
Bivariate Linear Recurrences

Bivariate Linear Recurrences in Enumeration – Asymptotics and Application

Michael Wallner

TU Graz, Austria

Enumerative combinatorics and effective aspects of differential equations
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Bivariate Linear Recurrences

A counting problem

A counting problem

Consider a m × n grid. We start in the lower left
corner. In how many ways can we cross the grid
using the steps E = (1, 0) and N = (0, 1)?

Let am,n be the number of paths from (0, 0) to (m, n).
Then, 

am,n = am−1,n + am,n−1 for m, n > 0,
am,0 = am−1,0 for m > 0,
a0,n = a0,n−1 for n > 0,
a0,0 = 1.

Here, it is easy to see that am,n =
(m+n

m

)
.

But what happens if we change the domain and add polynomial weights?

am,n = (n + 1)am−1,n + am,n−1 for m ≥ n > 0

Answer: We don’t know (a lot)!
→ In this course you will learn what asymptotic information we can deduce!
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Bivariate Linear Recurrences

Asymptotic counting

Landau notation

Let (an)n≥0 and (bn)n≥0, bn > 0 be two sequences.

an = O(bn) if lim sup
n→∞

|an|
bn

< ∞

an = Θ(bn) if 0 < lim inf
n→∞

|an|
bn

and lim sup
n→∞

|an|
bn

< ∞

an ∼ bn if lim
n→∞

|an|
bn

= 1

Examples:

Stirling’s formula

n! = O(nn)

n! = Θ
(

nn+1/2 e−n
)

n! ∼
√

2πnnne−n

Binomial coeffs(2n
n

)
= O(4n)(2n

n

)
= Θ

(
4n
√

n

)
(2n

n

)
∼ 4n

√
πn

Why asymptotics?

Simpler formulas

Approximations

Universality like n−1/2

Large-scale behavior:
limit laws
phase transitions
(non-)Brownian limiting objects

Allows to prove

transcendence (i.e., non-algebraic,
non-D-finite) [Bostan, Raschel, Salvy 2014]

ambiguity of context-free languages
[Flajolet 1987]

transience of drunkard walk in 3D and
higher [Pólya 1921]

capacity of a channel/needed bits for
encoding [MacKay 2003]
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Bivariate Linear Recurrences

Types of recurrences

Linear recurrences

In this course we will only consider finite order linear recurrences

am,n = c1am+i1,n+j1 + c2am+i2,n+j2 + · · ·+ cd am+id ,n+jd for (m, n) ∈ C (1)

where the coefficients are polynomials in m and n and C ⊆ Z2.

Theorem [Bousquet-Mélou, Petkovšek 2000]

Let H = {(i1, j1), . . . , (id , jd)} and C = Z2
≥0. Then (1) has a unique solution if R2

≥0 ∩ convH = ∅.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
The recurrence am,n = am−1,n + am,n−1 has a unique solution in the following two cones:

1 For m, n > 0 we have H = {(−1, 0), (0,−1)}

2 For m ≥ n > 0 we first transform the cone to Z2
≥0 This gives

ãm,n = ãm−1,n + ãm+1,n−1 for m, n ≥ 0.

Therefore, we have H = {(−1, 0), (1,−1)}.

But not the recurrence bm,n = bm−1,n + bm,n−1 + bm+1,n + bm,n+1 for m, n > 0.
Here H = {(±1, 0), (0,±1)}
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≥0. Then (1) has a unique solution if R2

≥0 ∩ convH = ∅.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
The recurrence am,n = am−1,n + am,n−1 has a unique solution in the following two cones:

1 For m, n > 0 we have H = {(−1, 0), (0,−1)}

2 For m ≥ n > 0 we first transform the cone to Z2
≥0 This gives

ãm,n = ãm−1,n + ãm+1,n−1 for m, n ≥ 0.

Therefore, we have H = {(−1, 0), (1,−1)}.

But not the recurrence bm,n = bm−1,n + bm,n−1 + bm+1,n + bm,n+1 for m, n > 0.
Here H = {(±1, 0), (0,±1)}
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Let H = {(i1, j1), . . . , (id , jd)} and C = Z2
≥0. Then (1) has a unique solution if R2

≥0 ∩ convH = ∅.

Remark: Analogous statement holds for dimension d > 2, e.g., with additional dimension for time.
The recurrence am,n = am−1,n + am,n−1 has a unique solution in the following two cones:

1 For m, n > 0 we have H = {(−1, 0), (0,−1)}
2 For m ≥ n > 0 we first transform the cone to Z2

≥0 This gives
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Bivariate Linear Recurrences

Interpretation as paths

General shape
am,n = c1am+i1,n+j1 + c2am+i2,n+j2 + · · ·+ cd am+id ,n+jd

How can we reach (m, n)?

From (m + i1, n + j1) with step (−i1,−j1), or

from (m + i2, n + j2) with step (−i2,−j2), or

. . .

from (m + id , n + jd) with step (−id ,−jd).

What is the weight of a path ending at (m, n)?
1 Each step has a weight:

Step (−i1,−j1) has weight c1
Step (−i2,−j2) has weight c2
. . .
Step (−id ,−jd ) has weight cd

2 The weight of a path is the product of the weights
of its steps.

Knight variation

Let a0,0 = 1 and for m, n ≥ 0:

am,n = am+1,n−2 + 2am−2,n+1 + 3am−1,n + 4am,n−1

The four steps are

(−1, 2), (2,−1), (1, 0), (0, 1)

with the weights 1, 2, 3, 4, resp.

All weights to 1: OEIS A356692
Pascal-like triangle; family of permutations?

Asymptotics not known! (Similar models:
[Bostan, Bousquet-Mélou, Melczer 2021])

Knight only: [Bousquet-Mélou, Petkovšek 2000]
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Bivariate Linear Recurrences

Two-dimensional paths with a time dimension

Consider the recurrence

am,n;k = am−1,n−1;k−1 + am−1,n+1;k−1 + am+1,n−1;k−1 + am+1,n+1;k−1 for m, n ∈ Z, k > 0

where a0,0,0 = 1 and am,n,0 = 0 otherwise.

Popular models:
Starting point: (0, 0)
Small steps: S ⊆ {−1, 0, 1}2 \ {(0, 0)}
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Bivariate Linear Recurrences

Current research: 2D lattice paths in convex and nonconvex cones

Example: King walks
am,n;k+1 = am−1,n−1;k + am−1,n;k + am−1,n+1;k + am,n−1;k + am,n+1;k + am+1,n−1;k + am+1,n;k + am+1,n+1;k

Quarter plane
Q = {(m, n) : m ≥ 0 and n ≥ 0}

[Bousquet-Mélou, Mishna 2010]

a0,0;k ∼ 128
27π

8k

k3

[Bostan, Chyzak, van Hoeij, Kauers, Pech 2017]

Three-quarter plane
C = {(m, n) : m ≥ 0 or n ≥ 0}

[Bousquet-Mélou 2016]

a0,0;k ∼ α9
Γ(2/3)

π

8k

k5/3 , where α9 ≈ 1.419

[Bousquet-Mélou, W 2024]
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Bivariate Linear Recurrences

More families of multivariate recurrences

Let pk,n be the number of integer partitions of n into exactly k parts.
For example, p2,4 = 2 since 4 = 3 + 1 and 4 = 2 + 2.

