
Minkowski valuations on lattice polytopes
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Abstract

A complete classification is established of Minkowski valuations
on lattice polytopes that intertwine the special linear group over the
integers and are translation invariant. In the contravariant case, the
only such valuations are multiples of projection bodies. In the equi-
variant case, the only such valuations are generalized difference bodies
combined with multiples of the newly defined discrete Steiner point.

2000 AMS subject classification: 52B20, 52B45

1 Introduction and statement of results

Two classification theorems were critical in the beginning of the theory of
valuations on convex sets: first, the Hadwiger theorem [23] for valuations on
convex bodies (that is, compact convex sets) in Rn and second, the Betke
& Kneser theorem [11] for valuations on lattice polytopes (that is, convex
polytopes with vertices in Zn). In recent years, numerous classification results
were established for valuations defined on convex bodies (see, for example,
[4, 5, 9, 20, 21, 29, 32, 33, 45, 52] and [23, 26, 40, 42] for more information). In
particular, such results were obtained for convex-body valued valuations (see,
for example, [1–3,6,18,19,27,28,31,43,44,49–51]). The aim of this article is
to establish classification results for convex-body valued valuations defined
on lattice polytopes. The question leads us to define and classify the discrete
Steiner point.

A function z defined on a family F of subsets of Rn with values in an
abelian group (or more generally, an abelian monoid) is a valuation if

z(P ) + z(Q) = z(P ∪Q) + z(P ∩Q) (1)

whenever P,Q, P ∪Q,P ∩Q ∈ F and z(∅) = 0.
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In the Hadwiger theorem, F is the family, K(Rn), of convex bodies and
important further results regard the family, P(Rn), of convex polytopes in
Rn. In both cases, the spaces are equipped with the topology coming from
the Hausdorff metric. A functional z : K(Rn)→ R is rigid motion invariant,
if it is translation invariant and invariant with respect to orthogonal linear
transformations.

Theorem 1 (Hadwiger [23]). A functional z : K(Rn) → R is a continuous
and rigid motion invariant valuation if and only if there exist constants c0,
c1, . . . , cn ∈ R such that

z(K) = c0 V0(K) + · · ·+ cn Vn(K)

for every K ∈ K(Rn).

Here V0(K), . . . , Vn(K) are the intrinsic volumes of K ∈ K(Rn). An elegant
proof of this result is due to Klain [25] (or see [26,48]).

In the Betke & Kneser theorem (and in this article), F is the family,
P(Zn), of lattice polytopes. A functional z : P(Zn)→ R is called translation
invariant if z(P + x) = z(P ) for x ∈ Zn and P ∈ P(Zn). It is SLn(Z)
invariant if z(φP ) = z(P ) for φ ∈ SLn(Z) and P ∈ P(Zn), where SLn(Z) is
the special linear group over Z, that is, the group of invertible n×n matrices
with integer coefficients and determinant 1. We remark that Betke & Kneser
formulated their theorem for unimodularly invariant valuations (that is, also
admitting matrices with determinant−1) but that their proof also establishes
the following result.

Theorem 2 (Betke & Kneser [11]). A functional z : P(Zn) → R is an
SLn(Z) and translation invariant valuation if and only if there exist constants
c0, c1, . . . , cn ∈ R such that

z(P ) = c0 L0(P ) + · · ·+ cn Ln(P )

for every P ∈ P(Zn).

Here L0(P ), . . . , Ln(P ) are the Ehrhart functionals of P ∈ P(Zn), that is,
the coefficients of the Ehrhart polynomial (see Section 3 for the definition).
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An operator Z : F → K(Rn) is called a Minkowski valuation if Z satisfies
(1) and addition on K(Rn) is Minkowski addition; that is,

K + L = {x+ y : x ∈ K, y ∈ L}.

An operator Z : F → K(Rn) is called SLn(R) equivariant if Z(φP ) = φZP
for φ ∈ SLn(R) and P ∈ F . Define SLn(Z) equivariance of operators on
P(Zn) analogously. In recent years, SLn(R) equivariant operators on convex
bodies and the associated inequalities have attracted increased interest (see,
for example, [13, 22, 34–36,38]). For valuations Z : P(Rn)→ K(Rn) that are
SLn(R) equivariant and translation invariant, a complete classification has
been established. Let n ≥ 2.

Theorem 3 ([30]). An operator Z : P(Rn) → K(Rn) is an SLn(R) equi-
variant and translation invariant Minkowski valuation if and only if there
exists a constant c ≥ 0 such that

ZP = c(P − P )

for every P ∈ P(Rn).

The operator P 7→ P−P = {x−y : x, y ∈ P} assigns to P its difference body.
We remark that no complete analogue of Hadwiger’s theorem for Minkowski
valuations (that is, no complete classification of rotation equivariant and
translation invariant Minkowski valuations) has been established. It follows
from, for example, [49] that the set of such valuations does not depend on
only finitely many parameters.

The aim of this article is to classify Minkowski valuations on lattice poly-
topes. The following result is an analogue of Theorem 3. Let n ≥ 2.

Theorem 4. An operator Z : P(Zn)→ K(Rn) is an SLn(Z) equivariant and
translation invariant Minkowski valuation if and only if there exist constants
a, b ≥ 0 such that

ZP = a(P − `1(P )) + b(−P + `1(P ))

for every P ∈ P(Zn).

Here for a lattice polytope P , the point `1(P ) is its discrete Steiner point
that is introduced in this paper.
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The discrete Steiner point is defined in Section 3 as the one-homogeneous
part of the Ehrhart expansion of the discrete moment vector

`(P ) =
∑

x∈P∩Zn

x.

That such an expansion exists follows from results by McMullen [39]. The
discrete moment vector plays for SLn(Z) equivariant vector-valued valuations
on P(Zn) a role similar to that of the moment vector

mn+1(K) =

∫
K

x dx

for rigid motion equivariant valuations on K(Rn).
The discrete Steiner point is characterized in the following result, where

z : P(Zn) → Rn is called translation equivariant if z(P + x) = z(P ) + x for
x ∈ Zn and P ∈ P(Zn).

Theorem 5. A function z : P(Zn) → Rn is an SLn(Z) and translation
equivariant valuation if and only if z = `1.

Theorem 5 corresponds to the following characterization of the classical
Steiner point m1, which is the one-homogeneous part of the Steiner expansion
of the moment vector (see Section 2 for the definition).

Theorem 6 (Schneider [47]). A function z : K(Rn) → Rn is a continuous
and rigid motion equivariant valuation if and only if z = m1.

A function z : P(Zn) → Rn is called additive if z(P + Q) = z(P ) + z(Q)
for P,Q ∈ P(Zn). The discrete Steiner point is also characterized in the
following result.

Theorem 7. A function z : P(Zn) → Rn is SLn(Z) and translation equi-
variant and additive if and only if z = `1.

Theorem 7 corresponds to the following characterization of the classical
Steiner point.

Theorem 8 (Schneider [46]). A function z : K(Rn) → Rn is continuous,
rigid motion equivariant and additive if and only if z = m1.
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For operators mapping P(Zn) to P(Zn), we obtain the following result.
Write LCM for the least common multiple and let n ≥ 2.

Theorem 9. An operator Z : P(Zn)→ P(Zn) is an SLn(Z) equivariant and
translation invariant Minkowski valuation if and only if there exist integers
a, b ≥ 0 with b− a ∈ LCM(2, . . . , n+ 1)Z such that

ZP = a(P − `1(P )) + b(−P + `1(P ))

for every P ∈ P(Zn).

An operator Z : F → K(Rn) is called SLn(R) contravariant if Z(φP ) =
φ−t ZP for φ ∈ SLn(R) and P ∈ F , where φ−t is the inverse of the trans-
pose of φ. Define SLn(Z) contravariance of operators on P(Zn) analogously.
In recent years, SLn(R) contravariant operators on convex bodies and the
associated inequalities have attracted increased interest (see, for example,
[12,22,34,37]). For SLn(R) contravariant Minkowski valuations on P(Rn), a
complete classification has been established. Let n ≥ 2.

Theorem 10 ([30]). An operator Z : P(Rn)→ K(Rn) is an SLn(R) contra-
variant and translation invariant Minkowski valuation if and only if there
exists a constant c ≥ 0 such that

ZP = cΠP

for every P ∈ P(Rn).

Here ΠP is the projection body of P (see Section 2 for the definition).
For operators on lattice polytopes, we obtain the following result.

Theorem 11. (i) For n = 2, an operator Z : P(Z2)→ K(R2) is an SL2(Z)
contravariant and translation invariant Minkowski valuation if and only if
there exist constants a, b ≥ 0 such that

ZP = a ρπ/2(P − `1(P )) + b ρπ/2(−P + `1(P ))

for every P ∈ P(Z2).

(ii) For n ≥ 3, an operator Z : P(Zn)→ K(Rn) is an SLn(Z) contravariant
and translation invariant Minkowski valuation if and only if there exists a
constant c ≥ 0 such that

ZP = cΠP

for every P ∈ P(Zn).

Here ρπ/2 denotes the rotation by an angle π/2 in R2. Note that for n = 2,
the projection body is obtained from the difference body by applying ρπ/2.
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For operators mapping P(Zn) to P(Zn), we obtain the following result.

Theorem 12. (i) For n = 2, an operator Z : P(Z2)→ P(Z2) is an SL2(Z)
contravariant and translation invariant Minkowski valuation if and only if
there exist integers a, b ≥ 0 with b− a ∈ 6Z such that

ZP = a ρπ/2(P − `1(P )) + b ρπ/2(−P + `1(P ))

for every P ∈ P(Z2).

(ii) For n ≥ 3, an operator Z : P(Zn)→ P(Zn) is an SLn(Z) contravariant
and translation invariant Minkowski valuation if and only if there exists a
constant c ≥ 0 with c ∈ (n− 1)!Z such that

ZP = cΠP

for every P ∈ P(Zn).

2 Preliminaries

We collect notation and results on convex bodies, valuations and lattice poly-
topes. General references are Schneider [48], Gruber [17], Barvinok [7] and
Beck & Robins [8].

Every convex body K ∈ K(Rn) is determined by its support function,

h(K, v) = max{v · x : x ∈ K}

for v ∈ Rn, where v ·x is the inner product of v, x ∈ Rn. Note that for v ∈ Rn

we have
h(K + L, v) = h(K, v) + h(L, v).

Support functions of convex bodies are sublinear, that is, they are convex
and positively homogeneous of degree 1, and every sublinear function is the
support function of a convex body in Rn.

