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A counting problem

A counting problem

Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid
using the steps E = (1,0) and N = (0,1)?
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A counting problem

Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid

using the steps E = (1,0) and N = (0,1)? e
Let am,» be the number of paths from (0, 0) to (m, n). L,,,,i,,,,i,,,,:T,,,,L,,,,i,,,,j:
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A counting problem

A counting problem

Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid
using the steps E = (1,0) and N = (0,1)?

Let am,» be the number of paths from (0, 0) to (m, n).
Then,

amn = @m—1,n+ amn—1 form,n>0,
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A counting problem

Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid
using the steps E = (1,0) and N = (0,1)? o

Let am,» be the number of paths from (0, 0) to (m, n).
Then,

amn = 8m—-1,n + a@mn—1 form,n >0, EE—

am,0 = @m-1,0 for m > 0, :
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A counting problem

A counting problem

Consider a m x n grid. We start in the lower left |
corner. In how many ways can we cross the grid a,n
using the steps E = (1,0) and N = (0,1)? S

Let am,» be the number of paths from (0, 0) to (m, n).

Then, Qo,n—1
|

amn = @m—1,n+ amn—1 form,n>0, EE—

am,0 = @m-1,0 for m > 0, :

|

ao,n = do,n—1 for n > 0, [ T Jﬁt
am-1,0 @m0
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A counting problem

A counting problem

Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid
using the steps E = (1,0) and N = (0,1)?

Let am,» be the number of paths from (0, 0) to (m, n).
Then,

amn = 8m—-1,n + a@mn—1 form,n >0,

am,0 = am-1,0 for m > 0,
ao,n = &ao,n—1 for n > 0,
ap,0 = 1.
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A counting problem

A counting problem

t---5-- *r‘5~73{r~7€)~f126~—210
Consider a m x n grid. We start in the lower left | | | | |
corner. In how many ways can we cross the grid 1 1 1 : 1 ‘ 1
using the steps E = (1,0) and N = (0,1)? t---4---10--20--35--56---84
Let am,» be the number of paths from (0, 0) to (m, n). lr, o ,‘)‘} o é, o ,1:{} L ,1:5, - ,23* o 72118
Then, : : I I I I I
am,n = @m—1,n + @m,n—1 for m,n > 0, ‘i,,,,,‘z,,,é,,,,%_,,,,é,,,é :‘Z
am,0 = a@m-1,0 form > 0, : : : : : : :
ao,n = &ao,n—1 forn>0, I TR S S
ap,0 = 1.
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A counting problem

A counting problem

gp ---5---15--35 -~
Consider a m x n grid. We start in the lower left
corner. In how many ways can we cross the grid

using the steps E = (1,0) and N = (0,1)?

Let am,» be the number of paths from (0, 0) to (m, n).

I

l

|

28

Then, |
|

|

amn = @m—1,n+ amn—1 form,n>0, 4
am,0 = am-1,0 for m > 0, |
&o,n = ao,n—1 forn> 0, ‘

ap,0 = 1.
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A counting problem

A counting problem

R R 0
Consider a m x n grid. We start in the lower left |
corner. In how many ways can we cross the grid :
using the steps E = (1,0) and N = (0,1)? -5 -84
Let am,» be the number of paths from (0, 0) to (m, n). 2118
Then, 1
amn = @m—1,n+ amn—1 form,n>0, ;‘(
am,0 = @m-1,0 form > 0, |
do,n = 8o,n—1 for n > 0, !
ap,0 = 1.

m Here, it is easy to see that am,,» = ("}").

m
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R R 0
Consider a m x n grid. We start in the lower left :
corner. In how many ways can we cross the grid |
using the steps E = (1,0) and N = (0,1)? -5 -84
Let am,» be the number of paths from (0, 0) to (m, n). 2118
Then, !
amn = @m—1,n+ amn—1 form,n>0, ;‘(
am,0 = @m-1,0 for m > 0, :
do,n = 8o,n—1 for n > 0, !
ap,0 = 1.

m Here, it is easy to see that am,,» = ("}").
m But what happens if we change the domain and add polynomial weights?

amn = (n+1)am—1,n + @mn—1 form>n>0
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R R 0
Consider a m x n grid. We start in the lower left :
corner. In how many ways can we cross the grid |
using the steps E = (1,0) and N = (0,1)? -5 -84
Let am,» be the number of paths from (0, 0) to (m, n). 2118
Then, !
amn = @m—1,n+ amn—1 form,n>0, ;‘(
am,0 = @m-1,0 for m > 0, :
do,n = 8o,n—1 for n > 0, !
ap,0 = 1.

m Here, it is easy to see that am,,» = ("}").
m But what happens if we change the domain and add polynomial weights?

amn = (n+1)am—1,n + @mn—1 form>n>0

m Answer: We don’t know (a lot)!
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A counting problem

R R 0
Consider a m x n grid. We start in the lower left :
corner. In how many ways can we cross the grid |
using the steps E = (1,0) and N = (0,1)? -5 -84
Let am,» be the number of paths from (0, 0) to (m, n). 2118
Then, !
am,n = @m—-1,n+ a@mn—1 form,n>0, :‘Z
am,0 = @m-1,0 for m > 0, :
ao,n = &ao,n—1 for n > 0, ‘
ap,0 = 1.

m Here, it is easy to see that am,,» = ("}").
m But what happens if we change the domain and add polynomial weights?

amn = (n+1)am—1,n + @m,n—1 form>n>0
m Answer: We don’t know (a lot)!

— In this course you will learn what asymptotic information we can deduce!
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Asymptotic counting

Landau notation
Let (a@n)n>0 and (bn)n>0, bn > 0 be two sequences.
ma,=0(by) if limsup 2l < o0
n—oo

ma=0(b,) ifo< Iiminf‘f‘)—"‘ and lim supl‘g—"‘ < o0
n—oo n n

n— oo

m a,~ by it lim 122l =1

n—oo N
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Landau notation

Let (a@n)n>0 and (bn)n>0, bn > 0 be two sequences.
ma,=0(by) if limsup 2l < o0
n—oo
®m a,=0(b,) if 0<liminf ‘f‘)—"‘ and limsup |Z—"‘ < 00
n—oo n n

n— oo

m a,~ by it lim 122l =1

n—oo N

Examples:

Stirling’s formula
mnl=0(n")

mEn=0 (n”+1/2 e*”)

m N ~+\2rnn"e "
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Asymptotic counting

Landau notation
Let (a@n)n>0 and (bn)n>0, bn > 0 be two sequences.
m a,=0O(by) if limsup 21l < o
n—oo n
®m a,=0(b,) if 0<liminf ‘f‘)—"‘ and limsup |Z—"‘ < 00
n— o0 n n—oo n
m a,~ by it lim 122l =1
n—oo N
Examples:
Stirling’s formula Binomial coeffs
mnl=0(n") m (3) =0(4")
mn=0 (n”+1/2 e*”) m(¥)=0 (%)
- (Zn) ~ 4"
m nl~+V2rnn"e" n /mn
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Asymptotic counting

Why asymptotics?
Landau notation .
m Simpler formulas
Let (a@n)n>0 and (bn)n>0, bn > 0 be two sequences. = Approximations
m )= O(by) if limsup 2l < o0 = Universality like n~/2
. C . . m Large-scale behavior:
ma,=0(b) if0< Ilnrigf % and I|rr,nﬁsotip % < o0 w limit laws
L ™ m phase transitions
® a,~ by if lim G2 =1 m (non-)Brownian limiting objects
Examples:
Stirling’s formula Binomial coeffs
mnl=0(n") m (3) =0(4")
mn=0 (n”+1/2 e*”) m(¥)=0 (%)
2n 4"
m nl ~+2rnn"e™" ()~ T
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Asymptotic counting

Why asymptotics?

Landau notation .
m Simpler formulas
Let (an)n>0 and (bn)n>0, bn > 0 be two sequences. m Approximations
ma,=0(by) ff lim sup 2l < oo = Universality like n~"/2
_ . Ll . (] m Large-scale behavior:
ma,=0(b) if0< Ilnrigf fT, and I|rr,nﬁsotip ZT < o0 w limit laws
L lal m phase transitions
W a,~ by if nan;o =1 m (non-)Brownian limiting objects
Allows to prove
Examples: . .
—— m transcendence (i.e., non-algebraic,
Stirling's formula Binomial coeffs non-D-finite) [Bostan, Raschel, Salvy 2014]
| , o . m ambiguity of context-free languages
mn =0(n") = (2) =0(4") [Flajolet 1987]
-0 (nn+1 /2 efn) =) =0 (47> m transience of drunkard walk in 3D and
. i higher [Pdlya 1921]
m nl ~+2rnn"e”" m (5)~ Vmn m capacity of a channel/needed bits for

encoding [MacKay 2003]
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Types of recurrences

Linear recurrences

In this course we will only consider finite order linear recurrences
am,n = Ct@m+iy,ntjy + C28myip,nejy + - + Cd@miy,ntiy for(m,n)eC (1)

where the coefficients are polynomials in m and nand C C Z2.
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Types of recurrences

Linear recurrences
In this course we will only consider finite order linear recurrences

am,n = C18mtiy,ntjy + C28mtip,ntjp T + Ca8mrtig,ntiy for (m,n) e C (1)

where the coefficients are polynomials in m and nand C C Z2.

Theorem [Bousquet-Mélou, Petkoviek 2000]
Let H= {(i1, 1), ..., (ia,Ju)} @and C = ZZ,. Then (1) has a unique solution if R%, N conv H = 0.

m Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
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Types of recurrences

Linear recurrences
In this course we will only consider finite order linear recurrences

am,n = Ct8myiy,ntjy + C28myip,nijp + +* + Cd@myiynijy for (m,n) e C (1)

where the coefficients are polynomials in m and nand C C Z2.

Theorem [Bousquet-Mélou, Petkoviek 2000]
Let H= {(i1, 1), ..., (ia,Ju)} @and C = ZZ,. Then (1) has a unique solution if R%, N conv H = 0.

m Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
m The recurrence a@m,n = @m—1,n + am,n—1 has a unique solution in the following two cones:
For m,n > 0 we have H = {(—1,0),(0,—1)}
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Types of recurrences

Linear recurrences
In this course we will only consider finite order linear recurrences

am,n = Ct8myiy,ntjy + C28myip,nijp + +* + Cd@myiynijy for (m,n) e C (1)

where the coefficients are polynomials in m and nand C C Z2.

Theorem [Bousquet-Mélou, Petkoviek 2000]
Let H= {(i1, 1), ..., (ia,Ju)} @and C = ZZ,. Then (1) has a unique solution if R%, N conv H = 0.

m Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
m The recurrence a@m,n = @m—1,n + am,n—1 has a unique solution in the following two cones:

For m,n > 0 we have H = {(—1,0),(0,—1)}
For m > n > 0 we first transform the cone to Z2>0 This gives

am,n = am—1,n + 8m41,n—1 for m,n > 0.

Therefore, we have H = {(—1,0), (1, —1)}.
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Types of recurrences

Linear recurrences
In this course we will only consider finite order linear recurrences

am,n = Ct8myiy,ntjy + C28myip,nijp + +* + Cd@myiynijy for (m,n) e C (1)

where the coefficients are polynomials in m and nand C C Z2.

Theorem [Bousquet-Mélou, Petkoviek 2000]
Let H= {(i1, 1), ..., (ia,Ju)} @and C = ZZ,. Then (1) has a unique solution if R%, N conv H = 0.

m Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
m The recurrence a@m,n = @m—1,n + am,n—1 has a unique solution in the following two cones:

For m,n > 0 we have H = {(—1,0),(0,—1)}
For m > n > 0 we first transform the cone to Z2>0 This gives

am,n = 8m—1,n + 8m+1,n—1 for m,n > 0.
Therefore, we have H = {(—1,0),(1,—1)}.

m But not the recurrence bmn = bm—1,n + Bmn—1 + Bmi1,n + bm,ny1 for m,n > 0.
Here H = {(£1,0), (0,£1)}
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Bivariate Linear Recurrences

Interpretation as paths

General shape Knight variation
am,n = Ct@m+iy,ntj; T C28mtip,ntjp T -+ + Cd@m+iy,ntjy Let a,0 = 1 and for m,n > 0:

am,n = ami1,n—2 + 28m—2,nt1 + 3@m—1,n + 48mn—1
How can we reach (m, n)?
m From (m+ i, n+ ji) with step (=i, —j1), or
m from (m+ i, n+ j») with step (—i2, —j2), or
...
m from (m+ iy, n+ jg) with step (—ig, —/a)-

The four steps are
(71 ’ 2)7 (27 71)7 (1 ) 0)7 (07 1)
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Knight variation
Let a,0 = 1 and for m,n > 0:
am,n = @mi1,n—2 + 28m—2,n+1 + 38m—1,n + 48m,n—1
The four steps are
(-1,2),(2,-1),(1,0),(0,1)
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Bivariate Linear Recurrences

Interpretation as paths

General shape Knight variation
am,n = Ct@m+iy,ntj; T C28mtip,ntjp T -+ + Cd@m+iy,ntjy Let a,0 = 1 and for m,n > 0:

am,n = @m1,n—2 + 2am—2,n41 + 3@m—1,n + 4am,n—1
How can we reach (m, n)?

. L L The four steps are
m From (m+ i, n+ ji) with step (=i, —j1), or
m from (m + i2, n —|—12) with Step (—iz, —jg), or (71 ) 2)7 (27 -1 )7 (1 ) 0)7 (07 1)
[T with the weights 1,2, 3, 4, resp.

m from (m+ iy, n + jo) with step (—iy, —j4)-

What is the weight of a path ending at (m, n)?

Each step has a weight:
m Step (—i1, —j;) has weight ¢
m Step (—i2, —j2) has weight ¢,
L] cao
m Step (—iy, —jg) has weight ¢4

The weight of a path is the product of the weights

of its steps.
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Interpretation as paths

General shape Knight variation
am,n = Ct@m+iy,ntj; T C28mtip,ntjp T -+ + Cd@m+iy,ntjy Let a,0 = 1 and for m,n > 0:

am,n = @m+1,n—2 + 28m—2,n+1 + 3@m—1,n + 4am,n—1
How can we reach (m, n)?