Adding 1 to each part or as a new part, one gets

pk,n = pk,n−k + pk−1,n−1 for n, k > 0,

where p0,0 = 1 and pk,n = 0 for n ≤ 0 or k ≤ 0.

Let τ(n, g) be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved

(n + 1)τ(n, g) = 4n(3n − 2)(3n − 4)τ(n − 2, g − 1) + 4(3n − 1)τ(n − 1, g)

+ 4
∑

i+j=n−2
i,j≥0

∑
g1+g2=g
g1,g2≥0

(3i + 2)(3j + 2)τ(i , g1)τ(j , g2) + 21n=g=1,

n ≥ 1 and 0 ≤ g ≤ n+1
2 , where τ(n, g) = 0 otherwise except for τ(0, 0) = 1.

The sampling without replacement Pólya urn has replacement matrix
(
−1 0
0 −1

)
. We sample until all

black balls are gone. Let pw,b,k be the probability that starting with w white and b black balls there remain
k white balls. Then [Kuba, Panholzer, Prodinger 2009] analyzed the urn using

pw,b,k =
w

w + b
pw−1,b,k +

b
w + b

pw,b−1,k for w , b, k > 0,

where pw,0,k = 1w=k and p0,b,k = 1k=0 for w , b, k ≥ 0.
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(
−1 0
0 −1

)
. We sample until all

black balls are gone. Let pw,b,k be the probability that starting with w white and b black balls there remain
k white balls. Then [Kuba, Panholzer, Prodinger 2009] analyzed the urn using

pw,b,k =
w

w + b
pw−1,b,k +

b
w + b

pw,b−1,k for w , b, k > 0,

where pw,0,k = 1w=k and p0,b,k = 1k=0 for w , b, k ≥ 0.

Michael Wallner | TU Graz | 24.–28.02.2025 10 / 75



Bivariate Linear Recurrences

More families of multivariate recurrences

Let pk,n be the number of integer partitions of n into exactly k parts.
For example, p2,4 = 2 since 4 = 3 + 1 and 4 = 2 + 2. Adding 1 to each part or as a new part, one gets

pk,n = pk,n−k + pk−1,n−1 for n, k > 0,

where p0,0 = 1 and pk,n = 0 for n ≤ 0 or k ≤ 0.

Let τ(n, g) be the number of triangulations of genus g with 2n faces. Then [Goulden, Jackson 2008] proved

(n + 1)τ(n, g) = 4n(3n − 2)(3n − 4)τ(n − 2, g − 1) + 4(3n − 1)τ(n − 1, g)

+ 4
∑

i+j=n−2
i,j≥0

∑
g1+g2=g
g1,g2≥0

(3i + 2)(3j + 2)τ(i , g1)τ(j , g2) + 21n=g=1,

n ≥ 1 and 0 ≤ g ≤ n+1
2 , where τ(n, g) = 0 otherwise except for τ(0, 0) = 1.

The sampling without replacement Pólya urn has replacement matrix
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Bivariate Linear Recurrences

We will focus on bivariate recurrences

General assumptions on initial and boundary conditions

Let (am,n)(m,n)∈C be a recursively defined sequence on a cone C ⊆ Z2. Throughout this course we assume

a0,0 = 1 (initial condition)

am,n = 0 for (m, n) /∈ C (boundary conditions).

1 The following recurrence is defined on the nonnegative quadrant C = Z2
≥0 =

am,n = am−1,n + am,n−1 for m, n ≥ 0,

is a shorthand for 
am,n = am−1,n + am,n−1 for m, n > 0,
am,0 = am−1,n for m > 0,
a0,n = am,n−1 for n > 0,
a0,0 = 1.

2 The same recurrence on the triangular cone C = {(m, n) : m ≥ n ≥ 0} = :

bm,n = bm−1,n + bm,n−1 for m ≥ n ≥ 0
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Bivariate Linear Recurrences

What we will study in this course: the diagonal entry an,n

Recurrences we will study

am,n = E(m, n)am−1,n + N(m, n)am,n−1

Main goal

Determine an,n

→ We focus on asymptotics for n → ∞

E(m, n) N(m, n) Domain an,n Description

(1) 1 1 m, n ≥ 0
(2n

n

)
Binomial coefficients

(2) 1 1 m ≥ n ≥ 0 1
n+1

(2n
n

)
Catalan numbers

(3) n + 1 1 m, n ≥ 0 S(2n + 1, n + 1) Stirling numbers 2nd kind

(4) n + 1 1 m ≥ n ≥ 0 Θ
(

n!4ne3a1n1/3
n
)

Compacted binary trees

(In the last case, a1 ≈ −2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying
Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.)

Outline of the course:
Today: Solve Examples (1)–(3)
Wednesday: Stretched exponential method to solve Example (4)
Friday: Applications to computer science and phylogenetics solving open counting problems
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Bivariate Linear Recurrences

Examples of different weights in a triangular cone

The recurrence includes many known sequences already for an,n in

am,n = E(m, n)am−1,n + N(m, n)am,n−1 m ≥ n > 0

E(m, n) N(m, n) Description an,n OEIS

1 1 Dyck paths (1, 1, 2, 5, 14, 42, 132, . . . ) A000108

n + 1 1 Automata/Compacted trees (1, 1, 3, 16, 127, . . . ) A082161

2m + n − 1 1 Phylogenetic networks (1, 1, 7, 106, 2575, . . . ) A213863

2n + 1 1 Matrix recursion (1, 1, 4, 33, 436, . . . ) A102321

2(m − n) + 1 1 Class of four-regular maps (1, 3, 24, 297, . . . ) A292186

n + 1 m + 2 Polytope volumes (1, 3, 40, 1225, . . . ) A012250

n + 1 8(m − n + 1) Evaluated Riemann ζ fct. (1, 8, 256, 17408, . . . ) A253165

2n + 1 m − n + 1 Secant numbers (1, 1, 5, 61, 1385, . . . ) A000364

2n + 2 m − n + 1 Tangent numbers (1, 2, 16, 272, . . . ) A000182

m − n + 1 2n Connected Feynman diag. (1, 4, 80, 3552, . . . ) A214298
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Bivariate Linear Recurrences | Classical Methods

Classical Methods
Solving Examples (1)–(3)
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Bivariate Linear Recurrences | Classical Methods

Overview of methods

1 Generating functions

2 Recurrence relations

3 Context free grammars

4 Bijections

5 Determinants

6 Continued fractions

7 Kernel method

8 Integral transforms

9 Saddle point method

10 Singularity analysis

11 Analytic Combinatorics

12 Analytic Combinatorics in Several Variables

13 Probability Theory

14 Guess-and-check

15 Stretched exponential method

16 Random walk method

17 . . .
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Bivariate Linear Recurrences | Classical Methods

Solving Example (1): Generating Functions

Unweighted model in the quarter plane
am,n = am−1,n + am,n−1 for m, n ≥ 0

First, we define the generating function

A(x , y) =
∑
m≥0

∑
n≥0

am,nxmyn.

Recall, a0,0 = 1 and am,n = 0 for (m, n) /∈ Z2
≥0. Therefore, we get{

am,n = am−1,n + am,n−1 for m, n ≥ 1,
am,0 = a0,n = 1 for m, n ≥ 0.