For M ⊂ Rn, we denote the affine hull by aff M and the dimension (that
is, the dimension of aff M) by dim(M). Define the centroid of a k-dimensional
set M with positive k-dimensional volume Vk(M) by

cen(M) =
1

Vk(M)

∫
M

x dHk(x),

where Hk is the k-dimensional Hausdorff measure. We denote the convex
hull of x1, . . . , xk ∈ Rn by [x1, . . . , xk].
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2.1 Minkowski summands

Understanding the structure of summands is critical to our argument. A
convex body L is a summand of a convex body K if there exists a convex
body M such that K = L+M .

For L ∈ K(Rn) and v ∈ Rn\{o}, we define the face of L having v as one
of its normal vectors by

F (L, v) = {x ∈ L : v · x = h(L, v)}.

It follows that if L,M ∈ K(Rn) and s, t ≥ 0, then

F (sL+ tM, v) = s F (L, v) + t F (M, v). (2)

Note that if K = L + M is a polytope, then so are L and M . Also note
that the only summands of a simplex S are translates of t S with t ∈ [0, 1]
and that a summand of a direct sum of two convex bodies is the direct sum
of summands of these bodies (see [48, Section 3.2]). Combined with (2) this
implies the following.

Lemma 13. Let S be a simplex and R a convex body with dim(S + R) =
dim(S) + dim(R). If a convex body L is a summand of S + R, then there
exist t ∈ [0, 1] and R′ ⊂ aff R such that L is a translate of t S +R′.

2.2 Projection bodies

For u ∈ Sn−1 (where Sn−1 is the (n−1)-dimensional unit sphere), let πu denote
the orthogonal projection to the subspace orthogonal to u. For K ∈ K(Rn),
the projection body ΠK is defined by

h(ΠK, u) = |πuK|

for u ∈ Sn−1, where | · | denotes (n− 1)-dimensional volume. Note that if P
is an n-dimensional polytope in Rn with facets (that is, (n− 1)-dimensional
faces) F1, . . . , Fm, and corresponding facet normals (that is, exterior unit
normals) u1, . . . , um, then

ΠP =
1

2

m∑
i=1

|Fi| [−ui, ui]. (3)
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The Minkowski relation states that
m∑
i=1

|Fi|ui = o. (4)

See [16] for more information on projection bodies.

2.3 The Steiner point

The intrinsic volumes that are characterized in Hadwiger’s theorem are the
coefficients of the Steiner polynomial, that is,

Vn(K + sBn) =
n∑
j=0

sn−jvn−jVj(K),

where Bn is the n-dimensional Euclidean unit ball and vj is the j-dimensional
volume of the j-dimensional Euclidean unit ball. The corresponding expan-
sion for the moment vector is

mn+1(K + sBn) =
n+1∑
j=1

sn+1−jvn+1−jmj(K).

The Steiner point, m1(K), can also be represented as

m1(K) =
1

vn

∫
Sn−1

uh(K, u) dHn−1(u).

For more information on Steiner points, see [48, Section 5.4].

2.4 The inclusion-exclusion principle

Betke (unpublished) and McMullen [41] extended (1) to an inclusion-exclusion
principle. Let G be an abelian group.

Theorem 14 (McMullen [41]). If z : P(Zn) → G is a valuation, then for
lattice polytopes P1, . . . , Pm,

z(P1 ∪ · · · ∪ Pm) =
∑

1≤i1<···<ik≤m
1≤k≤m

(−1)k−1 z(Pi1 ∩ · · · ∩ Pik)

whenever P1 ∪ · · · ∪ Pm and all intersections of the form Pi1 ∩ · · · ∩ Pik are
lattice polytopes.
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The inclusion-exclusion formula is actually needed for cell decompositions
in this paper. We call a dissection of the n-dimensional lattice polytope Q
into n-dimensional lattice polytopes P1, . . . , Pm a cell decomposition if Pi∩Pj
is either empty or a common face of Pi and Pj for any 1 ≤ i < j ≤ m. The
faces of the cell decomposition are the faces of all Pi for i = 1, . . . ,m. Let
intQ denote the interior of Q.

Corollary 15. If z : P(Zn) → G is a valuation and Q an n-dimensional
lattice polytope, then

z(Q) =
∑
F∈F

F∩intQ6=∅

(−1)n−dim(F ) z(F ),

where F is the set of faces of a cell decomposition of Q into lattice polytopes.

Proof. Let 1P be the characteristic function of P ∈ P(Zn) and [P ](Zn) the
additive abelian group generated by characteristics functions of lattice poly-
topes. McMullen [41, Theorem 8.1(c)] established the following form of the
inclusion-exclusion principle. For any valuation z : P(Zn) → G there exists
a homomorphism [z] : [P ](Zn)→ G such that z(P ) = [z](1P ) for P ∈ P(Zn).

Hence it suffices to show that

1Q =
∑
F∈F

F∩intQ6=∅

(−1)n−dim(F )1F . (5)

Clearly, (5) is true on the complement of Q. For x ∈ Q, let Sx be the set
of faces of F that have non-empty intersection with intQ and contain x
and let Lx be the boundary complex of the set underlying Sx. For a family
of polytopes G, define χ(G) as the number of even dimensional polytopes
minus the number of odd dimensional polytopes in G. For the cell complex
Sx ∪ Lx, we obtain the Euler characteristic and χ(Sx) + χ(Lx) = 1 since the
underlying set is homeomorphic to an n-dimensional ball. This also implies
χ(Lx) = 1− (−1)n. Hence∑

F∈Sx

(−1)n−dim(F ) = (−1)nχ(Sx) = (−1)n(1− χ(Lx)),

which proves (5).
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2.5 Triangulations

Write e1, . . . , en for the standard orthonormal basis of Rn, which generates
Zn, and write o for the origin. Define T0 = {o} and Ti = [o, e1, . . . , ei] for
i = 1, . . . , n. We call a lattice simplex basic if it is obtained from Ti for some
i = 0, . . . , n by a map from SLn(Z) followed by a translation.

In addition, let [0, 1]i = [o, e1] + · · ·+ [o, ei] be the standard i-dimensional
unit cube. One of the main ideas in this paper is to relate ZTn and Z[0, 1]n

for a Minkowski valuation Z on P(Zn). In order to do that, we write Rn for
the convex hull of all vertices of [0, 1]n but o. Hence Rn ∪ Tn = [0, 1]n and
Rn ∩ Tn = [e1, . . . , en]. Since Z is a valuation, we get

Z[0, 1]n + Z[e1, . . . , en] = ZTn + ZRn. (6)

In the case of SLn(Z) equivariant and translation invariant Minkowski
valuations, we also need another specific cell decomposition involving Tn.
For the prism T̃n−1 = Tn−1 + [0, en], it will be useful to consider a cell de-

composition of T̃n−1 into n simplices S1, . . . , Sn. Setting e0 = o, we define
S1 = Tn and

Si = [e0 + en, . . . , ei−1 + en, ei−1, . . . , en−1] for i = 2, . . . , n. (7)

Note that each Si is basic and that dim(Si∩Sj) = n− 1 for i < j if and only
if j = i+ 1 (see, for example, [24, Section 2.1]).

We also require the following result (see, for example, [14, Section 6.3]).

Lemma 16. There exists a triangulation of [0, 1]n into n! basic simplices
using only the vertices of the cube such that Tn is one of these simplices.

2.6 The Betke & Kneser theorem

Betke [10] and Betke & Kneser [11] proved Theorem 2 by using suitable
dissections and complementations of lattice polytopes by lattice simplices.

Proposition 17 (Betke & Kneser [11]). For every lattice polytope P ∈ P(Zn)
there exist basic simplices S1, . . . , Sm and integers k1, . . . , km such that

z(P ) =
m∑
i=1

ki z(Si)

for all valuations z on P(Zn) with values in an abelian group.
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The following statement is a direct consequence of this proposition.

Corollary 18. If Z,Z′ : P(Zn)→ K(Rn) are SLn(Z) equivariant (or SLn(Z)
contravariant) and translation invariant Minkowski valuations such that

ZTi = Z′ Ti for i = 0, . . . , n, (8)

then Z = Z′ on P(Zn).

Proof. For v ∈ Rn, the functions P 7→ h(ZP, v) and P 7→ h(Z′ P, v) are real-
valued valuations on P(Zn). For P ∈ P(Zn), Proposition 17 implies that
there are basic simplices S1, . . . , Sm and integers k1, . . . , km such that

h(ZP, v) =
m∑
i=1

kih(ZSi, v) and h(Z′ P, v) =
m∑
i=1

kih(Z′ Si, v).

Since Z and Z′ are SLn(Z) equivariant (or SLn(Z) contravariant) and trans-
lation invariant, (8) implies that Z = Z′ on P(Zn).

2.7 Translation invariant valuations

We say that a valuation z with values in an abelian semigroup is homogeneous
of degree i ∈ N if z(kP ) = ki z(P ) for k ∈ N and P ∈ P(Zn), where N denotes
the set of non-negative integers.

McMullen [39] established the following theorem under the assumption
of the inclusion-exclusion principle contained in Theorem 14, which he later
established in [41].

Theorem 19 (McMullen). If z : P(Zn) → R is a translation invariant
valuation, then z(kP ) is a polynomial in k ∈ N of degree dim(P ) for every
P ∈ P(Zn).

As an application of Theorem 19, we consider Minkowski valuations. The
following construction goes back to [30].

Lemma 20. Let Z : P(Zn) → K(Rn) be a translation invariant Minkowski
valuation. For P ∈ P(Zn), there exists a convex body

ZnP = lim
k→∞

Z(kP )

kn
,

and Zn is a Minkowski valuation on P(Zn), which is homogeneous of degree
n. If Z is SLn(Z) equivariant or SLn(Z) contravariant, then so is Zn.

11



Proof. For v ∈ Rn, the function P 7→ h(ZP , v) is a real-valued valuation
on P(Zn), which is translation invariant as Z is translation invariant. By
Theorem 19, there exist coefficients ci(P, v) ∈ R, i = 0, . . . , n, for v ∈ Rn

and P ∈ P(Zn) such that

h(Z(kP ), v) =
n∑
i=0

ci(P, v)ki for k ∈ N.

Hence the limit cn(P, v) = limk→∞ h(Z(kP ), v)/kn exists for v ∈ Rn and
cn(P, ·) is a sublinear function on Rn. Therefore cn(P, ·) is the support func-
tion of a convex body, which we call ZnP . Since Z is a Minkowski valuation,
so is Zn. In addition, for fixed v, the function P 7→ cn(P, v) is homogeneous of
degree n in P by Theorem 19. Thus the same holds for Zn. The equivariance
follows immediately from the definition.

