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Abstract. Sharp affine fractional Lp Sobolev inequalities for functions on Rn

are established. The new inequalities are stronger than (and directly imply)
the sharp fractional Lp Sobolev inequalities. They are fractional versions of

the affine Lp Sobolev inequalities of Lutwak, Yang, and Zhang. In addition,

affine fractional asymmetric Lp Sobolev inequalities are established.
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1. Introduction

Sharp fractional L2 Sobolev inequalities are receiving increasing attention in the
last decades. They are central in the study of solutions of equations involving the
fractional Laplace operator (−∆)1/2 which arises naturally in many non-local prob-
lems such as the stationary form of reaction-diffusion equations [9], the Signorini
problem (and its equivalent formulation as the thin obstacle problem) [3], and the
Dirichlet-to-Neumann operator of harmonic functions in the half space [29]. Also,
the general operators (−∆)s for s ∈ (0, 1) arise in stochastic theory, associated with
symmetric Levy processes (see [29] and the references therein).

Let 0 < s < 1 and 1 ≤ p < n/s. The fractional Lp Sobolev inequalities state
that

∥f∥p np
n−ps

≤ σn,p,s

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+ps
dxdy(1)

for f ∈ W s,p(Rn), the fractional Lp Sobolev space of functions f ∈ Lp(Rn) with
finite right side in (1) (see, for example, [27]). In general, the optimal constants
σn,p,s and extremal functions are not known (see [6] for a conjecture). Equality is
always attained in (1). For p = 1, the extremal functions of (1) are multiples of
indicator functions of balls and the constants are explicitly known. The only further
known case is p = 2, where the constants σn,2,s can be obtained by duality from
Lieb’s sharp Hardy–Littlewood–Sobolev inequalities [18] (see, for example, [10]).
The asymptotic behavior of σn,p,s as s → 1− was studied in [5]. Almgren and
Lieb [1] and Frank and Seiringer [12] showed that the extremal functions of (1) are
radially symmetric and of constant sign.

By a result of Bourgain, Brezis, and Mironescu [4],

lim
s→1−

p(1− s)

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+ps
dxdy = αn,p

∫
Rn

|∇f(x)|p dx

for f ∈ W 1,p(Rn), the Sobolev space of Lp functions f with weak Lp gradient ∇f ,
where

(2) αn,p =

∫
Sn−1

|⟨ξ, η⟩|p dξ

1
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for any η ∈ Sn−1. Here, integration on the unit sphere Sn−1 is with respect to the
(n− 1)-dimensional Hausdorff measure, ωn is the volume of the n-dimensional unit
ball and ⟨·, ·⟩ is the inner product on Rn. For p = 1 and p = 2, this allows to deduce
the sharp Lp Sobolev inequalities from (1) by calculating the limit of σn,p,s/(1− s)
as s → 1−.

Zhang [32] and Lutwak, Yang, and Zhang [24] obtained the following sharp affine
Lp Sobolev inequality that is significantly stronger than the classical Lp Sobolev
inequality:

∥f∥pnp
n−p

≤ σn,p
nω

n+p
n

n

αn,p
|Π∗

p f |−
p
n ≤ σn,p

∫
Rn

|∇f(x)|p dx(3)

for f ∈ W 1,p(Rn) and 1 < p < n, where the inequality between the first and third
terms is the classical Lp Sobolev inequality and the optimal constants σn,p were
determined by Aubin [2] and Talenti [30]. We have rewritten the explicit constant
for the first inequality from [24] using (2). Here Π∗

p f is the Lp polar projection
body of f , a convex body associated to f that was introduced with different notation
in [24] (see Section 2.5), and | · | is the n-dimensional Lebesgue measure.

The main aim of this paper is to establish affine fractional Lp Sobolev inequalities
that are stronger than the Euclidean fractional Lp Sobolev inequalities from (1) and
are fractional counterparts of (3). The case p = 1 was studied in [16], so from now
on let p > 1.

Theorem 1. Let 0 < s < 1 and 1 < p < n/s. For f ∈ W s,p(Rn),

∥f∥p np
n−ps

≤ σn,p,snω
n+ps

n
n

( 1

n

∫
Sn−1

( ∫ ∞

0

tps−1

∫
Rn

|f(x+ tξ)− f(x)|p dxdt
)− n

ps dξ
)− ps

n

≤ σn,p,s

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+ps
dx dy.

There is equality in the first inequality if and only if f = hs,p◦ϕ for some ϕ ∈ GL(n),
where hs,p is an extremal function of (1). There is equality in the second inequality
if f is radially symmetric.

In order to prove Theorem 1, we introduce the s-fractional Lp polar projection
body Π∗,s

p f associated to f , defined as the star-shaped set whose gauge function

for ξ ∈ Sn−1 is

∥ξ∥ps
Π∗,s

p f
=

∫ ∞

0

t−ps−1

∫
Rn

|f(x+ tξ)− f(x)|p dx dt

(see Section 3 for details). The affine fractional Sobolev inequality now can be
written as

(4) ∥f∥p np
n−ps

≤ σn,p,snω
n+ps

n
n |Π∗,s

p f |−
ps
n .

