0,0) to (m, n).

- Path starts at (-1, 0) and first step is N to (0, 0).
- If the *i*th step is N: create a new set $\{i\}$.
- If the *i*th step is *E* with cross in row *j*: add the element *i* to the set containing *j*.

Solving Example (3): Corollary

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

Known exponential generating function for Stirling numbers of the second kind:

$$\sum_{n\geq 0}\sum_{k\geq 0}S(n,k)\frac{z^nu^k}{n!}=e^{u(e^z-1)}$$

This allows us to conclude

$$C(x,y) = \sum_{m \ge 0} \sum_{n \ge 0} \frac{c_{m,n} x^m y^n}{(m+n+1)!} = \frac{e^{y \left(\frac{e^x - 1}{x}\right)} - 1}{y}$$

Solving Example (3): Corollary

Theorem

$$c_{m,n} = S(m+n+1, n+1)$$

Known exponential generating function for Stirling numbers of the second kind:

$$\sum_{n\geq 0}\sum_{k\geq 0}S(n,k)\frac{z^nu^k}{n!}=e^{u(e^z-1)}$$

This allows us to conclude

$$C(x,y) = \sum_{m \ge 0} \sum_{n \ge 0} \frac{c_{m,n} x^m y^n}{(m+n+1)!} = \frac{e^{y \left(\frac{e^x - 1}{x}\right)} - 1}{y}$$

• C(x, y) is not D-finite (but it satisfies an algebraic differential equation!)

Follows from, e.g., the following asymptotics (see saddle point method [Flajolet, Sedgewick 2009]):

$$S_n = \sum_{k=0}^n S(n,k) \sim n! \frac{e^{e^r-1}}{r^n \sqrt{2\pi r(r+1)e^r}},$$

where $re^r = n + 1$, so that $r = \log n - \log \log n + o(1)$.

Advanced generating function methods

Analytic combinatorics [Flajolet, Sedgewick 2009]

Main tools: Saddle point method, singularity analysis, integral transforms, etc.

Advanced generating function methods

- Analytic combinatorics [Flajolet, Sedgewick 2009] Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]

Works well with detailed information on the multivariate generating function

- Analytic combinatorics [Flajolet, Sedgewick 2009]
 Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]
 Works well with detailed information on the multivariate generating function
- Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]

- Analytic combinatorics [Flajolet, Sedgewick 2009]
 Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]
 Works well with detailed information on the multivariate generating function
- Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]
- Complex analysis [Bostan, Raschel, Salvy 2014]

- Analytic combinatorics [Flajolet, Sedgewick 2009]
 Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]
 Works well with detailed information on the multivariate generating function
- Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]
- Complex analysis [Bostan, Raschel, Salvy 2014]
- Probability theory [Denisov, Wachtel 2015]

- Analytic combinatorics [Flajolet, Sedgewick 2009]
 Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]
 Works well with detailed information on the multivariate generating function
- Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]
- Complex analysis [Bostan, Raschel, Salvy 2014]
- Probability theory [Denisov, Wachtel 2015]
- Computer algebra: Guess-and-check [Kauers, Paule 2011]

- Analytic combinatorics [Flajolet, Sedgewick 2009]
 Main tools: Saddle point method, singularity analysis, integral transforms, etc.
- Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024], [Melczer 2021]
 Works well with detailed information on the multivariate generating function
- Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]
- Complex analysis [Bostan, Raschel, Salvy 2014]
- Probability theory [Denisov, Wachtel 2015]
- Computer algebra: Guess-and-check [Kauers, Paule 2011]
- Different extensions of the kernel method:
 - Iterated kernel method [Bousquet-Mélou, Petkovšek 2003]
 - Obstinate kernel method [Bousquet-Mélou 2002]
 - Vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger 2020]
 - Similar approaches developed in, e.g., statistical mechanics (algebraic Bethe ansatz [Gaudin 2014]), probability theory and queuing theory [Fayolle, lasnogorodski, Malyshev 1999]

Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability theory, and Galois theory.

Quarter plane

$$\mathcal{Q} = \{(m, n) : m, n \ge 0\}.$$

Generating function

$$Q(x, y; t) = \sum_{m,n\geq 0} \sum_{k\geq 0} q_{m,n;k} t^k.$$

Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability theory, and Galois theory.

Quarter plane

$$\mathcal{Q} = \{(m, n) : m, n \ge 0\}.$$

Generating function

$$Q(x, y; t) = \sum_{m,n\geq 0} \sum_{k\geq 0} q_{m,n;k} t^k.$$

■ The chosen step set is associated with a group G of birational transformations of Z².

Here,
$$\phi(x, y) = (\frac{1}{x}, y)$$
 and $\psi(x, y) = (x, \frac{1}{y})$

$$\mathbf{G} = \{i, \phi, \psi, \phi \circ \psi\}$$

Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability theory, and Galois theory.

Theorem [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10], [Kurkova, Raschel 12], [Mishna, Rechnitzer 07], [Melczer, Mishna 13], [and more!]

The series Q(x, y; t) is D-finite if and only if G is finite.

This is the case for 23 out of 79 non-equivalent small step models $S \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$.

What about Example (4)?

What about Example (4)? The core of this course!

Weighted model below the diagonal

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$$
 for $m \ge n \ge 0$

What about Example (4)? The core of this course!

Weighted model below the diagonal

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$$
 for $m \ge n \ge 0$

Theorem [Elvey Price, Fang, W 2021]

For $n \to \infty$ it holds that

$$a_{n,n} = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right)$$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) characterized by Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.

What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

 $C \cdot R^n \cdot n^{\alpha}$,

for constants $C, R, \alpha \in \mathbb{R}$.
What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

$$C \cdot R^n \cdot n^{\alpha}$$
,

for constants $C, R, \alpha \in \mathbb{R}$.

Much more seldom we observe (or are able to prove)

 $C \cdot R^n \cdot e^{c n^{\sigma}} \cdot n^{\alpha}$,

with a *stretched exponential* $e^{cn^{\sigma}}$ with $c \in \mathbb{R}$ and $\sigma \in (0, 1)$.

What is a stretched exponential?

General question

How does a sequence $(a_n)_{n\geq 0}$ behave for large *n*?

Often we observe

$$C \cdot R^n \cdot n^{\alpha}$$
,

for constants $C, R, \alpha \in \mathbb{R}$.

Much more seldom we observe (or are able to prove)

 $C \cdot R^n \cdot e^{c n^{\sigma}} \cdot n^{\alpha}$,

with a *stretched exponential* $e^{cn^{\sigma}}$ with $c \in \mathbb{R}$ and $\sigma \in (0, 1)$.

Some deeper reasons why they are "seldom"

- Generating function cannot be algebraic
- It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only only with an irregular singularity, e.g., exp(^z/_{1-z})

Bivariate Linear Recurrences | What about Example (4)?

Appearances of stretched exponentials

Known exactly:

Number theory (integer partitions):

$$\sim (4\sqrt{3})^{-1} e^{\pi (2n/3)^{1/2}} n^{-1}$$

Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):

$$\sim C_1 4^n e^{-3(\frac{\pi \log 2}{2})^{2/3} n^{1/3}} n^{-5/6}$$

Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):

$$\Theta\left(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}} n^{-2/3}\right)$$

Bivariate Linear Recurrences | What about Example (4)?

Appearances of stretched exponentials

Known exactly:

Number theory (integer partitions):

$$\sim (4\sqrt{3})^{-1} e^{\pi (2n/3)^{1/2}} n^{-1}$$

Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):

$$\sim C_1 4^n e^{-3(\frac{\pi \log 2}{2})^{2/3} n^{1/3}} n^{-5/6}$$

Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]): $\Theta\left(n^{2n}(12e^{-2})^n e^{a_1(3n)^{1/3}} n^{-2/3}\right)$

Conjectured:

Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:

 $\approx \mu^n e^{-cn^{1/2}}$

Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:

 $\approx \mu^n e^{-cn^{3/7}}$

and recently more and more appear in group theory, queuing theory, ...

Stretched exponential method applies to many more objects

Young tableaux with walls [Banderier, Marchal, W 2018], [Banderier, W 2021]

Compacted trees

[Aho, Sethi, Ullman 1986]

Phylogenetic networks [McDiarmid, Semple, Welsh 2015]

[Hopcroft, Ullman 1979]

BAADBACFCBEDECDFEF

Constrained words [Pons, Batle 2021]

Theorem

The number *c_n* of compacted binary trees,

$c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$

satisfy for $n \to \infty$

[Elvey Price, Fang, W 2021]

Theorem

The number c_n of compacted binary trees, t_n of bicombining phylogenetic tree-child networks,

satisfy for $n o \infty$

$$c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$$

$$t_n = \Theta\left((n!)^2 \, 12^n e^{a_1 (3n)^{1/3}} n^{-5/3}\right),$$

[Elvey Price, Fang, W 2021]

[Fuchs, Yu, Zhang 2021]

Theorem

The number c_n of compacted binary trees, t_n of bicombining phylogenetic tree-child networks, b_n of minimal DFAs recognizing a finite binary language, satisfy for $n \to \infty$

$$c_{n} = \Theta\left(n! \, 4^{n} e^{3a_{1} n^{1/3}} n^{3/4}\right),$$

$$t_{n} = \Theta\left((n!)^{2} \, 12^{n} e^{a_{1}(3n)^{1/3}} n^{-5/3}\right),$$

$$b_{n} = \Theta\left(n! \, 8^{n} e^{3a_{1} n^{1/3}} n^{7/8}\right),$$

[Elvey Price, Fang, W 2021]

[Fuchs, Yu, Zhang 2021]

[Elvey Price, Fang, W 2020]

Theorem

The number c_n of compacted binary trees, t_n of bicombining phylogenetic tree-child networks, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! 4^{n} e^{3a_{1}n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$t_{n} = \Theta \left((n!)^{2} 12^{n} e^{a_{1}(3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$b_{n} = \Theta \left(n! 8^{n} e^{3a_{1}n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$y_{n} = \Theta \left(n! 12^{n} e^{a_{1}(3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

Theorem

The number c_n of compacted binary trees, t_n of bicombining phylogenetic tree-child networks, b_n of minimal DFAs recognizing a finite binary language, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! 4^{n} e^{3a_{1} n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$t_{n} = \Theta \left((n!)^{2} 12^{n} e^{a_{1}(3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$b_{n} = \Theta \left(n! 8^{n} e^{3a_{1} n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$y_{n} = \Theta \left(n! 12^{n} e^{a_{1}(3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) characterized by Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.

