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Preliminaries
◮ A function · : G × X −→ X , where G is a group and X is a

set, is a group action if e · x = x for all x ∈ X and
(gh) · x = g · (h · x) for all g , h ∈ G and x ∈ X .

◮ A group action · is transitive if for all (x , y) ∈ X × X there
exists g ∈ G such that g · x = y .

◮ The graph of a function ϕ : G −→ H is

Gr(ϕ) = {(x ,ϕ(x)) : x ∈ G} ⊆ G × H

If ϕ is a group homomorphism, then Gr(ϕ) is a group
(in fact, it is a subgroup of G × H).

All spaces (including groups) are assumed to be separable and
metrizable. All group actions are assumed to be continuous.
(Separate continuity would be sufficient.) Since certain results
involve determinacy, we will work in ZF + DC.



An established pattern in set theory
Many properties P behave as follows:

◮ Every Borel set of reals satisfies P,

◮ Under AD, all sets of reals satisfy P,

◮ Under AC, there exist counterexamples to P,

◮ Under V = L, there exist definable (usually coanalytic)
counterexamples to P.

The classical regularity properties (P = “perfect set property”,
P = “Lebesgue measurable” and P = “Baire property”) are the
most famous instances of this pattern. More entertaining examples
include P = “not a Hamel basis” and P = “not an ultrafilter.”
See my other talk for P = “σ-homogeneity.” This talk is about

P = “Effros,”

in the context of topological groups.



Micro-transitive group actions
Assume that · is an action of the group G on the space X .
Notice that, for every fixed g ∈ G , the function g ·− is a
homeomorphism of X . (Its inverse is g−1 ·−.)
But what about the function − · x for a fixed x ∈ X?
Let us denote this function by γx : G −→ X .

Definition (Ancel, 1987)

The action · is micro-transitive if U · x is a neighborhood of x for
every x ∈ X and every neighborhood U of the identity in G .

Proposition

Assume that the action · is transitive. Then the following
conditions are equivalent:

◮ G acts micro-transitively on X ,

◮ γx is open for every x ∈ X,

◮ γx is open for some x ∈ X.



The Effros property

Definition
We will say that a group G is Effros if every transitive action of G
on a non-meager space is micro-transitive.

Theorem (Effros, 1965)

Every Polish group is Effros.

Theorem (van Mill, 2004)

Every analytic group is Effros.

Inspired by the “established pattern,” we obtained the following:

Theorem

◮ Under AD, every group is Effros,

◮ Under AC, there exists a non-Effros group,

◮ Under V = L, there exists a coanalytic non-Effros group.



Automatic continuity
The idea of “automatic continuity” is that additional structure on
a space makes it easier for functions on it to be continuous.
The following is the most important example in our context:

Theorem (Closed Graph Theorem)

Let G and H be Banach spaces, and let ϕ : G −→ H be a linear
function. If Gr(ϕ) is closed then ϕ is continuous.

Theorem (somewhat folklore)

Let G and H be groups, and let ϕ : G −→ H be a homomorphism.
If Gr(ϕ) is an Effros group and G is non-meager then ϕ is
continuous.

In particular, (in the separable case!) the linear structure is
irrelevant for the CGT. Also, the key property is not completeness
but Effros. Furthermore, by van Mill’s result, the Analytic Graph
Theorem actually holds.



Proof of the somewhat folklore result
Assume that Gr(ϕ) is an Effros group and that G is non-meager.
Consider the action · of Gr(ϕ) on G obtained by setting

(g ,ϕ(g)) · x = gx

for every g , x ∈ G . Obviously, the action · is transitive.
Since Gr(ϕ) is Effros and G is non-meager, it follows that · is
micro-transitive. Therefore, the bijection γe : Gr(ϕ) −→ G
associated to · is open, where e denotes the identity of G .

This means that γ−1
e is continuous, hence so is ϕ = π ◦ γ−1

e ,
where π : G × H −→ H denotes the natural projection.


We remark that a similarly Effros-centric version of the Open
Mapping Theorem also holds.



The result under AD

Theorem
Assume AD. Then every group is Effros.

The proof employs a sophisticated technique known as “stealing
from Jan van Mill.” (But the due credit was given!)

Also, this result does not need the full force of AD, but only the
fact all subsets of a (Polish) space have the property of Baire.



The counterexample in ZFC
There are several examples of discontinuous group homomorphisms
that we could have used in the following proof. (The one we chose
yields a meager non-Effros group. For a Baire example, consider a
non-principal ultrafilter on ω with its natural group structure.)

Theorem
In ZFC, there exists a non-Effros group.

Proof. Using AC, we can fix a basis H for R as a vector space
over Q. Since H is uncountable, we can pick h∞ ∈ H and
hn ∈ H \ {h∞} for n ∈ ω such that hn → h∞.
Let ϕ : R −→ Q be the unique linear functional such that

ϕ(h) =


1 if h = h∞,
0 if h ∕= h∞

for every h ∈ H. Since ϕ is discontinuous, Gr(ϕ) is non-Effros.





Obviously, if you’re a topologist, studying computability theory is a
complete waste of time...