We multiply by xmyn and sum over m, n ≥ 1. This gives

A(x , y) = xA(x , y) + yA(x , y) + 1.

Therefore, we get

A(x , y) =
1

1 − x − y
=
∑
k≥0

(x + y)k =
∑
m≥0

∑
n≥0

(
m + n

n

)
xmyn.
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Bivariate Linear Recurrences | Classical Methods

Solving Example (2): Generating Functions

Unweighted model below the diagonal
bm,n = bm−1,n + bm,n−1 for m ≥ n ≥ 0

Again, we define the generating function

B(x , y) =
∞∑

m=0

m∑
n=0

bm,nxmyn.

Here, we need to be careful at the diagonal, due to the boundary conditions.
As before, we multiply by xmyn and sum over m ≥ n ≥ 0:

B(x , y) = 1 + xB(x , y) + y (B(x , y)− D(xy)) ,

where D(z) =
∑

n≥0 bn,nzn is the diagonal of B(x , y).

Simplifies a bit more, but two unknowns and only one equation:

(1 − x − y)B(x , y) = 1 − yD(xy).

Two important ideas:
1 Capture time evolution by change of coordinates
2 Solve it using the kernel method
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Bivariate Linear Recurrences | Classical Methods

Solving Example (2): Kernel Method

We continue with
(1 − x − y)B(x , y) = 1 − yD(xy).

1 Capture time evolution
Idea: Instead of the number of E = (1, 0) and N = (0, 1) steps in x and y ,
we track the total number of steps in t and the distance to the diagonal in u:

x = tu and y =
t
u
.

This gives (
1 − tu −

t
u︸ ︷︷ ︸

=:K (t,u)

)
B̂(t , u) = 1 −

t
u

D(t2).

2 Solve it using the kernel method
Idea: Bind u and t such that the left-hand side vanishes. Let u1(t) and u2(t) be the solutions of K (t , ui (t)) = 0:

u1(t) =
1 −

√
1 − 4t2

2t
= t +O(t3) u2(t) =

1 +
√

1 − 4t2

2t
=

1
t
+O(t).

Since B̂(t , u) ∈ Q[u][[t]] we may substitute u = u1(t). (For u = u2(t) the equation is not valid in Q[[t]]!)
We get the generating function of the Catalan numbers:

D(t2) =
u1(t)

t
=

1 −
√

1 − 4t2

2t2
= 1 + t2 + 2 t4 + 5 t6 + 14 t8 + 42 t10 + 132 t12 + 429 t14 + . . .
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1 − 4t2

2t2
= 1 + t2 + 2 t4 + 5 t6 + 14 t8 + 42 t10 + 132 t12 + 429 t14 + . . .

Michael Wallner | TU Graz | 24.–28.02.2025 18 / 75



Bivariate Linear Recurrences | Classical Methods

Solving Example (2): Kernel Method

We continue with
(1 − x − y)B(x , y) = 1 − yD(xy).
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u
.

This gives (
1 − tu −

t
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Solving Example (2): Final result

Final result for (prefixes) of Dyck paths

B̂(t , u) =
1 − 2ut −

√
1 − 4t2

2t(u2t − u + t)
or equivalently

B(x , y) = −
1 − 2x −

√
1 − 4xy

2x(1 − x − y)
.

Direct corollaries:
Paths with a fixed number of E = (1, 0) steps and an arbitrary number of N = (0, 1) steps:

B(x , 1) =
1 − 2x −

√
1 − 4x

2x2 =
∑
n≥0

1
n + 2

(
2(n + 1)

n + 1

)
xn

The total number of paths of length n:

B̂(t , 1) =
1 − 2t −

√
1 − 4t2

2t(2t − 1)
=
∑
n≥0

(
2n
n

)
t2n +

∑
n≥1

1
2

(
2n
n

)
t2n−1
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Sidenote: hierarchy of formal power series

The formal power series C(t) is

rational if it can be written as

C(t) =
P(t)
Q(t)

,

where P(t) and Q(t) are polynomials in t .

algebraic (over Q(t)) if it satisfies a (non-trivial) polynomial equation

P(t ,C(t)) = 0.

D-finite if it satisfies a (non-trivial) linear differential equation with
polynomial coefficients:

pk (t)C(k)(t) + · · ·+ p0(t)C(t) = 0.

Why is it important to be D-finite?

Nice and effective closure properties (sum, product, differentiation, . . . )

Fast algorithms to compute coefficients

Asymptotics of coefficients
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Solving Example (3): Bijection

Weighted model in the quarter plane
cm,n = (n + 1)cm−1,n + cm,n−1 for m, n ≥ 0

Stirling numbers S(n, k) of the second kind
Number of set partitions of {1, 2, . . . , n} into k nonemtpy sets
For example, S(3, 2) = 3 due to {{1}, {2, 3}}, {{2}, {1, 3}}, and {{3}, {1, 2}}

Theorem
cm,n = S(m + n + 1, n + 1)

1 Interpretation as boxed paths:
N gets weight 1 and E weight n + 1 if it is at height n

For each E mark one unit box below it and y = −1.
⇒ cm,n = number of boxed paths from (0, 0) to (m, n).

2 Bijection between boxed paths and set partitions:
Path starts at (−1, 0) and first step is N to (0, 0).

If the i th step is N: create a new set {i}.
If the i th step is E with cross in row j : add the element i
to the set containing j .

(4, 4)

(0, 0)
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Solving Example (3): Corollary

Theorem

cm,n = S(m + n + 1, n + 1)

(4, 4)

(0, 0)

1

3

4

6

9

2

5

7 8

{1, 2}

{3, 8}

{4, 5, 7}

{6}

{9}

Known exponential generating function for Stirling numbers of the second kind:∑
n≥0

∑
k≥0

S(n, k)
znuk

n!
= eu(ez−1)

This allows us to conclude

C(x , y) =
∑
m≥0

∑
n≥0

cm,nxmyn

(m + n + 1)!
=

ey
(

ex−1
x

)
− 1

y

C(x , y) is not D-finite (but it satisfies an algebraic differential equation!)
Follows from, e.g., the following asymptotics (see saddle point method [Flajolet, Sedgewick 2009]):

Sn =
n∑

k=0

S(n, k) ∼ n!
eer−1

r n
√

2πr(r + 1)er
,

where rer = n + 1, so that r = log n − log log n + o(1).
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Advanced generating function methods

Analytic combinatorics [Flajolet, Sedgewick 2009]
Main tools: Saddle point method, singularity analysis, integral transforms, etc.