Associated recurrence relations ($m \ge n \ge 0$):

$$c_n = c_{n,n},$$
 where
 $t_n = (n-1)!t_{m,m},$ where
 $b_n = b_{n,n},$ where
 $y_n = y_{n,n},$ where

$$c_{m,n} = c_{m,n-1} + (n+1)c_{m-1,n} - (n-1)c_{m-2,n-1}$$

$$t_{m,n} = \frac{2m+n-2}{2m+n-3}t_{m,n-1} + (2m+n-2)t_{m-1,n}$$

$$b_{m,n} = 2b_{m,n-1} + (n+1)b_{m-1,n} - nb_{m-2,n-1}$$

$$y_{m,n} = y_{m,n-1} + (2m+n-1)y_{m-1,n}$$

Part II Asymptotics along the boundary

Recap of Part I

Recurrences we study

$$a_{m,n} = E(m, n)a_{m-1,n} + N(m, n)a_{m,n-1}$$

Main goal

Determine *a*_{n,n}

ightarrow We focus on asymptotics for $n
ightarrow\infty$

Recap of Part I

Recurrences we study

$$a_{m,n} = E(m, n)a_{m-1,n} + N(m, n)a_{m,n-1}$$

Main goal

Determine *a*_{n,n}

 \rightarrow We focus on asymptotics for $n \rightarrow \infty$

	<i>E</i> (<i>m</i> , <i>n</i>)	N(m, n)	Domain		a _{n,n}	Description
(1)	1	1	$m,n \ge 0$		$\binom{2n}{n}$	Binomial coefficients
(2)	1	1	$m \ge n \ge 0$		$\frac{1}{n+1}\binom{2n}{n}$	Catalan numbers
(3)	<i>n</i> + 1	1	$m,n \ge 0$		S(2n+1, n+1)	Stirling numbers 2 nd kind
(4)	<i>n</i> + 1	1	$m \ge n \ge 0$		$\Theta\left(n!4^{n}e^{3a_{1}n^{1/3}}n\right)$	Compacted binary trees

(In the last case, $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) that is the unique function satisfying Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.)

Recap of Part I

Recurrences we study

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1}$$

Main goal

Determine *a*_{n,n}

 \rightarrow We focus on asymptotics for $n \rightarrow \infty$

	<i>E</i> (<i>m</i> , <i>n</i>)	N(<i>m</i> , <i>n</i>)	Domain		a _{n,n}	Description
(1)	1	1	$m,n \ge 0$		$\binom{2n}{n}$	Binomial coefficients
(2)	1	1	$m \ge n \ge 0$		$\frac{1}{n+1}\binom{2n}{n}$	Catalan numbers
(3)	<i>n</i> + 1	1	$m,n \ge 0$		S(2n+1, n+1)	Stirling numbers 2 nd kind
(4)	<i>n</i> + 1	1	$m \ge n \ge 0$		$\Theta\left(n!4^{n}e^{3a_{1}n^{1/3}}n\right)$	Compacted binary trees

(In the last case, $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) that is the unique function satisfying Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.)

Today we solve Example (4): weighted model below the diagonal

 $a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$ for $m \ge n \ge 0$

Step 1: Transformation of the recurrence

Step 1: Transform recurrence into a Dyck-like recurrence

Path starts at (0, -1) and ends at (n, n)
Path never crosses the diagonal

Step 1: Transform recurrence into a Dyck-like recurrence

Path starts at (0, -1) and ends at (n, n)

Path never crosses the diagonal

One box is marked below each horizontal step

Step 1: Transform recurrence into a Dyck-like recurrence

- Path starts at (0, -1) and ends at (n, n)
- Path never crosses the diagonal
- One box is marked below each horizontal step
- Each vertical step has weight 1

Recurrence: Let $a_{m,n}$ be the number of paths ending at (m, n)

$$a_{m,n} = a_{m,n-1} + (n+1)a_{m-1,n},$$
 for $m \ge n$
 $a_{0,0} = 1.$

Number of relaxed compacted trees is $a_{n,n}$

Recurrence: Let $a_{m,n}$ be the number of paths ending at (m, n)

$$a_{m,n} = a_{m,n-1} + (n+1)a_{m-1,n},$$
 for $m \ge n$
 $a_{0,0} = 1.$

Number of relaxed compacted trees is $a_{n,n}$

Recurrence: Let $\tilde{a}_{m,n}$ be the number of paths ending at (m, n) with weights divided by column number

$$ilde{a}_{m,n} = ilde{a}_{m,n-1} + rac{n+1}{m} \, ilde{a}_{m-1,n}, ext{ for } m \ge n$$

 $ilde{a}_{0,0} = 1.$

Number of relaxed compacted trees is n! ã_{n,n}

Recurrence: Let $\tilde{a}_{m,n}$ be the number of paths ending at (m, n) with weights divided by column number

$$ilde{a}_{m,n} = ilde{a}_{m,n-1} + rac{n+1}{m} \, ilde{a}_{m-1,n}, ext{ for } m \ge n$$

 $ilde{a}_{0,0} = 1.$

Number of relaxed compacted trees is n! ã_{n,n}

Recurrence: Let $\tilde{a}_{m,n}$ be the number of paths ending at (m, n) with weights divided by column number

$$ilde{a}_{m,n} = ilde{a}_{m,n-1} + rac{n+1}{m} \, ilde{a}_{m-1,n}, ext{ for } m \ge n$$

 $ilde{a}_{0,0} = 1.$

Number of relaxed compacted trees is $n! \tilde{a}_{n,n}$

Recurrence: Let $d_{i,j}$ be the number of decorated paths ending at (i, j) shown on the right

$$d_{i,j} = d_{i-1,j+1} + \left(1 - \frac{2(j-1)}{i+j}\right) d_{i-1,j-1}, \quad \text{for } i > 0, \ j \ge 0$$

$$d_{0,0} = 1.$$

 $\Rightarrow a_{n,n} = n! d_{2n,0}$

Step 2: Heuristic analysis

Dyck paths of length 2*n* where paths of height *h* get weight 2^{-h}

Dyck paths of length 2n where paths of height h get weight 2^{-h}

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$):

Number of paths
$$\approx 4^n e^{-c_1 n^{1-2\alpha}}$$
, Weight $= 2^{-n^{\alpha}} = e^{-\log(2)n^{\alpha}}$

Dyck paths of length 2*n* where paths of height *h* get weight 2^{-h}

$$n^{\alpha}$$

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$):

Number of paths
$$pprox 4^n e^{-c_1 n^{1-2lpha}}$$
, Weight $= 2^{-n^{lpha}} = e^{-\log(2)n^{lpha}}$

Weighted number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha} - \log(2)n^{\alpha}}$

Maximum occurs when $\alpha = 1/3$ and is equal to $4^n e^{-cn^{1/3}}$.

Dyck paths of length 2*n* where paths of height *h* get weight 2^{-h}

$$n^{\alpha}$$

Consider paths with max height $h = n^{\alpha}$ (for $0 < \alpha \le 1/2$):

Number of paths
$$pprox 4^n e^{-c_1 n^{1-2lpha}},$$
 Weight $= 2^{-n^{lpha}} = e^{-\log(2)n^{\prime}}$

Weighted number of paths $\approx 4^n e^{-c_1 n^{1-2\alpha} - \log(2)n^{\alpha}}$

Maximum occurs when $\alpha = 1/3$ and is equal to $4^n e^{-cn^{1/3}}$.

Our case: weights decrease similarly with height so we expect similar behavior

Bivariate Linear Recurrences | Step 2: Heuristic analysis

Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Bivariate Linear Recurrences | Step 2: Heuristic analysis

Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Let's zoom in to the left (small *m*) where interesting things are happening.

Figure: Plots of $d_{n,m}$ against m + 1. Left: n = 100, Right: n = 1000.

Let's zoom in to the left (small *m*) where interesting things are happening.

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

- Let's zoom in to the left (small *m*) where interesting things are happening.
- It seems to be converging to something...

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

- Let's zoom in to the left (small *m*) where interesting things are happening.
- It seems to be converging to something...