Definable counterexamples under V = L
In his 1989 paper, Miller sketched a method for constructing
coanalytic versions of certain pathological sets of reals (in the spirit
of Gödel’s coanalytic set without the perfect set property).
In his Ph.D. thesis, Vidnyánszky gave a “black box” version of this.

Definition (Vidnyánszky, 2014)

Given F ⊆ M≤ω × B ×M, where M and B are sets of size ω1, we
will say that X ⊆ M is compatible with F if there exist
enumerations B = {pα : α < ω1}, X = {xα : α < ω1} and, for
every α < ω1, a sequence Aα ∈ M≤ω that is an enumeration of
{xβ : β < α} in type ≤ ω such that xα ∈ F(Aα,pα) for every α < ω1.

Here, given (A, p) ∈ M≤ω × B , we use the notation
F(A,p) = {x ∈ M : (A, p, x) ∈ F}. Intuitively, one should think of
Aα as enumerating the portion of the desired set X constructed
before stage α. The section F(Aα,pα) consists of the admissible
candidates to be added at stage α, where pα encodes the current
condition to be satisfied.



Suppose M is a space in which it makes sense to talk about
computability. We will say that S ⊆ M is cofinal in the Turing
degrees if for every a ∈ M there exists x ∈ S such that a ≤T x
(that is, a can be computed using x as an oracle).
In the following result, for concreteness, assume that M = B = 2ω.

Theorem (Vidnyánszky, 2014)

Assume V = L. Assume that F ⊆ M≤ω ×B ×M is coanalytic, and
that for all (A, p) ∈ M≤ω × B the section F(A,p) is cofinal in the
Turing degrees. Then there exists a coanalytic X ⊆ M that is
compatible with F .

Essentially, the above says that if “the construction process is
coanalytic” and the set of possible candidates is always rich
enough, then the desired set can be made coanalytic.

Unfortunately, there are situations in which more than one element
must be added at every stage (even more unfortunately, this is the
case when constructing a group).



Let Z = 2ω, and observe that Z ξ can be identified with Z
whenever 2 ≤ ξ ≤ ω for the purposes of computability.
When the space M is in the form Z ξ, we will say that S ⊆ M is
equicofinal in the Turing degrees if for every a ∈ Z there exists
x ∈ S such that the following conditions are satisfied:

◮ a ≤T x(n) for every n ∈ ξ,

◮ x(m) ≡T x(n) for every m, n ∈ ξ.

Theorem
Assume V = L. Let M = Z ξ, where 2 ≤ ξ ≤ ω. Assume that
F ⊆ M≤ω ×B×M is coanalytic, and that for all (A, p) ∈ M≤ω ×B
the section F(A,p) is equicofinal in the Turing degrees. Then there
exists X ⊆ M such that the following conditions are satisfied:

◮ X is compatible with F ,

◮ {x(n) : x ∈ X and n ∈ ξ} is coanalytic.



A definable non-Effros group under V = L

Theorem
Assume V = L. Then there exists a discontinuous group
homomorphism ϕ : 2ω −→ 2ω with coanalytic graph.

Corollary

Assume V = L. Then there exists a coanalytic non-Effros group.

Proof of the theorem. The strategy is to accomplish the goal at
step 0, then survive until the end (that is, keep the construction
within the constraints of Vidnyánszky’s method.)

Set Z = 2ω × 2ω and M = Zω (at each stage, we will add an
element of Z and all of its sums with previous elements).

We will begin by constructing a countable dense subgroup G0 of Z
that is the graph of a homomorphism ϕ0 between (countable)
subgroups of 2ω.



First define en ∈ 2ω for n ∈ ω by setting

en(m) =


1 if m = n,
0 if m ∕= n.

Let E denote the subgroup of 2ω generated by {en : n ∈ ω}.
Fix π : ω −→ ω such that π−1(n) is infinite for every n ∈ ω.
Let ϕ0 : E −→ 2ω be the unique homomorphism such that
ϕ0(en) = eπ(n) for each n. Then G0 = Gr(ϕ0) will be as desired.

Our plan is to construct a set X ⊆ M such that

G = G0 ∪ {x(n) : x ∈ X and n ∈ ω}

is the graph of a homomorphism ϕ : 2ω −→ 2ω. Since G0 ⊆ G and
G0 is dense in Z , it is clear that ϕ will be discontinuous.

The set of “conditions” to be satisfied will be B = 2ω.
More precisely, we will make sure that each p ∈ B will be added to
the domain of our homomorphism at some stage.



Declare (A, p, x) ∈ F , if one of the following conditions holds,
where we denote by {(zn,wn) : n ∈ ω} all the pairs that are either
in G0 or are enumerated by A:

◮ p is not new (that is, p = zn for some n ∈ ω). Then there
must be (z ,w) ∈ 2ω × 2ω such that z is new (that is, z ∕= zn
for every n ∈ ω) and x enumerates {(zn + z ,wn +w) : n ∈ ω}.

◮ p is new. As above, but we must have z = p.

It is straightforward to check that F is coanalytic (in fact, Borel).

Also notice that we are completely free in our choice of w .
This makes it possible to code enough information into it to satisfy
the equicofinality condition.

To conclude the proof, apply the “multivariable’ version of
Vidnyánszky’s theorem.





Thank you for listening!