Analytic Combinatorics in Several Variables [Pemantle, Wilson, Melczer 2024],
[Melczer 2021]
Works well with detailed information on the multivariate generating function

Galois theory [Dreyfus, Hardouin, Roques, Singer 2018]

Complex analysis [Bostan, Raschel, Salvy 2014]

Probability theory [Denisov, Wachtel 2015]

Computer algebra: Guess-and-check [Kauers, Paule 2011]

Different extensions of the kernel method:
Iterated kernel method [Bousquet-Mélou, Petkovšek 2003]
Obstinate kernel method [Bousquet-Mélou 2002]
Vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger 2020]
Similar approaches developed in, e.g., statistical mechanics (algebraic Bethe
ansatz [Gaudin 2014]), probability theory and queuing theory [Fayolle,
Iasnogorodski, Malyshev 1999]
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Complex analysis [Bostan, Raschel, Salvy 2014]

Probability theory [Denisov, Wachtel 2015]

Computer algebra: Guess-and-check [Kauers, Paule 2011]

Different extensions of the kernel method:
Iterated kernel method [Bousquet-Mélou, Petkovšek 2003]
Obstinate kernel method [Bousquet-Mélou 2002]
Vectorial kernel method [Asinowski, Bacher, Banderier, Gittenberger 2020]
Similar approaches developed in, e.g., statistical mechanics (algebraic Bethe
ansatz [Gaudin 2014]), probability theory and queuing theory [Fayolle,
Iasnogorodski, Malyshev 1999]
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Highlight: The quarter plane

Great interdisciplinary success: combinatorics, algebra, computer algebra, complex analysis, probability
theory, and Galois theory.

Quarter plane

Q = {(m, n) : m, n ≥ 0}.

Generating function

Q(x , y ; t) =
∑

m,n≥0

∑
k≥0

qm,n;k tk .

The chosen step set is associated with a
group G of birational transformations of Z2.

Here, ϕ(x , y) = ( 1
x , y) and ψ(x , y) = (x , 1

y )

G = {i, ϕ, ψ, ϕ ◦ ψ}

Theorem [Bousquet-Mélou, Mishna 10], [Bostan, Kauers 10], [Kurkova, Raschel 12], [Mishna, Rechnitzer 07], [Melczer,
Mishna 13], [and more!]

The series Q(x , y ; t) is D-finite if and only if G is finite.

This is the case for 23 out of 79 non-equivalent small step models S ⊆ {−1, 0, 1}2 \ {(0, 0)}.
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What about Example (4)? The core of this course!

Weighted model below the diagonal

am,n = (n + 1)am−1,n + am,n−1 for m ≥ n ≥ 0

Theorem [Elvey Price, Fang, W 2021]

For n → ∞ it holds that

an,n = Θ
(

n! 4ne3a1n1/3
n
)

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x)
characterized by Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.

Ai′′(x) = x Ai(x)
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What is a stretched exponential?

General question

How does a sequence (an)n≥0 behave for large n?

Often we observe

C · Rn · nα,

for constants C,R, α ∈ R.

Much more seldom we observe (or are able to prove)

C · Rn · ec nσ · nα,

with a stretched exponential ec nσ with c ∈ R and σ ∈ (0, 1).

Some deeper reasons why they are “seldom”

Generating function cannot be algebraic

It can be D-finite (satisfy a linear differential equation with polynomial coefficients), but only only with an
irregular singularity, e.g., exp( z

1−z )
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Appearances of stretched exponentials

Known exactly:
Number theory (integer partitions):

∼ (4
√

3)−1eπ(2n/3)1/2
n−1

Theoretical physics (pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]):

∼ C14ne−3(π log 2
2 )

2/3
n1/3

n−5/6

Phylogenetics (phylogenetic tree-child networks [Fuchs, Yu, Zhang 20]):

Θ
(

n2n(12e−2)nea1(3n)1/3
n−2/3

)

Conjectured:
Permutations avoiding 1324 [Conway, Guttmann, Zinn-Justin 18]:

≈ µne−cn1/2

Pushed self avoiding walks [Beaton, Guttmann, Jensen, Lawler 15]:

≈ µne−cn3/7

and recently more and more appear in group theory, queuing theory, . . .
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Stretched exponential method applies to many more objects

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

Young tableaux with walls
[Banderier, Marchal, W 2018], [Banderier, W 2021]

2

1

3

Phylogenetic networks
[McDiarmid, Semple, Welsh 2015]

Compacted trees
[Aho, Sethi, Ullman 1986]

q0 q2 q4

b
a

a

a a

a

b

b
b b

q1 q3

Minimal automata
[Hopcroft, Ullman 1979]

BAADBACFCBEDECDFEF
Constrained words [Pons, Batle 2021]
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Many new natural appearances of stretched exponentials

Theorem
The number cn of compacted binary trees,

tn of bicombining phylogenetic tree-child networks, bn of minimal DFAs
recognizing a finite binary language, and yn of 3×n Young tableaux with walls

satisfy for n → ∞

cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
, [Elvey Price, Fang, W 2021]

tn = Θ
(
(n!)2 12nea1(3n)1/3

n−5/3
)
, [Fuchs, Yu, Zhang 2021]

bn = Θ
(

n! 8ne3a1n1/3
n7/8

)
, [Elvey Price, Fang, W 2020]

yn = Θ
(

n! 12nea1(3n)1/3
n−2/3

)
, [Banderier, W 2021]

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x) characterized by Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.

Associated recurrence relations (m ≥ n ≥ 0):

cn = cn,n, where cm,n = cm,n−1 + (n + 1)cm−1,n − (n − 1)cm−2,n−1

tn = (n − 1)!tm,m, where tm,n =
2m + n − 2
2m + n − 3

tm,n−1 + (2m + n − 2)tm−1,n

bn = bn,n, where bm,n = 2bm,n−1 + (n + 1)bm−1,n − nbm−2,n−1

yn = yn,n, where ym,n = ym,n−1 + (2m + n − 1)ym−1,n
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Part II
Asymptotics along the boundary
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Recap of Part I

Recurrences we study

am,n = E(m, n)am−1,n + N(m, n)am,n−1

Main goal

Determine an,n

→ We focus on asymptotics for n → ∞

E(m, n) N(m, n) Domain an,n Description

(1) 1 1 m, n ≥ 0
(2n

n

)
Binomial coefficients

(2) 1 1 m ≥ n ≥ 0 1
n+1

(2n
n

)
Catalan numbers

(3) n + 1 1 m, n ≥ 0 S(2n + 1, n + 1) Stirling numbers 2nd kind

(4) n + 1 1 m ≥ n ≥ 0 Θ
(

n!4ne3a1n1/3
n
)

Compacted binary trees

(In the last case, a1 ≈ −2.338 is the largest root of the Airy function Ai(x) that is the unique function satisfying
Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.)

Today we solve Example (4): weighted model below the diagonal

am,n = (n + 1)am−1,n + am,n−1 for m ≥ n ≥ 0
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Step 1: Transform recurrence into a Dyck-like recurrence

(7, 7)

(0, 0)

Path starts at (0,−1) and ends at (n, n)
Path never crosses the diagonal

One box is marked below each horizontal step
Each vertical step has weight 1
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Recurrence for decorated paths

(7, 7)
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1

1
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1

Recurrence: Let am,n be the number of paths ending at (m, n)

am,n = am,n−1 + (n + 1)am−1,n, for m ≥ n

a0,0 = 1.

Number of relaxed compacted trees is an,n
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Recurrence for decorated paths
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1

Recurrence: Let ãm,n be the number of paths ending at (m, n) with weights divided by column number

ãm,n = ãm,n−1 +
n + 1

m
ãm−1,n, for m ≥ n

ã0,0 = 1.

Number of relaxed compacted trees is n! ãn,n
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Recurrence: Let di,j be the number of decorated paths ending at (i , j) shown on the right

di,j = di−1,j+1 +

(
1 − 2(j − 1)

i + j

)
di−1,j−1, for i > 0, j ≥ 0

d0,0 = 1.