Figure: Left: Plot of $d_{n,m}$ against m + 1 for n = 2000. Right: Limiting function f(x).

Let's zoom in to the left (small *m*) where interesting things are happening.

It seems to be converging to something...

Ansatz:
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{g(n)}\right)$$

Bivariate Linear Recurrences | Step 2: Heuristic analysis

Does this ansatz work in the unweighted or unconstrained model?

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(rac{m+1}{g(n)}
ight)$
Does this ansatz work in the unweighted or unconstrained model?

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(rac{m+1}{g(n)}
ight)$

1 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$

Does this ansatz work in the unweighted or unconstrained model?

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(rac{m+1}{g(n)}
ight)$

1 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$

2 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \in \mathbb{Z}$:

$$h(n)\approx \frac{c}{\sqrt{n}}4^n, \qquad g(n)=\sqrt{n}, \qquad f(x)=e^{-x^2}.$$

Does this ansatz work in the unweighted or unconstrained model?

$$d_{n,m} = \mu_{n,m} d_{n-1,m+1} + \nu_{n,m} d_{n-1,m-1}, \qquad m \ge 0$$

Ansatz: $d_{n,m} \approx h(n) f\left(rac{m+1}{g(n)}
ight)$

1 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \ge 0$:

$$h(n) \approx \frac{c}{n} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = x e^{-x^2}$

2 Unweighted case $\mu_{n,m} = \nu_{n,m} = 1$ with $m \in \mathbb{Z}$:

$$h(n) \approx \frac{c}{\sqrt{n}} 4^n$$
, $g(n) = \sqrt{n}$, $f(x) = e^{-x^2}$.

3 Relaxed binary trees $\mu_{n,m} = 1$ and $\nu_{n,m} = 1 - \frac{2(m-1)}{n+m}$ with $m \ge 0$: \Rightarrow Based on the relation with pushed Dyck paths, we guess $g(n) = \sqrt[3]{n}$.

What are h(n) and f(x)?

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

• Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$

Substitute into recurrence:

$$h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right) \approx h(n-1)f\left(\frac{m+2}{\sqrt[3]{n-1}}\right) + \left(1 - \frac{2(m+1)}{n+m}\right)h(n-1)f\left(\frac{m}{\sqrt[3]{n-1}}\right)$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$

Substitute into recurrence:

$$h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right) \approx h(n-1)f\left(\frac{m+2}{\sqrt[3]{n-1}}\right) + \left(1 - \frac{2(m+1)}{n+m}\right)h(n-1)f\left(\frac{m}{\sqrt[3]{n-1}}\right)$$

Set $m = x\sqrt[3]{n} - 1$:

$$h(n)f(x) \approx h(n-1)f\left(\frac{x\sqrt[3]{n+1}}{\sqrt[3]{n-1}}\right) + \left(1 - \frac{2x\sqrt[3]{n}}{n+x\sqrt[3]{n-1}}\right)h(n-1)f\left(\frac{x\sqrt[3]{n-1}}{\sqrt[3]{n-1}}\right)$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$

Substitute into recurrence:

$$h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right) \approx h(n-1)f\left(\frac{m+2}{\sqrt[3]{n-1}}\right) + \left(1 - \frac{2(m+1)}{n+m}\right)h(n-1)f\left(\frac{m}{\sqrt[3]{n-1}}\right)$$

Set $m = x\sqrt[3]{n} - 1$:

$$h(n)f(x) \approx h(n-1)f\left(\frac{x\sqrt[3]{n+1}}{\sqrt[3]{n-1}}\right) + \left(1 - \frac{2x\sqrt[3]{n}}{n+x\sqrt[3]{n-1}}\right)h(n-1)f\left(\frac{x\sqrt[3]{n-1}}{\sqrt[3]{n-1}}\right)$$

Dividing by h(n-1) and expanding the right-hand side around *x* for $n \to \infty$ gives

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
.
Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
.
Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume

$$s_n = 2 + cn^{-2/3} + O(n^{-1}) \qquad \Rightarrow \quad h(n) = s_0 \prod_{i=1}^n s_i \approx 2^n e^{\frac{3c}{2}n^{1/3}}$$

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

■ Ansatz (a):
$$d_{n,m} \approx h(n)f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
.
Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume

$$s_n = 2 + cn^{-2/3} + O(n^{-1}) \qquad \Rightarrow \quad h(n) = s_0 \prod_{i=1}^n s_i \approx 2^n e^{\frac{3c}{2}n^{1/3}}$$

Solution

$$f''(x) = (2x+c)f(x) \qquad \Rightarrow \quad f(x) = \operatorname{Ai}\left(2^{-2/3}(2x+c)\right)$$

where *c* is a constant and Ai is the Airy function.

Heuristic analysis of weighted paths of relaxed binary trees

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Ansatz (a):
$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
.
Substitute into recurrence and set $m = x\sqrt[3]{n} - 1$:

$$\frac{h(n)}{h(n-1)} \approx 2 + \frac{f''(x) - 2xf(x)}{f(x)}n^{-2/3} + O(n^{-1})$$

Ansatz (b): Set $s_n := \frac{h(n)}{h(n-1)}$ and assume

$$s_n = 2 + cn^{-2/3} + O(n^{-1}) \qquad \Rightarrow \quad h(n) = s_0 \prod_{i=1}^n s_i \approx 2^n e^{\frac{3c}{2}n^{1/3}}$$

Solution

$$f''(x) = (2x+c)f(x)$$
 \Rightarrow $f(x) = \operatorname{Ai}\left(2^{-2/3}(2x+c)\right)$

where *c* is a constant and Ai is the Airy function.

Boundary condition: $d_{n,-1} = 0$ and $d_{n,m} \ge 0$. Then f(0) = 0 implies $c = 2^{2/3}a_1$, where $a_1 \approx -2.338$ satisfies Ai $(a_1) = 0$.

Refined heuristic analysis

Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
 and $s_n = 2 + cn^{-2/3} + O(n^{-1}).$

yields estimates $c = 2^{2/3}a_1$ such that

$$h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$$

and
$$f(x) = Ai(2^{1/3}x + a_1).$$

Refined heuristic analysis

Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(rac{m+1}{\sqrt[3]{n}}
ight)$$
 and $s_n = 2 + cn^{-2/3} + O(n^{-1})$

yields estimates $c = 2^{2/3}a_1$ such that

$$h(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$$
 and $f(x) = \operatorname{Ai}(2^{1/3}x + a_1).$

2 Ansatz of order 2:

$$d_{n,m} \approx h(n) \left(f_0\left(\frac{m+1}{\sqrt[3]{n}}\right) + n^{-1/3} f_1\left(\frac{m+1}{\sqrt[3]{n}}\right) \right)$$

yields estimates d = 8/3 such that

$$h(n) \sim cst 2^n e^{3a_1(n/2)^{1/3}} n^{4/3}$$
 and

and
$$s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).$$

$$f_0(x) = \operatorname{Ai}(2^{1/3}x + a_1) = \operatorname{Ai}'(a_1)x + \dots$$
$$f_1(x) = -\frac{2x^2}{3}f_0(x)$$

Refined heuristic analysis

Ansatz of order 1:

$$d_{n,m} \approx h(n) f\left(\frac{m+1}{\sqrt[3]{n}}\right)$$
 and $s_n = 2 + cn^{-2/3} + O(n^{-1})$

yields estimates $c = 2^{2/3}a_1$ such that

$$f(n) \approx 2^n e^{3a_1(n/2)^{1/3}}$$
 and $f(x) = \operatorname{Ai}(2^{1/3}x + a_1).$

Ansatz of order 2:

$$d_{n,m} \approx h(n) \left(f_0\left(\frac{m+1}{\sqrt[3]{n}}\right) + \frac{n^{-1/3}f_1\left(\frac{m+1}{\sqrt[3]{n}}\right) \right)$$

yields estimates d = 8/3 such that

$$h(n) \sim cst 2^n e^{3a_1(n/2)^{1/3}} n^{4/3}$$
 and

and
$$s_n = 2 + cn^{-2/3} + dn^{-1} + O(n^{-4/3}).$$

$$f_0(x) = \operatorname{Ai}(2^{1/3}x + a_1) = \operatorname{Ai}'(a_1)x + \dots$$

$$f_1(x) = -\frac{2x^2}{3}f_0(x)$$

This way we conjecture the asymptotic form

$$a_{n,n} = n! d_{2n,0} \approx cst n! 4^n e^{3a_1 n^{1/3}} n$$

1/2.

Step 3: Inductive proof

Step 3: Inductive proof - Outline

Recall:

$$d_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}$$

Find explicit sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$X_{n,m} \leq d_{n,m} \leq Y_{n,m},$$

for all *m* and all *n* large enough.

Step 3: Inductive proof - Outline

Recall:

$$d_{n,m} = \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}$$

Find explicit sequences $X_{n,m}$ and $Y_{n,m}$ with the same asymptotic form, such that

$$X_{n,m} \leq d_{n,m} \leq Y_{n,m},$$

for all *m* and all *n* large enough.

How to find them?