2.8 Transforming into a regular simplex

Because of Corollary 18, we concentrate on determining ZTn in the proof of
Theorems 4 and 11. We will make extensive use of the symmetries of ZTn.

Let GLn(R) denote the group of general linear transformations on Rn.
We write T = Tn and set T̄ = T − cen(T ), where cen(T ) is the centroid of
T . We fix a transformation α ∈ GLn(R) such that αT̄ is the regular simplex
T∗ of circumradius one,

αT̄ = [v0, . . . , vn] = T∗, (9)

where v0 = − cen(αT ) and vi = v0+αei for i = 1, . . . , n. Let Sym(T∗) denote
the group of orientation preserving isometries of the regular simplex T∗.

Note that

vi · vj =

{
1 if i = j,
− 1
n

if i 6= j.
(10)

We set
wm = v0 + · · ·+ vm for m = 0, . . . , n− 1

and obtain
F (T∗, wm) = [v0, . . . , vm],

F (T∗,−wm) = [vm+1, . . . , vn],
(11)
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and for m = 1, . . . , n− 1,

F ([v1, . . . , vn], wm) = [v1, . . . , vm],

F ([v1, . . . , vn],−wm) = [vm+1, . . . , vn].
(12)

Note that all faces of T∗ are obtained as image of F (T∗, wm) by suitable maps
from Sym(T∗) for all m = 0, . . . , n− 1.

In the equivariant case, generalized difference bodies are important for
us. A facet normal of the polytope T∗ − T∗ is a positive multiple of

∑
i∈I vi

where I is a proper subset of {0, . . . , n}. Because of (2), the same holds true
for the facet normals of s T∗ − t T∗ with s, t ≥ 0. Since (in any dimension)

s T∗ − t T∗ = [s vi − t vj : i, j = 0, . . . , n, i 6= j],

we get
s T∗ − t T∗ = [ρF (s T∗ − t T∗, wm) : ρ ∈ Sym(T∗)] (13)

for each m = 0, . . . , n − 1. Indeed, the right side is clearly contained in
s T∗ − t T∗ and it follows from (11) that each s vi − t vj for i 6= j is contained
in the right side.

3 The discrete Steiner point

For P ∈ P(Zn), let L(P ) denote the number of lattice points in P , that is,

L(P ) =
∑

x∈P∩Zn

1. (14)

The function L : P(Zn)→ Z is a valuation that is invariant with respect to
unimodular linear transformations. In addition, if z ∈ Zn, then

L(P + z) = L(P ),

that is, L is translation invariant. We call a function that is invariant with
respect to unimodular linear transformations and translations by integer vec-
tors unimodularly invariant.
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Ehrhart [15] established the following result.

Theorem 21 (Ehrhart). There exist Li : P(Zn) → Q for i = 0, . . . , n such
that

L(kP ) =
n∑
i=0

Li(P )ki

for k ∈ N and P ∈ P(Zn). For each i, the functional Li is a unimodularly
invariant valuation which is homogeneous of degree i.

Note that Ln is the n-dimensional volume and L0 is the Euler characteristic.
A special case of a more general result by McMullen [39, Theorem 6]

implies

Theorem 22 (McMullen). If P1, . . . , Pm ∈ P(Zn), then the number of lattice
points L(k1P1 + · · ·+ kmPm) is a polynomial in k1, . . . , km ∈ N.

From this, the following analogue of Remark 6.3.3 in Schneider [48] is ob-
tained.

Corollary 23. The functional L1 : P(Zn)→ Q is Minkowski additive.

Proof. For P,Q ∈ P(Zn) and k, l ∈ N, by Theorem 22 we see that L(k P+l Q)
is a polynomial in k and l. Considering the expression first as a function of
l when k = 0 and second as a function of k when l = 0, we deduce that the
linear term in L(k P + l Q) is L1(P ) k + L1(Q) l. In particular, the linear
term in the one variable polynomial L(k P +k Q) is L1(P ) k+L1(Q) k on the
one hand and by Theorem 21 we get L1(P +Q) k on the other hand. Hence
L1(P +Q) = L1(P ) + L1(Q).

In analogy to (14), for P ∈ P(Zn), we define the discrete moment vector
by

`(P ) =
∑

x∈P∩Zn

x.

The discrete moment vector ` : P(Zn)→ Zn is a valuation that is equivariant
with respect to unimodular linear transformations. In addition, if z ∈ Zn,
then

`(P + z) = `(P ) + L(P )z. (15)

In particular, ` is not translation invariant or equivariant. In the terminology
of [39], ` is an extended Zn-valuation.
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As a special case of a more general result by McMullen [39, Theorem 14]
we obtain the following result.

Theorem 24 (McMullen). There exist `i : P(Zn)→ Qn for i = 1, . . . , n+ 1
such that

`(kP ) =
n+1∑
i=1

`i(P )ki

for k ∈ N and P ∈ P(Zn). For each i, the function `i is a valuation which
is equivariant with respect to unimodular linear transformations and homo-
geneous of degree i.

We call `1(P ) the discrete Steiner point of the lattice polytope P .
A special case of a more general result by McMullen [39, Theorem 14]

implies the following result.

Theorem 25 (McMullen). If P1, . . . , Pm ∈ P(Zn), then the discrete moment
vector `(k1P1 + · · ·+ kmPm) is a polynomial in k1, . . . , km ∈ N.

From this, we deduce as in Corollary 23 the following result.

Corollary 26. The functional `1 : P(Zn)→ Qn is additive.

In the next proposition, we collect some properties of the functional `1.
We require the following lemma.

Lemma 27. If z : P(Zn)→ Rn is an SLn(Z) equivariant valuation, then

z
(
(m+ 1)Tm − cen((m+ 1)Tm)

)
= o.

Proof. First, let m = n. Note that cen((n+ 1)Tn) ∈ Zn. Set

Sn = (n+ 1)Tn − cen((n+ 1)Tn).

Since z is SLn(Z) equivariant, we obtain from α−1ραSn = Sn (with α defined
in (9)) that

α z(Sn) = ρα z(Sn)

for all ρ ∈ Sym(T∗). Thus the statement holds for m = n. The lower
dimensional case follows by considering the statement in an appropriate sub-
space.
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Proposition 28. The functional `1 : P(Zn)→ Qn is an SLn(Z) and trans-
lation equivariant valuation. If P ∈ P(Zn) is a basic simplex or centrally
symmetric, then `1(P ) = cen(P ).

Proof. That `1 : P(Zn) → Qn is an SLn(Z) equivariant valuation is part of
Theorem 24. That `1 is translation equivariant follows from Theorem 24 and
(15).

If T is anm-dimensional basic simplex, then it follows from Lemma 27 and
the translation equivariance that `1((m+ 1)T ) = cen((m+ 1)T ). As both `1
and the centroid are homogeneous of degree one, we conclude `1(T ) = cen(T ).

If P ∈ P(Zn) is centrally symmetric, then cen(P ) is the center of symme-
try of P . If x0 is a vertex of P , then its image x1 by the reflection through
cen(P ) is also a vertex. Thus x0, x1 ∈ Zn and cen(P ) = 1

2
(x0 + x1). The

unimodular map φ defined by z 7→ −z + x0 + x1 is the reflection through
cen(P ) and its only fixed point is cen(P ). Since both cen(P ) and `1(P ) are
fixed points of φ, we conclude that `1(P ) = cen(P ).

3.1 Proof of Theorem 5

That `1 : P(Zn)→ Rn is an SLn(Z) and translation equivariant valuation is
part of Proposition 28. So the following proposition concludes the proof of
the theorem. Let n ≥ 2.

Proposition 29. If z : P(Zn) → Rn is an SLn(Z) and translation equi-
variant valuation, then z = `1.

Proof. Define w : P(Zn) → Rn by w(P ) = z(P ) − `1(P ). Note that w is
an SLn(Z) equivariant and translation invariant valuation. Applying Theo-
rem 19 to w shows that if P ∈ P(Zn) and k ∈ N, then

w(kP ) =
n∑
i=0

wi(P )ki

where for each i, the function wi : P(Zn)→ Rn is an SLn(Z) equivariant and
translation invariant valuation which is homogeneous of degree i.

Lemma 27 applied with w = wi, the SLn(Z) equivariance and translation
invariance of wi imply that

wi((m+ 1)Tm) = wi((m+ 1)Tm − cen((m+ 1)Tm)) = o
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for i = 0, . . . , n. Since wi is homogeneous of degree i, we obtain wi(Tm) = o
for i = 0, . . . , n. Thus Corollary 18 implies that w(P ) = o for P ∈ P(Zn). In
particular, z(P ) = `1(P ) for any P ∈ P(Zn).

3.2 Proof of Theorem 7

Since any additive function on P(Zn) is a valuation, Corollary 26 implies the
statement of the theorem.

4 Contravariant valuations

In this section, we first prove Theorem 11, that is, we prove that for every
SL2(Z) contravariant and translation invariant Minkowski valuation Z on
P(Z2), there are a, b ≥ 0 such that ZP = a ρπ/2(P − `1(P )) + b ρπ/2(−P +
`1(P )) for every P ∈ P(Z2) and we prove for n ≥ 3 that for every SLn(Z)
contravariant and translation invariant Minkowski valuation Z on P(Zn),
there is c ≥ 0 such that Z = cΠ. Second, we prove Theorem 12.

Note that a simple consequence of the symmetry properties of Tn and the
SLn(Z) contravariance of Z is the following result.

Lemma 30. Let Z : P(Zn)→ K(Rn) be an SLn(Z) contravariant and trans-
lation invariant Minkowski valuation. If ZTn 6= {o}, then o ∈ int(ZTn).

4.1 Lower dimensional polytopes

The next lemma was proved in [19, 28] for SLn(R) equivariant (and homo-
geneous) valuations on P(Rn).

Lemma 31. Let Z : P(Zn)→ K(Rn) be an SLn(Z) contravariant and trans-
lation invariant Minkowski valuation and let P ∈ P(Zn).

(i) If dim(P ) ≤ n− 2, then ZP = {o}.

(ii) There exists c ≥ 0 (depending on Z) such that if dim(P ) = n − 1 and
w is a unit normal to aff P , then ZP = c |P | [−w,w].
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Proof. By translation invariance and SLn(Z) contravariance, we may assume
that spanP = span{e1, . . . , ed}, where d = dim(P ) ≤ n− 1.