. L L The four steps are
m From (m+ i, n+ ji) with step (=i, —j1), or
m from (m + i2, n —|—12) with Step (—iz, —jg), or (71 ) 2)7 (27 -1 )7 (1 ) 0)7 (07 1)
[T with the weights 1,2, 3, 4, resp.

m from (m+ iy, n + jo) with step (—iy, —j4)-

What is the weight of a path ending at (m, n)?
Each step has a weight:
m Step (—i1, —j;) has weight ¢
m Step (—i2, —j2) has weight ¢,
m Step (_iy. —jy) has weight ¢, ® All weights to 1: OEIS A356692
. i . . Pascal-like triangle; family of permutations?
The weight of a path is the product of the weights ) o
m Asymptotics not known! (Similar models:

of its steps.
[Bostan, Bousquet-Mélou, Melczer 2021])

m Knight only: [Bousquet-Mélou, Petkovsek 2000]
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Bivariate Linear Recurrences

Two-dimensional paths with a time dimension

Consider the recurrence
am,nk = @m—1,n—1:k—1 + m—1,n+1;k—1 + @mi1,n—1:k—1 T m1,n41k—1 formneZ,k >0

where ap,0,0 = 1 and amn0 = 0 otherwise.
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Two-dimensional paths with a time dimension

Consider the recurrence
am,nk = @m—1,n—1:k—1 + m—1,n+1;k—1 + @mi1,n—1:k—1 T m1,n41k—1 formneZ,k >0
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Bivariate Linear Recurrences

Two-dimensional paths with a time dimension

Consider the recurrence
Am,mk = 8m—1,n—1;k—1 + @m—1,n+1;k—1 T @m+1,n—1;k—1 + 8m+1,n+1;k—1 formneZ,k >0

where ap,0,0 = 1 and amn0 = 0 otherwise.

Popular models:
m Starting point: (0,0)
m Small steps: S C {—1,0,1}?\ {(0,0)}
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Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

Am,nk+1 = @m-1,n—1:k + @m—1,mk + @m—1,n+1;k + @m,n—1:k + @m,n+1:k + @mi+1,n—1:k + @m+1,mk + m+1,n+1:k
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Bivariate Linear Recurrences

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

Am,nk+1 = @m—1,n—1;k + @m—1,nk + @m—1,nt1:k T @m,n—1;k + @m,ni1;k + @mit,n—1k + met,nk + met,nrtk

Quarter plane
Q= {(m,n): m>0andn >0}
[Bousquet-Mélou, Mishna 2010]

a 128 8*
00k ™ 27n K3
[Bostan, Chyzak, van Hoeij, Kauers, Pech 2017]
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Bivariate Linear Recurrences

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks

Am,nk+1 = @m—1,n—1;k + @m—1,nk + @m—1,nt1:k T @m,n—1;k + @m,ni1;k + @mit,n—1k + met,nk + met,nrtk

Quarter plane Three-quarter plane
Q= {(m,n): m>0andn >0} C={(m,n):m>0o0rn>0}
[Bousquet-Mélou, Mishna 2010] [Bousquet-Mélou 2016]

128 8* re/3) sk
ao,0:k ~ 577 K3 ao, 0.k ~ Qg K53

[Bostan, Chyzak, van Hoeij, Kauers, Pech 2017] [Bousquet-Mélou, W 2024]

where ag ~ 1.419
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More families of multivariate recurrences

m Let px,» be the number of integer partitions of n into exactly k parts.
For example, po4 =2 since4 =3+1and4 =2 + 2.
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More families of multivariate recurrences

m Let px,» be the number of integer partitions of n into exactly k parts.
For example, po4 = 2 since 4 =3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

Pr,n = Pk,n—k + Pk—1,n—1 forn,k > 0,
where poo =1and px, =0forn<0ork <O0.
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More families of multivariate recurrences

m Let px,» be the number of integer partitions of n into exactly k parts.
For example, po4 = 2 since 4 =3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

Pr,n = Pr,n—k + Pk—1,n—1 forn,k >0,
where poo =1and px, =0forn<0ork <O0.
m Let 7(n, g) be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved
(n+1)7(n,9) =4n(3n—2)(83n—4)r(n—2,9—1)+4(8n—-1)r(n—1,9)
+4 > > (Bi+2)(3j+2)7(i, 91)7(), %) + 2L =gt
i+j=n—2g1+92=9g
ij>0  91,92>0

n>1and0<g< % where 7(n, g) = 0 otherwise except for 7(0,0) = 1.
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More families of multivariate recurrences

m Let px,» be the number of integer partitions of n into exactly k parts.
For example, po4 = 2 since 4 =3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

Pr,n = Pr,n—k + Pk—1,n—1 forn,k >0,
where poo =1and px, =0forn<0ork <O0.
m Let 7(n, g) be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved
(n+1)7(n,9) =4n(3n—2)(83n—4)r(n—2,9—1)+4(8n—-1)r(n—1,9)
+4 > > (Bi+2)(3j+2)7(i, 91)7(), %) + 2L =gt
i+j=n—2g1+92=9g
ij>0  91,92>0

n>1and0<g< % where 7(n, g) = 0 otherwise except for 7(0,0) = 1.

m The sampling without replacement Polya urn has replacement matrix < 0

ﬂ). We sample until all

black balls are gone.
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More families of multivariate recurrences

m Let px,» be the number of integer partitions of n into exactly k parts.
For example, po4 = 2 since 4 =3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

Pr,n = Pr,n—k + Pk—1,n—1 forn,k >0,
where poo =1and px, =0forn<0ork <O0.
m Let 7(n, g) be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved
(n+1)7(n,9) =4n(3n—2)(83n—4)r(n—2,9—1)+4(8n—-1)r(n—1,9)
+4 > > (Bi+2)(3j+2)7(i, 91)7(), %) + 2L =gt
i+j=n—2g1+92=9g
ij>0  91,92>0

n>1and0<g< % where 7(n, g) = 0 otherwise except for 7(0,0) = 1.

-1 0

0o -1
black balls are gone. Let py .« be the probability that starting with w white and b black balls there remain
k white balls. Then [Kuba, Panholzer, Prodinger 2009] analyzed the urn using

m The sampling without replacement Polya urn has replacement matrix < . We sample until all

w b
Pw,bk = mpwfhb,k o mpw,bq,k for w, b,k > 0,

where py 0.k = Lw=k and po,p x = Lix=o for w, b, k > 0.
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We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let (am,n)(m,nmec be a recursively defined sequence on a cone C C 72. Throughout this course we assume
m & = 1 (initial condition)
B am, = 0for (m, n) ¢ C (boundary conditions).
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We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let (am,n)(m,nmec be a recursively defined sequence on a cone C C 72. Throughout this course we assume
m & = 1 (initial condition)
B am, = 0for (m, n) ¢ C (boundary conditions).

The following recurrence is defined on the nonnegative quadrant C = Zzzo = .
am,n = @m—1,n + @m,n—1 for m,n >0,
is a shorthand for

amn = 8m—1,n + @mn—1 form,n>0,

am,0 = @m—1,n form > 0,
ao,n = am,n—1 forn > 0,
ap,0 = 1.
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Bivariate Linear Recurrences

We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let (am,n)(m,nmec be a recursively defined sequence on a cone C C 72. Throughout this course we assume
m & = 1 (initial condition)
B am, = 0for (m, n) ¢ C (boundary conditions).

The following recurrence is defined on the nonnegative quadrant C = Zzzo = .
am,n = @m—1,n + am,n—1 for m,n > 0,
is a shorthand for
amn = a@m—1,n+ amn—1 form,n>0,
form > 0,
forn > 0,

The same recurrence on the triangular cone C = {(m,n) : m>n>0} = ‘:
bm,n = bm—1,n + bm,n—1 form>n>0

Michael Wallner | TU Graz | 24.-28.02.2025 11/75
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ap,0 = 1.



What we will study in this course: the diagonal entry a, »

Recurrences we will study Main goal

m Determine an

am.n = E(m, n)am—1.n + N(m, n)amns — We focus on asymptotics for n — oo
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Bivariate Linear Recurrences

What we will study in this course: the diagonal entry a, »

Recurrences we will study Main goal
m Determine an
amn = E(M. N)am—1,n + N(m, n)am,n-1 — We focus on asymptotics for n — oo
E(m,n) N(m,n) Domain an,n Description

(1) 1 1 m,n>0 . ) Binomial coefficients
) 1 1 m>n>0 ‘ ) Catalan numbers

(3) n+1 1 m,n>0 . S(2n+1,n+1)  Stirling numbers 2" kind
(4) n+1 1 m>n>0 ‘ ) (n!4”e3"’11 n'/8 n) Compacted binary trees

(In the last case, a; &~ —2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying
A" (x) = xAi(x) and limyx— o Ai(x) = 0.)

Michael Wallner | TU Graz | 24.-28.02.2025 12/75



What we will study in this course: the diagonal entry a, »

Recurrences we will study Main goal

m Determine an

amn = E(M. N)am—1,n + N(m, n)am,n-1 — We focus on asymptotics for n — oo

E(m,n) N(m,n) Domain an,n Description
(1) 1 1 m,n>0 . () Binomial coefficients
2 1 1 m>n>0 ) Catalan numbers
(3) n+1 1 m,n>0 . S(2n+1,n+1)  Stirling numbers 2" kind
4  n+1 1 m>n>0 ‘ e (n!4”e3"’11 n'/3 n) Compacted binary trees

(In the last case, a; &~ —2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying
A" (x) = xAi(x) and limyx— o Ai(x) = 0.)

Outline of the course:
m Today: Solve Examples (1)—(3)
m Wednesday: Stretched exponential method to solve Example (4)
m Friday: Applications to computer science and phylogenetics solving open counting problems
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Bivariate Linear Recurrences

Examples of different weights in a triangular cone

The recurrence includes many known sequences already for a5 in ‘

amn = E(m, n)am—_1,n + N(m, n)am,n—1 m>n>0

E(m, n) N(m, n) Description an,n OEIS
1 1 Dyck paths (1,1,2,5,14,42,132,...) A000108
n+1 1 Automata/Compacted trees (1,1,3,16,127,...) A082161
2m+n—1 1 Phylogenetic networks (1,1,7,106,2575,...) A213863
2n+1 1 Matrix recursion (1,1,4,33,436,...) A102321
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https://oeis.org/A214298

Bivariate Linear Recurrences

Examples of different weights in a triangular cone

The recurrence includes many known sequences already for a5 in ‘

am,n = E(m, n)am—1,n + N(m, n)am,n—+ m>n>0

E(m, n) N(m, n) Description an,n OEIS
1 1 Dyck paths (1,1,2,5,14,42,132,...) A000108
n+1 1 Automata/Compacted trees (1,1,3,16,127,...) A082161
2m+n—1 1 Phylogenetic networks (1,1,7,106,2575,...) A213863
2n+1 1 Matrix recursion (1,1,4,33,436,...) A102321
2(m—n)+1 1 Class of four-regular maps (1,3,24,297,...) A292186
n+1 m+ 2 Polytope volumes (1,3,40,1225,...) A012250
n+1 8(m—n+1)  Evaluated Riemann ¢ fct. (1,8,256,17408,...) A253165
2n+1 m-—n+1 Secant numbers (1,1,5,61,1385,...) A000364
2n+2 m-—n-+1 Tangent numbers (1,2,16,272,...) A000182
m—n+1 2n Connected Feynman diag. (1,4,80,3552,...) A214298
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https://oeis.org/A000108
https://oeis.org/A082161
https://oeis.org/A213863
https://oeis.org/A102321
https://oeis.org/A292186
https://oeis.org/A012250
https://oeis.org/A253165
https://oeis.org/A000364
https://oeis.org/A000182
https://oeis.org/A214298

Bivariate Linear Recurrences = Classical Methods

Classical Methods
Solving Examples (1)—(3)
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Bivariate Linear Recurrences = Classical Methods

Overview of methods

Generating functions
Recurrence relations
Context free grammars
A Bijections
Determinants

Enumerative
Analytic CombRnsorcs
Combinatorics

THE
@A Continued fractions i Rareet
An lnvitagion EEL SEQUENCES
Kernel method g;fn";!'nv;;;m mEES {
H Integral transforms / :

E1 Saddle point method
Singularity analysis e
Analytic Combinatorics Tty
Analytic Combinatorics in Several Variables
Probability Theory

Guess-and-check

Stretched exponential method

Random walk method

Random
Walks in the
Quarter Plane
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Solving Example (1): Generating Functions

Unweighted model in the quarter plane .
am,n = @m—1,n + @m,n—1 form,n>0

m First, we define the generating function

Alx,y) = Z Z amnx"y".

m>0 n>0
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Bivariate Linear Recurrences = Classical Methods

Solving Example (1): Generating Functions

Unweighted model in the quarter plane .
am,n = @m—1,n + @m,n—1 form,n>0

m First, we define the generating function

Alx,y) = ZZamnxy

m>0 n>0

m Recall, ao = 1 and am, = 0 for (m, n) ¢ 72 So- Therefore, we get

amn = @m—1,n+ a@mn—1 formn>1,
amo = a,n =1 for m,n > 0.