⇒ an,n = n! d2n,0
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Intuition stretched exponential: Pushed Dyck paths [Beaton, McKay 14], [Guttmann 15]

Dyck paths of length 2n where paths of height h get weight 2−h

h

2n
0
0

Consider paths with max height h = nα (for 0 < α ≤ 1/2):

Number of paths ≈ 4ne−c1n1−2α
, Weight = 2−nα = e− log(2)nα .

Weighted number of paths ≈ 4ne−c1n1−2α−log(2)nα

Maximum occurs when α = 1/3 and is equal to 4ne−cn1/3
.

Our case: weights decrease similarly with height so we expect similar behavior
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Step 2: Heuristics analysis of recurrence: What happens for large (fixed) n?

dn,m = dn−1,m+1 +

(
1 − 2(m − 1)

n + m

)
dn−1,m−1

20 40 60 80 100

5.0×1022

1.0×1023

1.5×1023

dn,m

m + 1
200 400 600 800 1000

5.0×10281

1.0×10282

1.5×10282

2.0×10282

dn,m

m + 1

Figure: Plots of dn,m against m + 1. Left: n = 100, Right: n = 1000.

Let’s zoom in to the left (small m) where interesting things are happening.

It seems to be converging to something...

Ansatz: dn,m ≈ h(n)f
(

m + 1
g(n)

)
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Does this ansatz work in the unweighted or unconstrained model?

dn,m = µn,m dn−1,m+1 + νn,m dn−1,m−1, m ≥ 0

Ansatz: dn,m ≈ h(n)f
(

m + 1
g(n)

)

1 Unweighted case µn,m = νn,m = 1 with m ≥ 0:

h(n) ≈ c
n

4n, g(n) =
√

n, f (x) = xe−x2
.

2 Unweighted case µn,m = νn,m = 1 with m ∈ Z:

h(n) ≈ c√
n

4n, g(n) =
√

n, f (x) = e−x2
.

3 Relaxed binary trees µn,m = 1 and νn,m = 1 − 2(m−1)
n+m with m ≥ 0:

⇒ Based on the relation with pushed Dyck paths, we guess g(n) = 3
√

n.

What are h(n) and f (x)?
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Heuristic analysis of weighted paths of relaxed binary trees

dn,m = dn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
dn−1,m−1

Ansatz (a): dn,m ≈ h(n)f
(

m + 1
3
√

n

)
.

Substitute into recurrence:

h(n)f
(

m + 1
3
√

n

)
≈ h(n − 1)f

(
m + 2
3
√

n − 1

)
+

(
1 − 2(m + 1)

n + m

)
h(n − 1)f

(
m

3
√

n − 1

)
Set m = x 3

√
n − 1:

h(n)f (x) ≈ h(n − 1)f
(

x 3
√

n + 1
3
√

n − 1

)
+

(
1 − 2x 3

√
n

n + x 3
√

n − 1

)
h(n − 1)f

(
x 3
√

n − 1
3
√

n − 1

)
Dividing by h(n − 1) and expanding the right-hand side around x for n → ∞ gives

h(n)
h(n − 1)

≈ 2 +
f ′′(x)− 2xf (x)

f (x)
n−2/3 + O(n−1)
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h(n)f
(

m + 1
3
√

n

)
≈ h(n − 1)f

(
m + 2
3
√

n − 1

)
+

(
1 − 2(m + 1)

n + m

)
h(n − 1)f

(
m

3
√

n − 1

)
Set m = x 3

√
n − 1:

h(n)f (x) ≈ h(n − 1)f
(

x 3
√

n + 1
3
√

n − 1

)
+

(
1 − 2x 3

√
n

n + x 3
√

n − 1

)
h(n − 1)f

(
x 3
√

n − 1
3
√

n − 1

)
Dividing by h(n − 1) and expanding the right-hand side around x for n → ∞ gives

h(n)
h(n − 1)

≈ 2 +
f ′′(x)− 2xf (x)

f (x)
n−2/3 + O(n−1)
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≈ 2 +
f ′′(x)− 2xf (x)

f (x)
n−2/3 + O(n−1)

Ansatz (b): Set sn := h(n)
h(n−1) and assume

sn = 2 + cn−2/3 + O(n−1) ⇒ h(n) = s0

n∏
i=1

si ≈ 2ne
3c
2 n1/3

Solution

f ′′(x) = (2x + c)f (x) ⇒ f (x) = Ai
(

2−2/3(2x + c)
)

where c is a constant and Ai is the Airy function.

Boundary condition: dn,−1 = 0 and dn,m ≥ 0.
Then f (0) = 0 implies c = 22/3a1, where a1 ≈ −2.338 satisfies Ai(a1) = 0.

Ai′′(x) = x Ai(x)
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Bivariate Linear Recurrences | Step 2: Heuristic analysis

Refined heuristic analysis

1 Ansatz of order 1:

dn,m ≈ h(n)f
(

m + 1
3
√

n

)
and sn = 2 + cn−2/3 + O(n−1).

yields estimates c = 22/3a1 such that

h(n) ≈ 2ne3a1(n/2)1/3
and f (x) = Ai(21/3x + a1).

2 Ansatz of order 2:

dn,m ≈ h(n)
(

f0
(

m + 1
3
√

n

)
+ n−1/3f1

(
m + 1

3
√

n

))
and sn = 2 + cn−2/3 + dn−1 + O(n−4/3).

yields estimates d = 8/3 such that

h(n) ∼ cst 2ne3a1(n/2)1/3
n4/3 and f0(x) = Ai(21/3x + a1) = Ai′(a1)x + . . .

f1(x) = −2x2

3
f0(x)

This way we conjecture the asymptotic form

an,n = n!d2n,0 ≈ cst n!4ne3a1n1/3
n.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Step 3: Inductive proof – Outline

Recall:

dn,m =

(
1 − 2(m + 1)

n + m

)
dn−1,m−1 + dn−1,m+1

Find explicit sequences Xn,m and Yn,m with the same asymptotic form, such that

Xn,m ≤ dn,m ≤ Yn,m,

for all m and all n large enough.

How to find them?

1 Use heuristics

2 Adapt until Xn,m and Yn,m satisfy the recurrence of dn,m with the equalities replaced by inequalities:

= −→ ≤ and ≥

3 Prove Xn,m ≤ dn,m ≤ Yn,m by induction.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Induction (Lower bound)

dn,m = dn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
dn−1,m−1

Main idea

Suppose we have found explicit sequences (Xn,m)n≥m≥0 and (sn)n≥1 that satisfy

Xn,msn ≤ Xn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
Xn−1,m−1, (2)

for all sufficiently large n and all integers m ∈ [0, n].

Define (hn)n≥0 by h0 = 1 and hn = snhn−1; then prove that

Xn,mhn ≤ b0dn,m

for some constant b0 by induction:

Xn,mhn
(2)
≤ Xn−1,m+1hn−1 +

(
1 − 2(m + 1)

n + m

)
Xn−1,m−1hn−1

(Induction)
≤ b0dn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
b0dn−1,m−1 (pos. coeffs!)