Since both sides of (4) are invariant under translations of f , and for volume-
preserving linear transformations ϕ : Rn → Rn,

Π∗,s
p (f ◦ ϕ−1) = ϕΠ∗,s

p f,
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it follows that (4) is an affine inequality. In Theorem 10, we will show that

lim
s→1−

p(1− s)|Π∗,s
p f |−

ps
n = |Π∗

p f |−
p
n ,

which establishes the connection to the Lp polar projection bodies introduced by
Lutwak, Yang and Zhang [24].

In Section 4 we introduce fractional asymmetric Lp polar projection bodies as
fractional counterparts of the asymmetric Lp polar projection bodies of Haberl and
Schuster [14], which in turn are functional versions of the asymmetric Lp polar
projection bodies of convex bodies introduced in [19]. We obtain affine fractional
asymmetric Lp Sobolev inequalities for non-negative functions that are stronger
than the inequalities for the symmetric fractional Lp polar projection bodies.

In the proofs of the main results, we use anisotropic fractional Sobolev norms,
which were introduced in [20, 21] and depend on a star-shaped set K ⊂ Rn. In
Section 10 we discuss which choice of K (with given volume) gives the minimal
fractional Sobolev norm and connect it to the corresponding quest for an optimal
Lp Sobolev norm solved by Lutwak, Yang, and Zhang [25].

2. Preliminaries

We collect results on function spaces, Schwarz symmetrization, star-shaped sets,
anisotropic Sobolev norms and Lp polar projection bodies, that will be used in the
following.

2.1. Function spaces. For p ≥ 1 and measurable f : Rn → R, let

∥f∥p =
(∫

Rn

|f(x)|p dx
)1/p

.

We set {f ≥ t} = {x ∈ Rn : f(x) ≥ t} for t ∈ R and use similar notation for
level sets, etc. We say that f is non-zero, if {f ̸= 0} has positive measure, and we
identify functions that are equal up to a set of measure zero. For p ≥ 1, let

Lp(Rn) =
{
f : Rn → R : f is measurable, ∥f∥p < ∞

}
.

Here and below, when we use measurability and related notions, we refer to the
n-dimensional Lebesgue measure on Rn.

For 0 < s < 1 and p ≥ 1, we define the fractional Sobolev space W s,p(Rn) as

W s,p(Rn) =
{
f ∈ Lp(Rn) :

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+ps
dxdy < ∞

}
.

For p ≥ 1, we set

W 1,p(Rn) =
{
f ∈ Lp(Rn) : |∇f | ∈ Lp(Rn)

}
,

where ∇f is the weak gradient of f .

2.2. Symmetrization. For a set E ⊂ Rn, the indicator function 1E is defined by
1E(x) = 1 for x ∈ E and 1E(x) = 0 otherwise. Let E ⊆ Rn be a Borel set of
finite measure. The Schwarz symmetral of E, denoted by E⋆, is the closed centered
Euclidean ball with same volume as E.

Let f : Rn → R be a non-negative measurable function with super-level sets
{f ≥ t} of finite measure. The layer cake formula states that

f(x) =

∫ ∞

0

1{f≥t}(x) dt
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for almost every x ∈ Rn and allows us to recover the function from its super-level
sets. The Schwarz symmetral of f , denoted by f⋆, is defined by

f⋆(x) =

∫ ∞

0

1{f≥t}⋆(x) dt

for x ∈ Rn. Hence, f⋆ is determined by the properties of being radially symmetric,
decreasing and having super-level sets of the same measure as those of f . Note that
f⋆ is also called the symmetric decreasing rearrangement of f .

The proofs of our results make use of the Riesz rearrangement inequality, which
is stated in full generality, for example, in [7].

Theorem 2 (Riesz’s rearrangement inequality). For f, g, k : Rn → R non-negative,
measurable functions with super-level sets of finite measure,∫

Rn

∫
Rn

f(x)k(x− y)g(y) dx dy ≤
∫
Rn

∫
Rn

f⋆(x)k⋆(x− y)g⋆(y) dx dy.

We will use the characterization of equality cases of the Riesz rearrangement
inequality due to Burchard [8].

Theorem 3 (Burchard). Let A,B and C be sets of finite positive measure in Rn

and denote by α, β and γ the radii of their Schwarz symmetrals A⋆, B⋆ and C⋆.
For |α− β| < γ < α+ β, there is equality in∫

Rn

∫
Rn

1A(y) 1B(x− y) 1C(x) dxdy ≤
∫
Rn

∫
Rn

1A⋆(y) 1B⋆(x− y) 1C⋆(x) dxdy

if and only if, up to sets of measure zero,

A = a+ αD, B = b+ βD, C = c+ γD,

where D is a centered ellipsoid, and a, b and c = a+ b are vectors in Rn.