First we claim that

ZP ⊂ span{ej} for j = d+ 1, . . . , n. (16)

To simplify the notation, let j = n in (16).
For j ∈ Z and k ∈ {1, . . . , n − 1}, we define φjk ∈ SLn(Z) by φjkei = ei

if i 6= n, and φjken = jek + en. It follows that φjkP = P . If we have
x =

∑n
i=1 tiei ∈ ZP , then

φ−tjkx = (tn − j tk)en +
n−1∑
i=1

tiei. (17)

Since φ−tjk ZP = ZP , the vector φ−tjkx is contained in a bounded set. Since
k ∈ {1, . . . , n − 1} and j ∈ Z are arbitrary in (17), we conclude that t1 =
· · · = tn−1 = 0. Thus (16) and therefore also (i) are proved.

To prove (ii), we identify span{e1, . . . , en−1} with Rn−1. By (16), there
exist real z1(P ) ≤ z2(P ) such that ZP = [z1(P ), z2(P )]en for a lattice poly-
tope P ∈ P(Zn−1). In particular, z1 and z2 are SLn−1(Z) and translation
invariant valuations. Let ai = zi(Tn−1)/|Tn−1|. Since z1(S) = z2(S) = 0 by
(i) if S is a basic simplex of dimension at most (n−2), the (n−1)-dimensional
version of Corollary 18 implies that zi(P ) = ai |P | for P ∈ P(Zn−1).

To relate a1 and a2 for n ≥ 3, we consider φ ∈ SLn(Z) defined by φe1 = e2,
φe2 = e1, φen = −en and φei = ei if 2 < i < n. Then φTn−1 = Tn−1 and
φ−t = φ. Hence c = a2 = −a1 ≥ 0. If n = 2, then the SL2(Z) and translation
invariance imply for ψ ∈ SL2(Z) defined by ψe1 = −e1 and ψe2 = −e2 that

ZT1 = Z(T1 − e1) = Z(ψT1) = ψ ZT1.

Thus again c = a2 = −a1 ≥ 0.

Combining Lemma 31 and the inclusion-exclusion property leads to the
following result.

Corollary 32. Let Z : P(Zn) → K(Rn) be an SLn(Z) contravariant and
translation invariant Minkowski valuation. If P1, . . . , Pk ∈ P(Zn) form a cell
decomposition of an n-dimensional lattice polytope, then

Z(P1 ∪ · · · ∪ Pk) +
∑

dim(Pi∩Pj)=n−1

Z(Pi ∩ Pj) =
k∑
i=1

ZPi.
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4.2 Simple valuations

A valuation Z on P(Zn) is called simple, if ZP = {o} for every lower dimen-
sional P ∈ P(Zn).

Lemma 33. Let Z : P(Zn)→ K(Rn) be an SLn(Z) contravariant and trans-
lation invariant valuation. If Z is simple, then Z[0, 1]n = {o}.

Proof. First, we consider the case n = 2 to show the idea. In this case [0, 1]2

can be triangulated into T2 and T ′2 = e1 + e2 − T2, and hence

Z[0, 1]2 = ZT2 + ZT ′2.

The SL2(Z) contravariance and the translation invariance of Z imply that

ZT ′2 = −ZT2.

Let φ ∈ SL2(Z) be defined by φe1 = e2−e1, φe2 = −e1. We have φT2 = T2−e1
and φT ′2 = T ′2−2e1. Hence Z[0, 1]2 is invariant under φ−t. In addition, define
ψ ∈ SL2(Z) by ψe1 = −e2 and ψe2 = e1. Note that Z[0, 1]2 is invariant under
ψ = ψ−t.

Suppose that there exists x = (x1, x2) ∈ Z[0, 1]2\{o} and seek a contra-
diction. By the ψ invariance of Z[0, 1]2, we may assume that x2 6= 0. We
observe that for ϑ = ψ ◦ φ−t, we have

ϑx = (x1 − x2, x2) ∈ Z[0, 1]2.

Since Z[0, 1]2 is invariant under ϑk for any k ≥ 1, it follows that the points
(x1 − kx2, x2) ∈ Z[0, 1]2 for any k ≥ 1. This contradicts the boundedness of
Z[0, 1]2.

Next, let n ≥ 3 and let

Q = T2 +
n∑
i=3

[o, ei] and Q′ = T ′2 +
n∑
i=3

[o, ei].

We define η ∈ SLn(Z) by ηe1 = −e1, ηe2 = −e2 and ηej = ej for j = 3, . . . , n.
This map satisfies Q′ = e1 + e2 + ηQ and η−t = η. Hence

ZQ′ = η ZQ. (18)
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In addition, let γ ∈ SLn(Z) be defined by γe1 = e2 − e1, γe2 = −e1, and
γej = ej for j = 3, . . . , n. Thus

γ−t(x1, x2, . . . , xn) = (−x2, x1 − x2, x3, . . . , xn). (19)

Since γQ = Q− e1 and γ commutes with η, it follows from (18) that

γ−t ZQ = ZQ and γ−t ZQ′ = ZQ′. (20)

We observe that Q and Q′ form a polytopal cell decomposition of [0, 1]n, and
hence Z[0, 1]n = ZQ+ ZQ′. We conclude from (20) that

γ−t Z[0, 1]n = Z[0, 1]n.

Finally, suppose that there exists x = (x1, . . . , xn) ∈ Z[0, 1]n\{o}, and
seek a contradiction. For i,m ∈ {1, . . . , n} with i 6= m, define ψim ∈ SLn(Z)
by setting ψimei = em, ψimem = −ei and ψimej = ej for j 6= i,m. By the
ψi,i+1 invariance of [0, 1]n for i = 1, . . . , n − 1, we may assume that x2 6= 0.
We deduce by (19) that ϑ = ψ21 ◦ γ−t satisfies

ϑx = (x1 − x2, x2, x3, . . . , xn) ∈ Z[0, 1]n.

Since Z[0, 1]n is invariant under ϑk for any k ≥ 1, it follows that

(x1 − kx2, x2, x3, . . . , xn) ∈ Z[0, 1]n

for any k ≥ 1. This contradicts the boundedness of Z[0, 1]n.

4.3 The cube

Let n ≥ 2 and recall that the constant c was defined in Lemma 31.

Lemma 34. If Z : P(Zn) → K(Rn) is an SLn(Z) contravariant and trans-
lation invariant Minkowski valuation, then

Z(k[0, 1]n) + c (kn − kn−1) Π[0, 1]n = kn Z[0, 1]n

for k ∈ N.
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Proof. For k ≥ 1, we subdivide k[0, 1]n into a cell decomposition of kn unit
cubes, and hence all m-dimensional faces are unit cubes of dimension m.
For i = 1, . . . , n, there exist kn−1(k − 1) facets of the cell decomposition
which intersect the interior of k[0, 1]n and whose unit normal vector is ei.
We deduce from Lemma 31 and Corollary 32 that

Z(k[0, 1]n) + (kn − kn−1)
n∑
i=1

c [−ei, ei] = kn Z[0, 1]n.

The definition of the projection body, (3), gives [−c, c]n = cΠ[0, 1]n.

Proposition 35. If Z : P(Zn) → K(Rn) is an SLn(Z) contravariant and
translation invariant Minkowski valuation, then Z[0, 1]n = cΠ[0, 1]n .

Proof. Consider the SLn(Z) contravariant and translation invariant valuation
Zn defined in Lemma 20. Since Zn is homogeneous of degree n, we deduce
from Lemma 34 applied to Zn that Zn is simple. Lemma 33 implies that
Zn[0, 1]n = {o}. In particular, we have limk→∞ Z(k[0, 1]n)/kn = {o}. Next
we apply Lemma 34 to Z. Dividing both sides by kn and letting k → ∞
implies that Z[0, 1]n = cΠ[0, 1]n.

4.4 The planar case

It is easy to see that

ρπ/2 φ ρ−π/2 = φ−t for any φ ∈ SL2(R).

As in [30], we deduce the following result.

Lemma 36. An operator Z : P(Z2) → K(R2) is SL2(Z) equivariant if and
only if ρπ/2 Z : P(Z2)→ K(R2) is SL2(Z) contravariant.

For the next lemma, recall that for given Z, the constant c was defined in
Lemma 31.

Lemma 37. If Z : P(Z2) → K(R2) is an SL2(Z) contravariant and trans-
lation invariant Minkowski valuation, then there exist a, b ≥ 0 such that

ZT2 = a ρπ/2(T2 − cen(T2)) + b ρπ/2(−T2 + cen(T2))

and a+ b = 2c.
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Proof. We dissect [0, 1]2 into the triangles T2 and T ′2 = e1 + e2 − T2. Since Z
is a valuation,

Z[0, 1]2 + Z(T2 ∩ T ′2) = ZT2 + ZT ′2.

Combining Lemma 31 and Proposition 35 leads to

c [−1, 1]2 + c [−(e1 + e2), e1 + e2] = ZT2 + ZT ′2. (21)

Therefore ZT2 is a Minkowski summand of the hexagon on the left hand side.
If c = 0, then ZT2 = {o}, and Lemma 31 implies that Z is simple. Therefore
ZP = {o} for all P ∈ P2. So let c > 0. Since Z is SL2(Z) contravariant, we
have ZT ′2 = −ZT2 and (21) implies that ZT2 is a two-dimensional polygon
whose sides are parallel to e1 or e2 or e1 + e2. In addition, let φ ∈ SL2(Z) be
defined by φe1 = e2 − e1 and φe2 = −e1. Then ZT2 is invariant under φ−t.
Since φ permutes e1,−e1 + e2,−e2 on the one hand and −e1, e1 − e2, e2 on
the other hand, we have h(ZT2, e1) = h(ZT2,−e1 + e2) = h(ZT2,−e2) and
h(ZT2,−e1) = h(ZT2, e1 − e2) = h(ZT2, e2). Thus it is easy to check that

ZT2 = a ρπ/2(T2 − cen(T2)) + b ρπ/2(−T2 + cen(T2))

for suitable a, b ≥ 0. From (21) we obtain a+ b = 2c.

Proof of Theorem 11 in the planar case. It follows from Proposition 28
that P 7→ P − `1(P ) and P 7→ −P + `1(P ) are SL2(Z) equivariant and trans-
lation invariant Minkowski valuations on P(Z2). We deduce from Lemma 36
that P 7→ ρπ/2(P − `1(P )) and P 7→ ρπ/2(−P + `1(P )) are SL2(Z) contra-
variant and translation invariant Minkowski valuations.

Since `1(Ti) = cen(Ti) for i = 1, 2 by Proposition 28, combining Lemma 37,
Lemma 31 and Corollary 18 shows that any SL2(Z) contravariant and trans-
lation invariant Minkowski valuation Z is of the form

ZP = a ρπ/2(P − `1(P )) + b ρπ/2(−P + `1(P )),

where a, b ≥ 0.