Michael Wallner | TU Graz | 24.-28.02.2025 16/75



Bivariate Linear Recurrences = Classical Methods

Solving Example (1): Generating Functions

Unweighted model in the quarter plane .
am,n = @m—1,n + @m,n—1 form,n>0

m First, we define the generating function

Alx,y) = Z Z amnx"y".

m>0 n>0

m Recall, a0 = 1 and am,, = 0 for (m, n) ¢ Zzzo. Therefore, we get

amn = @m—1,n+ a@mn—1 formn>1,
amo = a,n =1 for m,n > 0.

m We multiply by x™y"” and sum over m, n > 1. This gives

A(x,y) = XA(x,y) + YA(x,y) + 1.
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Solving Example (1): Generating Functions

Unweighted model in the quarter plane .
am,n = @m—1,n + @m,n—1 form,n>0

m First, we define the generating function

Alx,y) = ZZamnxy

m>0 n>0

m Recall, ao = 1 and am, = 0 for (m, n) ¢ 72 So- Therefore, we get

amn = @m—1,n+ a@mn—1 formn>1,
amo = a,n =1 for m,n > 0.

m We multiply by x™y"” and sum over m, n > 1. This gives
A(X,y) = XA(X,y) + YA(X,y) + 1.
m Therefore, we get

A(x,y):i—Z(ery) —ZZ(ern) XMy O

k>0 m>0 n>0
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Solving Example (2): Generating Functions

Unweighted model below the diagonal ‘ .
bm,n = bm—1,n + bm,n—1 form>n>0 e
m Again, we define the generating function _J
e} m
B(x,y) => > bmax"y".
m=0 n=0
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Solving Example (2): Generating Functions

Unweighted model below the diagonal ‘ .
bm,n = Bm—1,n + bm,n—1 form>n>0

m Again, we define the generating function __T

oo m
B(x,y) = Zzbm,nxmyn-

m=0 n=0

m Here, we need to be careful at the diagonal, due to the boundary conditions.
As before, we multiply by x™y" and sum over m > n > 0:

B(x,y) =1+ xB(x,y) +y (B(x,y) — D(xy)),
where D(z) = >, bn,nz" is the diagonal of B(x, y).
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Solving Example (2): Generating Functions

Unweighted model below the diagonal ‘ .
bm,n = Bm—1,n + bm,n—1 form>n>0

m Again, we define the generating function __T

oo m

B(x,y) = Z bmnx"y".
0

m=0 n=

m Here, we need to be careful at the diagonal, due to the boundary conditions.
As before, we multiply by x™y" and sum over m > n > 0:

B(x,y) =1+ xB(x,y) +y (B(x,y) — D(xy)),
where D(z) = >, bn,nz" is the diagonal of B(x, y).
m Simplifies a bit more, but two unknowns and only one equation:

(1=x—-y)B(x,y) =1-yD(xy).
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Solving Example (2): Generating Functions

Unweighted model below the diagonal ‘ .
bm,n = Bm—1,n + bm,n—1 form>n>0

m Again, we define the generating function __T

oo m
B(x,y) = Zzbm,nxmyn-

m=0 n=0

m Here, we need to be careful at the diagonal, due to the boundary conditions.
As before, we multiply by x™y" and sum over m > n > 0:

B(x,y) =1+ xB(x,y) +y (B(x,y) — D(xy)),
where D(z) = >, bn,nz" is the diagonal of B(x, y).
m Simplifies a bit more, but two unknowns and only one equation:

(1=x—-y)B(x,y) =1-yD(xy).

m Two important ideas:

El Capture time evolution by change of coordinates
B Solve it using the kernel method
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Solving Example (2): Kernel Method

We continue with
(1 =x—=y)B(x,y) =1—yD(xy).
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Solving Example (2): Kernel Method

We continue with
(1 =x—=y)B(x,y) =1—yD(xy).

Capture time evolution

m |dea: Instead of the number of E = (1,0) and N = (0, 1) steps in x and y, ,
we track the total number of steps in t and the distance to the diagonal in u: s
. .
X =1tu and y= ik
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_ B e Remweness @essedebels
Solving Example (2): Kernel Method

We continue with
(1 =x—=y)B(x,y) =1—yD(xy).

Capture time evolution

m |dea: Instead of the number of E = (1,0) and N = (0, 1) steps in x and y, ,
we track the total number of steps in t and the distance to the diagonal in u: ]
X =1tu and y= 5.
u
m This gives

(1 —tu—é)@(t,u):1—£—tlD(t2).

—K(t,u)
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Solving Example (2): Kernel Method

We continue with

(1 =x—-y)B(x,y) =1—yD(xy).
Capture time evolution

m |dea: Instead of the number of E = (1,0) and N = (0, 1) steps in x and y,
we track the total number of steps in t and the distance to the diagonal in u

X =1tu and y=—.

u
m This gives
(1 - i)Ee(t, u=1- Lo
u u
=K(t,u)

Solve it using the kernel method

m |dea: Bind u and t such that the left-hand side vanishes. Let us(t) and ux(t) be the solutions of K(t, u;j(t)) = 0:

1— /1 -4 141 -4 1
n(t) = ——o——-= t+0(8) Up(t) = ——5—— = { + O
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Solving Example (2): Kernel Method

We continue with

(1 =x—-y)B(x,y) =1—yD(xy).
Capture time evolution

m |dea: Instead of the number of E = (1,0) and N = (0, 1) steps in x and y,
we track the total number of steps in t and the distance to the diagonal in u

X =1tu and y=—.

u
m This gives
(1 - i)Ee(t, u=1- Lo
u u
=K(t,u)

Solve it using the kernel method

m |dea: Bind u and t such that the left-hand side vanishes. Let us(t) and ux(t) be the solutions of K(t, u;j(t)) = 0:
1—1-4r 14+/1-42 1
u(t) = V17 o) w(t) = LTVIZAE T o).

2t 2t t
m Since B(t, u) € Q[u][[t]] we may substitute u = u; (t). (For u = u(t) the equation is not valid in Q[[#]])
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Solving Example (2): Kernel Method

We continue with

(1 =x—-y)B(x,y) =1—yD(xy).
Capture time evolution

m |dea: Instead of the number of E = (1,0) and N = (0, 1) steps in x and y,
we track the total number of steps in t and the distance to the diagonal in u

X =1tu and y=—.

u
m This gives
(1 - i)Ee(t, u=1- Lo
u u
=K(t,u)

Solve it using the kernel method

m |dea: Bind u and t such that the left-hand side vanishes. Let us(t) and ux(t) be the solutions of K(t, u;j(t)) = 0:
1—1-4r 14+/1-42 1
i (t) = 5 = t+ O() u(ty = - F — =

2
m Since B(t, u) € Q[u][[t]] we may substitute u = u; (t). (For u = u(t) the equation is not valid in Q[[#]])
We get the generating function of the Catalan numbers:

o ui(t)  1—\/1—42
PO =="="73¢p

=14+ +2t+58 +148 + 4210 1 1321'2 4 429" + . ..
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Solving Example (2): Final result

Final result for (prefixes) of Dyck paths

" _ _ /1 _4 f

B(t,u) = L Qtiljj;t — u1+ t;” or equivalently J
1—-2x— /1 —4x

B(x,y)=— Y.

2x(1—x—y)
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Solving Example (2): Final result

Final result for (prefixes) of Dyck paths

- C1-2ut-V1-4r . J
B(t,u) = O ErE) or equivalently

B(x. V) — 1—-2x— /1 —4xy

(xy) = 2x(1—x—-y)

Direct corollaries:
m Paths with a fixed number of E = (1, 0) steps and an arbitrary number of N = (0, 1) steps:

1—2)(—\/m:Z 1 (2(n+1)>xn

2
2x n20n+2 n+1

B(x,1) =
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Solving Example (2): Final result

Final result for (prefixes) of Dyck paths

- C1-2ut-V1-4r . J
B(t,u) = O ErE) or equivalently

B(x. V) — 1—-2x— /1 —4xy

(xy) = 2x(1—x—-y)

Direct corollaries:
m Paths with a fixed number of E = (1, 0) steps and an arbitrary number of N = (0, 1) steps:

1—2)(—\/m:Z 1 (2(n+1)>xn

2
2x n20n+2 n+1

B(x,1) =

m The total number of paths of length n:

A _ 1-2t— V1 — 412 _ 2n on 1(2n 2n—1
B(t.1) = 2t(2t — 1) %(n)t +Z§ n )t
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Bivariate Linear Recurrences = Classical Methods

Sidenote: hierarchy of formal power series

The formal power series C(t) is
m rational if it can be written as
_ P(®)

where P(t) and Q(t) are polynomials in t.

The Concrete
Tetrahedron
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Bivariate Linear Recurrences = Classical Methods

Sidenote: hierarchy of formal power series

The formal power series C(t) is
m rational if it can be written as
_ P
where P(t) and Q(t) are polynomials in t.
m algebraic (over Q(t)) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

The Concrete
Tetrahedron
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Bivariate Linear Recurrences = Classical Methods

Sidenote: hierarchy of formal power series

The formal power series C(t) is
m rational if it can be written as
_ P
where P(t) and Q(t) are polynomials in t.
m algebraic (over Q(t)) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

m D-finite if it satisfies a (non-trivial) linear differential equation with The Concrct
polynomial coefficients: s

pc(t)CO(t) + - - - + po(t)C(t) = 0.
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Bivariate Linear Recurrences = Classical Methods

Sidenote: hierarchy of formal power series

The formal power series C(t) is
m rational if it can be written as
_ P
where P(t) and Q(t) are polynomials in t.
m algebraic (over Q(t)) if it satisfies a (non-trivial) polynomial equation

P(t, C(t)) = 0.

m D-finite if it satisfies a (non-trivial) linear differential equation with The Concrct
polynomial coefficients: s

pc(t)CO(t) + - - - + po(t)C(t) = 0.

Why is it important to be D-finite?
m Nice and effective closure properties (sum, product, differentiation, ...)
m Fast algorithms to compute coefficients
m Asymptotics of coefficients
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Solving Example (3): Bijection

Weighted model in the quarter plane .
Cm,n = (n + 1)Cm—1,n + Cm,n—1 formn>0

Stirling numbers S(n, k) of the second kind
m Number of set partitions of {1,2, ..., n} into kK nonemtpy sets
m For example, S(3,2) =3 due to {{1},{2,3}}, {{2},{1,3}}, and {{3},{1,2}}
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m For example, S(3,2) =3 due to {{1},{2,3}}, {{2},{1,3}}, and {{3},{1,2}}

Theorem
Cmn=S(mMm+n+1,n+1)

(4,4)

Interpretation as boxed paths:
m N gets weight 1 and E weight n+ 1 if it is at height n
m For each E mark one unit box below it and y = —1.
= cm,n = number of boxed paths from (0, 0) to (m, n).

Bijection between boxed paths and set partitions: X | X

m Path starts at (—1,0) and first step is N to (0, 0).
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(0,0)

Michael Wallner | TU Graz | 24.-28.02.2025 PANNG




Solving Example (3): Bijection

Weighted model in the quarter plane .
Cm,n = (n + 1)Cm—1,n + Cm,n—1 formn>0

Stirling numbers S(n, k) of the second kind
m Number of set partitions of {1,2, ..., n} into kK nonemtpy sets
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Theorem
Cmn=S(mMm+n+1,n+1)

(4,4)

Interpretation as boxed paths:
m N gets weight 1 and E weight n+ 1 if it is at height n
m For each E mark one unit box below it and y = —1.
= cm,n = number of boxed paths from (0, 0) to (m, n).

Bijection between boxed paths and set partitions: X | X
m Path starts at (—1,0) and first step is N to (0, 0).
m [f the ith step is N: create a new set {i}.
m If the ith step is E with cross in row j: add the element i
to the set containing j. X
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Solving Example (3): Bijection

Weighted model in the quarter plane .
Cm,n = (n + 1)Cm—1,n + Cm,n—1 formn>0

Stirling numbers S(n, k) of the second kind
m Number of set partitions of {1,2, ..., n} into kK nonemtpy sets
m For example, S(3,2) =3 due to {{1},{2,3}}, {{2},{1,3}}, and {{3},{1,2}}

Theorem
Cmn=S(mMm+n+1,n+1)

Interpretation as boxed paths: “4
m N gets weight 1 and E weight n+ 1 if it is at height n {9}
m For each E mark one unit box below it and y = —1.
= Cm,n = number of boxed paths from (0, 0) to (m, n). {6}
Bijection between boxed paths and set partitions: X | X {4,5,7}
m Path starts at (—1,0) and first step is N to (0, 0).
m If the jth step is N: create a new set {/}. X {3,8}
m If the ith step is E with cross in row j: add the element i (0.0) 1.9
to the set containing j. X {1,2}
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Bivariate Linear Recurrences = Classical Methods

Solving Example (3): Corollary

‘Theorem
‘ Con = S(M+n+1,n+1)

m Known exponential generating function for Stirling numbers of the second kind:

BICINE L

n>0 k>0
m This allows us to conclude
& —1
Cm,nX™y" ey( =) 1
Clxy)=3_3% =
m>0n>0(rn+n+-| y

(0,0)

(4,4)

{0
©
{4,5,7}
(3.5)
{1.2)
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Solving Example (3): Corollary

(4,4)

{9}

‘ Theorem {6}

XX {4.5.7}
X {3,8)
{12}

Cmn=S(m+n+1,n+1)

(0,0)

m Known exponential generating function for Stirling numbers of the second kind:
n, k S,
>3 sin k= =
n!
n>0 k>0

m This allows us to conclude

Cm,nX™y" ey( X )—1
C(x,y) = =
"L miniii

<

m C(x,y) is not D-finite (but it satisfies an algebraic differential equation!)
m Follows from, e.g., the following asymptotics (see saddle point method [Flajolet, Sedgewick 2009]):

f_
ee 1

n
S, = S(nky~nl—F—F— |
Z( ) ry/2nr(r+1)er

k=0

where re” = n+ 1, so that r = logn — loglog n+ o(1).
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Bivariate Linear Recurrences = Classical Methods

Advanced generating function methods

m Analytic combinatorics [Flajolet, Sedgewick 2009] oyl
Main tools: Saddle point method, singularity analysis, integral transforms, etc.

An Invitation
to Analytic
Combinatorics

Random
Walks in the
Quarter Plane
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Main tools: Saddle point method, singularity analysis, integral transforms, etc.
m Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024],
[Melczer 2021]
Works well with detailed information on the multivariate generating function
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Advanced generating function methods

m Analytic combinatorics [Flajolet, Sedgewick 2009] oyl
Main tools: Saddle point method, singularity analysis, integral transforms, etc.
m Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024],
[Melczer 2021]
Works well with detailed information on the multivariate generating function

. ) ) An Invitati
m Galois theory [Dreyfus, Hardouin, Roques, Singer 2018] 'c‘g;%‘“é;f::;

m Complex analysis [Bostan, Raschel, Salvy 2014]

Random
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Advanced generating function methods
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Bivariate Linear Recurrences = Classical Methods

Advanced generating function methods

m Analytic combinatorics [Flajolet, Sedgewick 2009] Analytic

Combinatorics

Main tools: Saddle point method, singularity analysis, integral transforms, etc.

m Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024],
[Melczer 2021]
Works well with detailed information on the multivariate generating function

An Invitation

m Galois theory [Dreyfus, Hardouin, Roques, Singer 2018] 'g;;:;;‘&;ks

m Complex analysis [Bostan, Raschel, Salvy 2014]
m Probability theory [Denisov, Wachtel 2015]

m Computer algebra: Guess-and-check [Kauers, Paule 2011]
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Bivariate Linear Recurrences = Classical Methods

Advanced generating function methods

m Analytic combinatorics [Flajolet, Sedgewick 2009] Analytic

Combinatorics

Main tools: Saddle point method, singularity analysis, integral transforms, etc.

m Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024],
[Melczer 2021]
Works well with detailed information on the multivariate generating function

An Invitation

m Galois theory [Dreyfus, Hardouin, Roques, Singer 2018] gm‘“v;;gm

m Complex analysis [Bostan, Raschel, Salvy 2014]
m Probability theory [Denisov, Wachtel 2015]

m Computer algebra: Guess-and-check [Kauers, Paule 2011]

m Different extensions of the kernel method:

m lterated kernel method [Bousquet-Mélou, Petkovsek 2003]

m Obstinate kernel method [Bousquet-Mélou 2002]

m Vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger 2020]

m Similar approaches developed in, e.g., statistical mechanics (algebraic Bethe =
ansatz [Gaudin 2014]), probability theory and queuing theory [Fayolle, B
lasnogorodski, Malyshev 1999]
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Bivariate Linear Recurrences = Classical Methods

Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability
theory, and Galois theory.

o ‘ m Quarter plane
!|‘$ Y Q= {(m,n):mn> 0}
= O m Generating function

BT QW yit)= 3 3 amnut"

m,n>0 k>0
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!|‘$ Y Q= {(m,n):mn> 0}
= O m Generating function
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Bivariate Linear Recurrences = Classical Methods

Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability
theory, and Galois theory.

o ‘ m Quarter plane
!|‘$ Y Q= {(m,n):mn> 0}
= O m Generating function

[ =
phame 0yt = 3 3 dnnat'

m,n>0 k>0

m The chosen step set is associated with a
group G of birational transformations of Z2.
m Here, ¢(x,y) = (3,y) and ¢(X,}’):(X,%)
mG={i¢,¢,¢o¢}

Theorem [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10], [Kurkova, Raschel 12], [Mishna, Rechnitzer 07], [Melczer,
Mishna 13], [and more!]