2.3. Star-shaped sets and star bodies. A set K ⊆ Rn is star-shaped (with
respect to the origin), if the interval [0, x] ⊂ K for every x ∈ K. The gauge
function ∥ · ∥K : Rn → [0,∞] of a star-shaped set is defined as

∥x∥K = inf{λ > 0 : x ∈ λK},
and the radial function ρK : Rn \ {0} → [0,∞] as

ρK(x) = ∥x∥−1
K = sup{λ ≥ 0 : λx ∈ K}.

The n-dimensional Lebesgue measure or volume of a star-shaped set K in Rn with
measurable radial function is given by

|K| = 1

n

∫
Sn−1

ρK(ξ)n dξ.

We call a star-shaped set K ⊂ Rn a star body if its radial function is strictly
positive and continuous in Rn \ {0}. On the set of star bodies, the q-radial sum for
q ̸= 0 of K,L ⊂ Rn is defined by

ρq(K +̃q L, ξ) = ρq(K, ξ) + ρq(L, ξ)

for ξ ∈ Sn−1 (cf. [28, Section 9.3]). The dual Brunn–Minkowski inequality (cf. [28,
(9.41)]) states that for star bodies K,L ⊂ Rn and q > 0,

|K +̃−q L|−q/n ≥ |K|−q/n + |L|−q/n,(5)

with equality precisely if K and L are dilates, that is, there is λ > 0 such that
K = λL.
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Let α ∈ R\{0, n}. For star-shaped sets K,L ⊆ Rn with measurable radial
functions, the dual mixed volume is defined as

Ṽα(K,L) =
1

n

∫
Sn−1

ρK(ξ)n−αρL(ξ)
α dξ.

Notice that

Ṽα(K,K) = |K|
and that

Ṽα(K,L1 +̃α L2) = Ṽα(K,L1) + Ṽα(K,L2)

for star-shaped sets K,L1, L2 ⊆ Rn with measurable radial functions.
For star-shaped sets K,L ⊆ Rn of finite volume and 0 < α < n, the dual mixed

volume inequality states that

(6) Ṽα(K,L) ≤ |K|(n−α)/n|L|α/n.
Equality holds if and only if K and L are dilates, where we say that star-shaped
sets K and L are dilates if ρK = λ ρL almost everywhere on Sn−1 for some λ > 0.
The definition of dual mixed volume for star bodies is due to Lutwak [22], where
also the dual mixed volume inequality is derived from Hölder’s inequality (also
see [28, Section 9.3] or [13, B.29]).

2.4. Anisotropic fractional Sobolev norms. Let 0 < s < 1 and p ≥ 1. For
K ⊂ Rn a star body and f ∈ W s,p(Rn), the anisotropic fractional Lp Sobolev norm
of f with respect to K is

(7)

∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
K

dx dy.

It was introduced in [21] for K a convex body (also, see [20]). For K = Bn, the
Euclidean unit ball, we obtain the classical s-fractional Lp Sobolev norm of f . The
limit as s → 1− was determined in [4] in the Euclidean case and in [21] in the
anisotropic case. We will also consider the following asymmetric versions of (7),∫

Rn

∫
Rn

(f(x)− f(y))p+

∥x− y∥n+ps
K

dxdy,

∫
Rn

∫
Rn

(f(x)− f(y))p−

∥x− y∥n+ps
K

dxdy,

where a+ = max{a, 0} and a− = max{−a, 0} for a ∈ R. The limits as s → 1− were
determined in [26].

2.5. Lp polar projection bodies. For p ≥ 1 and f ∈ W 1,p(Rn), the Lp polar
projection body is defined as the star body with gauge function given by

∥ξ∥pΠ∗
p f =

∫
Rn

|⟨∇f(x), ξ⟩|p dx

for ξ ∈ Sn−1, were ⟨·, ·⟩ denotes the inner product. It is the polar body of a convex
body. The definition is due to Lutwak, Yang, and Zhang [24]. For a convex body
K ⊂ Rn, they defined the Lp polar projection body (with a different normalization)
in [23] by

(8) ∥ξ∥pΠ∗
p K =

∫
Sn−1

|⟨ξ, η⟩|p dSp(K, η),

where Sp(K, ·) is the Lp surface area measure of K (for the definition of Lp surface
area measures, see, for example, [28, Section 9.1]).
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Asymmetric Lp polar projection bodies of convex bodies were introduced in [19].
For f ∈ W 1,p(Rn), the asymmetric Lp polar projection bodies of f are defined as
the star bodies with gauge function given by

∥ξ∥pΠ∗
p,± f =

∫
Rn

⟨∇f(x), ξ⟩p± dx

for ξ ∈ Sn−1.