4.5 Proof of Theorem 11 for n ≥ 3

For Minkowski summands, we need the following (probably well-known)
statement, for which we have not found a reference. Let n ≥ 3.

22



Lemma 38. Let v1, . . . , vm be vectors in Rn such that any n of these vectors
are linearly independent. If P is an n-dimensional polytope such that every
edge of P is parallel to some vi, then P is a translate of

∑m
i=1 ai [o, vi] with

ai ≥ 0.

Proof. A polytope is a zonotope, if all its two-dimensional faces are centrally
symmetric (cf. [48, Theorem 3.5.2]). Thus it is sufficient to show that P has
centrally symmetric two-dimensional faces.

We may assume that P has an edge parallel to vi for every i = 1, . . . ,m.
Let [x, y] be an edge of P parallel to vm where y = x+ amvm for am > 0. We
claim that for any vertex w of πvmP , there exists a vertex z of P such that

πvmz = w and z + amvm is a vertex of P . (22)

Since there is a path of the edge graph of πvmP connecting πvmx and w, we
may assume that [w, πvmx] is an edge of πvmP . Let L be the span of vm and
w − πvmx. It follows that (x + L) ∩ P is a two-dimensional face of P . As
no three vectors from V = {v1, . . . , vm} are linearly dependent, we deduce
that for some i ∈ {1, . . . ,m − 1} we have L ∩ V = {vi, vm}. As the two-
dimensional face F = (x+ L) ∩ P has only edges parallel to vi and vm, it is
a parallelogram and hence centrally-symmetric.

Let c ≥ 0 be the constant of Lemma 31. First we use the triangulation
S1, . . . , Sn! of [0, 1]n into basic simplices given by Lemma 16 with S1 = Tn.
If dim(Si ∩ Sj) = n − 1, then Lemma 31 provides a non-zero pij ∈ Rn such
that Z(Si ∩ Sj) = c[−pij, pij]. Applying Corollary 32 and Proposition 35 to
the cell decomposition of [0, 1]n, we deduce that

[−c, c]n +
∑

dim(Si∩Sj)=n−1

c [−pij, pij] =
n!∑
i=1

ZSi. (23)

If c = 0, then (23) implies that ZTn = ZS1 = {o} and we conclude from
Lemma 31 and Corollary 18 that ZP = {o} for P ∈ P(Zn).

Assume that c > 0. Hence the left hand side of (23) is full dimensional.
Since ZSi = φ−ti ZTn for φi ∈ SLn(Z) with Si = φiTn, it follows that ZTn 6=
{o}. We deduce from Lemma 30 that dim(ZTn) = n.

We consider the decomposition of [0, 1]n into Tn and Rn from (6). For
w = −e1 − · · · − en, Lemma 31 implies that

Z[e1, . . . , en] =
c

(n− 1)!
[−w,w].
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Therefore it follows from Proposition 35 that (6) can be written in the form

[−c, c]n +
c

(n− 1)!
[−w,w] = ZTn + ZRn. (24)

We deduce from (24) right away that ZTn is a polytope. Each edge of the
left side of (24) is parallel to either w or to an ei, i = 1, . . . , n. As any n of
the vectors w, e1, . . . , en are linearly independent, (24) and Lemma 38 imply
that

ZTn is a translate of a0[o, w] + a1[o, e1] + · · ·+ an[o, en] (25)

where ai ≥ 0 for i = 0, . . . , n.
Let α be defined as in (9) and let ρ ∈ Sym(T∗). Note that the map

α−1ρα ∈ SLn(Z). Hence, by the SLn(R) contravariance of Z,

α−t ZTn = ρα−t ZTn.

Since this holds for all ρ ∈ Sym(T∗), it follows that o = cen(α−t ZTn) =
cen(ZTn). Since ρ ∈ Sym(T∗) permutes the normal vectors of T∗, it permutes
α−tw, α−te1, . . . , α

−ten and we obtain a0 = · · · = an in (25). Taking into
account (3), we conclude that ZTn = c0 ΠTn for c0 > 0.

To determine c0, we deduce from (23) that

[−c, c]n +
∑

dim(Si∩Sj)=n−1

c [−pij, pij] = c0

n!∑
i=1

φ−ti ΠTn.

The SLn(Z) contravariant and translation invariant Minkowski valuation cΠ
also satisfies (23). Hence c0 = c. Thus Theorem 11 follows from Corollary 18.

4.6 Proof of Theorem 12

First, let n = 2. Propositions 17 and 28 imply that 6 `1(P ) ∈ Z2 for all
P ∈ P(Z2). Hence, for integers a, b ≥ 0 with b − a ∈ 6Z, the operator Z
defined by

P 7→ a ρπ/2(P − `1(P )) + b ρπ/2(−P + `1(P ))

maps P(Z2) to P(Z2). For the reverse direction, let Z : P(Z2) → P(Z2) be
an SL2(Z) contravariant and translation invariant Minkowski valuation. By
Theorem 11, we know that there are a, b ≥ 0 such that

ZP = a ρπ/2(P − `1(P )) + b ρπ/2(−P + `1(P ))
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for every P ∈ P(Z2). Since ZP ∈ P(Z2) for all P ∈ P(Z2), setting P = T1
shows that a + b ∈ 2Z and setting P = T2 shows that 2a + b, a + 2b ∈ 3Z.
Thus a, b ∈ Z and b− a ∈ 6Z.

Next, let n ≥ 3. By (3) and (4), the projection body of P ∈ P(Zn) with
facet normals u1, . . . , um and corresponding facets F1, . . . , Fm is

m∑
i=1

|Fi| [o, ui].

Since every facet can be triangulated and the (n− 1)-dimensional volume of
an (n−1)-dimensional lattice simplex is an integer multiple of 1/(n−1)!, we
have P 7→ cΠP with c ∈ (n−1)!Z is an operator that maps P(Zn) to P(Zn).
For the reverse direction, let Z : P(Zn)→ P(Zn) be an SLn(Z) contravariant
and translation invariant Minkowski valuation. By Theorem 11, we know
that there is c ≥ 0 such that ZP = c ΠP for every P ∈ P(Zn). Since
ΠTn−1 = 1/(n− 1)! [−en, en], we conclude that c ∈ (n− 1)!Z.

5 Equivariant valuations

For a, b ≥ 0, define Za,b : P(Zn)→ K(Rn) by

Za,b P = a(P − `1(P )) + b(−P + `1(P )). (26)

Note that Za,b is an SLn(Z) equivariant and translation invariant Minkowski
valuation on P(Zn). In this section, we prove Theorem 4, that is, we prove
that for every SLn(Z) equivariant and translation invariant Minkowski valu-
ation Z on P(Zn), there are a, b ≥ 0 such that Z = Za,b.

We deduce from Theorem 11 in the planar case and from Lemma 36 the
planar case of Theorem 4.

Proposition 39. If Z : P(Z2) → K(R2) is an SL2(Z) equivariant and
translation invariant Minkowski valuation, then there exist a, b ≥ 0 such that
Z = Za,b.

As in the contravariant case, the following lemma is a simple consequence
of the symmetry properties of Tn and the equivariance of Z.

Lemma 40. Let Z : P(Zn) → K(Rn) be an SLn(Z) equivariant and trans-
lation invariant Minkowski valuation. If ZTn 6= {o}, then o ∈ int(ZTn).
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The proof of the following result is analogous to the proof of Lemma 33
in the contravariant case.

Lemma 41. Let Z : P(Zn) → K(Rn) be an SLn(Z) equivariant and trans-
lation invariant valuation. If Z is simple, then Z[0, 1]n = {o}.

5.1 Lower dimensional polytopes

In this section, we derive results on the image under a Minkowski valuation
of lower dimensional lattice polytopes. The next lemma was proved in [19,30]
for SLn(R) equivariant (and homogeneous) valuations on P(Rn). Let n ≥ 2.

Lemma 42. If Z : P(Zn)→ K(Rn) is an SLn(Z) equivariant and translation
invariant Minkowski valuation, then ZP is contained in the subspace parallel
to aff P .

Proof. By translation invariance and SLn(Z) equivariance, we may assume
that spanP = span{e1, . . . , ed}, where d = dim(P ) ≤ n− 1.

For j ∈ Z and k ∈ {d+1, . . . , n}, we define φjk ∈ SLn(Z) by φjkei = ei for
i 6= k and φjkek = ek + je1. It follows that φjkP = P . If x =

∑n
i=1 tiei ∈ ZP ,

then

φjkx = (t1 + jtk)e1 +
n∑
i=2

tiei. (27)

Since φjk ZP = ZP , the convex body ZP is bounded, and k ∈ {d+1, . . . , n}
and j ∈ Z are arbitrary in (27), we conclude that td+1 = · · · = tn = 0.

5.2 The cube

Proposition 43 is the main result of this section. Let n ≥ 2.

Proposition 43. If Z : P(Zn) → K(Rn) is an SLn(Z) equivariant and
translation invariant Minkowski valuation, then there exists c ≥ 0 such that

Z[0, 1]m = [−c, c]m

for m = 0, . . . , n.

The critical step to prove Proposition 43 is the following statement where
[a, b]0 = {o} for a ≤ b.
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Lemma 44. If Z : P(Zn)→ K(Rn) is an SLn(Z) equivariant and translation
invariant Minkowski valuation and there exists c ≥ 0 such that Z[0, 1]m =
[−c, c]m for every m ≤ n− 1, then

Z(k[0, 1]n) + kn[−c, c]n = kn Z[0, 1]n + k [−c, c]n

for k ∈ N.

Proof. For k ≥ 1, we subdivide k[0, 1]n into a cell decomposition with kn

unit cubes. We observe that for m = 1, . . . , n− 1,∑
1≤i1<···<im≤n

m∑
j=1

[−eij , eij ] =

(
n− 1

m− 1

)
[−1, 1]n,

and for m = 0, . . . , n− 1, there exist km(k − 1)n−m translates of [0, 1]m that
are faces of the cell decomposition intersecting the interior of k[0, 1]n. Since
Z[0, 1]m = [−c, c]m for m ≤ n− 1, we have Z{o} = {o}, and we deduce from
Corollary 15 that for v ∈ Rn

h( Z(k[0, 1]n), v) =

= knh(Z[0, 1]n, v) +
n−1∑
m=1

(−1)n−m
(
n− 1

m− 1

)
km(k − 1)n−m h([−c, c]n, v)

= knh(Z[0, 1]n, v) + k
n−2∑
j=0

(
n− 1

j

)
kj(1− k)n−1−j h([−c, c]n, v)

= knh(Z[0, 1]n, v) + k((k + 1− k)n−1 − kn−1)h([−c, c]n, v)

= knh(Z[0, 1]n, v)− knh([−c, c]n, v) + k h([−c, c]n, v).