The series Q(x, y; t) is D-finite if and only if G is finite.

This is the case for 23 out of 79 non-equivalent small step models S C {—1,0,1}2\ {(0,0)}.
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Bivariate Linear Recurrences = What about Example (4)?
5

What about Example (4)?
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Bivariate Linear Recurrences = What about Example (4)?

What about Example (4)? The core of this course!

Weighted model below the diagonal ‘

amn = (N+1)am—1,n + @mn—1 form>n>0
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Bivariate Linear Recurrences = What about Example (4)?

What about Example (4)? The core of this course!

Weighted model below the diagonal ‘

amn = (N+1)am—1,n + @mn—1 form>n>0

0.4
0.3
0.2
0.1

Theorem [Elvey Price, Fang, W 2021]

For n — oo it holds that

ann=0 (n!4”e3‘7‘”1 3n) / W N
where a; ~ —2.338 is the largest root of the Airy function Ai(x)
characterized by Ai”(x) = xAi(x) and limx_,« Ai(x) = 0.

A’ (x) = x Ai(x)
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Bivariate Linear Recurrences = What about Example (4)?

What is a stretched exponential?

General question

How does a sequence (an)n>0 behave for large n?

m Often we observe

for constants C, R, a € R.
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How does a sequence (an)n>0 behave for large n?

m Often we observe

for constants C, R, a € R.

® Much more seldom we observe (or are able to prove)
C-R". -n%,

with a e°™ withce Rand o € (0,1).
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Bivariate Linear Recurrences = What about Example (4)?

What is a stretched exponential?

General question

How does a sequence (an)n>0 behave for large n?

m Often we observe

for constants C, R, a € R.

® Much more seldom we observe (or are able to prove)
C-R". -n%,

with a e°™ withce Rand o € (0,1).

Some deeper reasons why they are “seldom”

m Generating function cannot be algebraic

m It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only only with an
irregular singularity, e.g., exp(3%3)
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Bivariate Linear Recurrences = What about Example (4)?

Appearances of stretched exponentials

Known exactly:
m Number theory (integer partitions):

~ (4v/3)7" n'
m Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):
~ C1 4n n—5/6
m Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):
@(nz”(me_z)" n_2/3)
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Bivariate Linear Recurrences = What about Example (4)?

Appearances of stretched exponentials

Known exactly:
m Number theory (integer partitions):

~ (4v3)7" n”'
m Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):
~ C14" n~%/®
m Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):
S} (nz”(1 2¢7%)" n_2/3)
Conjectured:
m Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:
~ o
m Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:
n
~

m and recently more and more appear in group theory, queuing theory, ...
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Bivariate Linear Recurrences = What about Example (4)?

Stretched exponential method applies to many more objects

6110(14(15|17|18
3159 (12(13|16
2111714118

Young tableaux with walls

[Banderier, Marchal, W 2018], [Banderier, W 2021]

Compacted trees

[Aho, Sethi, Ullman 1986]

Michael Wallner | TU Graz | 24.-28.02.2025

Phylogenetic networks
[McDiarmid, Semple, Welsh 2015]

Minimal automata
[Hopcroft, Ullman 1979]

BAADBACFCBEDECDFEF

Constrained words [Pons, Batle 2021]

29/75



Bivariate Linear Recurrences = What about Example (4)?

Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compacted binary trees,
satisfy for n — oo

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

where a; ~ —2.338 is the largest root of the Airy function Ai(x) characterized by Ai”(x) = xAi(x) and limyx— oo Ai(x) = 0.

Michael Wallner | TU Graz | 24.-28.02.2025



Bivariate Linear Recurrences = What about Example (4)?

Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compacted binary trees, t, of bicombining phylogenetic tree-child networks,
satisfy for n — oo

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

th=0 ((n!)2 12n n*5/3) , [Fuchs, Yu, Zhang 2021]

where a; ~ —2.338 is the largest root of the Airy function Ai(x) characterized by Ai”(x) = xAi(x) and limyx— oo Ai(x) = 0.
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Bivariate Linear Recurrences = What about Example (4)?

Many new natural appearances of stretched exponentials

Theorem
The number ¢, of compacted binary trees, t, of bicombining phylogenetic tree-child networks, b, of minimal DFAs
recognizing a finite binary language, satisfy for n — oo

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

th=0 ((n!)2 12n n*5/3) , [Fuchs, Yu, Zhang 2021]

br=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]

where a; ~ —2.338 is the largest root of the Airy function Ai(x) characterized by Ai”(x) = xAi(x) and limyx— oo Ai(x) = 0.
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Bivariate Linear Recurrences = What about Example (4)?

Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compacted binary trees, t, of bicombining phylogenetic tree-child networks, b, of minimal DFAs
recognizing a finite binary language, and y, of 3 x n Young tableaux with walls satisfy for n — oo

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]
th=0 ((n!)2 12n n*5/3) , [Fuchs, Yu, Zhang 2021]
br=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where a; ~ —2.338 is the largest root of the Airy function Ai(x) characterized by Ai”(x) = xAi(x) and limyx— oo Ai(x) = 0.
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Bivariate Linear Recurrences = What about Example (4)?

Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compacted binary trees, t, of bicombining phylogenetic tree-child networks, b, of minimal DFAs
recognizing a finite binary language, and y, of 3 x n Young tableaux with walls satisfy for n — oo

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]
th=0 ((n!)2 12n n*5/3) , [Fuchs, Yu, Zhang 2021]
br=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where a; ~ —2.338 is the largest root of the Airy function Ai(x) characterized by Ai”(x) = xAi(x) and limyx— oo Ai(x) = 0.

Associated recurrence relations (m > n > 0):

Cn = Cn,n, where Cm,n = Cmyn—1 + (N+1)Cm_1,n — (N —1)Cm—2,n—1
2m+n—-2

th = (n— 1)tm,m, where tm,n = mtm,nf1 +@m+n—2)ty_1

bn = bn7n7 where bm,n S 2bm,n,1 4+ (n =+ 1)bm,17n — nbm,2,n71

Yn = Yo,n, where Ym,n = Ymn—1 + @M+ n—1)yYm_1,n
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Asymptotics along the boundary




Bivariate Linear Recurrences = What about Example (4)?

Recap of Part |

Recurrences we study Main goal

m Determine an

amn = E(M. N)am—1,n + N(m, n)am,n-1 — We focus on asymptotics for n — oo
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Bivariate Linear Recurrences = What about Example (4)?

Recap of Part |

Recurrences we study Main goal
m Determine an
amn = E(M. N)am—1,n + N(m, n)am,n-1 — We focus on asymptotics for n — oo
E(m,n) N(m,n) Domain an,n Description

(1) 1 1 m,n>0 . " Binomial coefficients
() 1 1 m>n>0 4N Catalan numbers

(3) n+1 1 m,n>0 . S(2n+1,n+1)  Stirling numbers 2" kind
(4) n+1 1 m>n>0 ‘ e (n!4”e3"’11 n'/?3 n) Compacted binary trees

(In the last case, a; ~ —2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying

~

Ai” (x) = xAi(x) and limyx_, o Ai(x) = 0.)
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Bivariate Linear Recurrences = What about Example (4)?

Recap of Part |

Recurrences we study Main goal
m Determine an
amn = E(M. N)am—1,n + N(m, n)am,n-1 — We focus on asymptotics for n — oo
E(m,n) N(m,n) Domain an,n Description

(1) 1 1 m,n>0 . " Binomial coefficients
() 1 1 m>n>0 4N Catalan numbers

(3) n+1 1 m,n>0 . S(2n+1,n+1)  Stirling numbers 2" kind
(4) n+1 1 m>n>0 ‘ e (n!4”e3"’11 n'/?3 n) Compacted binary trees

(In the last case, a; ~ —2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying

~

Ai” (x) = xAi(x) and limyx_, o Ai(x) = 0.)

Today we solve Example (4): weighted model below the diagonal ‘
amn = (N+1)am—1,n + @mn—1 form>n>0
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Bivariate Linear Recurrences = Step 1: Transformation of the recurrence

Step 1: Transformation of the recurrence
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Step 1: Transform recurrence into a Dyck-like recurrence

T (0,0)

®
N

m Path starts at (0, —1) and ends at (n, n)
m Path never crosses the diagonal
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Step 1: Transform recurrence into a Dyck-like recurrence

[ ] (7.7)
.
.
7 7
,
Pt [
Ve Ve
T O
=4 =4 4
B B 3
4 { 4 A
3 3 3 3
7
) ] a9 ) ]
L, 3) o B J B
] X X
,
7
) >} 9 ) 9 9
/T “
,
.
[ 1 1 1 1 1 1 (0,0)

m Path starts at (0, —1) and ends at (n, n)
m Path never crosses the diagonal
m One box is marked below each horizontal step
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Step 1: Transform recurrence into a Dyck-like recurrence

1 (m,n (7,7)
(m—1,n) n+ 1 (m,n) 1!1 ),
1 //q_ﬂ;
(m,n —1) e b
W o
o X
55—
T T “AX
Y SN R ,
[
e3P 3 >33 ¥
Ch h b b b R X X
Y ) 9 I3} 9 5}
) T1 R (T A (R
ST EPY S L Y S (0,0)

m Path starts at (0, —1) and ends at (n, n)

m Path never crosses the diagonal

m One box is marked below each horizontal step
m Each vertical step has weight 1
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Recurrence for decorated paths

1 (m,n (7,7)
(m—1,n) n+ 1 (m,n) 1!1
1 //q_ﬂ\ L :
(m7n7 1) ///) 1 . 1 ’
s O

_‘
g

4 { 4 A
3 3 3 3
7 7
SN 1 1 1 1 .
) ] a9 ] ] 4
3) B B J B

vl

oo
o
o
o
o
N

®
H

R
L
o+
R
o+
o+

(0,0)

XX X

Recurrence: Let an,, be the number of paths ending at (m, n)

am,n = @m,n-1 + (n + 1)am—1,n7 form>n
ap,0 = 1.

Number of relaxed compacted trees is an, »
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Recurrence for decorated paths

n+1 (m,n) K
(m—1,n) K
,
1 //q_ﬂ;
,
(m,n—1) R
Wy t
4 E
J J J
4 A A 1
7 E3 3 E3 E3
,
,
,
3 3 3 3 3
,
,
,
O 3] 9 31 (3] 9
/T =
,
,
,
g

®
H

iR
L
L
R
L
iR

Recurrence: Let an,, be the number of paths ending at (m, n)

am,n = @m,n-1 + (n + 1)am—1,n7 form>n
ap,0 = 1.

Number of relaxed compacted trees is an, »
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Recurrence for decorated paths

n+1 (m,n) K
(m—1,n) ,
1 1
AT
.
(m,n—1) 6 6
2 W 7
5 5 5
5 6 7
4 4
A1 5 6 7
.
.
2’3 3 3 3 3
A3 4 5 6 7
.
.
L2 2 2 2 2 2
A2 3 1 5 6 7
.
.
o’ l 1 1 1 1 1 1
! 2 3 1 5 3 7

Recurrence: Let 4, , be the number of paths ending at (m, n) with weights divided by column number

n+1 .
am—1,n, form=>n

ém,n = ém,n71 P
é0,0 = 1
Number of relaxed compacted trees is n! &, »
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Bivariate Linear Recurrences = Step 1: Transformation of the recurrence

Recurrence for decorated paths

n+1 (m,n) K
(m—1,n) K
.
1 A ™
.
(m,n—1) e 6
, I 7
) 5 5
* 6 7
1 4
AT 5 6 7
.
.
g 3 i 3 3
AT 4 5 6 7
.
.
2 2 2 2 2 2
N 3 4 5 6 7
.
.
a1 1 1 1 1 1 1
v 2 3 1 5 3 7

Recurrence: Let 4, , be the number of paths ending at (m, n) with weights divided by column number

n+1.
am—1,n, form>n

ém,n = ém,n71 P
é0,0 = 1
Number of relaxed compacted trees is n! &, »
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Bivariate Linear Recurrences = Step 1: Transformation of the recurrence

Recurrence for decorated paths

n+1 (m,n) K
(m—1,n) K
.
1 A ™
.
(m,n—1) S 6
T -
, i’
) 5 5
* 6 7
1 4
AT 5 6 7
.
.
g 3 i 3 3
AT 4 5 6 7
.
.
2 2 2 2 2 2
N 3 4 5 6 7
.
.
a1 1 1 1 1 1 1
v 2 3 1 5 3 7

Recurrence: Let 4, , be the number of paths ending at (m, n) with weights divided by column number

n+1.
am—1,n, form>n

ém,n = ém,n71 +
éo,o =1.