3. Fractional Lp Polar Projection Bodies

Let 0 < s < 1 and 1 < p < n/s. For f ∈ W s,p(Rn), define the s-fractional
Lp polar projection body Π∗,s

p f as the star-shaped set given by the gauge function

(9) ∥ξ∥ps
Π∗,s

p f
=

∫ ∞

0

t−ps−1

∫
Rn

|f(x+ tξ)− f(x)|p dxdt

for ξ ∈ Rn. Note that ∥ · ∥Π∗,s
p f is a one-homogeneous function on Rn.

Let K ⊂ Rn be a star body. The following simple calculation turns out to be
useful. For f ∈ W s,p(Rn),∫

Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
K

dx dy

=

∫
Rn

∫
Rn

|f(y + z)− f(y)|p

∥z∥n+ps
K

dz dy

=

∫
Sn−1

∫ ∞

0

∥tξ∥−n−ps
K

∫
Rn

|f(y + tξ)− f(y)|p tn−1 dy dtdξ

=

∫
Sn−1

∫ ∞

0

∥ξ∥−n−ps
K t−ps−n ∥f(·+ tξ)− f∥pp t

n−1 dtdξ

=

∫
Sn−1

ρK(ξ)n+ps

∫ ∞

0

t−ps−1 ∥f(·+ tξ)− f∥pp dtdξ

=

∫
Sn−1

ρK(ξ)n+psρΠ∗,s
p f (ξ)

−psdξ.

Hence,

(10)

∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
K

dx dy = n Ṽ−ps(K,Π∗,s
p f)

in this case.
Next, we establish basic properties of fractional Lp polar projection bodies.

Proposition 4. For non-zero f ∈ W s,p(Rn), the set Π∗,s
p f is an origin-symmetric

star body with the origin in its interior. Moreover, there is c > 0 depending only
on f and p such that Π∗,s

p f ⊆ cBn for every s ∈ (0, 1).

Proof. First, note that since for ξ ∈ Rn and t > 0,∫
Rn

|f(x− tξ)− f(x)|p dx =

∫
Rn

|f(x)− f(x+ tξ)|p dx,

the set Π∗,s
p f is origin-symmetric.
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Next, we show that Π∗,s
p f is bounded. We take r > 1 large enough so that

∥f∥Lp(rBn) ≥ 2
3∥f∥p and easily see that for t > 2r,

∥f(·+ tξ)− f(·)∥p ≥ ∥f(·+ tξ)− f(·)∥Lp(rBn−tξ)

= ∥f(·)− f(· − tξ)∥Lp(rBn)

≥ ∥f∥Lp(rBn) − ∥f(· − tξ)∥Lp(rBn)

≥ 2

3
∥f∥p −

1

3
∥f∥p.

Hence,

∫ ∞

0

t−ps−1

∫
Rn

∣∣f(x+ tξ)− f(x)
∣∣p dx dt ≥ ∥f∥pp

3p

∫ ∞

r

t−ps−1 dt ≥
∥f∥pp
3p

r−ps

ps
≥ c,

which implies that Π∗,s
p f ⊆ cBn for c > 0 independent of s.

Now, we show that Π∗,s
p f has the origin in its interior. First observe that for

ξ, η ∈ Rn, by the triangle inequality and a change of variables,

∥ξ+η∥ps
Π∗,s

p f

=

∫ ∞

0

t−ps−1∥f(·+ tξ + tη)− f(·)∥pp dt

≤
∫ ∞

0

t−ps−1 (∥f(·+ tξ + tη)− f(·+ tξ)∥p + ∥f(·+ tξ)− f(·)∥p)p dt(11)

≤
∫ ∞

0

t−ps−12p−1(∥f(·+ tη)− f(·)∥pp + ∥f(·+ tξ)− f(·)∥pp) dt

= 2p−1∥ξ∥ps
Π∗,s

p f
+ 2p−1∥η∥ps

Π∗,s
p f

.

Using the relation (10) with K = Bn, we get∫
Sn−1

∥ξ∥ps
Π∗,s

p f
dξ =

1

n

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+ps
dxdy,

which is finite since f ∈ W s,p(Rn). We choose r > 0 large enough so that the
set A = {ξ ∈ Sn−1 : ∥ξ∥s

Π∗,s
p f

< r} has positive (n − 1)-dimensional Hausdorff

measure and contains a basis {ξ1, . . . , ξn} ⊆ A of Rn. Applying (if necessary) a
linear transformation to Π∗,s

p f , we may assume without loss of generality that
ξi = ei are the canonical basis vectors. For every x ∈ Rn, writing x =