Thus the lemma is proved.

Proof of Proposition 43. We prove the statement by induction on n ≥ 2.
The case n = 2 follows from Proposition 39 and the fact that `1([0, 1]m) is
the centroid of [0, 1]m by Proposition 28.

Let n ≥ 3 and assume that Proposition 43 holds for m ≤ n− 1. We con-
sider the SLn(Z) equivariant and translation invariant Minkowski valuation
Zn defined in Lemma 20. Since Zn is homogeneous of degree n, we deduce
from Lemma 44 applied to Zn that Zn[0, 1]m = {o} for m ≤ n− 1. Hence Zn
is simple and we obtain by Lemma 41 that

Zn[0, 1]n = lim
k→∞

Z(k[0, 1]n)

kn
= {o}.
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Next, we apply Lemma 44 to Z. Dividing both sides by kn, and letting
k →∞ shows that Z[0, 1]n = [−c, c]n.

5.3 The prism

Let Z : P(Zn) → K(Rn) be an SLn(Z) equivariant and translation invariant
Minkowski valuation. Let n ≥ 3.

Lemma 45. If S ∈ P(Zn−1) is a basic simplex and k ∈ N, then

cen(Z(S + [o, ken])) = o.

Proof. We may assume that S = Tm for some m = 0, . . . , n− 1. If m = 0, 1,
then φ(Tm + [0, ken]) is a translate of Tm + [0, ken] where φ ∈ SLn(Z) is
defined by φe1 = −e1, φen = −en and φej = ej for j = 2, . . . , n−1. Since we
have Z(Tm + [0, ken]) ⊂ span{e1, en} by Lemma 42, we deduce the statement
of the lemma for m = 0, 1.

If m ≥ 2, then Z(Tm + [0, ken]) ⊂ span{e1, . . . , em, en} by Lemma 42.
Hence we may assume that m = n− 1. Let α′ ∈ GLn(R) be the transforma-
tion that leaves en fixed and acts on Rn−1 as α defined in Section 2.8. Then
α′ Z(Tn−1 +[o, ken]) is invariant under the maps ρ′ that leave en fixed and are
orientation preserving isometries of the regular simplex [v0, . . . , vn−1] ⊂ Rn−1

defined in Section 2.8. Thus the first (n − 1) coordinates of the centroid of
α′ Z(Tn−1 + [o, ken]) vanish. In addition, Z(Tn−1 + [o, ken]) is invariant un-
der the map ψ ∈ SLn(Z) defined by ψen = −en, ψe1 = e2, ψe2 = e1, and
ψej = ej for 2 < j < n. This completes the proof of the lemma.

Recall that T̃n−1 = Tn−1 + [0, en].

Lemma 46. Assume that Theorem 4 holds true in dimension (n − 1) and
hence that there exist a, b ≥ 0 such that ZP = Za,b P for every lower dimen-
sional P ∈ P(Zn). Then

Z T̃n−1 = Za,b T̃n−1.

Proof. We define the convex body Z′ P ⊂ Rn−1 for P ∈ P(Zn−1) by

Z′ P = πen Z(P + [o, en]).
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Then Z′ : P(Zn−1) → K(Rn−1) is an SLn−1(Z) equivariant and translation
invariant Minkowski valuation. Since Theorem 4 holds in dimension (n− 1),
there exist a′, b′ ≥ 0 such that

Z′ P = Za′,b′ P for P ∈ P(Zn−1). (28)

By Proposition 43, we have

[−c, c]n−1 = Z[0, 1]n−1 = Z′[0, 1]n−1 = Za′,b′ [0, 1]n−1.

Combined with the assumption that ZP = Za,b P for every lower dimensional
P ∈ P(Zn) and Proposition 28 this gives

a′ + b′ = 2c = a+ b. (29)

For m = (n−1)!, we consider the triangulation S ′1, . . . , S
′
m of [0, 1]n−1 into

(n− 1)-dimensional basic simplices with S ′1 = Tn−1 provided by Lemma 16.

For i = 1, . . . ,m, set S̃ ′i = S ′i + [o, en]. Note that the prisms S̃ ′1, . . . , S̃
′
m

form a cell decomposition of [0, 1]n. Let F denote the family of faces of
the cell decomposition intersecting the interior of [0, 1]n. It follows from the
inclusion-exclusion principle that

Z[0, 1]n +
∑
F∈F

n−dim(F ) odd

ZF =
∑
F∈F

n−dim(F ) even

ZF. (30)

We relate Z to Za,b. Note that Za,b in place of Z also satisfies (30). Since
Z[0, 1]n = Za,b[0, 1]n by Proposition 43 and (29), and ZF = Za,b F for lower
dimensional lattice polytopes F ∈ P(Zn), we deduce that

m∑
i=1

Z S̃ ′i =
m∑
i=1

Za,b S̃
′
i. (31)

For i = 1, . . . ,m, we have

Za,b S̃
′
i = a(S ′i − cen(S ′i)) + b(−S ′i + cen(S ′i)) + c [−en, en]

by the Minkowski linearity of `1, Proposition 28 and (29). Hence the right
hand side of (31) is of the form Q + cm[−en, en] for a suitable (n − 1)-

dimensional polytope Q ⊂ Rn−1. It follows from (31) that Z T̃n−1 = Z S̃ ′1 is
an n-dimensional polytope that is a summand of Q + cm[−en, en]. Hence,
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because of (2), the facet outer normals of Z T̃n−1 are either parallel or ortho-
gonal to en. Hence, by Lemma 45, there exists c0 > 0 such that

Z T̃n−1 = Z′ Tn−1 + c0[−en, en].

By (28) and Proposition 28, we therefore get

Z T̃n−1 = a′(Tn−1 − cen(Tn−1)) + b′(−Tn−1 + cen(Tn−1)) + c0[−en, en].

Using the SLn(Z) equivariance and translation invariance of Z, we deduce
that

Z S̃ ′i = a′(S ′i − cen(S ′i)) + b′(−S ′i + cen(S ′i)) + c0[−en, en]

for i = 1, . . . ,m. As
∑m

i=1 Z S̃ ′i = Q + cm[−en, en], we conclude that c0 = c.
Thus (29) implies

Z T̃n−1 = a′(T̃n−1 − cen(T̃n−1)) + b′(−T̃n−1 + cen(T̃n−1)). (32)

To prove that a = a′ and b = b′, we first assume that b ≥ b′. Define the
vector v = e1 + · · · + en−1 and set h0 = h(Tn−1 − cen(Tn−1), v) > 0. Note
that

h(−Tn−1 + cen(Tn−1), v) = (n− 1)h0

and

h(−T̃n−1 + cen(T̃n−1), v) = (n− 1)h0 and h(T̃n−1 − cen(T̃n−1), v) = h0.

We consider the translation invariant real valued valuation P 7→ h(ZP , v) on
P(Zn) and for k ≥ 2, the cell decomposition of Tn−1+[o, ken] into k translates

of T̃n−1. The cell decomposition has (k − 1) faces intersecting the interior of
Tn−1 + [o, ken], each a translate of Tn−1. Since cen(Z(Tn−1 + [o, ken])) = o
by Lemma 45, we have h(Z(Tn−1 + [o, ken]), v) ≥ 0. By first applying the
inclusion-exclusion principle (Corollary 15), second that ZTn−1 = Za,b Tn−1
and (32), and third that a′ − a = b− b′, which follows from (29), we deduce
that

0 ≤ h(Z(Tn−1 + [o, ken]), v)

= k h(Z T̃n−1, v)− (k − 1)h(ZTn−1, v)

=
(
ka′ + k(n− 1)b′ − (k − 1)a− (k − 1)(n− 1)b

)
h0

=
(
a′ + (n− 1)b′ − (k − 1)(n− 2)(b− b′)

)
h0.
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As b ≥ b′ and the last expression is non-negative for any large k, we conclude
that b = b′. In turn, a = a′ follows from (29).

If b ≤ b′, and hence a ≥ a′, we use essentially the same argument, only
the valuation P 7→ h(ZP ,−v) replaces P 7→ h(ZP , v), and we exchange the
role of a and b.

We deduce from Lemma 46 the following result.

Corollary 47. Let Z and the constants a, b be as in Lemma 46. If S1, . . . , Sn
with S1 = Tn are basic simplices triangulating Tn−1 + [0, en], then

n∑
i=1

Za,b Si =
n∑
i=1

ZSi.

5.4 The faces of ZTn

Let n ≥ 3. Let Z : P(Zn)→ K(Rn) be an SLn(Z) equivariant and translation
invariant Minkowski valuation and assume that Theorem 4 holds in Rn−1.
Hence, there exist a, b ≥ 0 such that

ZP = Za,b P (33)

for every lower dimensional P ∈ P(Zn). Note that Proposition 43 implies
that 2c = a+ b.

If a + b = 0, then Z is simple. Hence, Lemma 41 implies that ZP = {o}
for P ∈ P(Zn). Thus the proof of Theorem 4 is complete in this case.

Lemma 48. If a + b > 0, then ZTn is an n-dimensional polytope with the
property that any of its facet normals is also a facet normal of Tn − Tn.

Proof. We use the triangulation S1, . . . , Sn! of [0, 1]n into basic simplices given
by Lemma 16 with S1 = Tn. Write F ′ for the faces of the cell decomposition
that intersect the interior of [0, 1]n and have dimension at most n − 1. We
deduce from the inclusion-exclusion principle that

Z[0, 1]n +
∑
F∈F′

n−dim(F ) odd

ZF =
n!∑
i=1

ZSi +
∑
F∈F′

n−dim(F ) even

ZF. (34)
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Note that (34) also holds for Za,b in place of Z. Here Za,b F = ZF for
F ∈ F ′ by (33). Therefore (34) combined with a+ b = 2c gives

n!∑
i=1

Za,b Si =
n!∑
i=1

ZSi. (35)

We deduce from a + b > 0 that the left hand side of (35) is n-dimensional.
Since we have Si = φi Tn with φi ∈ SLn(Z) and ZSi = φi ZTn, it follows that
ZTn 6= {o}. We deduce from Lemma 40 that ZTn is n-dimensional.