Use heuristics

2 Adapt until $X_{n,m}$ and $Y_{n,m}$ satisfy the recurrence of $d_{n,m}$ with the equalities replaced by inequalities:

$$=$$
 \longrightarrow \leq and \geq

3 Prove $X_{n,m} \leq d_{n,m} \leq Y_{n,m}$ by induction.

Induction (Lower bound)

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Main idea

Suppose we have found explicit sequences $(X_{n,m})_{n \ge m \ge 0}$ and $(s_n)_{n \ge 1}$ that satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$
 (2)

for all sufficiently large *n* and **all** integers $m \in [0, n]$.

Induction (Lower bound)

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Main idea

Suppose we have found explicit sequences $(X_{n,m})_{n \ge m \ge 0}$ and $(s_n)_{n \ge 1}$ that satisfy

$$X_{n,m}s_n \le X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$
 (2)

for all sufficiently large *n* and **all** integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$X_{n,m}h_n \leq b_0 d_{n,m}$$

Induction (Lower bound)

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Main idea

Suppose we have found explicit sequences $(X_{n,m})_{n \ge m \ge 0}$ and $(s_n)_{n \ge 1}$ that satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$
 (2)

for all sufficiently large *n* and **all** integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$X_{n,m}h_n \leq b_0 d_{n,n}$$

$$X_{n,m}h_n \stackrel{(2)}{\leq} X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}h_{n-1}$$

Induction (Lower bound)

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Main idea

Suppose we have found explicit sequences $(X_{n,m})_{n \ge m \ge 0}$ and $(s_n)_{n \ge 1}$ that satisfy

$$X_{n,m}s_n \le X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$
 (2)

for all sufficiently large *n* and **all** integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$X_{n,m}h_n \leq b_0 d_{n,n}$$

$$\begin{array}{ccc} X_{n,m}h_n & \stackrel{(2)}{\leq} & X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}h_{n-1} \\ & \stackrel{(\text{Induction})}{\leq} b_0 d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)b_0 d_{n-1,m-1} \end{array}$$
(pos. coeffs!)

Induction (Lower bound)

$$d_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) d_{n-1,m-1}$$

Main idea

Suppose we have found explicit sequences $(X_{n,m})_{n \ge m \ge 0}$ and $(s_n)_{n \ge 1}$ that satisfy

$$X_{n,m}s_n \leq X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1},$$
 (2)

for all sufficiently large *n* and **all** integers $m \in [0, n]$.

Define $(h_n)_{n\geq 0}$ by $h_0 = 1$ and $h_n = s_n h_{n-1}$; then prove that

$$X_{n,m}h_n \leq b_0 d_{n,n}$$

$$\begin{array}{ccc} X_{n,m}h_n & \stackrel{(2)}{\leq} & X_{n-1,m+1}h_{n-1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}h_{n-1} \\ & \stackrel{(\text{Induction})}{\leq} b_0 d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)b_0 d_{n-1,m-1} \\ & \stackrel{\text{Rec. } d_{n,m}}{=} b_0 d_{n,m}. \end{array} \tag{pos. coeffs!}$$

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} ilde{X}_{n,m} &:= \left(1 - rac{2m^2}{3n} + rac{m}{2n}
ight) \operatorname{Ai}\left(a_1 + rac{2^{1/3}(m+1)}{n^{1/3}}
ight) \qquad ext{and} \ ilde{s}_n &:= 2 + rac{2^{2/3}a_1}{n^{2/3}} + rac{8}{3n} - rac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Making m valid for all [0, n]

Define
$$X_{n,m} := \max{\{\tilde{X}_{n,m}, 0\}}$$
. Then,
1 $X_{n,m}\tilde{s}_n = \tilde{X}_{n,m}\tilde{s}_n$

for $m < \operatorname{cst} \sqrt{n}$

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Making m valid for all [0, n]

Define
$$X_{n,m} := \max{\{\tilde{X}_{n,m}, 0\}}$$
. Then,
 $X_{n,m}\tilde{s}_n = \tilde{X}_{n,m}\tilde{s}_n \le (1 - \frac{2(m+1)}{n+m})\tilde{X}_{n-1,m-1} + \tilde{X}_{n-1,m+1}$

for $m < \operatorname{cst} \sqrt{n}$

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Making *m* valid for all [0, *n*]

Define
$$X_{n,m} := \max{\{\tilde{X}_{n,m}, 0\}}$$
. Then,
 $\sum_{\substack{\text{coeffs} \\ \text{coeffs}}} \sum_{\substack{n \in \tilde{X}_{n,m} \\ \vec{S}_n \leq (1 - \frac{2(m+1)}{n+m}) \\ \vec{X}_{n-1,m-1} + \\ \vec{X}_{n-1,m+1} \leq (1 - \frac{2(m+1)}{n+m}) \\ X_{n-1,m-1} + \\ X_{n-1,m-1} + \\ \vec{X}_{n-1,m+1} = (1 - \frac{2(m+1)}{n+m}) \\ X_{n-1,m-1} + \\ X_{n-1,$

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Making *m* valid for all [0, *n*]

Define
$$X_{n,m} := \max{\{\tilde{X}_{n,m}, 0\}}$$
. Then,
1 $X_{n,m}\tilde{s}_n = \tilde{X}_{n,m}\tilde{s}_n \le (1 - \frac{2(m+1)}{n+m})\tilde{X}_{n-1,m-1} + \tilde{X}_{n-1,m+1} \le (1 - \frac{2(m+1)}{n+m})X_{n-1,m-1} + X_{n-1,m+1}$ for $m < cst \sqrt{n}$
2 $X_{n,m}\tilde{s}_n = 0$ $\le (1 - \frac{2(m+1)}{n+m})X_{n-1,m-1} + X_{n-1,m+1}$ otherwise

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \geq \tilde{n}_0$ and for all $0 \leq m < n^{2/3-\varepsilon}$.

Approach

Show that
$$P_{n,m} := -\tilde{X}_{n,m}\tilde{s}_n + \tilde{X}_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)\tilde{X}_{n-1,m-1} \ge 0$$

Michael Wallner | TU Graz | 24.-28.02.2025

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \ge \tilde{n}_0$ and for all $0 \le m < n^{2/3-\epsilon}$.

Approach

Show that
$$P_{n,m} := -\tilde{X}_{n,m}\tilde{s}_n + \tilde{X}_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)\tilde{X}_{n-1,m-1} \ge 0$$

• Expand for *n*, *m* large such that
$$P_{n,m} = \sum a_{i,j}m^i n^j$$
 (converges absolutely, since Airy function is entire)

600 1000

200 P(n, m) for $n = 10^{6}$

4. × 10 3. × 10 2. × 10 1. × 10

Lemma (lower bound)

For all $n, m \ge 0$ let

$$\begin{split} \tilde{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \tilde{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} - \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists an \tilde{n}_0 such that

$$ilde{X}_{n,m} ilde{s}_n \leq \left(1-rac{2(m+1)}{n+m}
ight) ilde{X}_{n-1,m-1}+ ilde{X}_{n-1,m+1},$$

for all $n \ge \tilde{n}_0$ and for all $0 \le m < n^{2/3-\epsilon}$.

Approach

Show that
$$P_{n,m} := -\tilde{X}_{n,m}\tilde{s}_n + \tilde{X}_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)\tilde{X}_{n-1,m-1} \ge 0$$

• Expand for
$$n, m$$
 large such that $P_{n,m} = \sum a_{i,j}m^i n^j$ (converges absolutely, since Airy function is entire)

Show that
$$P_{n,m} = \kappa m^{i_0} n^{j_0} + o(m^{i_0} n^{j_0})$$
 where $\kappa > 0$ for n large

600 1000

200 P(n, m) for $n = 10^{6}$

4. × 10 3. × 10 2. × 10 1. × 10

Lemma (lower bound) – Proof (1)

The following computations rely on computer algebra (Maple session available online). We make the ansatz

$$X_{n,m} := \left(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right),$$
$$s_n := \sigma_0 + \frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/6}},$$

and define

$$P_{n,m} := -X_{n,m}s_n + X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}.$$

Lemma (lower bound) – Proof (1)

The following computations rely on computer algebra (Maple session available online).

We make the ansatz

$$X_{n,m} := \left(1 + \frac{\tau_2 m^2 + \tau_1 m}{n}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right),$$
$$s_n := \sigma_0 + \frac{\sigma_1}{n^{1/3}} + \frac{\sigma_2}{n^{2/3}} + \frac{\sigma_3}{n} + \frac{\sigma_4}{n^{7/6}},$$

and define

$$P_{n,m} := -X_{n,m}s_n + X_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)X_{n-1,m-1}.$$

2 Expand Ai(z) in a neighborhood of

$$\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}},$$

using $\operatorname{Ai}''(z) = z\operatorname{Ai}(z)$. Then

$$P_{n,m} = p_{n,m} \operatorname{Ai}(\alpha) + p'_{n,m} \operatorname{Ai}'(\alpha),$$

where $p_{n,m}$ and $p'_{n,m}$ are power series in $n^{-1/6}$ whose coefficients are polynomials in *m*.