∑
xiei and

using (11), we get

(12) ∥x∥Π∗,s
p f ≤

(
2n(p−1)

n∑
i=1

|xi|ps∥ei∥psΠ∗,s
p f

) 1
ps ≤ d |x|,

where d > 0 is independent of x. This shows that Π∗,s
p f has the origin as interior

point.
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Finally, we show that ∥ · ∥Π∗,s
p f is continuous. For ξ, η ∈ Rn, by the triangle

inequality and (12), we have

∥ξ+η∥ps
Π∗,s

p f

=

∫ ∞

0

t−1−ps∥f(·+ tξ + tη)− f(·)∥pp dt

≤
∫ ∞

0

t−1−ps
(
∥f(·+ tη)− f(·)∥p + ∥f(·+ tξ)− f(·)∥p

)p
dt

≤
(
1 + |η|

s
2

p
p−1

)p−1
∫ ∞

0

t−1−ps

(∥f(·+ tη)− f(·)∥pp
|η| ps2

+ ∥f(·+ tξ)− f(·)∥pp
)

dt

=
(
1 + |η|

s
2

p
p−1

)p−1(|η|− ps
2 ∥η∥ps

Π∗,s
p f

+ ∥ξ∥ps
Π∗,s

p f

)
≤

(
1 + |η|

s
2

p
p−1

)p−1(
d |η|

ps
2 + ∥ξ∥ps

Π∗,s
p f

)
,

where we used the inequality a + b ≤ (1 + rp/(p−1))(p−1)/p((r−1a)p + bp)1/p for
a, b, r > 0, which is a consequence of Hölder’s inequality.

We obtain

(13) ∥ξ + η∥ps
Π∗,s

p f
≤

(
1 + |η|

s
2

p
p−1

)p−1(
d |η|

ps
2 + ∥ξ∥ps

Π∗,s
p f

)
.

Applying inequality (13) to the vectors ξ + η and −η, we get

∥ξ∥ps
Π∗,s

p f
= ∥ξ + η − η∥ps

Π∗,s
p f

≤
(
1 + | − η|

s
2

p
p−1

)p−1(
d | − η|

ps
2 + ∥ξ + η∥ps

Π∗,s
p f

)
,

which implies

(14) ∥ξ + η∥ps
Π∗,s

p f
≥

(
1 + |η|

s
2

p
p−1

)p−1∥ξ∥ps
Π∗,s

p f
− d |η|

ps
2 .

The continuity of ∥ · ∥Π∗,s
p f now follows from (13) and (14). □

4. Fractional Asymmetric Lp Polar Projection Bodies

Let 0 < s < 1 and 1 < p < n/s. For f ∈ W s,p(Rn), define the asymmetric
s-fractional Lp polar projection bodies Π∗,s

p,+ f and Π∗,s
p,− f as the star-shaped sets

given by the gauge functions

∥ξ∥ps
Π∗,s

p,± f
=

∫ ∞

0

t−ps−1

∫
Rn

(f(x+ tξ)− f(x))p± dxdt

for ξ ∈ Rn. We have Π∗,s
p,− f = Π∗,s

p,+ (−f) = −Π∗,s
p,+ f and state our results just

for Π∗,s
p,+ f . Note that, as in the symmetric case, ∥ · ∥ps

Π∗,s
p,+ f

is a one-homogeneous

function on Rn. Also note that

(15) ∥ξ∥ps
Π∗,s

p f
= ∥ξ∥ps

Π∗,s
p,+ f

+ ∥ξ∥ps
Π∗,s

p,− f

for ξ ∈ Rn.
Let K ⊂ Rn be a star body and f ∈ W s,p(Rn). As in (10), we obtain that

(16)

∫
Rn

∫
Rn

(f(x)− f(y))p+

∥x− y∥n+ps
K

dxdy = n Ṽ−ps(K,Π∗,s
p,+ f).

In the following proposition, we derive the basic properties of fractional asymmetric
Lp polar projection bodies.
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Proposition 5. For non-zero f ∈ W s,p(Rn), the set Π∗,s
p,+ f is a star body with the

origin in its interior. Moreover, there is c > 0 depending only on f and p such that
Π∗,s

p,+ f ⊆ cBn for every s ∈ (0, 1).

Proof. Since the functions (a)p+ and (a)p− are convex, the inequalities (a + b)p+ ≥
(a)p+ + p(a)p−1

+ b and (a+ b)p− ≥ (a)p− + p(a)p−1
− b hold for a, b ∈ R.

If
∫
Rn(f(x))

p
+ dx > 0, take ε > 0 so small that ε+pε1/p ∥f∥p−1

p ≤ 1
2

∫
Rn(f(x))

p
+ dx,

and take r > 0 so large that
∫
Rn\rBn |f(x)|p dx < ε. For z ∈ Rn \ 2rBn, we obtain

by Hölder’s inequality that∫
rBn

(f(x)− f(x+ z))p+ dx

≥
∫
rBn

(f(x))p+ − p (f(x))p−1
+ f(x+ z) dx

≥
∫
rBn

(f(x))p+ dx− p
(∫

rBn

(f(x))p+ dx
) p−1

p
(∫

rBn

|f(x+ z)|p dx
) 1

p

≥
∫
rBn

(f(x))p+ dx− p
(∫

Rn

|f(x)|p dx
) p−1

p
(∫

Rn\rBn

|f(x)|p dx
) 1

p

≥
∫
Rn

(f(x))p+ dx− ε− p ∥f∥p−1
p ε

1
p

≥ 1

2

∫
Rn

(f(x))p+ dx.