We look at the decomposition of the unit cube [0, 1]n into Tn and the
remaining part, Rn. Note that Tn ∩Rn = [e1, . . . , en]. Using Proposition 43,
(33), and the valuation property of Z, we get

ZTn is a summand of Q = [−c, c]n + a [e1, . . . , en]− b [e1, . . . , en]. (36)

We deduce right away that ZTn is a polytope.
Moreover, (2) and (36) imply that any facet normal of ZTn is a facet

normal of Q. Since Tn−Tn is o-symmetric, (2) implies that it is now sufficient
to show that the affine hull of any facet F of [−1, 1]n+[e1, . . . , en]−[e1, . . . , en]
is parallel to a facet of Tn− Tn. Now F = F0 + F1− F2 where F0 is a face of
[−1, 1]n, and F1, F2 are faces of [e1, . . . , en]. In particular,

d0 + d1 + d2 ≥ n− 1

where di = dim(Fi). If d0 = 0, then aff F is a translate of aff[e1, . . . , en]
and hence aff F is parallel to a facet of Tn − Tn. Therefore we may assume
that d0 > 0, and, without loss of generality, that aff F0 is a translate of
span{e1, . . . , ed0}. Let Vi ⊂ {e1, . . . , en} be the set of vertices of Fi for i = 1, 2.
Since

d0 + card(V1) + card(V2) = d0 + d1 + d2 + 2 ≥ n+ 1,

we have {e1, . . . , ed0}∩(V1∪V2) 6= ∅, where card stands for cardinality. Hence
we may assume that e1 ∈ V1 and {e1, . . . , ed0} ∪ V1 = {e1, . . . , em}, where
m ≤ d0 + d1. It follows from e1 ∈ V1 that aff F0 + aff F1 is a translate of

span{ei : i = 1, . . . , d0}+ span{ei − e1 : ei ∈ V1} = span{ei : i = 1, . . . ,m}.

Therefore aff F is a translate of the affine hull of the facet [o, e1, . . . , em]−F2

of Tn − Tn.
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5.5 More on ZTn

As in Section 2.8, set T = Tn and αT̄ = T∗. Define Q∗ = αZT . It follows
from Lemma 48 that Q∗ is a polytope and that any of its facet normals is
a positive multiple of

∑
i∈I vi for a proper subset I of {0, . . . , n}. Since Z

is SLn(Z) equivariant and translation invariant, Q∗ is invariant under maps
from Sym(T∗). In particular, the orbits of the facet normals of Q∗ of this
action are characterized by the cardinality of I.

Lemma 49. For m = 1, . . . , n − 2, there exist constants am, bm ≥ 0 and
sm ≥ 0 such that

F (Q∗, wm) = amF (T∗, wm) + bmF (−T∗, wm) + smwm.

Proof. By Proposition 43 and (33), the decomposition (6) implies that

Q∗ is a summand of (a+b)
n∑
i=1

[o, vi−v0]+a [v1, . . . , vn]−b [v1, . . . , vn]. (37)

Let m ∈ {1, . . . , n− 2}. Since

F (
n∑
i=1

[o, vi − v0], wm) =
n∑
i=1

F ([o, vi − v0], wm) =
m∑
i=1

[o, vi − v0],

and

F (
n∑
i=1

[o, vi − v0],−wm) =
n∑
i=1

F ([o, vi − v0],−wm) =
n∑

i=m+1

[o, vi − v0],

we deduce from (12) and (37) that F (Q∗, wm) is a summand of

(a+ b)
m∑
i=1

[o, vi − v0] + a[v1, . . . , vm]− b [vm+1, . . . , vn]

and that F (Q∗,−wm) is a summand of

(a+ b)
n∑

i=m+1

[o, vi − v0] + a[vm+1, . . . , vn]− b [v1, . . . , vm].

Lemma 13 combined with (11) implies that

F (Q∗, wm) = Lm − bmF (T∗,−wm) (38)
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where 0 ≤ bm ≤ b and Lm is a convex polytope contained in a translate of
aff(v0, . . . , vm) and that

F (Q∗,−wk) = a′kF (T∗,−wk) + L′k (39)

where 0 ≤ a′k ≤ a and L′k is a convex polytope contained in a translate
of aff(v0, . . . , vk). For ρ ∈ Sym(T∗) suitable and k = n − m − 1, we have
ρQ∗ = Q∗ and ρ(−wk) = wm. Hence (39) implies

F (Q∗, wm) = a′n−m−1F (T∗, wm) + ρL′n−m−1 (40)

where ρL′n−m−1 is contained in a translate of aff(vm+1, . . . , vn). Combin-
ing (38) and (40) with Lemma 13 shows that F (Q∗, wm) is a translate of
amF (T∗, wm) + bmF (−T∗, wm) with am = a′n−m−1.

Thus there are c0, . . . , cn ∈ R with
∑n

i=0 ci = 1 such that

F (Q∗, wm) = am[v0, . . . , vm]− bm[vm+1, . . . , vn] +
n∑
i=0

ci vi. (41)

If ρ ∈ Sym(T∗) corresponds to an even permutation of (v0, . . . , vm) and
(vm+1, . . . , vn), then ρQ∗ = Q∗ and ρwm = wm. Hence (41) implies that

n∑
i=0

ciρ vi =
n∑
i=0

ci vi.

This implies that c0 = · · · = cm and cm+1 = · · · = cn. Thus
∑n

i=0 ci vi =
(c0 − cn)wm and

F (Q∗, wm) = amF (T∗, wm)− bmF (T∗,−wm) + smwm

with sm = c0 − cn. If am, bm > 0, then amF (T∗, wm) − bmF (T∗,−wm) is a
facet of amT∗ − bmT∗. Thus (13) implies that sm ≥ 0. If am = 0 or bm = 0,
then also sm ≥ 0.

For m = 0, . . . , n−1, we set Gm = F (Q∗, wm). Then, for m = 1, . . . , n−2,
we have

Gm = am[v0, . . . , vm]− bm[vm+1, . . . , vn] + smwm.

If am, bm > 0, then F (Q∗, wm) is a facet of Q∗. Using (10), we obtain for its
(n− 2)-faces,

F (Gm, wm−1) = am[v0, . . . , vm−1]− bm[vm+1, . . . , vn] + smwm,

F (Gm, wm+1) = am[v0, . . . , vm]− bm[vm+2, . . . , vn] + smwm.

We need the following result.
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Lemma 50. If am, bm > 0 for m ∈ {1, . . . , n − 2}, then Gm−1 and Gm+1

are facets of Q∗ and

F (Gm, wm−1) = F (Q∗, wm) ∩ F (Q∗, wm−1),

F (Gm, wm+1) = F (Q∗, wm) ∩ F (Q∗, wm+1).

Proof. We only consider the case of F (Gm, wm+1). Since F (Gm, wm+1) is an
(n− 2)-face of Q∗, we have

F (Gm, wm+1) = F (Q∗, wm) ∩ F (Q∗, v)

where v =
∑

i∈I vi for a proper subset I ⊂ {0, . . . , n}.
On the other hand, v is orthogonal to the affine hull of F (Gm, wm+1).

Therefore

v = swm + twm+1 = s(v0 + · · ·+ vm)− t(vm+2 + · · ·+ vn)

for s, t ∈ R. We deduce that v ∈ {±wm,±wm+1,±vm+1}. Readily v 6= wm.
Since Q∗ is n-dimensional, and F (Gm, wm+1) ⊂ F (Q∗, wm), we have v 6=
−wm. Next, v 6= −vm+1 because amv0− bmvm+2 +smwm ∈ F (Gm, wm+1) and
amv0 − bmvm+1 + smwm ∈ Gm but (10) implies that

h(Q∗,−vm+1) ≥ −vm+1 · (amv0 − bmvm+1 + smwm)

> −vm+1 · (amv0 − bmvm+2 + smwm).

Next, v 6= vm+1 because for w = wm − vm + vm+1 =
∑

i∈I vi corresponding
to I = {0, . . . ,m− 1,m+ 1}, we have amvm+1 − bmvm+2 + smw ∈ F (Q∗, w),
and sm ≥ 0 gives

h(Q∗, vm+1) ≥ vm+1 · (amvm+1 − bmvm+2 + sm(wm − vm + vm+1))

> vm+1 · (amv0 − bmvm+2 + smwm).

Finally, Gm = F (Q∗, wm) is (n−1)-dimensional and F (Gm, wm+1) is (n−2)-
dimensional. Thus

h(Q∗,−wm+1) ≥ h(Gm,−wm+1) > h(F (Gm, wm+1),−wm+1),

and hence v 6= −wm+1. Thus v = wm+1.
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Proposition 51. For n = 3, there exist a0, b0, c0 ≥ 0 with the following
properties. If S is a basic three-dimensional simplex and u, v ∈ R3\{o} are
such that E = F (S, v) and E ′ = F (S,−v) are edges and F = F (S, u) is a
facet, then

F (ZS, u) is a translate of a0 F + c0(−F ),

F (ZS,−u) is a translate of b0(−F ) + c0 F,

F (ZS, v) is a translate of a0E + b0E
′.

In addition, c0 = 0 if and only if ZS = Za0,b0 S.

Proof. We may assume that S = T3 and write T = T3. If ZT = {o}, then
we have a0 = b0 = c0 = 0. Otherwise, Lemma 40 implies that ZT is three-
dimensional. Note that by Lemma 48 the facet normals of Q∗ are a subset
of {±vi : i = 0, 1, 2, 3} ∪ {vi + vj : i 6= j}.

We claim that if z is a vertex of Q∗, then

z ∈ F (Q∗, vi + vj) for some i 6= j. (42)

To prove (42), we first assume that a1, b1 > 0. Then F (Q∗, w1) is two-
dimensional. If the vertex z lies in F (Q∗, vi) ∩ F (Q∗, vj) for i 6= j, then

F (Q∗, vi + vj) ⊂ aff F (Q∗, vi) ∩ aff F (Q∗, vj).

This is not possible since a1, b1 > 0. Similarly, we see that for i 6= j the
vertex z 6∈ F (Q∗,−vi) ∩ F (Q∗,−vj). Since z is contained in at least three
two-dimensional faces of Q∗, z ∈ F (Q∗, vi + vj) for some i 6= j.

Therefore we assume that either a1 = 0 or b1 = 0, that is, we have
dimF (Q∗, w1) ≤ 1. In this case, we deduce from Lemma 48 that any ex-
terior normal to a two-dimensional face of Q∗ is an exterior normal to a
two-dimensional face of either T∗ or −T∗. Hence

Q∗ = s T∗ ∩ (−t T∗) for s, t > 0.

If z is a vertex of Q∗, then it is not the midpoint of a segment contained in
Q∗. Thus z is contained in an edge of either s T∗ or −t T∗. Thus z is a vertex
of F (Q∗, vi + vj) for some i 6= j, concluding the proof of (42).