Lemma (lower bound) – Proof (2)

3 Choose σ_i and τ_i to kill lower order terms in

$$P_{n,m} = \sum a_{i,j} m^i n^j$$

$$P_{n,m} = (\sigma_0 - 2) \operatorname{Ai}(\alpha) - \left((\sigma_1 \operatorname{Ai}(\alpha) + 2^{1/3}(\sigma_0 - 2)) \operatorname{Ai}'(\alpha) n^{-\frac{1}{3}} \right. - \left(\left(\frac{a_1(\sigma_0 - 4)}{2^{1/3}} + \sigma_2 \right) \operatorname{Ai}(\alpha) + 2^{1/3} \sigma_1 \operatorname{Ai}'(\alpha) \right) n^{-\frac{2}{3}} \\ + \dots$$

blue terms: $\sigma_0 = 2$

- red terms: $\sigma_1 = 0$
- green terms: $\sigma_2 = 2^{2/3}a_1$

vellow terms:
$$\sigma_3 = 8/3$$
 and $\tau_2 = -2/3$

Lemma (lower bound) – Proof (2)

3 Choose σ_i and τ_i to kill lower order terms in

$$P_{n,m}=\sum a_{i,j}m^in^j$$

- **blue terms:** $\sigma_0 = 2$
- red terms: $\sigma_1 = 0$
- green terms: $\sigma_2 = 2^{2/3}a_1$

vellow terms:
$$\sigma_3 = 8/3$$
 and $\tau_2 = -2/3$

(Recall
$$\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}}$$
)

$$P_{n,m} = p_{n,m} \operatorname{Ai}(\alpha) + p'_{n,m} \operatorname{Ai}'(\alpha)$$

Lemma (lower bound) – Proof (2)

3 Choose σ_i and τ_i to kill lower order terms in

$$P_{n,m}=\sum a_{i,j}m^in^j$$

yellow terms:
$$\sigma_3 = 8/3$$
 and $\tau_2 = -2/3$

(Recall
$$\alpha = a_1 + \frac{2^{1/3}m}{n^{1/3}}$$
)

$$P_{n,m} = p_{n,m} \operatorname{Ai}(\alpha) + p'_{n,m} \operatorname{Ai}'(\alpha)$$

Upper bound

Lemma

Choose $\eta > 2/9$ fixed and for all $n, m \ge 0$ let

$$\begin{split} \hat{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \eta \frac{m^4}{n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \hat{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists a constant \hat{n}_0 such that

$$\hat{X}_{n,m}\hat{\mathbf{s}}_n \geq \frac{n-m+2}{n+m}\hat{X}_{n-1,m-1} + \hat{X}_{n-1,m+1},$$

for all $n \geq \hat{n}_0$ and all $0 \leq m < n^{1-\varepsilon}$.
Lemma

Choose $\eta > 2/9$ fixed and for all $n, m \ge 0$ let

$$\begin{split} \hat{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \eta \frac{m^4}{n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \hat{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists a constant \hat{n}_0 such that

$$\hat{X}_{n,m}\hat{\mathbf{s}}_n \geq \frac{n-m+2}{n+m}\hat{X}_{n-1,m-1} + \hat{X}_{n-1,m+1},$$

for all $n \geq \hat{n}_0$ and all $0 \leq m < n^{1-\varepsilon}$.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Lemma

Choose $\eta > 2/9$ fixed and for all $n, m \ge 0$ let

$$\begin{split} \hat{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \eta \frac{m^4}{n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \hat{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists a constant \hat{n}_0 such that

$$\hat{X}_{n,m}\hat{s}_n \geq \frac{n-m+2}{n+m}\hat{X}_{n-1,m-1} + \hat{X}_{n-1,m+1},$$

for all $n \geq \hat{n}_0$ and all $0 \leq m < n^{1-\varepsilon}$.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Making *m* valid for all [0, *n*] (different than lower bound)

• We fix N > 0 and define a new sequence $\tilde{d}_{n,m}$ with the same rules as $d_{n,m}$ except that $\tilde{d}_{n,m} = 0$ for $m > n^{3/4}$ and n > N

Lemma

Choose $\eta > 2/9$ fixed and for all $n, m \ge 0$ let

$$\begin{split} \hat{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \eta \frac{m^4}{n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \hat{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists a constant \hat{n}_0 such that

$$\hat{X}_{n,m}\hat{s}_n \geq \frac{n-m+2}{n+m}\hat{X}_{n-1,m-1} + \hat{X}_{n-1,m+1},$$

for all $n \geq \hat{n}_0$ and all $0 \leq m < n^{1-\varepsilon}$.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Making *m* valid for all [0, *n*] (different than lower bound)

- We fix N > 0 and define a new sequence $\tilde{d}_{n,m}$ with the same rules as $d_{n,m}$ except that $\tilde{d}_{n,m} = 0$ for $m > n^{3/4}$ and n > N
- ⇒ Induction works and we get $\tilde{d}_{2n,m} \leq \gamma 4^n e^{3a_1 n^{1/3}} n$

Lemma

Choose $\eta > 2/9$ fixed and for all $n, m \ge 0$ let

$$\begin{split} \hat{X}_{n,m} &:= \left(1 - \frac{2m^2}{3n} + \frac{m}{2n} + \eta \frac{m^4}{n^2}\right) \operatorname{Ai}\left(a_1 + \frac{2^{1/3}(m+1)}{n^{1/3}}\right) \qquad \text{and} \\ \hat{s}_n &:= 2 + \frac{2^{2/3}a_1}{n^{2/3}} + \frac{8}{3n} + \frac{1}{n^{7/6}}. \end{split}$$

Then, for any $\varepsilon > 0$, there exists a constant \hat{n}_0 such that

$$\hat{X}_{n,m}\hat{s}_n \geq \frac{n-m+2}{n+m}\hat{X}_{n-1,m-1} + \hat{X}_{n-1,m+1},$$

for all $n \geq \hat{n}_0$ and all $0 \leq m < n^{1-\varepsilon}$.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Making *m* valid for all [0, *n*] (different than lower bound)

- We fix N > 0 and define a new sequence $\tilde{d}_{n,m}$ with the same rules as $d_{n,m}$ except that $\tilde{d}_{n,m} = 0$ for $m > n^{3/4}$ and n > N
- ⇒ Induction works and we get $\tilde{d}_{2n,m} \leq \gamma 4^n e^{3a_1 n^{1/3}} n$

! Prove that
$$d_{2n,0} \leq \operatorname{cst} \tilde{d}_{2n,m}$$

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)\tilde{d}_{n-1,m-1} & \text{ for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{ otherwise.} \end{cases}$$

$$d_{2n,0} \leq cst\, \widetilde{d}_{2n,m}$$

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) \tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{otherwise.} \end{cases}$$

Missing step

$$d_{2n,0} \leq cst \, \tilde{d}_{2n,m}$$

• We call cropped paths **good** and all others **bad**.

(

Lattice path theory to finish the upper bound

Cropped paths

$$\begin{cases}
\tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right)\tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\
\tilde{d}_{n,m} = 0 & \text{otherwise.}
\end{cases}$$

Missing step

$$d_{2n,0} \leq cst\, \widetilde{d}_{2n,m}$$

We call cropped paths good and all others bad. *Idea:* Bound the probability to be a bad path.

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) \tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{otherwise.} \end{cases}$$

$$d_{2n,0} \leq cst \, \tilde{d}_{2n,m}$$

- We call cropped paths good and all others bad.
- Idea: Bound the probability to be a bad path.
- Let $s_{x,y,n}$ be the proportion of paths from (0,0) to (2n,0) passing through a point (x, y).

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) \tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{otherwise.} \end{cases}$$

$$d_{2n,0} \leq \operatorname{cst} \widetilde{d}_{2n,m}$$

- We call cropped paths good and all others bad.
- Idea: Bound the probability to be a bad path.
- Let $s_{x,y,n}$ be the proportion of paths from (0,0) to (2n,0) passing through a point (x, y).
- Assume that for $y > x^{3/4}$ and x > N the value $s_{x,y,n}$ is very small. Then

$$1 - \frac{\tilde{d}_{2n,0}}{d_{2n,0}} \le \sum_{x > N} \sum_{x \ge y > x^{3/4}} s_{x,y,n}$$

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) \tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{otherwise.} \end{cases}$$

$$d_{2n,0} \leq \operatorname{cst} \widetilde{d}_{2n,m}$$

- We call cropped paths good and all others bad.
- Idea: Bound the probability to be a bad path.
- Let $s_{x,y,n}$ be the proportion of paths from (0,0) to (2n,0) passing through a point (x, y).
- Assume that for $y > x^{3/4}$ and x > N the value $s_{x,y,n}$ is very small. Then

$$1 - \frac{\tilde{d}_{2n,0}}{d_{2n,0}} \leq \sum_{x > N} \sum_{x \geq y > x^{3/4}} s_{x,y,n} \leq \varepsilon_N$$

Cropped paths

$$\begin{cases} \tilde{d}_{n,m} = d_{n-1,m+1} + \left(1 - \frac{2(m+1)}{n+m}\right) \tilde{d}_{n-1,m-1} & \text{for } m > n^{3/4} \text{ and } n > N, \\ \tilde{d}_{n,m} = 0 & \text{otherwise.} \end{cases}$$

$$d_{2n,0} \leq \operatorname{cst} \widetilde{d}_{2n,m}$$

- We call cropped paths good and all others bad.
- Idea: Bound the probability to be a bad path.
- Let $s_{x,y,n}$ be the proportion of paths from (0,0) to (2n,0) passing through a point (x, y).
- Assume that for $y > x^{3/4}$ and x > N the value $s_{x,y,n}$ is very small. Then

$$1 - \frac{\tilde{d}_{2n,0}}{d_{2n,0}} \leq \sum_{x > N} \sum_{x \geq y > x^{3/4}} s_{x,y,n} \leq \varepsilon_N$$

$$\Rightarrow d_{2n,0} \leq \frac{1}{1-\varepsilon_N} \tilde{d}_{2n,0}.$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- *s_{x,y,n}* is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad s_{x,y,n} = \frac{d_{x,y} \cdot p_{x,y,n}}{d_{2n,0}} \leq 1.$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

$$s_{2x,2y,n} = \frac{d_{2x,2y} \cdot p_{2x,2y,n}}{d_{2n,0}}$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