In case
∫
Rn(f(x))

p
+ dx = 0 the previous inequality holds trivially for any r > 0.

By an analogous calculation, and eventually increasing the value of r, we obtain
that ∫

rBn−z

(f(x)− f(x+ z))p+ dx =

∫
rBn

(f(x)− f(x− z))p− dx

≥ 1

2

∫
Rn

(f(x))p− dx.

It follows that
∫
Rn(f(x) − f(x + z))p+ dx ≥ 1

2∥f∥
p
p for every z ∈ Rn \ 2rBn with

r > 0 depending only on f . Finally,

∥ξ∥ps
Π∗,s

p,+ f
≥

∫ ∞

2r

t−1−ps

∫
Rn

(f(x)− f(x+ z))p+ dxdt

≥
∫ ∞

2r

t−1−ps dt
1

2

∫
Rn

|f(x)|p dx

≥ (2r)−ps

ps

1

2

∫
Rn

|f(x)|p dx

≥ (2r)−p

2p
∥f∥pp.

Note that Π∗,s
p f ⊂ Π∗,s

p,+ f . Hence, it follows from Proposition 4 that Π∗,s
p,+ f

contains the origin in its interior, that is, there is d > 0 such that

(17) ∥x∥Π∗,s
p,+ f ≤ d |x|

for every x ∈ Rn.
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Finally, we show that ∥ · ∥Π∗,s
p,+ f is continuous. Observe that the inequality

(a+ b)p+ ≤ (a+ + b+)
p holds for any a, b ∈ R. Hence, for ξ, η ∈ Rn, we obtain that

∫
Rn

(f(x+ tξ + tη)− f(x))p+ dx

=

∫
Rn

(f(x+ tξ + tη)− f(x+ tξ) + f(x+ tξ)− f(x))p+ dx

≤
∫
Rn

(
(f(x+ tξ + tη)− f(x+ tξ))+ + (f(x+ tξ)− f(x))+

)p
dx

≤
∫
Rn

(1 + |η|
s
2

p
(p−1) )p−1

( (f(x+ tξ + tη)− f(x+ tξ))p+

|η| ps2
+ (f(x+ tξ)− f(x))p+

)
dx

≤ (1 + |η|
s
2

p
(p−1) )p−1

(∥(f(·+ tη)− f(·))+∥pp
|η| ps2

+ ∥(f(·+ tξ)− f(·))+∥pp
)
,

where we used the inequality a + b ≤ (1 + rp/(p−1))(p−1)/p((r−1a)p + bp)1/p for
a, b, r > 0, which is a consequence of Hölder’s inequality. Thus, integrating and
using (17), we obtain

(18) ∥ξ + η∥ps
Π∗,s

p,+ f
≤ (1 + |η|

s
2

p
p−1 )p−1(d |η|

ps
2 + ∥ξ∥ps

Π∗,s
p,+ f

).

Applying inequality (18) to the vectors ξ + η and −η, we get

∥ξ∥ps
Π∗,s

p,+ f
= ∥ξ + η − η∥ps

Π∗,s
p,+ f

≤ (1 + | − η|
s
2

p
p−1 )p−1(d | − η|

ps
2 + ∥ξ + η∥ps

Π∗,s
p,+ f

),

which implies

(19) ∥ξ + η∥ps
Π∗,s

p,+ f
≥ (1 + |η|

s
2

p
p−1 )−(p−1)∥ξ∥ps

Π∗,s
p,+ f

− d |η|
ps
2 .

The continuity of ∥ · ∥Π∗,s
p,+ f now follows from (18) and (19). □

5. The Limit of Fractional Lp Polar Projection Bodies

We establish the limiting behavior of s-fractional Lp polar projection bodies for
1 < p < n/s as s → 1− in the symmetric and asymmetric case. For p = 1, a
corresponding result was proved in [16].

Let 0 < s < 1 and 1 < p < n/s. Set p′ = p/(p− 1). We say that fk → f weakly
in Lp(Rn) if ∫

Rn

fk(x)g(x) dx →
∫
Rn

f(x)g(x) dx

for every g ∈ Lp′
(Rn) as k → ∞. Set Bp′,+ = {g ∈ Lp′

(Rn) : g ≥ 0, ∥g∥p′ ≤ 1}.
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We require the following lemmas.

Lemma 6. The following statements hold.

(1) For f ∈ Lp(Rn),

∥f+∥p = sup
g∈Bp′,+

∫
Rn

f(x)g(x) dx.

(2) Let fk, f ∈ Lp(Rn). If fk → f weakly in Lp(Rn) as k → ∞, then

lim inf
k→∞

∥(fk)+∥p ≥ ∥f+∥p.

(3) Assume fk is a bounded sequence in Lp(Rn). If

lim
k→∞

∫
Rn

fk(x)g(x) dx =

∫
Rn

f(x)g(x) dx

for every g in a dense subset D ⊆ Lp′
(Rn), then fk → f weakly in Lp(Rn)

as k → ∞.