Number of relaxed compacted trees is n! &, »
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Bivariate Linear Recurrences = Step 1: Transformation of the recurrence

Recurrence for decorated paths

n+1 (m,n) K
(m—1,n) K
.
1 //;1—1
.
(m,n—1) . 6
T 7
) 5 5
* 6 7
‘4 4 4
* 5 6 7
.
g 3 3 3 3
by W 1 5 6 7
.
.
2 2 2 2 2 2
T * 3 4 5 6 7
.
.
a1 1 1 1 1 1
v 2 3 1 5 3 7

Recurrence: Let d;; be the number of decorated paths ending at (/, j) shown on the right
2(j—1) . .
dij = di-1j41 + (1 = ﬁ) di1,j-1, fori>0,j>0
do’o = 9,

= an,n — n! d2n’0
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Step 2: Heuristic analysis
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Intuition stretched exponential: Pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]

Dyck paths of length 2n where paths of height h get weight 2"

0
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Intuition stretched exponential: Pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]

Dyck paths of length 2n where paths of height h get weight 2"

0
0 2n

Consider paths with max height h = n® (for 0 < o < 1/2):

Number of paths ~ 4"¢~ "Ha, Weight = 27" = g~ 8@
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Intuition stretched exponential: Pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]

Dyck paths of length 2n where paths of height h get weight 2"

0
0 2n

Consider paths with max height h = n® (for 0 < o < 1/2):

Number of paths ~ 4"¢~ "Ha, Weight = 27" = g~ 8@

Weighted number of paths ~ 47 ¢" ~* ~los(2)n”

n . 1/3
Maximum occurs when o = 1/3 and is equal to 4"e= " 2
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Intuition stretched exponential: Pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]

Dyck paths of length 2n where paths of height h get weight 2"

0
0 2n

Consider paths with max height h = n® (for 0 < o < 1/2):

Number of paths ~ 4"¢~ "Ha, Weight = 27" = g~ 8@

Weighted number of paths ~ 47 ¢" ~* ~los(2)n”

Maximum occurs when « = 1/3 and is equal to gng=on'’?,
Our case: weights decrease similarly with height so we expect similar behavior
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Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m—
dn,m - dn—1,m+1 + (1 - ( )) dn_17m_1

n+m
dn,m ° 2.0x10282 [¢
O I~
23 [
1.5x10 n,m
.
1.5x10282
1.0x1023 |
1.0x10282 ¢
.
L .
22[ .
5.0x10 s0x1081 [
.
. H
Py 3
20 40 60 80 100 200 400 600 800 1000
m+1 m+1

Figure: Plots of dn,m against m+ 1. Left: n = 100, Right: n = 1000.
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m—
dn,m - dn—1,m+1 + (1 - ( )) dn_17m_1

n+m
d .
mm L 20x10282 [
b
23 |
1.5x10 dn.m
¢ 1.5x10282
1.0x1023 | .
“ 1.0x10282 ¢
.
22 | .
5.0x10 5.0x10281 [
.
. H
o Y
20 40 60 80 100 200 400 600 800 1000
m+1 m+1

Figure: Plots of dn,m against m+ 1. Left: n = 100, Right: n = 1000.

m Let’'s zoom in to the left (small m) where interesting things are happening.
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Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m—
dn,m - dn—1,m+1 + (1 - ( )) dn_17m_1

n+m
dn,m °
2.0x10282 - 0o
O ° .
23 d
15x10 In,m .
L]
1.5x10282 | °
L]
1.0x10%3 A
. 1.0x10282 o
Y L]
5.0x1022 C
° 5.0x10281 °
L4 .
L] L]
o_ (] ° 0 L ® 0 e.0
5 10 15 10 20 30 40
m+1 m+1

Figure: Plots of dn,m against m+ 1. Left: n = 100, Right: n = 1000.

m Let’'s zoom in to the left (small m) where interesting things are happening.
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Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m—
dn,m - dn—1,m+1 + (1 - ( )) dn_17m_1

n+m
e, L
O °
2.x10%77 - . o
L]
o .
dn,m o f(x)
1.x10577+ @ U
L]
L]
L]
) L]
0 . . . .‘. ® 000 0
10 20 30 40 50 0 1

m+1 X

Figure: Left: Plot of dn,m against m + 1 for n = 2000. Right: Limiting function f(x).

m Let’'s zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...

Michael Wallner | TU Graz | 24.-28.02.2025 38/75



Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m
dn,m - dn—1,m+1 + (1 - (n+ m)) dn_17m_1

1

n,m . f(x)

0 LTV 0

g(n) 0 X 1

m+1
Figure: Left: Plot of dn,m against m + 1 for n = 2000. Right: Limiting function f(x).

m Let’'s zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...
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Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

2(m
dn,m - dn—1,m+1 + (1 - (n+ m)) dn_17m_1

1

n,m . f(x)

0 LTV 0

g(n) 0 1
m+1 A

Figure: Left: Plot of dn,m against m + 1 for n = 2000. Right: Limiting function f(x).

m Let’'s zoom in to the left (small m) where interesting things are happening.
m |t seems to be converging to something...

. N m+1
Ansatz: d,n = h(n)f ( EG) )
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = WUn,m dn71,m+1 + Unm dn71,m71, m>0

m+1)
Ansatz: d,m ~ h(n)f
w0t (G
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Does this ansatz work in the unweighted or unconstrained model?

Anm = tn,m Gn—1,me1 + Vnm Gh—1,m—1, m>0

m+1
Ansatz: d,n» ~ h(n f( )
PO gy

Unweighted case pinm = vam = 1 with m > 0:

h(n) ~ %4", ain) =vn,  f(x)=xe ",
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Does this ansatz work in the unweighted or unconstrained model?

Anm = tn,m Gn—1,me1 + Vnm Gh—1,m—1, m>0

m+1)
Ansatz: d,m ~ h(n)f
w0t (G

Unweighted case pinm = vam = 1 with m > 0:

h(n) ~ %4", ain) =vn,  f(x)=xe ",

Unweighted case pnm = vnm = 1 with m € Z:

Sy gm=vA  fo-e

h(n) =~ N
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Does this ansatz work in the unweighted or unconstrained model?

Anm = tn,m Gn—1,me1 + Vnm Gh—1,m—1, m>0

m+1)
Ansatz: d,m ~ h(n)f
w0t (G

Unweighted case pinm = vam = 1 with m > 0:

h(n) ~ %4", ain) =vn,  f(x)=xe ",

Unweighted case pnm = vnm = 1 with m € Z:
(o 2

h(n) ~ %4”, g(n) =/n, flx)=e"*.

Relaxed binary trees finm = 1 and vom = 1 — 2= with m > 0:

= Based on the relation with pushed Dyck paths, we guess g(n) = ¥/n.
What are h(n) and f(x)?
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
Onm = An—1,m11 + (1 - ﬁ) An—1,m—1

m Ansatz (a): dnm ~ h(n)f (me;:) :
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
do,m = An—1,m+1 + (1 — ﬁ) dn—1,m—1

m Ansatz (a): dnm ~ h(n)f (me;:) :

Substitute into recurrence:

h(n)f(m%1> ~h(n—1)f(smnt21)+<1‘%>h(”_1)f<3nmf1>
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m - dn—1,m+1 + (1 - ﬁ) dn—1,m71

m Ansatz (a): dnm ~ h(n)f (m\s;j) :

Substitute into recurrence:

h(n)f(m\%1> ~h(n—1)f(smnt21)+<1‘%)h(”_1)f<3nmf1>

Setm=xIn-1:

h(n)f (x) = h(n—1)f (Xj/nﬁ%:) I (1 = %) h(n—1)f (%)
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Heuristic analysis of weighted paths of relaxed binary trees

2(m+1
dn,m - dn—1,m+1 + (1 - ﬁ) dn—1,m71

m Ansatz (a): dnm ~ h(n)f (me;:) :

Substitute into recurrence:

hMV(T%J)%hw—1y(;%§%)+<1_g%£%9>hm_1y<3:11>

Setm=xIn-1:

h(n)f (x) = h(n—1)f (Xj/nﬁ%:) I (1 = %) h(n—1)f (%)

Dividing by h(n — 1) and expanding the right-hand side around x for n — oo gives

h(n) f'(x) — 2xf(x)
=1 22t f)

n~28 4 0(n™")
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Heuristic analysis of weighted paths of relaxed binary trees

\
2(m+1
dn,m = dn—1,m+1 + (1 - w) dn—1,m—1

n+m

® Ansatz (a): dym ~ h(n)f (m\:}:) '

Substitute into recurrence and set m = x¥/n — 1:

h(n) ~2 4 " (x) — 2xf(x)

h(n—1) o™
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Heuristic analysis of weighted paths of relaxed binary trees

\
2(m+1
dn,m = dn—1,m+1 + (1 - w) dn—1,m—1

n+m

m+1
m Ansatz (a): dnmNh(n)f< Tn >

Substitute into recurrence and set m = x¥/n — 1:
h(n) ~ f'(x) — 2xf(x) _o/3 1
An—1) 2+ 7)(()() n +0(n)

m Ansatz (b): Set s, .= h(( and assume

n
ss=2+cn 224 0(n7") = h(n)=s[[si~2"e¥""
i=1
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Heuristic analysis of weighted paths of relaxed binary trees

\
2(m+1
dn,m = dn—1,m+1 + (1 - w) dn—1,m—1

n+m

m+1
m Ansatz (a): dnmNh(n)f< Tn >

Substitute into recurrence and set m = x¥/n — 1:
h(n) ~ f'(x) — 2xf(x) _o/3 1
An—1) 2+ 7)(()() n +0(n)

m Ansatz (b): Set s, .= h(( and assume

n
ss=2+cn 224 0(n7") = h(n)=s[[si~2"e¥""
i=1

Solution
f'(x) = (2x + ¢)f(x) = f(x)=Ai (2—2/3(2x + c))

where c is a constant and Ai is the Airy function.
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Bivariate Linear Recurrences = Step 2: Heuristic analysis

Heuristic analysis of weighted paths of relaxed binary trees

\
2(m+1
dn,m = dn—1,m+1 + (1 - %) dn—1,m—1

m+1
m Ansatz (a): dnmNh(n)f< Tn )

Substitute into recurrence and set m = x¥/n — 1:
h(n) ~ f'(x) — 2xf(x) _o/3 1
An—1) 2+ 7’,()() n +0(n)

m Ansatz (b): Set s, .= h(( and assume

n
ss=2+cn 224 0(n7") = h(n)=s[[si~2"e¥""
i=1

Solution
f'(x) = (2x + ¢)f(x) = f(x)=Ai (2—2/3(2x + c))

where c is a constant and Ai is the Airy function.

= Boundary condition: d, _1 = 0 and dp » > 0.
Then f(0) = 0 implies ¢ = 2%/%a, where a; ~ —2.338 satisfies Ai(ai) = 0
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Refined heuristic analysis

Ansatz of order 1:

m+1 _ _
dn,m%h(”)f< \% > and s,=2+cn P4 0(n).

yields estimates ¢ = 22/3a; such that

h(n) ~ 276 2% and  f(x) = Ai(2"3x + ay).
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Refined heuristic analysis

Ansatz of order 1:

m+1 _ _
dn,m%h(”)f< \% > and s,=2+cn P4 0(n).

yields estimates ¢ = 22/3a; such that
h(n) ~ 276 2% and  f(x) = Ai(2"3x + ay).
Ansatz of order 2:

dn,m = h(n) (fo (m\;; > +n %, <m\3;%1 >> and  s,=2+cn ¥ +dn ' +0O(n*?).

yields estimates d = 8/3 such that

h(n) ~ cst2"e®/2)"/° i/ and f(x) = Ai(2"°x + ar) = A (a)x + . ..
2x2
fi(x) = —TfO(X)
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Refined heuristic analysis

Ansatz of order 1:

m+1 _ _
dn,m%h(”)f< \% > and s,=2+cn P4 0(n).

yields estimates ¢ = 22/3a; such that
h(n) ~ 276 2% and  f(x) = Ai(2"3x + ay).
Ansatz of order 2:

dn,m = h(n) (fo (m\;; > +n %, <m\3;%1 >> and  s,=2+cn ¥ +dn ' +0O(n*?).

yields estimates d = 8/3 such that

h(n) ~ cst2"e®/2)"/° i/ and f(x) = Ai(2"°x + ar) = A (a)x + . ..
2x2
fi(x) = —TfO(X)

This way we conjecture the asymptotic form

1/3
ann = Nlobno ~ cst nl4"e® ™ ",
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Bivariate Linear Recurrences = Step 3: Inductive proof

Step 3: Inductive proof
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Step 3: Inductive proof — Outline

Recall:

2(m—+1
dom = (1 — %) An—1,m—1 + dn—1,m+1

Find explicit sequences X, » and Y, » with the same asymptotic form, such that
Xn,m S dn,m S Yn,m;

for all m and all n large enough.
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Step 3: Inductive proof — Outline

Recall:

2(m—+1
dom = (1 — %) An—1,m—1 + dn—1,m+1

Find explicit sequences X, » and Y, » with the same asymptotic form, such that
Xn,m S dn,m S Yn,m;

for all m and all n large enough.

How to find them?

E Use heuristics
Adapt until X»,» and Y, m satisfy the recurrence of d, m with the equalities replaced by inequalities:

= — < and >

Prove Xp.m < dnm < Yn,m by induction.
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Induction (Lower bound)

2(m-+1

Main idea

Suppose we have found explicit sequences (Xn,m)n>m>0 and (sn)»>1 that satisfy

2(m+1
Xn,msn S Xn—1,m+1 + (1 - %) Xn—1,m—1, (2)

for all sufficiently large n and all integers m € [0, n].
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Induction (Lower bound)

2(m-+1

Main idea

Suppose we have found explicit sequences (Xn,m)n>m>0 and (sn)»>1 that satisfy

2(m+1
Xn,msn S Xn—1,m+1 + (1 - %) Xn—1,m—1, (2)

for all sufficiently large n and all integers m € [0, n].

Define (hn)n>0 by ho = 1 and h, = sph,_1; then prove that
Xn,mhn < bodn,m

for some constant by by induction:
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Induction (Lower bound)

2(m-+1

Main idea

Suppose we have found explicit sequences (Xn,m)n>m>0 and (sn)»>1 that satisfy

2(m+1
Xn,msn S Xn—1,m+1 + (1 - %) Xn—1,m—1, (2)

for all sufficiently large n and all integers m € [0, n].

Define (hn)n>0 by ho = 1 and h, = sph,_1; then prove that
Xn,mhn < bodn,m
for some constant by by induction:

@ 2(m+1
Xnmhn < Xn1,mp1hn1 + <1 - ﬁ) Xn—1,m—1hn_1
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Induction (Lower bound)

2(m-+1

Main idea

Suppose we have found explicit sequences (Xn,m)n>m>0 and (sn)»>1 that satisfy

2(m+1
Xn,msn S Xn—1,m+1 + (1 - %) Xn—1,m—1, (2)

for all sufficiently large n and all integers m € [0, n].