Rec. dn,m
= b0dn,m.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Explicit sequences for the lower bound

Lemma (lower bound)

For all n,m ≥ 0 let

X̃n,m :=

(
1 − 2m2

3n
+

m
2n

)
Ai
(

a1 +
21/3(m + 1)

n1/3

)
and

s̃n := 2 +
22/3a1

n2/3 +
8

3n
− 1

n7/6 .

Then, for any ε > 0, there exists an ñ0 such that

X̃n,ms̃n ≤
(

1 − 2(m + 1)
n + m

)
X̃n−1,m−1 + X̃n−1,m+1,

for all n ≥ ñ0 and for all 0 ≤ m < n2/3−ε.

Making m valid for all [0,n]

Define Xn,m := max{X̃n,m, 0}. Then,

1 Xn,ms̃n = X̃n,ms̃n

≤ (1−2(m+1)
n+m )X̃n−1,m−1 + X̃n−1,m+1

(pos.
coeffs)
≤ (1−2(m+1)

n+m )Xn−1,m−1 +Xn−1,m+1

for m < cst
√

n

2 Xn,ms̃n = 0 ≤ (1− 2(m+1)
n+m )Xn−1,m−1 + Xn−1,m+1 otherwise
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Approach

Show that Pn,m := −X̃n,ms̃n + X̃n−1,m+1 +
(

1 − 2(m+1)
n+m

)
X̃n−1,m−1 ≥ 0

Expand for n,m large such that Pn,m =
∑

ai,jminj

(converges absolutely, since Airy function is entire)

Show that Pn,m = κmi0 nj0 + o(mi0 nj0) where κ > 0 for n large

P(n,m) for n = 106
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Bivariate Linear Recurrences | Step 3: Inductive proof

Lemma (lower bound) – Proof (1)

The following computations rely on computer algebra (Maple session available online).

1 We make the ansatz

Xn,m :=

(
1 +

τ2m2 + τ1m
n

)
Ai
(

a1 +
21/3(m + 1)

n1/3

)
,

sn := σ0 +
σ1

n1/3 +
σ2

n2/3 +
σ3

n
+

σ4

n7/6 ,

and define

Pn,m := −Xn,msn + Xn−1,m+1 +

(
1 − 2(m + 1)

n + m

)
Xn−1,m−1.

2 Expand Ai(z) in a neighborhood of

α = a1 +
21/3m
n1/3 ,

using Ai′′(z) = zAi(z). Then

Pn,m = pn,mAi(α) + p′
n,mAi′(α),

where pn,m and p′
n,m are power series in n−1/6 whose coefficients are polynomials in m.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Lemma (lower bound) – Proof (2)

3 Choose σi and τi to kill lower order terms in

(Recall α = a1 +
21/3m
n1/3 )

Pn,m =
∑

ai,jminj

Pn,m = (σ0 − 2)Ai(α)

−
(
(σ1Ai(α) + 21/3(σ0 − 2)

)
Ai′(α)n− 1

3

−
((a1(σ0 − 4)

21/3 + σ2
)
Ai(α) + 21/3σ1Ai′(α)

)
n− 2

3

+. . .

blue terms: σ0 = 2
red terms: σ1 = 0
green terms: σ2 = 22/3a1

yellow terms: σ3 = 8/3 and τ2 = −2/3

Case analysis on non-zero coefficients:

1 m ≤ x0(n/2)1/3 (here Ai′(α) > 0)

2 x0(n/2)1/3 < m ≤ n7/18

3 n7/18 < m ≤ n2/3−ε.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Upper bound

Lemma

Choose η > 2/9 fixed and for all n,m ≥ 0 let

X̂n,m :=

(
1 − 2m2

3n
+

m
2n

+ η
m4

n2

)
Ai
(

a1 +
21/3(m + 1)

n1/3

)
and

ŝn := 2 +
22/3a1

n2/3 +
8

3n
+

1
n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝn ≥ n − m + 2
n + m

X̂n−1,m−1 + X̂n−1,m+1,

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Making m valid for all [0,n] (different than lower bound)

We fix N > 0 and define a new sequence d̃n,m with the same
rules as dn,m except that d̃n,m = 0 for m > n3/4 and n > N

⇒ Induction works and we get d̃2n,m ≤ γ4ne3a1n1/3
n

! Prove that d2n,0 ≤ cst d̃2n,m

N

x3/4

d̃n,m

0
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X̂n,mŝn ≥ n − m + 2
n + m

X̂n−1,m−1 + X̂n−1,m+1,

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof: Same idea with colorful Newton polygons works (but more complicated).

Making m valid for all [0,n] (different than lower bound)

We fix N > 0 and define a new sequence d̃n,m with the same
rules as dn,m except that d̃n,m = 0 for m > n3/4 and n > N

⇒ Induction works and we get d̃2n,m ≤ γ4ne3a1n1/3
n

! Prove that d2n,0 ≤ cst d̃2n,m

N

x3/4

d̃n,m

0

Michael Wallner | TU Graz | 24.–28.02.2025 48 / 75



Bivariate Linear Recurrences | Step 3: Inductive proof

Upper bound

Lemma

Choose η > 2/9 fixed and for all n,m ≥ 0 let

X̂n,m :=

(
1 − 2m2

3n
+

m
2n

+ η
m4

n2

)
Ai
(

a1 +
21/3(m + 1)

n1/3

)
and
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Bivariate Linear Recurrences | Step 3: Inductive proof

Lattice path theory to finish the upper bound

Cropped paths{
d̃n,m = dn−1,m+1 +

(
1 − 2(m+1)

n+m

)
d̃n−1,m−1 for m > n3/4 and n > N,

d̃n,m = 0 otherwise.

Missing step

d2n,0 ≤ cst d̃2n,m

We call cropped paths good and all others bad.

Idea: Bound the probability to be a bad path.

Let sx,y,n be the proportion of paths from (0, 0) to
(2n, 0) passing through a point (x , y).

Assume that for y > x3/4 and x > N the value sx,y,n

is very small. Then

1 − d̃2n,0

d2n,0
≤
∑
x>N

∑
x≥y>x3/4

sx,y,n

!

≤ εN

⇒ d2n,0 ≤ 1
1 − εN

d̃2n,0.

Good path

N

x3/4

Bad path

N

x3/4
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Bivariate Linear Recurrences | Step 3: Inductive proof

Lattice path theory to finish the upper bound (2)
Show: sx,y,n is for x ≥ y > x3/4 and x > N very small

sx,y,n is the proportion of paths from (0, 0) to (2n, 0)
passing through a point (x , y);

px,y,n is the number of paths from (x , y) to (2n, 0).

⇒ sx,y,n =
dx,y · px,y,n

d2n,0
≤ 1.

Lemma

p2x,2y,n ≤ (2y + 1)p2x,0,n and p2x,0,n ≤ d2n,0

d2x,0
.

2x

2y

p2x,2y,2nd2x,2y
d2n,0

2x p2x,0,2nd2x,0
d2n,0

Therefore, we get for x ≥ y > x3/4 and x large

s2x,2y,n =
d2x,2y · p2x,2y,n

d2n,0

(Lemma)
≤ (2y + 1)d2x,2y

d2x,0

(Unweighted paths)
≤ C′ 2y + 1

d2x,0

(
2x

x + y

)
(Lower bound)

≤ C′ 2y + 1
4x e3a1x1/3 x

(
2x

x + y

)
≤ C′′ 1

4x e3a1x1/3

(
2x

x + x3/4

)
≤ C′′′2−x1/2
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Bivariate Linear Recurrences | Step 3: Inductive proof

Summary

1 Two-parameter recurrence relation

am,n = (n + 1)am−1,n + am,n−1, n ≥ m > 0 dn,m =

(
1 − 2(m − 1)

n + m

)
dn−1,m−1 + dn−1,m+1, m ≥ 0

Asymptotics of d2n,0?