Proof. First we prove (1). Let g ∈ Bp′,+ and write f = f+ − f−. Since f− and g are
non-negative, it follows from Hölder’s inequality that∫

Rn

f(x)g(x) dx ≤
∫
Rn

f+(x)g(x) dx ≤ ∥f+∥p.

For the opposite inequality, take g = ∥f+∥−p/p′

p f
p/p′

+ and notice that g ∈ Bp′,+ and∫
Rn

f(x)g(x) dx = ∥f+∥
− p

p′
p

∫
Rn

f(x)f+(x)
p
p′ dx ≤ ∥f+∥

− p
p′

p

∫
Rn

f+(x)
p dx = ∥f+∥p.

Next we prove (2). Fix k0 and g0 ∈ Bp′,+. By (1), we have∫
Rn

fk0
(x)g0(x) dx ≤ sup

g∈Bp′,+

∫
Rn

fk0
(x)g(x) dx = ∥(fk0

)+∥p.

Since this inequality holds for every k0,∫
Rn

f(x)g0(x) dx = lim
k→∞

∫
Rn

fk(x)g0(x) dx ≤ lim inf
k→∞

∥(fk)+∥p.

Thus, by (1),

∥f+∥p = sup
g∈Bp′,+

∫
Rn

f(x)g(x) dx ≤ lim inf
k→∞

∥(fk)+∥p.

Finally, we prove (3). Take c ≥ max{∥fk∥p, ∥f∥p}. Let ε > 0 and g ∈ Lp′
(Rn).

Take h ∈ D such that ∥g − h∥p′ < ε/(2c). Then∣∣∣ ∫
Rn

fk(x)g(x) dx−
∫
Rn

f(x)g(x) dx
∣∣∣

≤
∣∣∣ ∫

Rn

fk(x)(g(x)− h(x)) dx
∣∣∣+ ∣∣∣ ∫

Rn

fk(x)h(x) dx−
∫
Rn

f(x)h(x) dx
∣∣∣

+
∣∣∣ ∫

Rn

f(x)(g(x)− h(x)) dx
∣∣∣

≤ cε/(2c) +
∣∣∣ ∫

Rn

fk(x)h(x) dx−
∫
Rn

f(x)h(x) dx
∣∣∣+ cε/(2c)

and the statement follows. □
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Lemma 7. For f ∈ W 1,p(Rn) and fixed ξ ∈ Sn−1,

lim
t→0

∥∥∥(f(·+ tξ)− f(·)
t

)
+

∥∥∥p
p
=

∫
Rn

⟨∇f(x), ξ⟩p+ dx.

Proof. Let g : Rn → R be a smooth function with compact support. Write divx for
the divergence taken with respect to the variable x. Using integration by parts, we
obtain for ξ ∈ Sn−1 and t > 0,∫

Rn

g(x)
f(x+ tξ)− f(x)

t
dx =

∫
Rn

f(x)
g(x− tξ)− g(x)

t
dx

= −
∫
Rn

f(x)

∫ 1

0

⟨∇g(x− rtξ), ξ⟩dr dx

= −
∫
Rn

f(x) divx

(∫ 1

0

g(x− rtξ) dr ξ
)
dx

=

∫
Rn

(∫ 1

0

g(x− rtξ)dr
)
⟨∇f(x), ξ⟩dx.

By Minkowski’s integral inequality ∥
∫ 1

0
g(· − rtξ) dr∥p′ ≤ ∥g∥p′ , and we deduce∥∥∥f(·+ tξ)− f(·)

t

∥∥∥
p
≤ ∥⟨∇f(·), ξ⟩∥p < ∞.

Hence, f(·+tξ)−f(·)
t is uniformly bounded in Lp(Rn) on (0,∞).

By Lemma 6 (3),

lim
t→0

∫
Rn

g(x)
f(x+ tξ)− f(x)

t
dx =

∫
Rn

g(x)⟨∇f(x), ξ⟩dx

for every g ∈ Lp′
(Rn). Hence, f(·+tξ)−f(·)

t converges weakly to ⟨∇f(·), ξ⟩ as t → 0.
By Lemma 6 (2),

lim inf
t→0

∥∥∥(f(·+ tξ)− f(·)
t

)
+

∥∥∥
p
≥ ∥⟨∇f(·), ξ⟩+∥p.

For the opposite inequality we recall that for any g ∈ Bp′,+, the function x 7→∫ 1

0
g(x− rtξ) dr is in Bp′,+ as well. Hence,∫

Rn

g(x)
f(x+ tξ)− f(x)

t
dx =

∫
Rn

(∫ 1

0

g(x− rtξ) dr
)
⟨∇f(x), ξ⟩dx

≤ ∥⟨∇f(x), ξ⟩+∥p.