Define (hn)n>0 by ho = 1 and h, = sph,_1; then prove that
Xn,mhn < bodn,m

for some constant by by induction:

@ 2(m+1
Xn,mhn < Xn71,m+1 hn71 i <1 - ﬁ) Xn71,m71hn71
(Induction) 2(m+1
boGh_1,m1 + (1 - %) bodh—1.m—1 (pos. coeffs!)
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Induction (Lower bound)

2(m-+1

Main idea

Suppose we have found explicit sequences (Xn,m)n>m>0 and (sn)»>1 that satisfy

2(m+1
Xn,msn S Xn—1,m+1 + (1 - %) Xn—1,m—1, (2)

for all sufficiently large n and all integers m € [0, n].

Define (hn)n>0 by ho = 1 and h, = sph,_1; then prove that
Xn,mhn < bodn,m

for some constant by by induction:

@ 2(m+1
Xn,mhn < Xn71,m+1 hn71 + <1 - ﬁ) Xn71,m71hn71
(Induction) 2(m+1
boGh_1,m1 + (1 - %) bodh—1.m—1 (pos. coeffs!)
Rec. dn,m

=" boln,m. O
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Bivariate Linear Recurrences = Step 3: Inductive proof

Explicit sequences for the lower bound

Lemma (lower bound)

< 2m? . 2'3(m+1)

2%/%g, 8 1
26N + 3n  n’/é"

Forall n,m > 0 let

Spi=2+

Then, for any € > 0, there exists an f, such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and for all 0 < m < n?/3—=.
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Explicit sequences for the lower bound

Lemma (lower bound)

. 2m? . 2'3(m+1)

22 8 1
26N + 3n  n’/é"

Forall n,m > 0 let

Spi=2+

Then, for any € > 0, there exists an f, such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and for all 0 < m < n?/3—=.

Making m valid for all [0, n]
Define Xy,m := max{Xn,m, 0}. Then,
Xn.m3n = Xo.m3n for m < cst/n
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Explicit sequences for the lower bound

Lemma (lower bound)

. 2m? . 2'3(m+1)

22 8 1
26N + 3n  n’/é"

Forall n,m > 0 let

Spi=2+

Then, for any € > 0, there exists an f, such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and for all 0 < m < n?/3—=.

Making m valid for all [0, n]
Define X, m := max{Xn m, 0}. Then,
Xn,mén = )N(n,mén < (1 m+1 )Xn 1,m— 1+Xn 1,m+1 for m < CSt\ﬁ?
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Explicit sequences for the lower bound

Lemma (lower bound)

. 2m? . 2'3(m+1)

22 8 1
26N + 3n  n’/é"

Forall n,m > 0 let

Spi=2+

Then, for any € > 0, there exists an f, such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and for all 0 < m < n?/3—=.

Making m valid for all [0, n]
Define X, m := max{Xn m, 0}. Then, (pos.

coeffs)

Xn,mén:)w(n,ménﬁ(1 2m+1 )Xn 1,m— 1+ Xo t,m < (1- m+1 )Xn t.m-1+Xo—1.m1 form < csty/n
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Explicit sequences for the lower bound

Lemma (lower bound)

. 2m? . 2'3(m+1)

2%/%g, 8 1
26N + 3n  n’/é"

Forall n,m > 0 let

Spi=2+

Then, for any € > 0, there exists an f, such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and for all 0 < m < n?/3—=.

Making m valid for all [0, n]

Define X, m := max{Xn m, 0}. Then, (pos.
~ < ~ coeffs)
Xn,mSn = Xno,mSn < (1— A m+1 )Xn 1,m— 1+ Xn 1 m < (1- m+1 )Xn t.m-1+Xo—1.m1 form < csty/n
Xn.m3n =0 < (1- m*‘ A Y Xt m—1 + Xn_1.ms1  Otherwise
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Explicit sequences for the lower bound

Lemma (lower bound)

- 2m? . 2'3(m+1)
Xo,m = (1 ~an + 2—)Al (31 + T) and

22 8 1
n2/3 +§* n’/e’

Forall n,m > 0 let

Sp =2+

Then, for any € > 0, there exists an 7y such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and forall 0 < m < n?/3—=.

Approach ax10”

-8
u ShOW that Pn,m = _j(n,mén + )N(n—1,m+1 + (1 (n,T—U) Xn—1,m71 Z 0 z.x iz-s

-8
1.x10
0
200 600 1000
P(n, m) for n = 10°
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Explicit sequences for the lower bound

Lemma (lower bound)

< 2m? . 2'3(m+1)
Xo,m = (1 ~an + 2—)Al (31 + T) and

2233, 8 1
n2/3 +§* n’/e’

Forall n,m > 0 let

Sp =2+

Then, for any € > 0, there exists an 7y such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and forall 0 < m < n?/3—=.

Approach axw’
-8

m Show that Pn’m = —j(n,mén =+ )N(n71,m+1 —+ (1 nm+1 ) Xn 1,m—1 > 0 :x iz.s

m Expand for n, m large such that Pnm = 3" a;;m'n/ Lx10”

(converges absolutely, since Airy function is entire) " e e o0

P(n, m) for n = 10°

Michael Wallner | TU Graz | 24.-28.02.2025



Explicit sequences for the lower bound

Lemma (lower bound)

< 2m? . 2'3(m+1)
Xo,m = (1 ~an + 2—)Al (31 + T) and

2233, 8 1
n2/3 +§* n’/e’

Forall n,m > 0 let

Sp =2+

Then, for any € > 0, there exists an 7y such that

2(m+1)

)N(n,méng (1 n+m )Xn 1,m— 1+Xn 1,m+1,

forall n > f and forall 0 < m < n?/3—=.

Approach axw’
-8

m Show that Pn’m = —j(n,mén =+ )N(n71,m+1 —+ (1 nm+1 ) Xn 1,m—1 > 0 :x iz.s

m Expand for n, m large such that Pnm = 3" a;;m'n/ Lx10”

(converges absolutely, since Airy function is entire) " e e o0

P(n, m) for n = 10°

m Show that P, m = kmn® + o(m°n?) where x > 0 for n large
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Lemma (lower bound) — Proof (1)

The following computations rely on computer algebra (Maple session available online).
We make the ansaiz

2 1/3
. oM~ + 171 m . 2'"7°(m+1)
Xn’m — (1 + 7) A| <a1 + T 3

Spi=00+ —05

and define
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Lemma (lower bound) — Proof (1)

The following computations rely on computer algebra (Maple session available online).
We make the ansaiz

2 1/3
Xom = (1 4 M) A <a1 n w>
n n/3

Spi=00+ —05
and define

2(m+1
Pn,m = —Xn,msn < Xn—1,m+1 ar (1 - g) Xn71,m—1~

Expand Ai(z) in a neighborhood of
2'3m
oa=a + S
using Ai”(z) = zAi(z). Then

Pn,m = pn,mAi(c) + p;,ymAi'(a),

—1/6

where pn,m and p;, ,, are power series in n whose coefficients are polynomials in m.
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Lemma (lower bound) — Proof (2)

Choose o; and 7; to kill lower order terms in

Pn7m = Z a,-Jm"n"

Pom = (00 — 2)Ai(a)
- ((01 Ai(a) + 2"3(00 — 2)) Ai'(a)n™3

: |—— Slope: -—— —4
| — = ((% +02) Ai(a) + 21/3U1Ai'(a)) n s

- Slope: 71>

+...

m blue terms: o¢p = 2

m red terms: 01 =0

m green terms: g = 2%/3a,

| | a3=8/3and72:—2/3
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Lemma (lower bound) — Proof (2)

2 o 1/3
Choose o; and 7; to Kill lower order terms in (Recall o = a + 247)
Z i . .
Pn,m = ai,jm r” Pnym = pnymA|(O{) + p;-,mA|,(a)
, 0 ‘ : ‘ : :
5 1 2 3 4 5
i
i
)
P
: B -
— Slope: 71778 g% — Slope: 7}78
J i |—— Slope: —% J s:: — Slope: ’é
- Slope: -1 g:ﬁ - Slope: -1
&
&
o
&
&
&
~44 EE )
& o
m blue terms: g = 2
m red terms: oy =0
m green terms: g = 2%/3a,
= o3 =8/3and m» = —2/3
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Lemma (lower bound) — Proof (2)

2'/3m

Choose o; and 7; to Kill lower order terms in (Recall a = a1 + =577")
Pom = _aimn Prm = PnmAi(a) + ph Al ()
0 —T T 0 T
1 2 3 4 5 1 2 3 4 5
i : ' i
: -1
: [N -
: O}
: D
N K -
: : — Slope: 71778 _2 — Slope: 15
j : |~ Slope: —% J EE — Slope: ’%
: -+ Slope: 4’ g:ﬁ 0 - Slope: -1
: Pt
: -380
: K
. o 2
- <) J
Pt -
“ “ é .
& &
m blue terms: o9 = 2 Case analysis on non-zero coefficients:
m red terms: o4 =0 m < xo(n/2)'/? (here Ai'(a) > 0)
m green terms: g = 2%/3a, x0(n/2)"/® < m< n’/1®
= o3 =8/3and » = -2/3 /18 « m < pR/3—<. O
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Bivariate Linear Recurrences = Step 3: Inductive proof
Upper bound

Lemma
Choose n > 2/9 fixed and for all n,m > 0 let
c 2m* m m4 2‘/3(m+ 1)
2233, 8 1
“res Tan e

Then, for any € > 0, there exists a constant iy such that

n =2+

PN n—m+2 ¢
Xn,mSn > Wxn 1,m— 1+Xn 1,m+1,

foralln> fyandall0 < m<n'—=.
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Bivariate Linear Recurrences = Step 3: Inductive proof
Upper bound

Lemma
Choose n > 2/9 fixed and for all n,m > 0 let
c 2m* m m4 2‘/3(m+ 1)
2233, 8 1
“res Tan e

Then, for any € > 0, there exists a constant iy such that

n =2+

o - n—m+2¢
Xn,mSn > Wxn 1,m—1 +Xn 1,m+1,
foralln> fyandall0 < m< n'~=.
Proof: Same idea with colorful Newton polygons works (but more complicated). O
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Bivariate Linear Recurrences = Step 3: Inductive proof
Upper bound

Lemma
Choose n > 2/9 fixed and for all n,m > 0 let
c 2m* m m4 2‘/3(m+ 1)
2233, 8 1
“res Tan e

Then, for any € > 0, there exists a constant iy such that

n =2+

PN n—m+2 ¢
Xn,mSn > Wxn 1,m— 1+Xn 1,m+1,

foralln> fyandall0 < m<n'—=.

Proof: Same idea with colorful Newton polygons works (but more complicated). O

Making m valid for all [0, n] (different than lower bound)

m We fix N > 0 and define a new sequence dh.m With the same
rules as d, » except that d, m = 0 form > n**and n > N
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Bivariate Linear Recurrences = Step 3: Inductive proof
Upper bound

Lemma
Choose n > 2/9 fixed and for all n,m > 0 let
c 2m* m m4 2‘/3(m+ 1)
2233, 8 1
“res Tan e

Then, for any € > 0, there exists a constant iy such that

n =2+

PN n—m+2 ¢
Xn,mSn > Wxn 1,m— 1+Xn 1,m+1,

foralln> fyandall0 < m<n'—=.

Proof: Same idea with colorful Newton polygons works (but more complicated). O

Making m valid for all [0, n] (different than lower bound)

m We fix N > 0 and define a new sequence dh.m With the same
rules as d, » except that d, m = 0 form > n**and n > N

X ~ 1/3
= Induction works and we get dop m < v4"€*31" " n
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Bivariate Linear Recurrences = Step 3: Inductive proof
Upper bound

Lemma
Choose n > 2/9 fixed and for all n,m > 0 let
c 2m* m m4 2‘/3(m+ 1)
2233, 8 1
“res Tan e

Then, for any € > 0, there exists a constant iy such that

n =2+

PN n—m+2 ¢
Xn,mSn > Wxn 1,m— 1+Xn 1,m+1,

foralln> fyandall0 < m<n'—=.

Proof: Same idea with colorful Newton polygons works (but more complicated). O

Making m valid for all [0, n] (different than lower bound)

m We fix N > 0 and define a new sequence dh.m With the same
rules as d, » except that d, m = 0 form > n**and n > N

X ~ 1/3
= Induction works and we get dop m < v4"€*31" " n

| Prove that dbno < 5t Gan.m
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
Good path
m We call cropped paths good and all others bad. "
T
N
Bad path
234
N
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gnt.me1 + (1 - %) Ortm1 form>n’*andn> N, Oono < CSt Ganm
Onm=0 otherwise.

Good path
m We call cropped paths good and all others bad. "
x
m /dea: Bound the probability to be a bad path.
N
Bad path
234
N
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
Good path

m We call cropped paths good and all others bad. "
T

m /dea: Bound the probability to be a bad path.

m Let sy,y,» be the proportion of paths from (0, 0) to
(2n,0) passing through a point (x, y).