 $d_{2x,0} \xrightarrow{\qquad } 2x \xrightarrow{\qquad } p_{2x,0,2n} \xrightarrow{\qquad } d_{2n,0}$

$$s_{2x,2y,n} = rac{d_{2x,2y} \cdot p_{2x,2y,n}}{d_{2n,0}} \stackrel{(Lemma)}{\leq} rac{(2y+1)d_{2x,2y}}{d_{2x,0}}$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- s_{x,y,n} is the proportion of paths from (0,0) to (2n,0) passing through a point (x, y);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

$$s_{2x,2y,n} = rac{d_{2x,2y} \cdot p_{2x,2y,n}}{d_{2n,0}} \stackrel{ ext{(Lemma)}}{\leq} rac{(2y+1)d_{2x,2y}}{d_{2x,0}} \stackrel{ ext{(Unweighted paths)}}{\leq} C' rac{2y+1}{d_{2x,0}} {2x \choose x+y}$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- *s_{x,y,n}* is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

$$\begin{split} s_{2x,2y,n} &= \frac{d_{2x,2y} \cdot p_{2x,2y,n}}{d_{2n,0}} \stackrel{(\text{Lemma})}{\leq} \frac{(2y+1)d_{2x,2y}}{d_{2x,0}} \stackrel{(\text{Unweighted paths})}{\leq} C' \frac{2y+1}{d_{2x,0}} \binom{2x}{x+y} \\ \stackrel{(\text{Lower bound})}{\leq} C' \frac{2y+1}{4^{x} e^{3a_{1}x^{1/3}}x} \binom{2x}{x+y} \end{split}$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

$$S_{2x,2y,n} = rac{d_{2x,2y} \cdot p_{2x,2y,n}}{d_{2n,0}} \stackrel{(\text{Lemma})}{\leq} rac{(2y+1)d_{2x,2y}}{d_{2x,0}} \stackrel{(\text{Unweighted paths})}{\leq} C' rac{2y+1}{d_{2x,0}} {2x \choose x+y}$$

Lattice path theory to finish the upper bound (2)

- Show: $s_{x,y,n}$ is for $x \ge y > x^{3/4}$ and x > N very small
- $s_{x,y,n}$ is the proportion of paths from (0,0) to (2*n*,0) passing through a point (*x*, *y*);
- $p_{x,y,n}$ is the number of paths from (x, y) to (2n, 0).

$$\Rightarrow \quad \boldsymbol{s}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}} = \frac{\boldsymbol{d}_{\boldsymbol{x},\boldsymbol{y}} \cdot \boldsymbol{p}_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{n}}}{\boldsymbol{d}_{2\boldsymbol{n},\boldsymbol{0}}} \leq 1.$$

Therefore, we get for $x \ge y > x^{3/4}$ and x large

S

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$
 $d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right)d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$

■ Asymptotics of *d*_{2n,0}?

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

- Asymptotics of *d*_{2*n*,0}?
- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 - end at (2n, 0)
 - never cross x-axis
 - \blacksquare use steps \nearrow and \searrow

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

- Asymptotics of *d*_{2*n*,0}?
- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 - end at (2*n*, 0)
 - never cross x-axis
 - \blacksquare use steps \nearrow and \searrow

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

Asymptotics of d_{2n,0}?

- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 end at (2n, 0)
 - never cross x-axis
 - \blacksquare use steps \nearrow and \searrow

2 Asymptotic ansatz for large *n* and $m \approx n^{1/3}$ involving the Airy function

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

- Asymptotics of d_{2n,0}?
- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 end at (2n, 0)
 - never cross x-axis
 - \blacksquare use steps \nearrow and \searrow

- **2** Asymptotic ansatz for large *n* and $m \approx n^{1/3}$ involving the Airy function
- 3 Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

1 Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

- Asymptotics of d_{2n,0}?
- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 end at (2n, 0)
 - never cross x-axis
 - \blacksquare use steps \nearrow and \searrow

- **2** Asymptotic ansatz for large *n* and $m \approx n^{1/3}$ involving the Airy function
- 3 Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

Lower bound

$$a_{n,n} \geq \gamma_1 n! 4^n e^{3a_1 n^{1/3}} n,$$

for some constant $\gamma_1 > 0$.

Two-parameter recurrence relation

$$a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}, \quad n \ge m > 0$$

$$d_{n,m} = \left(1 - \frac{2(m-1)}{n+m}\right) d_{n-1,m-1} + d_{n-1,m+1}, \quad m \ge 0$$

Asymptotics of d_{2n,0}?

- An interpretation in terms of Dyck paths:
 - start at (0, 0)
 end at (2n, 0)
 - = never cross x axis

2 Asymptotic ansatz for large *n* and $m \approx n^{1/3}$ involving the Airy function

3 Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

Lower bound

$$a_{n,n} \geq \gamma_1 n! 4^n e^{3a_1 n^{1/3}} n_2$$

for some constant $\gamma_1 > 0$.

Upper bound (similar proof, more technical)

$$a_{n,n} \leq \gamma_2 n! 4^n e^{3a_1 n^{1/3}} n_2$$

for some constant $\gamma_2 > 0$.

Michael Wallner | TU Graz | 24.-28.02.2025

Part III Applications in Computer Science and Biology

Stretched exponentials appear in open asymptotic counting problems

- 1 Compacted trees [Flajolet, Sipala, Steyaert 1990]
- 2 Minimal deterministic finite automata accepting a finite language [Domaratzki, Kisman, Shallit 2002]
- 3 Phylogenetic tree-child networks [McDiarmid, Semple, Welsh 2015]

Compacted trees

Let's start simple: binary trees

- Internal node: Node of out-degree 2 (circle)
- Leave: Node of out-degree 0 (square)
- Root: Distinguished node (top node)
- Left-Right Order of children

A recursive construction

- A binary tree is either a leaf,
- or it consists of a root and a left and right binary tree.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

(1,(x,0,0))

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

(1,(x,0,0))
Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

(1, (x, 0, 0))

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

```
(* (- (* x x) (* y y)) (+ (* x x) (* y y))),
```

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3)), (5, (-, 2, 4)), (6, (+, 2, 4)), (7, (\times, 5, 6))$

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents $(x^2 - y^2)(x^2 + y^2)$.

 $(1, (x, 0, 0)), (2, (\times, 1, 1)), (3, (y, 0, 0)), (4, (\times, 3, 3)), (5, (-, 2, 4)), (6, (+, 2, 4)), (7, (\times, 5, 6))$

Definition

Compacted tree is the directed acyclic graph computed by this procedure.

Nodes: n (internal) nodes and 1 leaf

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder
- Uniqueness: All (fringe) subtrees are unique!

- Nodes: n (internal) nodes and 1 leaf
- Edges: *n* internal edges and *n* pointers
- Rooted: Unique distinguished node
- Plane: Children have a left-to-right order
- Structure: Deleting the pointers gives a plane (binary) tree
- Pointers: Point to a node previously visited in postorder
- Uniqueness: All (fringe) subtrees are unique!

Valid compacted tree

Invalid compacted tree A relaxed tree

Applications:

- XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
- Data storage [Meinel, Theobald 1998], [Knuth 1968]
- Compilers [Aho, Sethi, Ullman 1986]
- LISP [Goto 1974]
- etc.

Applications:

- XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
- Data storage [Meinel, Theobald 1998], [Knuth 1968]
- Compilers [Aho, Sethi, Ullman 1986]
- LISP [Goto 1974]
- etc.
- Efficient compaction algorithm: expected time $\mathcal{O}(n)$

Applications:

- **XML-Compression** [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
- Data storage [Meinel, Theobald 1998], [Knuth 1968]
- Compilers [Aho, Sethi, Ullman 1986]
- LISP [Goto 1974]
- etc.
- Efficient compaction algorithm: expected time O(n)
- A tree of size *n* has a *expected compacted size*

$$C \frac{n}{\sqrt{\log n}}$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Applications:

- XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
- Data storage [Meinel, Theobald 1998], [Knuth 1968]
- Compilers [Aho, Sethi, Ullman 1986]
- LISP [Goto 1974]
- etc.
- Efficient compaction algorithm: expected time O(n)
- A tree of size *n* has a *expected compacted size*

$$C \frac{n}{\sqrt{\log n}}$$

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question

How many compacted trees of (compacted) size n exist?