An interpretation in terms of Dyck paths:
start at (0, 0)
end at (2n, 0)
never cross x-axis
use steps ↗ and ↘
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2 Asymptotic ansatz for large n and m ≈ n1/3 involving the Airy function

3 Proof of asymptotically tight bounds supported by computer algebra and lattice path theory

Lower bound

an,n ≥ γ1 n!4ne3a1n1/3
n,

for some constant γ1 > 0.

Upper bound (similar proof, more technical)

an,n ≤ γ2 n!4ne3a1n1/3
n,

for some constant γ2 > 0.
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Bivariate Linear Recurrences | Step 3: Inductive proof

Part III
Applications in Computer Science and

Biology
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Bivariate Linear Recurrences | Step 3: Inductive proof

Stretched exponentials appear in open asymptotic counting problems

1 Compacted trees [Flajolet, Sipala, Steyaert 1990]

2 Minimal deterministic finite automata accepting a finite language [Domaratzki, Kisman, Shallit 2002]

3 Phylogenetic tree-child networks [McDiarmid, Semple, Welsh 2015]
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Bivariate Linear Recurrences | Compacted trees

Compacted trees
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Bivariate Linear Recurrences | Compacted trees

Let’s start simple: binary trees

Internal node: Node of out-degree 2 (circle)

Leave: Node of out-degree 0 (square)

Root: Distinguished node (top node)

Left-Right Order of children

A recursive construction
A binary tree is either a leaf,

or it consists of a root and a left and right binary tree.
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Bivariate Linear Recurrences | Compacted trees

Motivation: Efficiently store redundant information

Example

Consider the labeled tree necessary to store the arithmetic expression

(* (- (* x x) (* y y)) (+ (* x x) (* y y))),

which represents (x2 − y2)(x2 + y2).

x

×

y

×

+−

×

(1, (x , 0, 0)), (2, (×, 1, 1)), (3, (y , 0, 0)), (4, (×, 3, 3)), (5, (−, 2, 4)), (6, (+, 2, 4)), (7, (×, 5, 6))

Definition

Compacted tree is the directed acyclic graph computed by this procedure.
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Bivariate Linear Recurrences | Compacted trees

Compacted binary trees are special DAGs

Nodes: n (internal) nodes and 1 leaf

Edges: n internal edges and n pointers

Rooted: Unique distinguished node

Plane: Children have a left-to-right order

Structure: Deleting the pointers gives a plane (binary) tree

Pointers: Point to a node previously visited in postorder

Uniqueness: All (fringe) subtrees are unique!

Valid compacted tree

=

Invalid compacted tree
A relaxed tree
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Bivariate Linear Recurrences | Compacted trees

Why are they interesting?

Applications:
XML-Compression [Bousquet-Mélou, Lohrey, Maneth, Noeth 2015]
Data storage [Meinel, Theobald 1998], [Knuth 1968]
Compilers [Aho, Sethi, Ullman 1986]
LISP [Goto 1974]
etc.

Efficient compaction algorithm: expected time O(n)

A tree of size n has a expected compacted size

C
n√
log n

,

with explicit constant C [Flajolet, Sipala, Steyaert 1990].

Reverse question

How many compacted trees of (compacted) size n exist?
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Bivariate Linear Recurrences | Compacted trees

Compacted and relaxed binary trees
Size: number of internal nodes

rn: nr. of relaxed trees of size n

cn: nr. of compacted trees of size n (unique subtrees)

(rn)n≥0 = (1, 1, 3, 16, 127, 1363, 18628, . . . )

(cn)n≥0 = (1, 1, 3, 15, 111, 1119, 14487, . . . )

Simple bounds

n! ≤ cn ≤ rn ≤ 1
n + 1

(
2n
n

)
n!
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Bivariate Linear Recurrences | Compacted trees

Bounded right height
The right height of a binary tree is the maximal number of right children on any path from the root to a leaf
(not going through pointers).

Theorem [Genitrini, Gittenberger, Kauers, W 2020]

The number rk,n (ck,n) of relaxed (compacted) trees with right height at
most k is for n → ∞ asymptotically equivalent to

rk,n ∼ γk n!

(
4 cos

(
π

k + 3

)2
)n

n− k
2 ,

ck,n ∼ κk n!

(
4 cos

(
π

k + 3

)2
)n

n− k
2 −

1
k+3 −(

1
4 −

1
k+3 ) cos(

π
k+3 )

−2

,

where γk , κk ∈ R \ {0} are independent of n.

Remarks:

Uses exponential
generating functions

GFs are D-finite (order k )

Methods from Analytic
Combinatorics (Singularity
analysis, etc.)

Interesting combinatorics:
E.g., r1,n = (2n − 1)!!
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Bivariate Linear Recurrences | Compacted trees

Asymptotics in the binary case

A stretched exponential µnσ appears!

Theorem [Elvey Price, Fang, W 2021]

The number of relaxed and compacted binary trees satisfy for n → ∞

rn = Θ
(

n! 4ne3a1n1/3
n
)

and cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
,

where a1 ≈ −2.338 is the largest root of the Airy function Ai(x).

Proof strategy

1 Bijective Comb.: Bijection to decorated Dyck paths

2 Enumerative Comb.: Two-parameter recurrence

3 Calculus + ODEs: Heuristic analysis of recurrence

4 Computer algebra: Inductive proof of asymptotically tight bounds

Ai′′(x) = x Ai(x)
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Bivariate Linear Recurrences | Compacted trees

Bijection to decorated paths

1 Spanning tree distinguishes internal edges and pointers
2 Label nodes and pointers in post-order
3 Traverse the spanning tree along the contour. When...

going up: add up step
passing a pointer: add horizontal step and mark box corresponding to pointer label

⇒ am,n = (n + 1)am−1,n + am,n−1 for m ≥ n ≥ 0
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Bivariate Linear Recurrences | Compacted trees

Most general result: k -ary trees

Theorem [Ghosh Dastidar, W 2024]

The number rn of relaxed k -ary trees with n internal nodes satisfies

rn = Θ
(
(n!)k−1 γ(k)n e3a1β(k)n

1/3
nα(k)

)
,

with a1≈−2.338 is the largest root of the Airy function Ai(x) and

γ(k) =
kk

(k − 1)k−1 , β(k) =
(

k(k − 1)
2

)1/3

, α(k) =
7k − 8

6
.

Conjecture

Experimentally, we find in the binary case (k = 2) that

rn ∼ γr n!4ne3a1n1/3
n and cn ∼ γcn!4ne3a1n1/3

n3/4,

where

γr ≈ 166.95208957 and γc ≈ 173.12670485.
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Deterministic finite automata (DFA)

DFA on alphabet {a,b}
Graph with

two outgoing edges from each node (state),
labelled a and b

An initial state q0

A set F of final states (coloured green).