N

Bad path

23/4

N
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
Good path

m We call cropped paths good and all others bad. "
T

m /dea: Bound the probability to be a bad path.

m Let sy,y,» be the proportion of paths from (0, 0) to
(2n,0) passing through a point (x, y).
m Assume that for y > x*% and x > N the value sy, »

: N
is very small. Then
a Bad path
2n,0
==£<% > Sxyan
d2n,0 3/4
x>N x2y>x3/4 a8
N
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
Good path

m We call cropped paths good and all others bad. "
T

m /dea: Bound the probability to be a bad path.

m Let sy,y,» be the proportion of paths from (0, 0) to
(2n,0) passing through a point (x, y).
m Assume that for y > x*% and x > N the value sy, »

. N
is very small. Then
a | Bad path
2n,0 '
1_dn SZ Z Sx,y,nggN
220 XN x>y x3/4 234
N
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Lattice path theory to finish the upper bound

Cropped paths Missing step
Onm = Gn—t,me1 + (1 - %) Grt,m—1 form>n**andn> N, Obno < CSt Gon,m
Onm=0 otherwise.
Good path

m We call cropped paths good and all others bad. "
T

m /dea: Bound the probability to be a bad path.

m Let sy,y,» be the proportion of paths from (0, 0) to
(2n,0) passing through a point (x, y).
m Assume that for y > x*% and x > N the value sy, »

. N
is very small. Then
a | Bad path
= ) < Z Z Sx,y,n <en
d2n,0 3/4
x>N x>y>x3/4 T
1 -
= Qo < an,o.
1-— EN
N
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); zyWM

——dy,p —> 21 D22,2y,2n
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); zyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

——dy,p —> 21 D22,2y,2n
Oxy - Px.y.n

= S)(’y,n = S 1
2n,0
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); zyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx,y - Px,y.n dano
= Seya= 2 Payn g
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dano >

Michael Wallner | TU Graz | 24.-28.02.2025



Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); zyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

3/4

Therefore, we get for x > y > x*/* and x large

Cox 2y - Px,2y,n
Soxoyn = ——5————
dan,o
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); zyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

3/4

Therefore, we get for x > y > x*/* and x large

s . d2x,2y * P2x,2y,n (Lergma) (2y ol 1)d2x,2y
2x2y.n ano - ox,0
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); ZyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

Therefore, we get for x > y > x%/*

d2x,2y - P2x,2y,n (Lemma) (2y + 1)d2x,2y (Unweighted paths) /2}/ +1 2x
S2x,2y,n =7 S T S C
ano ox,0 toxo \X+Yy

and x large
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); ZyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

Therefore, we get for x > y > x%/*

d2x,2y - P2x,2y,n (Lemma) (2y + 1)d2x,2y (Unweighted paths) /2}/ +1 2x
S2x,2y,n =7 S T S C
ano ox,0 toxo \X+Yy

and x large

(Lower bound)
W i ul c 2y +1 2x
. 4rgdax' Py \ x +y
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); ZyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

Therefore, we get for x > y > x%/*

d2x,2y - P2x,2y,n (Lemma) (2y + 1)d2x,2y (Unweighted paths) /2}/ +1 2x
S2x,2y,n =7 S T S C
ano ox,0 toxo \X+Yy

(Lower bound)
WSU c 2y +1 2x <" 1 2X
4x g3ayx1/3 x X+y 4xg3aix1/3 \ x + x3/4

and x large
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Lattice path theory to finish the upper bound (2)

m Show: sy .nis for x > y > x*/* and x > N very small

B Sy, is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x, y); ZyWM
B Px.y,n is the number of paths from (x, y) to (2n, 0). j

-y, —> 21 D22,2y,2n
dx.y - Px,y,n dano
= Syn= XY Px.y, <1
2n,0
Lemma
tbn,o
Pox.2y.n < (2y + 1)p2X70,,, and P2x,0,n < . <« dyg — 21 Paz0.2n
2x,0 - dany >

Therefore, we get for x > y > x%/*

by Py (Lezma) (2y + 1)y .2y (Unweigh<ted paths) o 2y + 1 ( ox >

and x large

S2x,2y,n —

ano - ox,0 - toxo \X+Yy
(Lower bound)
o < Y 2y +11 2x < ¢ 1 2x < Clro—x"? O
qxglax' By \ x +y 4xg3aix1/3 \ x + x3/4
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Bivariate Linear Recurrences = Step 3: Inductive proof
Summary

Two-parameter recurrence relation

2(m-1
amn=(n+1)am-1,n+amn-1, Nn>m>0 Anm = (1 - ﬁ) dn—1,m—1 + dr—t,m41, mM>0

m Asymptotics of dbp0?
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m Asymptotics of dbp0?
m An interpretation in terms of Dyck paths:

start at (0, 0)

end at (2n, 0)

never cross X-axis
use steps 7 and N\
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Bivariate Linear Recurrences = Step 3: Inductive proof

Summary

Two-parameter recurrence relation

2(m-1
am,n = (n+ 1)am71,n +amn-1, nNn>m>0 Aom = (1 - ﬁ) dn—1,m—1 + dn—1,m+1, m>0

m Asymptotics of dbp0?
m An interpretation in terms of Dyck paths:

B start at (0,0)

| end at (2n, 0)

M never Cross x-axis
B use steps ' and N\

Asymptotic ansatz for large n and m ~ n'/? involving the Airy function
Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

Lower bound

4176331 n'/3

an,n > v Nl n,

for some constant v, > 0.
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Bivariate Linear Recurrences = Step 3: Inductive proof

Summary

Two-parameter recurrence relation

1_2(m—1)

amn=(n+1)am-1,n+ amn-1, Nn>m>0 Aom = ( n+m

) dn—1,m—1 + dn—1,m+17 m Z 0

m Asymptotics of dbp0?
m An interpretation in terms of Dyck paths:

B start at (0,0)

| end at (2n, 0)

M never Cross x-axis
B use steps ' and N\

Asymptotic ansatz for large n and m ~ n'/? involving the Airy function
Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

Lower bound Upper bound (similar proof, more technical)
1/3 1/3
ann > v nl4"e* ", ann < 72 nl4"e3 ™ n,
for some constant v, > 0. for some constant v, > 0.
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Part lll

Applications in Computer Science and
Biology




Bivariate Linear Recurrences = Step 3: Inductive proof

Stretched exponentials appear in open asymptotic counting problems

Compacted trees [Flajolet, Sipala, Steyaert 1990]
Minimal deterministic finite automata accepting a finite language [Domaratzki, Kisman, Shallit 2002]

Phylogenetic tree-child networks [VicDiarmid, Semple, Welsh 2015]
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Bivariate Linear Recurrences = Compacted trees

Compacted trees
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Bivariate Linear Recurrences = Compacted trees

Let’s start simple: binary trees

s £ 40 O SR

m Internal node: Node of out-degree 2 (circle)
m Leave: Node of out-degree 0 (square)

m Root: Distinguished node (top node)

m Left-Right Order of children

A recursive construction
m A binary tree is either a leaf,
m or it consists of a root and a left and right binary tree.
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Motivation: Efficiently store redundant information

Example
Consider the labeled tree necessary to store the arithmetic expression
(x (= (x x x) (x yVy)) (+ (x x X) (x yvVy))),

which represents (x2 — y?)(x2 + y?).
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Bivariate Linear Recurrences = Compacted trees

Motivation: Efficiently store redundant information

Example
Consider the labeled tree necessary to store the arithmetic expression
(x (= (x x x) (x yVy)) (+ (x x X) (x yvVy))),

which represents (x2 — y?)(x2 + y?).

(1,(x,0,0)), (2,(x,1,1)), (3,(,0,0)), (4,(x,3,3)), (5,(=24)), (6,(+,2,4)), (7,(x,5,6))

Definition
Compacted tree is the directed acyclic graph computed by this procedure.
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Compacted binary trees are special DAGs
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Nodes: n (internal) nodes and 1 leaf Root
Edges: ninternal edges and n pointers Internal edges\
Rooted: Unique distinguished node \
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Compacted binary trees are special DAGs

Nodes: n (internal) nodes and 1 leaf

Edges: ninternal edges and n pointers

Rooted: Unique distinguished node

Plane: Children have a left-to-right order

Structure: Deleting the pointers gives a plane (binary) tree
Pointers: Point to a node previously visited in postorder

Uniqueness: All (fringe) subtrees are unique!

Valid compacted tree Invalid compacted tree
A relaxed tree
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Why are they interesting?

m Applications:
XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]

m Data storage [Meinel, Theobald 1998], [Knuth 1968]
m Compilers [Aho, Sethi, Ullman 1986]

m LISP [Goto 1974]

m etc.
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m Applications:

m XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
m Data storage [Meinel, Theobald 1998], [Knuth 1968]

m Compilers [Aho, Sethi, Ullman 1986]

m LISP [Goto 1974]

m etc.

m Efficient compaction algorithm: expected time O(n)
m A tree of size n has a expected compacted size
c—2_
Vlogn

with explicit constant C [Flajolet, Sipala, Steyaert 1990].
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Why are they interesting?

m Applications:

m XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
m Data storage [Meinel, Theobald 1998], [Knuth 1968]

m Compilers [Aho, Sethi, Ullman 1986]

m LISP [Goto 1974]

m etc.

m Efficient compaction algorithm: expected time O(n)
m A tree of size n has a expected compacted size
c—2_
Vlogn

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question
How many compacted trees of (compacted) size n exist?
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Bivariate Linear Recurrences = Compacted trees

Compacted and relaxed binary trees

m Size: number of internal nodes

m ry: nr. of relaxed trees of size n Simple bounds
B cn: nr. of compacted trees of size n (unique subtrees) ] 2n
(r)nso = (1,1,3, 16,127, 1363, 18628, . ) n<Cnsths ,,H nl

(Cn)n>0 = (1,1,3,15,111,1119, 14487, .

S ﬁﬁ@
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Bivariate Linear Recurrences = Compacted trees

Compacted and relaxed binary trees

m Size: number of internal nodes

m ry: nr. of relaxed trees of size n Simple bounds
B cn: nr. of compacted trees of size n (unique subtrees) ] 2n
(r)nso = (1,1,3, 16,127, 1363, 18628, . ) n<Cnsths ,,H nl

(Cn)n>0 = (1,1,3,15,111,1119, 14487, .

S ﬁﬁQ

FEII PP ES
R b Bl

Michael Wallner | TU Graz | 24.-28.02.2025 59/75



Bivariate Linear Recurrences = Compacted trees

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to a leaf
(not going through pointers).

60/75
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Bivariate Linear Recurrences = Compacted trees

Bounded right height
The right height of a binary tree is the maximal number of right children on any path from the root to a leaf
(not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]
The number ri , (ck,n) of relaxed (compacted) trees with right height at
most k is for n — oo asymptotically equivalent to

2 n
™ _k
T,n ~ Yk N! <4cos (m) ) nz,

2 n
™ k1 (1 1 )2
Ck.n~ kih'|4cos | —— n 2 ki3 (7 %ks) cos(#53)
k,n k ( <k+3>> R

where i, kx € R\ {0} are independent of n.
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Bivariate Linear Recurrences = Compacted trees

Bounded right height

The right height of a binary tree is the maximal number of right children on any path from the root to a leaf

(not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number ri , (ck,n) of relaxed (compacted) trees with right height at
most k is for n — oo asymptotically equivalent to

2 n
™ _k
T,n ~ Yk N! <4cos (m) ) nz,

2 n
™ k1 (1 1 )2
Ck.n~ kih'|4cos | —— n 2 ki3 (7 %ks) cos(#53)
k,n k ( <k+3)> R

where i, kx € R\ {0} are independent of n.

Remarks:

m Uses exponential
generating functions
m GFs are D-finite (order k)

m Methods from Analytic
Combinatorics (Singularity
analysis, etc.)

m Interesting combinatorics:
E.g., nn=(2n—1)!

60/75
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Bivariate Linear Recurrences = Compacted trees

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n — oo
=0 (n! 4net :n) and ch=© (n! 4nen 3n?’/“) .

where a; ~ —2.338 is the largest root of the Airy function Ai(x).

-6 A 2 6
-01 x
02
-03

-04

Ai” (x) = x Ai(x)
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Bivariate Linear Recurrences = Compacted trees

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n — oo

h=0 (n! 4" n) and ch=0 (n! 4n n3/4) 7

where a; ~ —2.338 is the largest root of the Airy function Ai(x).

Proof strategy

Bijective Comb.: Bijection to decorated Dyck paths
Enumerative Comb.: Two-parameter recurrence / o

Calculus + ODEs: Heuristic analysis of recurrence

Computer algebra: Inductive proof of asymptotically tight bounds

Ai” (x) = x Ai(x)
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Bivariate Linear Recurrences = Compacted trees

Asymptotics in the binary case

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n — oo

h=0 (n! 4" n) and ch=0 (n! 4n n3/4) 7

where a; ~ —2.338 is the largest root of the Airy function Ai(x).

Proof strategy

Bijective Comb.: Bijection to decorated Dyck paths
Enumerative Comb.: Two-parameter recurrence / 0

Calculus + ODEs: Heuristic analysis of recurrence

Computer algebra: Inductive proof of asymptotically tight bounds

Ai” (x) = x Ai(x)
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Bijection to decorated paths
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Spanning tree distinguishes internal edges and pointers
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Bivariate Linear Recurrences = Compacted trees

Bijection to decorated paths

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
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Bijection to decorated paths

(7, 7)/ ']

DS 1

D
n

N W

(0,0)

(0,-1)
2a  2b 4a 4b 6a 6b 7D
Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
= going up: add up step
m passing a pointer: add horizontal step and mark box corresponding to pointer label
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Bijection to decorated paths

(7, 7)/ ']

18
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6

6 =

4

S 3

//// 2
(0,0)

1 1 X 1
(0,-1)

2a 2b 4a 4b 6a 60 7D

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
= going up: add up step
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Bivariate Linear Recurrences = Compacted trees

Bijection to decorated paths

(7, 7)/ ']

DS 1

D
n

x|
DO w =

(0,0)

(0,-1)
2a 2b 4a 4b 6a 60 7D

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
= going up: add up step
m passing a pointer: add horizontal step and mark box corresponding to pointer label
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Bivariate Linear Recurrences = Compacted trees

Bijection to decorated paths

.7

“1Is

P 7

X 6

6 “I X 5

4

X X 3

2
((],0)

11 X | X X 1
(0,-1)

2a 2b 4a 4b 6a 60 7D

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
= going up: add up step
m passing a pointer: add horizontal step and mark box corresponding to pointer label
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Bivariate Linear Recurrences = Compacted trees

Bijection to decorated paths

(@.7)

138

7

X6

6 “IX 5

4

X X 3

2
(0,0)

Lo X | X X 1
(0.-1)

2a 2b 4a 4b 6a 60 7D

Spanning tree distinguishes internal edges and pointers
Label nodes and pointers in post-order
Traverse the spanning tree along the contour. When...
= going up: add up step
m passing a pointer: add horizontal step and mark box corresponding to pointer label

= amn=(N+1)am-1,n+ amn-1 form>n>0
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Most general result: k-ary trees

Theorem [Ghosh Dastidar, W 2024]
The number r, of relaxed k-ary trees with ninternal nodes satisfies
=0 ((n!)’H ~(k)" n“(k)) ,
with a; ~—2.338 is the largest root of the Airy function Ai(x) and
Kk 7k —8
v(k) = W7 ) a(k) = 6
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Most general result: k-ary trees

Theorem [Ghosh Dastidar, W 2024]

The number r, of relaxed k-ary trees with ninternal nodes satisfies
=0 ((n!)’H ~(k)" n“(k)) ,

with a; ~—2.338 is the largest root of the Airy function Ai(x) and

K _
v(k) = (k_kw, , a(k) M

Conjecture
Experimentally, we find in the binary case (k = 2) that

1/3 1/3
I~ ynl4"e% ™ and Cn ~ yon14"e% M 34

where

~, ~ 166.95208957 and o ~ 173.12670485.
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Minimal Deterministic Finite Automata
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Deterministic finite automata (DFA)

DFA on alphabet {a, b}

Graph with
m two outgoing edges from each node (state),
labelled a and b

m An initial state qo
m A set F of final states (coloured green).