Compacted and relaxed binary trees

- Size: number of internal nodes
- **r**_n: nr. of relaxed trees of size n
- **c**_n: nr. of compacted trees of size *n* (unique subtrees)

 $(r_n)_{n\geq 0} = (1, 1, 3, 16, 127, 1363, 18628, \dots)$ $(c_n)_{n\geq 0} = (1, 1, 3, 15, 111, 1119, 14487, \dots)$

Simple bounds
$$n! \le c_n \le r_n \le \frac{1}{n+1} \binom{2n}{n} n!$$

Compacted and relaxed binary trees

- Size: number of internal nodes
- **r**_n: nr. of relaxed trees of size n
- **c**_n: nr. of compacted trees of size *n* (unique subtrees)

 $(r_n)_{n\geq 0} = (1, 1, 3, 16, 127, 1363, 18628, \dots)$ $(c_n)_{n\geq 0} = (1, 1, 3, 15, 111, 1119, 14487, \dots)$

Simple bounds
$$n! \le c_n \le r_n \le \frac{1}{n+1} \binom{2n}{n} n!$$

Bounded right height

The **right height** of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Bounded right height

The **right height** of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number $r_{k,n}$ ($c_{k,n}$) of relaxed (compacted) trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

$$r_{k,n} \sim \gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2}},$$

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2},$$

where $\gamma_k, \kappa_k \in \mathbb{R} \setminus \{0\}$ are independent of *n*.

Bounded right height

The **right height** of a binary tree is the maximal number of right children on any path from the root to a leaf (not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number $r_{k,n}$ ($c_{k,n}$) of relaxed (compacted) trees with right height at most k is for $n \to \infty$ asymptotically equivalent to

$$r_{k,n} \sim \gamma_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2}},$$

$$c_{k,n} \sim \kappa_k n! \left(4 \cos\left(\frac{\pi}{k+3}\right)^2 \right)^n n^{-\frac{k}{2} - \frac{1}{k+3} - \left(\frac{1}{4} - \frac{1}{k+3}\right) \cos\left(\frac{\pi}{k+3}\right)^{-2},$$

where $\gamma_k, \kappa_k \in \mathbb{R} \setminus \{0\}$ are independent of *n*.

Remarks:

- Uses exponential generating functions
- GFs are D-finite (order *k*)
- Methods from Analytic Combinatorics (Singularity analysis, etc.)
- Interesting combinatorics: E.g., $r_{1,n} = (2n - 1)!!$

Asymptotics in the binary case

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted **binary** trees satisfy for $n o \infty$

 $r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right)$ and $c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(*x*).

Asymptotics in the binary case

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted **binary** trees satisfy for $n o \infty$

 $r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right)$ and $c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right)$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Proof strategy

- Bijective Comb.: Bijection to decorated Dyck paths
- 2 Enumerative Comb.: Two-parameter recurrence
- 3 Calculus + ODEs: Heuristic analysis of recurrence
- 4 Computer algebra: Inductive proof of asymptotically tight bounds

Asymptotics in the binary case

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted **binary** trees satisfy for $n o \infty$

 $r_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n\right)$ and $c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right)$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Proof strategy

- Bijective Comb.: Bijection to decorated Dyck paths
- 2 Enumerative Comb.: Two-parameter recurrence
- 3 Calculus + ODEs: Heuristic analysis of recurrence
- 4 Computer algebra: Inductive proof of asymptotically tight bounds

Spanning tree distinguishes internal edges and pointers

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2
- Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3
 - going up: add up step
 - passing a pointer: add horizontal step and mark box corresponding to pointer label

- Spanning tree distinguishes internal edges and pointers 1
- 2

Label nodes and pointers in **post-order** Traverse the spanning tree along the **contour**. When... 3

going up: add up step

passing a pointer: add horizontal step and mark box corresponding to pointer label

$$\Rightarrow$$
 $a_{m,n} = (n+1)a_{m-1,n} + a_{m,n-1}$ for $m \ge n \ge 0$

Most general result: k-ary trees

Theorem [Ghosh Dastidar, W 2024]

The number *r_n* of relaxed *k*-ary trees with *n* internal nodes satisfies

$$r_n = \Theta\left((n!)^{k-1} \gamma(k)^n e^{3a_1\beta(k)n^{1/3}} n^{\alpha(k)}\right)$$

with $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) and

$$\gamma(k) = \frac{k^k}{(k-1)^{k-1}}, \qquad \beta(k) = \left(\frac{k(k-1)}{2}\right)^{1/3}, \qquad \alpha(k) = \frac{7k-8}{6}.$$
Most general result: *k*-ary trees

Theorem [Ghosh Dastidar, W 2024]

The number *r_n* of relaxed *k*-ary trees with *n* internal nodes satisfies

$$r_n = \Theta\left((n!)^{k-1} \gamma(k)^n e^{3a_1\beta(k)n^{1/3}} n^{\alpha(k)}\right),$$

with $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x) and

$$\gamma(k) = \frac{k^k}{(k-1)^{k-1}}, \qquad \beta(k) = \left(\frac{k(k-1)}{2}\right)^{1/3}, \qquad \alpha(k) = \frac{7k-8}{6}$$

Conjecture

Experimentally, we find in the binary case (k = 2) that

$$r_n \sim \gamma_r n! 4^n e^{3a_1 n^{1/3}} n$$
 and $c_n \sim \gamma_c n! 4^n e^{3a_1 n^{1/3}} n^{3/4}$,

where

$$\gamma_r \approx 166.95208957$$
 and

 $\gamma_{c} \approx 173.12670485.$

Minimal Deterministic Finite Automata

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$

Graph with

- two outgoing edges from each node (state), labelled a and b
- An initial state q₀
- A set *F* of *final states* (coloured green).

Figure: DFA

Deterministic finite automata (DFA)

DFA on alphabet $\{a, b\}$

Graph with

- two outgoing edges from each node (state), labelled *a* and *b*
- An initial state q₀
- A set *F* of *final states* (coloured green).

Properties

- Language: the set of accepted words
- Minimal: no DFA with fewer states accepts the same language
- Acyclic: no cycles (except loops at unique sink)

Figure: DFA, which is the minimal DFA recognizing the language $\{a, aa, ba, aba\}$.

Counting minimal acyclic DFAs

- Enumeration studied by Domaratzki, Kisman, Shallit, and Liskovets 2002–2006
- **Open problem:** Asymptotics
- Best bounds were out by an exponential factor

Figure: DFA, which is the minimal DFA recognizing the language $\{a, aa, ba, aba\}$.

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number m_n of minimal DFAs with n + 1 states recognizing a finite binary language satisfies for $n \to \infty$

$$m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),$$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(*x*).

Main result minimal DFAs

A stretched exponential $\mu^{n^{\sigma}}$ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number m_n of minimal DFAs with n + 1 states recognizing a finite binary language satisfies for $n \to \infty$

$$m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),$$

where $a_1 \approx -2.338$ is the largest root of the Airy function Ai(x).

Conjecture

Experimentally we find

$$m_n \sim \gamma n! 8^n e^{3a_1 n^{1/3}} n^{7/8},$$

where

 $\gamma pprox$ 76.438160702.

Bijection to decorated paths

Bijection to decorated paths

Highlight spanning tree given by depth first search (ignoring the sink)

I.e., black path to each vertex is first in lexicographic order

Bijection to decorated paths

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red

- Highlight spanning tree given by depth first search (ignoring the sink)
- I.e., black path to each vertex is first in lexicographic order
- Colour other edges red
- Draw as a binary tree with a edges pointing left and b edges pointing right

Bijection to decorated paths

Label nodes in post-order. By construction red edges point from a larger number to a smaller number

 \blacksquare Label nodes in post-order. By construction red edges point from a larger number to a smaller number \blacksquare \rightarrow Label pointers

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

- goes up: add up step with color matching the corresponding node.
- passes a pointer:
 - add horizontal step
 - mark box corresponding to pointer label

Path starts at (-1,0) and ends at (n, n)
Path stays below diagonal (after first step)

- Path starts at (-1, 0) and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step

- Path starts at (-1, 0) and ends at (n, n)
- Path stays below diagonal (after first step)
- One box is marked below each horizontal step
- Each vertical step is colored white or green

By the bijection: The number of these paths is the number d_n of acyclic DFAs with n + 1 nodes.

Recurrence: Denote by $a_{n,m}$ the number of paths ending at (n, m).

$$a_{n,m} = 2a_{n,m-1} + (m+1)a_{n-1,m},$$
 for $n \ge m$
 $a_{-1,0} = 1.$

By the bijection: $d_n = a_{n,n}$ is the number of acyclic DFAs with n + 1 nodes.

Michael Wallner | TU Graz | 24.-28.02.2025

Recurrence: Denote by $a_{n,m}$ the number of paths ending at (n, m).

$$a_{n,m} = 2a_{n,m-1} + (m+1)a_{n-1,m},$$
 for $n \ge m$
 $a_{-1,0} = 1.$

By the bijection: $d_n = a_{n,n}$ is the number of acyclic DFAs with n + 1 nodes. What about minimality? Michael Wallner | TU Graz | 24–28.02.2025

Recurrence for minimal DFAs

Recurrence: Denote by $b_{n,m}$ the number of paths ending at (n, m).

$$b_{n,m} = 2b_{n,m-1} + (m+1)b_{n-1,m} - mb_{n-2,m-1},$$
 for $n \ge m$,
 $b_{-1,0} = 1.$

Now: $m_n = b_{n,n}$ is the number of minimal acyclic DFAs with n + 1 nodes.