Recall that s1 ≥ 0 if a1 + b1 > 0. In addition s1 > 0 if a1 = b1 = 0 as
o ∈ intQ∗. We deduce from Lemma 49 and (42), that

Q∗ = [a1vi − b1vj + s1(vi + vk) : {i, j, k} ⊂ {0, 1, 2, 3}]. (43)
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Thus it follows by a short calculation from (10) and (43) that

F (Q∗,−v0) = a1[v0, v1, v2]− s1[v0, v1, v2] + (b1 + s1)(v0 + v1 + v2),

F (Q∗, v0) = −b1[v1, v2, v3] + s1[v1, v2, v3] + (a1 + s1)v0,

F (Q∗, w1) = a1[v0, v1]− b1[v2, v3] + s1(v0 + v1).

Therefore we may choose a0 = a1, b0 = b1 and c0 = s1. Since F (T∗,−v0) is a
two-dimensional face and F (T∗,±w1) are edges, this concludes the proof.

5.6 Proof of Theorem 4 for n = 3

By Proposition 39, there exist a, b ≥ 0 such that

ZP = Za,b P

for lower dimensional P ∈ P(Z3). Let S1, S2, S3 with S1 = T3 be the basic

simplices triangulating the prism T̃2 = T2+[0, e3] defined in (7). Corollary 47
yields

Za,b S1 + Za,b S2 + Za,b S3 = ZS1 + ZS2 + ZS3. (44)

We observe that F (S1,−e3) = [o, e1, e2], that F (S2,−e3) = [e1, e2], that
F (S2, e3) is a translate of [o, e1] and that F (S3, e3) is a translate of [o, e1, e2].
Set G = F

(∑3
i=1 Za,b Si,−e3

)
. Since [o, e1] is a translate of [o,−e1], we

deduce that

G is a translate of a[o, e1, e2] + b[o,−e1,−e2] + a[e1, e2] + b[o, e1]. (45)

By (44), we also have G = F
(∑3

i=1 ZSi,−e3
)
. Hence Proposition 51 implies

that G is a translate of

(a0 + c0)[o, e1, e2] + (b0 + c0)[o,−e1,−e2] + a0[e1, e2] + b0[o, e1]. (46)

Hence F (G,−e1) is a translate of a[o, e2] by (45) and F (G,−e1) is a translate
of (a0 + c0)[o, e2] by (46). Thus a = a0 + c0. From (45) and (46) we also
obtain that F (G, e1) is a translate of b[o,−e2] and F (G, e1) is a translate of
(b0 + c0)[o,−e2], respectively. Hence b = b0 + c0. Finally, we obtain that
F (G,−e2) is a translate of (a + b)[o, e1] on the one hand, and is a translate
of (a0 + b0 + c0)[o, e1] on the other hand. Hence

a0 + b0 + c0 = a+ b = a0 + b0 + 2c0.

Therefore c0 = 0, a = a0 and b = b0. Thus ZT3 = Za,b T3 follows from
Proposition 51.
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5.7 ZTn for n ≥ 4

Let Z be an SLn(Z) equivariant and translation invariant Minkowski valua-
tion on P(Zn). Let n ≥ 4.

Proposition 52. If Theorem 4 holds in Rn−1, then there exist a0, b0 ≥ 0
such that

ZS = Za0,b0 S

for every basic n-simplex S.

Proof. Since Z is SLn(Z) equivariant and translation invariant, it suffices to
show there are a0, b0 ≥ 0 such that

ZT = Za0,b0 T

where T = Tn. By Lemma 48, we may assume that ZT is an n-dimensional
polytope. As before we set T∗ = αT̄ and Q∗ = αZT . Thus we have to show
that that there are a0, b0 ≥ 0 such that

Q∗ = a0T∗ − b0T∗. (47)

First, let dim(F (Q∗, wm)) ≤ n− 2 for m = 1, . . . , n− 2.
Since Lemma 48 implies that Q∗ is a polytope whose facet normals are facet
normals of T∗−T∗ and since Q∗ is invariant under the action of Sym(T∗), we
deduce that there are s, t > 0 such that

Q∗ = s T∗ ∩ (−t T∗). (48)

We claim that either
s ≥ nt or t ≥ ns, (49)

or in other words, either −t T∗ ⊂ s T∗ or s T∗ ⊂ −t T∗. Suppose that (49)
does not hold, that is,

s

n
< t < n s.

First, assume that s ≥ t. Then F (−t T∗, v0 + v1) = [−t v2, . . . ,−t vn] satisfies

cen(F (−t T∗, v0 + v1)) = t
v0 + v1
n− 1

∈ t intT∗ ⊂ s intT∗.

Thus (48) implies that

F (Q∗, v0 + v1) = s T∗ ∩ F (−t T∗, v0 + v1) has dimension n− 2. (50)
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We have a1 = 0 and b1 > 0, and

F (Q∗, v0 + v1) is a translate of b1[−v2, . . . ,−vn]. (51)

However, as s < nt, the vertices −tv2, . . . ,−tvn of F (−t T∗, v0 + v1) are cut
off by the facets F (s T∗,−vi) of s T∗ for i = 2, . . . , n. Therefore (50) implies
that F (Q∗, v0 + v1) has some (n−3)-dimensional faces with exterior normals
−vi for i = 2, . . . , n. This contradicts (51), and in turn proves (49) if s ≥ t.
Finally, the case s ≤ t of (49) can be proved using the same argument for

F (Q∗,−v0 − v1) = F (s T∗,−v0 − v1) ∩ (−t T∗).
It follows from (49) that either Q∗ = s T∗, or Q∗ = −t T∗. Thus (47) holds in
this case.

Second, let F (Q∗, wm) be (n− 1)-dimensional for some m = 1, . . . , n− 2.
It follows from Lemma 50 that dim(F (Q∗, wk)) = n− 1 for k = 0, . . . , n− 1.
It also follows from Lemma 50 that if m = 1, . . . , n− 2, then

F (Q∗, wm−1) ∩ F (Q∗, wm) (52)

= am[v0, . . . , vm−1]− bm[vm+1, . . . , vn] + smwm,

F (Q∗, wm) ∩ F (Q∗, wm+1) (53)

= am[v0, . . . , vm]− bm[vm+2, . . . , vn] + smwm.

If m ≥ 2, then (53) applied to F (Q∗, wm−1) ∩ F (Q∗, wm) shows that

F (Q∗,wm−1) ∩ F (Q∗, wm) (54)

= am−1[v0, . . . , vm−1]− bm−1[vm+1, . . . , vn] + sm−1wm−1.

Comparing (52) and (54) implies am−1 = am, bm−1 = bm and sm = sm−1 = 0.
Similar arguments based on (53) prove that if m ≤ n − 3, then am+1 =

am, bm+1 = bm and sm+1 = 0. Continuing step by step, we conclude that
a1 = · · · = an−1, b1 = · · · = bn−1 and s1 = · · · = sn−1 = 0.

Set a0 = a1 and b0 = b1. Since sk = 0 for k = 1, . . . , n − 1, we obtain
from Lemma 49 that

F (Q∗, wk) = F (a0T∗ − b0T∗, wk)
for k = 1, . . . , n− 2. It follows from Lemma 50 that

h(Q∗, wk) = h(a0T∗ − b0T∗, wk)
for k = 0 and k = n− 1 as well. By symmetry, the support functions of Q∗
and a0T∗− b0T∗ agree for any possible facet normal of either polytope. Thus
we conclude that (47) holds.
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5.8 Proof of Theorem 4 for n ≥ 4

Let Z : P(Zn) → K(Rn) be an SLn(Z) equivariant and translation invariant
Minkowski valuation. We prove Theorem 4 by induction on the dimension
n ≥ 3. The case n = 3 is settled in Section 5.6. Therefore we assume that
n ≥ 4 and that Theorem 4 holds in dimension (n − 1). In particular, there
exist a, b ≥ 0 such that

ZP = Za,b P

for lower dimensional P ∈ P(Zn) (where Za,b is defined in (26)). In addition,
a = b = 0 implies that ZP = {o} for P ∈ P(Zn), and a+ b > 0 implies that
ZTn is an n-dimensional polytope.

We may assume that a + b > 0, and hence Proposition 52 implies the
existence of a0, b0 ≥ 0 with a0 + b0 > 0 such that if S is a basic n-simplex,
then

ZS = Za0,b0 S. (55)

We compare Z and Za,b.
Let S1, . . . , Sn with S1 = Tn be the basic simplices triangulating the prism

T̃n−1 = Tn−1 + [0, en] in (7). Corollary 47 implies that

n∑
i=1

Za,b Si =
n∑
i=1

ZSi. (56)

Let 1 > r3 > · · · > rn−1 > 0 and

w = −en + e1 + e2 +
n−1∑
i=3

riei.

It follows that F (Si,−w) = {en} for i = 1, . . . , n and that F (S1, w) = [e1, e2],
F (S2, w) = [e1, e2], and F (Si, w) = {ei−1} for i = 3, . . . , n. We deduce from
the definition of Za,b and (55) that

F
( n∑
i=1

Za,b Si, w
)

is a translate of 2a [e1, e2],

F
( n∑
i=1

ZSi, w
)

is a translate of 2a0 [e1, e2],
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and hence a = a0 follows from (56). Similarly

F
( n∑
i=1

Za,b Si,−w
)

is a translate of 2b [e1, e2],

F
( n∑
i=1

ZSi,−w
)

is a translate of 2b0 [e1, e2],

and hence b = b0. Therefore Corollary 18 implies that Z = Za,b on P(Zn).

5.9 Proof of Theorem 9

Set mn = LCM(2, . . . , n+ 1). Proposition 28 implies that mn `1(P ) ∈ Zn for
P ∈ P(Zn). Hence, for integers a, b ≥ 0 with b − a ∈ mn Z, the operator Z
defined by

P 7→ a (P − `1(P )) + b (−P + `1(P ))

maps P(Zn) to P(Zn). For the reverse direction, let Z : P(Zn) → P(Zn)
be an SLn(Z) equivariant and translation invariant Minkowski valuation. By
Theorem 11, we know that there are a, b ≥ 0 such that

ZP = a (P − `1(P )) + b (−P + `1(P ))

for every P ∈ P(Zn). Since ZP ∈ P(Zn) for all P ∈ P(Zn), setting P = Tk
and using Proposition 28 shows that

a
(
Tk −

e1 + · · ·+ ek
k + 1

)
+ b
(
− Tk +

e1 + · · ·+ ek
k + 1

)
∈ P(Zn).

Hence a+ c/(k+ 1),−(a+ c) + c/(k+ 1) ∈ Z for k = 1, . . . , n with c = b− a.
Thus c = b− a ∈ mn Z and a, b ∈ Z.
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