Figure: DFA
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Deterministic finite automata (DFA)

DFA on alphabet {a, b}

Graph with
m two outgoing edges from each node (state),
labelled a and b

m An initial state qo
m A set F of final states (coloured green).

Properties

m Language: the set of accepted words

= Minimal: no DFA with fewer states accepts the
same language

m Acyclic: no cycles (except loops at unique
sink)

Figure: DFA, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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65/75



Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Counting minimal acyclic DFAs

m Enumeration studied by Domaratzki, Kisman, Shallit, and Liskovets 2002—2006
= Open problem: Asymptotics
m Best bounds were out by an exponential factor

Figure: DFA, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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Main result minimal DFAs

Theorem [Elvey Price, Fang, W 2020]

The number mj, of minimal DFAs with n + 1 states recognizing a finite binary language satisfies for n — oo
My =0 (n! 8" n7/8) ,

where a; ~—2.338 is the largest root of the Airy function Ai(x).
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Main result minimal DFAs

Theorem [Elvey Price, Fang, W 2020]

The number mj, of minimal DFAs with n + 1 states recognizing a finite binary language satisfies for n — oo
My =0 (n! 8" n7/8) ,

where a; ~—2.338 is the largest root of the Airy function Ai(x).

Conjecture
Experimentally we find

1/3
My ~ 7”!8”9381" n7/8

)

where

~ ~ 76.438160702.
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

m Highlight spanning tree given by depth first search (ignoring the sink)
m |.e., black path to each vertex is first in lexicographic order
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

m Highlight spanning tree given by depth first search (ignoring the sink)
m |.e., black path to each vertex is first in lexicographic order
m Colour other edges red
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

m Highlight spanning tree given by depth first search (ignoring the sink)

m |.e., black path to each vertex is first in lexicographic order

m Colour other edges red

m Draw as a binary tree with a edges pointing left and b edges pointing right
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

m Label nodes in post-order. By construction red edges point from a larger number to a smaller number
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

m Label nodes in post-order. By construction red edges point from a larger number to a smaller number
m — Label pointers
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(e
D W = ot O 1

(0,0) -

’

3a 2a 2b 4a 4b 6a 6b Tb
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(e
D W = ot O 1

(0,0) -

’

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7 »
18
7
6
6 5
4
3
0.0, 2
1 1 X 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7) »

S8

7

6

6 5

4

3

0.0, 2

b XXX 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7) »

S8

7

6

6 5

4

3

0.0, 2

b XXX 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7 »

18

7

6

6 P 5

4
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b XXX 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label

Michael Wallner | TU Graz | 24.-28.02.2025



Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7 »
S8
7
6
6 P 5
4
o 23 :
0,0, 2
11 XX | X X 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

(7.7) 8
8

7

6

6 1 5

4

X :

0,0, 2

1 X | X| X X 1

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Bijection to decorated paths

x|
NS N T

3a 2a 2b 4a 4b 6a 6b Tb

When the tree traversal...
®m goes up: add up step with color matching the corresponding node.
B passes a pointer:
m add horizontal step
m mark box corresponding to pointer label
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Decorated paths

/{x X

X1
NOW e Gl o~

0,0y,

.

X[ XX X 1

3a 2a 2b 4a 4b 6a 60 Tb

m Path starts at (—1,0) and ends at (n, n)
m Path stays below diagonal (after first step)
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Decorated paths

? (7,7)
98
T
. 7
66
) X | 6
e
X 5
N
, 4
A W e e W F
X X| |3
31 9 9 31 3] 9 y
(0,0, 2
e L L L (~1,0) quem—
X[ XX X 1

3a 2a 2b 4a 4b 6a 60 Tb

m Path starts at (—1,0) and ends at (n, n)
m Path stays below diagonal (after first step)
m One box is marked below each horizontal step
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Decorated paths

1 m+1(n,m) ? (7.7),
(n—1,m) e 8
2 7
(n,m—1) el 6 , 7
] X | 6
555 )
] 2 5
T R §X
] v 4
3 3 3 3 3 =
2] o o 2 o o /// %X X
F T TN TR TR TR T (0,0),7 2
—s i i W M e e (~1,0) -
X XX X 1

3a 2a 2b 4a 4b 6a 60 Tb

m Path starts at (—1,0) and ends at (n, n)
m Path stays below diagonal (after first step)
m One box is marked below each horizontal step
m Each vertical step is colored white or green
By the bijection: The number of these paths is the number d, of acyclic DFAs with n + 1 nodes.



Decorated paths

m+ 1 (n,m) K (7.7,
(71*1,7)1) . . 8
2 i
(n,m— 1) DR y 7
W O B
R I X | 6
V< i< 4
L, J J J ,
A A ,
Ry S Ry S Ry SR =
0 T T T T TR §>< X| |3
Y 9 I3} > 9 I3} e
S22 2 2 2 2 (0,0),7 2
o— | 1 1 1 1 t 1 (=1,0)
X | X| X X 1

3a 2a 2b 4a 4b 6a 60 Tb
Recurrence: Denote by a, » the number of paths ending at (n, m).

anm = 2anm-1+ (M+1)an_1,m, forn>m
a-1,0 = 1.

By the bijection: d, = an., is the number of acyclic DFAs with n + 1 nodes.
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Bivariate Linear Recurrences = Minimal Deterministic Finite Automata

Decorated paths

m+1(n,m) ? (7.7),
(71*1,7)1) . . 8
2 7
1) L . 7
s Y 7
i T ) X | 6
Va4 4 4
L, J J J ,
s R - %)( 5
et .
R T T T - 4
3333 -
0 T T T T TR §>< X| |3
s 9 9 9 9 9 pra
S22 o2 2 2 2 (0,0),7 2
o—> >ttt (=1,0)
XXX X 1

3a 2a 2b 4a 4b 6a 60 Tb
Recurrence: Denote by a, » the number of paths ending at (n, m).

anm = 2anm-1+ (M+1)an_1,m, forn>m
a-1,0 = 1.

By the bijection: d, = an.» is the number of acyclic DFAs with n + 1 nodes. What about minimality?
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Recurrence for minimal DFAs

m+1(n,m) ? (7.7),
(n* 17m) . . 8
2 7
(n,m—1) T ] J 7
s U U s
i T ) X | 6
V< i< 4
, ) J [3) ’
A A ,
Ry S Ry S Ry SR =
0 T T T T TR §>< X| |3
IS 9 9 9 9 9 //
i 22 22 (0,0),~ 2
o— | 1 1 1 1 t 1 (=1,0)
X | XX X 1

3¢ 2a 20 4a 4b 6a 6Gb Tb
Recurrence: Denote by b, n» the number of paths ending at (n, m).
bn,m = 2bn,m—1 i (m+ 1)bn—1,m - mbn—2,m—1, forn > m,
b_1,o = 9,

Now: my = bp,n is the number of minimal acyclic DFAs with n+ 1 nodes.



Bivariate Linear Recurrences = Phylogenetic tree-child networks

Phylogenetic tree-child networks
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Bivariate Linear Recurrences = Phylogenetic tree-child networks

Biology: d-combining tree-child networks

Definition
A d-ary rooted phylogenetic network is a DAG with nodes of the type:
e unique root: indegree 0, outdegree 2
e Jeaf. indegree 1, outdegree 0
e lree node: indegree 1, outdegree 2
e reticulation node: indegree d, outdegree 1
Furthermore, the n leaves are labeled bijectively by {1,..., n}.
Tree-child: every non-leaf node has at least one child that is not a reticulation.
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Asymptotics of d-combining tree-child networks

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

¥ = o ((n!)dy(d)" n“(d))

with a; = —2.338: largest root of the Airy function Ai(x) and
_d@Bd-1)
D ="+

The number TC'? of d-combining tree-child networks with n leaves satisfies

for n — oo,
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Bivariate Linear Recurrences = Phylogenetic tree-child networks

Asymptotics of d-combining tree-child networks

Theorem [Chang, Fuchs, Liu, W, Yu 2023]
The number TC'? of d-combining tree-child networks with n leaves satisfies

Tc{ =0 ((n!)d ~(d)" na(d)) for n — oo,
with a; = —2.338: largest root of the Airy function Ai(x) and

_d(8d-1) _(d+ 1)
NE-CEDE SRR RSN

0.4

03

Proof strategy

Bijective Comb.: Bijection to Young tableaux with walls &
Enumerative Comb.: Two-parameter recurrence / F T B

-0.1

Calculus + ODEs: Heuristic analysis of recurrence
Computer algebra: Inductive proof of asymptotically tight bounds

-0.2

0.3

04

Ai” (x) = x Ai(x)
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Combinatorics: reduce the problem
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How to prove this?

Combinatorics: reduce the problem
m Asymptotically, only maximally reticulated networks

important:
Let TC%‘Q be TC networks with n leaves and k reticulation
nodes, then

TC? ~ cqTC?

where ¢, = v2and ¢y = 1ford > 3.
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How to prove this?

Combinatorics: reduce the problem
m Asymptotically, only maximally reticulated networks

importa(lgt: 6110114151718

Let TC, ,)( be TC networks with n leaves and k reticulation

nodes, then 31519 (1213116

Tc) ~ cyTc!)
where ¢, = v2and ¢y = 1ford > 3. 211 4111} 8

(d

= Bijection of TC,

special words)

_4 to Young tableaux with walls (or
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Bivariate Linear Recurrences = Phylogenetic tree-child networks

How to prove this?

Combinatorics: reduce the problem
m Asymptotically, only maximally reticulated networks

importe(lgt: 6110114151718

Let TC, ,)( be TC networks with n leaves and k reticulation

nodes, then 31519 (1213116

Tc) ~ cyTc!)
where ¢, = v2and ¢y = 1ford > 3. 211 4111} 8

(d

= Bijection of TC,

special words)

_4 to Young tableaux with walls (or

Two parameter recurrence relation

€n,m = fn,m €n—1,m+1 + Vn,m €n—1,m—1

n>3andm>0, e,_1=e,=0exceptfore,=1,
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Bivariate Linear Recurrences = Phylogenetic tree-child networks

How to prove this?

Combinatorics: reduce the problem
m Asymptotically, only maximally reticulated networks

important:
Let TC% be TC networks with n leaves and k reticulation 6 10 14 15 17 18
nodes, then
. ) 315(9(12(13]16
Tc) ~ cyTc!)
where ¢, = v2and ¢y = 1ford > 3. 211 4111} 8
m Bijection of TCE{IIF1 to Young tableaux with walls (or

special words)

Two parameter recurrence relation

€n,m = n,m €n—1,m+1 + Vn,m €n—1,m—1

n>3andm>0, e,_1 = e, =0 except for e;0 = 1, where
d B
2(d—1) ( 2(m+ i) )
= :” S IR SV,
pom =1 G Yt @ DHm 2@+ 1 e o (d+1)(n+m)

n
We are interested in 62,0, as TCY) = © ((n!)d (@) n'—d eg,,,o).
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees,
satisfy for n — oo

ch=06 (n! 4" n3/4) , [Elvey Price, Fang, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx_ o Ai(x) = 0.
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language,
satisfy for n — oo

ch=06 (n! 4" n3/4) , [Elvey Price, Fang, W 2021]

my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by Ai” (x) = xAi(x) and limx_ o Ai(x) = 0.
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Many new natural appearances of stretched exponentials

Theorem
The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language, t, of bicombining
phylogenetic tree-child networks, satisfy for n — oo
ch=06 (n! 4" n3/4) , [Elvey Price, Fang, W 2021]
my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
th=0 ((n!)2 120 n*5/3) , [Fuchs, Yu, Zhang 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx_ o Ai(x) = 0.
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language, t, of bicombining
phylogenetic tree-child networks, and y, of 3 x n Young tableaux with walls satisfy for n — co

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
th=© ((n!)2 127 n*5/3) , [Fuchs, Yu, Zhang 2021]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx— o Ai(x) = 0.
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language, t, of bicombining
phylogenetic tree-child networks, and y, of 3 x n Young tableaux with walls satisfy for n — co

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
th=0 ((n!)2 120 n*5/3) , [Fuchs, Yu, Zhang 2021]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx— o Ai(x) = 0.

Key property

Characterized by Dyck-like recurrences with rational
weight functions:

am,n = E(m,n)am_1.n+ N(m,n)amn_1+ ...
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language, t, of bicombining
phylogenetic tree-child networks, and y, of 3 x n Young tableaux with walls satisfy for n — co

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
th=© ((n!)2 127 n*5/3) , [Fuchs, Yu, Zhang 2021]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx— o Ai(x) = 0.

Key property Future research directions:

. . . ) = Multiplicative constant? Does it exist?
Characterized by Dyck-like recurrences with rational

weight functions: m Limit shapes: expected height, typical shape, etc.
am - — E(m. Mam._ N(m, Mam n_ m Further applications in computer science, biology,
m,n (m, n)am—1,n+ N(m, n)amn—1 + physics, et
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Many new natural appearances of stretched exponentials

Theorem

The number ¢, of compressed binary trees, m, of minimal DFAs recognizing a finite binary language, t, of bicombining
phylogenetic tree-child networks, and y, of 3 x n Young tableaux with walls satisfy for n — co

=0 (n! 4n n3/4) , [Elvey Price, Fang, W 2021]

my=© (n! 8" n7/8) , [Elvey Price, Fang, W 2020]
th=© ((n!)2 127 n*5/3) , [Fuchs, Yu, Zhang 2021]
Yo=© (n! 120 n*2/3) , [Banderier, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by A" (x) = xAi(x) and limx— o Ai(x) = 0.

Key property Future research directions:

. . . ) = Multiplicative constant? Does it exist?
Characterized by Dyck-like recurrences with rational

weight functions: m Limit shapes: expected height, typical shape, etc.
am - — E(m. Mam._ N(m, Mam n_ m Further applications in computer science, biology,
m,n (m, n)am—1,n+ N(m, n)amn—1 + physics, et

Thank you!
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