Phylogenetic tree-child networks

Biology: *d*-combining tree-child networks

Definition

A *d*-ary rooted phylogenetic network is a DAG with nodes of the type:

- unique root: indegree 0, outdegree 2
- leaf: indegree 1, outdegree 0
- tree node: indegree 1, outdegree 2
- reticulation node: indegree d, outdegree 1

Furthermore, the *n* leaves are labeled bijectively by $\{1, \ldots, n\}$.

Tree-child: every non-leaf node has at least one child that is not a reticulation.

Bivariate Linear Recurrences | Phylogenetic tree-child networks

Asymptotics of *d*-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number $TC_n^{(d)}$ of *d*-combining tree-child networks with *n* leaves satisfies

$$\mathrm{TC}_{n}^{(d)} = \Theta\left(\left(n!\right)^{d} \gamma(d)^{n} e^{3a_{1}\beta(d)n^{1/3}} n^{\alpha(d)}\right) \qquad \qquad \text{for } n \to \infty$$

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and

$$\alpha(d) = -\frac{d(3d-1)}{2(d+1)}, \qquad \beta(d) = \left(\frac{d-1}{d+1}\right)^{2/3}, \qquad \gamma(d) = 4\frac{(d+1)^{d-1}}{(d-1)!}$$

Bivariate Linear Recurrences | Phylogenetic tree-child networks

Asymptotics of *d*-combining tree-child networks

A stretched exponential $\mu^{n^{\sigma}}$ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number $TC_n^{(d)}$ of *d*-combining tree-child networks with *n* leaves satisfies

$$\mathrm{TC}_{n}^{(d)} = \Theta\left(\left(n!\right)^{d} \gamma(d)^{n} e^{3a_{1}\beta(d)n^{1/3}} n^{\alpha(d)}\right) \qquad \qquad \text{for } n \to \infty$$

with $a_1 \approx -2.338$: largest root of the Airy function Ai(x) and

$$\alpha(d) = -\frac{d(3d-1)}{2(d+1)}, \qquad \beta(d) = \left(\frac{d-1}{d+1}\right)^{2/3}, \qquad \gamma(d) = 4\frac{(d+1)^{d-1}}{(d-1)!}$$

Proof strategy

- Bijective Comb.: Bijection to Young tableaux with walls
- Enumerative Comb.: Two-parameter recurrence
- <u>Calculus + ODEs:</u> Heuristic analysis of recurrence
- Computer algebra: Inductive proof of asymptotically tight bounds

Bivariate Linear Recurrences | Phylogenetic tree-child networks

How to prove this?

1 Combinatorics: reduce the problem

How to prove this?

1 Combinatorics: reduce the problem

Asymptotically, only maximally reticulated networks important:

Let $TC_{n,k}^{(d)}$ be TC networks with *n* leaves and *k* reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$.

How to prove this?

Combinatorics: reduce the problem

Asymptotically, only maximally reticulated networks important:

Let $TC_{n,k}^{(d)}$ be TC networks with *n* leaves and *k* reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$. **Bijection** of $TC_{n,n-1}^{(d)}$ to Young tableaux with walls (or special words)

6	10	14	15	17	18
3	5	9	12	13	16
2	1	7	4	11	8
How to prove this?

- Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important:

Let $TC_{n,k}^{(d)}$ be TC networks with *n* leaves and *k* reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$.

Bijection of TC^(d)_{n,n-1} to Young tableaux with walls (or special words)

3 Two parameter recurrence relation

6	10	14	15	17	18
3	5	9	12	13	16
2	1	7	4	11	8

 $e_{n,m} = \mu_{n,m} e_{n-1,m+1} + \nu_{n,m} e_{n-1,m-1}$

 $n \ge 3$ and $m \ge 0$, $e_{n,-1} = e_{2,n} = 0$ except for $e_{2,0} = 1$,

How to prove this?

- Combinatorics: reduce the problem
 - Asymptotically, only maximally reticulated networks important:

Let $TC_{n,k}^{(d)}$ be TC networks with *n* leaves and *k* reticulation nodes, then

$$\mathrm{TC}_n^{(d)} \sim c_d \mathrm{TC}_{n,n-1}^{(d)}$$

where $c_2 = \sqrt{2}$ and $c_d = 1$ for $d \ge 3$.

Bijection of TC^(d)_{n,n-1} to Young tableaux with walls (or special words)

Two parameter recurrence relation

6	10	14	15	17	18
3	5	9	12	13	16
2	1	7	4	11	8

 $e_{n,m} = \mu_{n,m} e_{n-1,m+1} + \nu_{n,m} e_{n-1,m-1}$

 $n \ge 3$ and $m \ge 0$, $e_{n,-1} = e_{2,n} = 0$ except for $e_{2,0} = 1$, where

$$\mu_{n,m} = 1 + \frac{2(d-1)}{(d+1)n + (d-1)m - 2(d+1)} \quad \text{and} \quad \nu_{n,m} = \prod_{i=2}^{d} \left(1 - \frac{2(m+i)}{(d+1)(n+m)} \right).$$

We are interested in $e_{2n,0}$, as $\operatorname{TC}_{n}^{(d)} = \Theta\left((n!)^{d} \left(\frac{\gamma(d)}{4} \right)^{n} n^{1-d} e_{2n,0} \right).$

Theorem

The number *c_n* of compressed binary trees,

 $c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$

satisfy for $n \rightarrow \infty$ [Elvey Price, Fang, W 2021]

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, satisfy for $n \to \infty$

$$c_n = \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right),$$
$$m_n = \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right),$$

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2020]

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, t_n of bicombining phylogenetic tree-child networks, satisfy for $n \to \infty$

$$\begin{split} c_n &= \Theta\left(n! \, 4^n e^{3a_1 n^{1/3}} n^{3/4}\right), \\ m_n &= \Theta\left(n! \, 8^n e^{3a_1 n^{1/3}} n^{7/8}\right), \\ t_n &= \Theta\left((n!)^2 \, 12^n e^{a_1 (3n)^{1/3}} n^{-5/3}\right), \end{split}$$

[Elvey Price, Fang, W 2021]

[Elvey Price, Fang, W 2020]

[Fuchs, Yu, Zhang 2021]

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, t_n of bicombining phylogenetic tree-child networks, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! 4^{n} e^{3a_{1}n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$m_{n} = \Theta \left(n! 8^{n} e^{3a_{1}n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$t_{n} = \Theta \left((n!)^{2} 12^{n} e^{a_{1}(3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$y_{n} = \Theta \left(n! 12^{n} e^{a_{1}(3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, t_n of bicombining phylogenetic tree-child networks, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! \, 4^{n} e^{3a_{1}n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$m_{n} = \Theta \left(n! \, 8^{n} e^{3a_{1}n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$t_{n} = \Theta \left((n!)^{2} \, 12^{n} e^{a_{1}(3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$y_{n} = \Theta \left(n! \, 12^{n} e^{a_{1}(3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

where Ai(x) is the largest root of the Airy function Ai(x) characterized by Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.

Key property

Characterized by Dyck-like recurrences with rational weight functions:

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1} + \dots$$

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, t_n of bicombining phylogenetic tree-child networks, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! \, 4^{n} e^{3a_{1} n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$m_{n} = \Theta \left(n! \, 8^{n} e^{3a_{1} n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$t_{n} = \Theta \left((n!)^{2} \, 12^{n} e^{a_{1} (3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$y_{n} = \Theta \left(n! \, 12^{n} e^{a_{1} (3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

where Ai(x) is the largest root of the Airy function Ai(x) characterized by Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.

Key property

Characterized by Dyck-like recurrences with rational weight functions:

$$a_{m,n} = E(m, n)a_{m-1,n} + N(m, n)a_{m,n-1} + \dots$$

Future research directions:

- Multiplicative constant? Does it exist?
- Limit shapes: expected height, typical shape, etc.
- Further applications in computer science, biology, physics, etc.

Theorem

The number c_n of compressed binary trees, m_n of minimal DFAs recognizing a finite binary language, t_n of bicombining phylogenetic tree-child networks, and y_n of $3 \times n$ Young tableaux with walls satisfy for $n \to \infty$

$$c_{n} = \Theta \left(n! \, 4^{n} e^{3a_{1} n^{1/3}} n^{3/4} \right), \qquad [Elvey Price, Fang, W 2021]$$

$$m_{n} = \Theta \left(n! \, 8^{n} e^{3a_{1} n^{1/3}} n^{7/8} \right), \qquad [Elvey Price, Fang, W 2020]$$

$$t_{n} = \Theta \left((n!)^{2} \, 12^{n} e^{a_{1} (3n)^{1/3}} n^{-5/3} \right), \qquad [Fuchs, Yu, Zhang 2021]$$

$$y_{n} = \Theta \left(n! \, 12^{n} e^{a_{1} (3n)^{1/3}} n^{-2/3} \right), \qquad [Banderier, W 2021]$$

where Ai(x) is the largest root of the Airy function Ai(x) characterized by Ai''(x) = xAi(x) and $\lim_{x\to\infty} Ai(x) = 0$.

Key property

Characterized by Dyck-like recurrences with rational weight functions:

$$a_{m,n} = E(m,n)a_{m-1,n} + N(m,n)a_{m,n-1} + \ldots$$

Future research directions:

- Multiplicative constant? Does it exist?
- Limit shapes: expected height, typical shape, etc.
- Further applications in computer science, biology, physics, etc.

Thank you!