Properties

Language: the set of accepted words

Minimal: no DFA with fewer states accepts the
same language

Acyclic: no cycles (except loops at unique
sink)

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2

Figure: DFA

, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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Counting minimal acyclic DFAs

Enumeration studied by Domaratzki, Kisman, Shallit, and Liskovets 2002–2006

Open problem: Asymptotics

Best bounds were out by an exponential factor

q0

q1 q3

q4

a b

b

a a

b

a

a
b b

q2

Figure: DFA, which is the minimal DFA recognizing the language {a, aa, ba, aba}.
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Main result minimal DFAs

A stretched exponential µnσ appears again!

Theorem [Elvey Price, Fang, W 2020]

The number mn of minimal DFAs with n + 1 states recognizing a finite binary language satisfies for n → ∞

mn = Θ
(

n! 8ne3a1n1/3
n7/8

)
,

where a1≈−2.338 is the largest root of the Airy function Ai(x).

Conjecture

Experimentally we find

mn ∼ γn!8ne3a1n1/3
n7/8,

where

γ ≈ 76.438160702.
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Bijection to decorated paths

q0

a

a

a

a

a

a

a b

b

b

b

b

b

b

a, b
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Bijection to decorated paths

a

a

a

a b

b

b

b

a, b

q0

a

a

a
b

b

b

Highlight spanning tree given by depth first search (ignoring the sink)
I.e., black path to each vertex is first in lexicographic order

Colour other edges red
Draw as a binary tree with a edges pointing left and b edges pointing right
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Bijection to decorated paths
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Bijection to decorated paths

2

3 4

5

6

7

8

1

Label nodes in post-order. By construction red edges point from a larger number to a smaller number

→ Label pointers
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Bijection to decorated paths
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Bijection to decorated paths
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When the tree traversal...
goes up: add up step with color matching the corresponding node.
passes a pointer:

add horizontal step
mark box corresponding to pointer label
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Decorated paths

1

2

3

4

5

6

7

8

(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

Path starts at (−1, 0) and ends at (n, n)
Path stays below diagonal (after first step)

One box is marked below each horizontal step
Each vertical step is colored white or green

By the bijection: The number of these paths is the number dn of acyclic DFAs with n + 1 nodes.
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Decorated paths
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2

Recurrence: Denote by an,m the number of paths ending at (n,m).

an,m = 2an,m−1 + (m + 1)an−1,m, for n ≥ m

a−1,0 = 1.

By the bijection: dn = an,n is the number of acyclic DFAs with n + 1 nodes.

What about minimality?
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Recurrence for minimal DFAs
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4 4 4
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(n,m)m+ 1

(n,m− 1)
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2

Recurrence: Denote by bn,m the number of paths ending at (n,m).

bn,m = 2bn,m−1 + (m + 1)bn−1,m − mbn−2,m−1, for n ≥ m,

b−1,0 = 1.

Now: mn = bn,n is the number of minimal acyclic DFAs with n + 1 nodes.
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Phylogenetic tree-child networks

Michael Wallner | TU Graz | 24.–28.02.2025 71 / 75



Bivariate Linear Recurrences | Phylogenetic tree-child networks

Biology: d-combining tree-child networks

Definition
A d-ary rooted phylogenetic network is a DAG with nodes of the type:
• unique root: indegree 0, outdegree 2
• leaf: indegree 1, outdegree 0
• tree node: indegree 1, outdegree 2
• reticulation node: indegree d , outdegree 1

Furthermore, the n leaves are labeled bijectively by {1, . . . , n}.

Tree-child: every non-leaf node has at least one child that is not a reticulation.

1
2

3

4

2

3

1

4

x

y
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Asymptotics of d-combining tree-child networks

A stretched exponential µnσ appears!

Theorem [Chang, Fuchs, Liu, W, Yu 2023]

The number TC(d)
n of d-combining tree-child networks with n leaves satisfies

TC(d)
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3
nα(d)

)
for n → ∞,

with a1≈−2.338: largest root of the Airy function Ai(x) and

α(d) = −d(3d − 1)
2(d + 1)

, β(d) =
(

d − 1
d + 1

)2/3

, γ(d) = 4
(d + 1)d−1

(d − 1)!
.

Proof strategy

1 Bijective Comb.: Bijection to Young tableaux with walls

2 Enumerative Comb.: Two-parameter recurrence

3 Calculus + ODEs: Heuristic analysis of recurrence

4 Computer algebra: Inductive proof of asymptotically tight bounds

Ai′′(x) = x Ai(x)
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How to prove this?

1 Combinatorics: reduce the problem

Asymptotically, only maximally reticulated networks
important:
Let TC(d)

n,k be TC networks with n leaves and k reticulation
nodes, then

TC(d)
n ∼ cd TC(d)

n,n−1

where c2 =
√

2 and cd = 1 for d ≥ 3.
Bijection of TC(d)

n,n−1 to Young tableaux with walls (or
special words)

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

3 Two parameter recurrence relation

en,m = µn,m en−1,m+1 + νn,m en−1,m−1

n ≥ 3 and m ≥ 0, en,−1 = e2,n = 0 except for e2,0 = 1,

where

µn,m = 1 +
2(d − 1)

(d + 1)n + (d − 1)m − 2(d + 1)
and νn,m =

d∏
i=2

(
1 −

2(m + i)
(d + 1)(n + m)

)
.

We are interested in e2n,0, as TC(d)
n = Θ

(
(n!)d

(
γ(d)

4

)n
n1−d e2n,0

)
.
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important:
Let TC(d)

n,k be TC networks with n leaves and k reticulation
nodes, then

TC(d)
n ∼ cd TC(d)

n,n−1

where c2 =
√

2 and cd = 1 for d ≥ 3.
Bijection of TC(d)

n,n−1 to Young tableaux with walls (or
special words)

6 10 14 15 17 18

3 5 9 12 13 16

2 1 7 4 11 8

3 Two parameter recurrence relation

en,m = µn,m en−1,m+1 + νn,m en−1,m−1
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µn,m = 1 +
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Many new natural appearances of stretched exponentials

Theorem
The number cn of compressed binary trees,

mn of minimal DFAs recognizing a finite binary language, tn of bicombining
phylogenetic tree-child networks, and yn of 3×n Young tableaux with walls

satisfy for n → ∞

cn = Θ
(

n! 4ne3a1n1/3
n3/4

)
, [Elvey Price, Fang, W 2021]

mn = Θ
(

n! 8ne3a1n1/3
n7/8

)
, [Elvey Price, Fang, W 2020]

tn = Θ
(
(n!)2 12nea1(3n)1/3

n−5/3
)
, [Fuchs, Yu, Zhang 2021]

yn = Θ
(

n! 12nea1(3n)1/3
n−2/3

)
, [Banderier, W 2021]

where Ai(x) is the largest root of the Airy function Ai(x) characterized by Ai′′(x) = xAi(x) and limx→∞ Ai(x) = 0.

Key property
Characterized by Dyck-like recurrences with rational
weight functions:

am,n = E(m, n)am−1,n + N(m, n)am,n−1 + . . .

Future research directions:
Multiplicative constant? Does it exist?

Limit shapes: expected height, typical shape, etc.

Further applications in computer science, biology,
physics, etc.

Thank you!
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