Again by Lemma 6 (1),∥∥∥(f(·+ tξ)− f(·)
t

)
+

∥∥∥
p
≤ ∥⟨∇f(·), ξ⟩+∥p

for each t > 0. □

The following result is Lemma 4 in [16].

Lemma 8. If φ : [0,∞) → [0,∞) be a measurable function with limt→0+ φ(t) =
φ(0) and such that

∫∞
0

t−s0φ(t) dt < ∞ for some s0 ∈ (0, 1), then

lim
s→1−

(1− s)

∫ ∞

0

t−sφ(t) dt = φ(0).
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We are now able to prove the main result of this section.

Theorem 9. Let f ∈ W 1,p(Rn). For ξ ∈ Sn−1,

lim
s→1−

(p(1− s))
1
p ∥ξ∥Π∗,s

p,+ f = ∥ξ∥Π∗
p,+ f .

Moreover,

lim
s→1−

p(1− s)|Π∗,s
p,+ f |−

ps
n = |Π∗

p,+ f |−
p
n ,

and

lim
s→1−

p(1− s)Ṽ−ps(K,Π∗,s
p,+ f) = Ṽ−p(K,Π∗

p,+ f)

for every star body K ⊂ Rn.

Proof. Define φ : [0,∞) → [0,∞) by

φ(t) =
∥∥∥(f(·+ tξ)− f(·)

t

)
+

∥∥∥p
p
,

and note that φ(t) ≤
(

2∥f∥p

t

)p

for t > 0. By Lemma 8 and Lemma 7,

lim
s→1−

p(1− s)

∫ ∞

0

tp(1−s)−1
∥∥∥(f(·+ tξ)− f(·)

t

)
+

∥∥∥p
p
dt =

∫
Rn

⟨∇f(x), ξ⟩p+ dx.

By Proposition 4 we can use the dominated convergence theorem to obtain

lim
s→1−

n |(p(1− s))−
1
ps Π∗,s

p,+ f |

= lim
s→1−

∫
Sn−1

(
p(1− s)

∫ ∞

0

tp(1−s)−1
∥∥∥(f(·+ tξ)− f(·)

t

)
+

∥∥∥p
p
dt
)− n

ps

dξ

=

∫
Sn−1

(∫
Rn

⟨∇f(x), ξ⟩p+ dx
)−n

p

dξ

= n |Π∗
p,+ f |,

and

lim
s→1−

np(1− s)Ṽ−ps(K,Π∗,s
p,+ f) = lim

s→1−
p(1− s)

∫
Sn−1

∥ξ∥n+ps
K ∥ξ∥ps

Π∗,s
p,+ f

dξ

=

∫
Sn−1

∥ξ∥nK ∥ξ∥pΠ∗
p,+ f dξ

= n Ṽ−p(K,Π∗
p,+ f),

which completes the proof of the theorem. □

The following result is an immediate consequence of Theorem 9 and (15).

Theorem 10. Let f ∈ W 1,p(Rn). For ξ ∈ Sn−1,

lim
s→1−

(p(1− s))
1
p ∥ξ∥Π∗,s

p f = ∥ξ∥Π∗
p f .

Moreover,

lim
s→1−

p(1− s)|Π∗,s
p f |−

ps
n = |Π∗

p f |−
p
n ,

and

(20) lim
s→1−

p(1− s)Ṽ−ps(K,Π∗,s
p f) = Ṽ−p(K,Π∗

p f)

for every star body K ⊂ Rn.
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6. Anisotropic Fractional Pólya–Szegő Inequalities

We will establish anisotropic Pólya–Szegő inequalities for fractional Lp Sobolev
norms and their asymmetric counterparts.

Theorem 11. If f ∈ Lp(Rn) is non-negative and K ⊂ Rn a star body, then

(21)

∫
Rn

∫
Rn

(f(x)− f(y))p+

∥x− y∥n+ps
K

dx dy ≥
∫
Rn

∫
Rn

(f⋆(x)− f⋆(y))p+

∥x− y∥n+ps
K⋆

dxdy.

Equality holds for non-zero f ∈ W s,p(Rn) if and only if K is a centered ellipsoid
and f is a translate of f⋆ ◦ ϕ for some ϕ ∈ SL(n).

Proof. Writing

∥z∥−n−ps
K =

∫ ∞

0

kt(z) dt

where kt(z) = 1t−1/(n+ps)K(z), we obtain∫
Rn

∫
Rn

(f(x)− f(y))p+

∥x− y∥n+ps
K

dx dy =

∫ ∞

0

∫
Rn

∫
Rn

(f(x)− f(y))p+kt(x− y) dx dy dt.

Note that

(f(x)− f(y))p+ = p

∫ ∞

0

(f(x)− r)p−1
+ 1{f<r}(y) dr.

Hence, for t > 0, it follows from Fubini’s theorem that∫
Rn

∫
Rn

(f(x)− f(y))p+ kt(x− y) dxdy

= p

∫ ∞

0

∫
Rn

∫
Rn

(f(x)− r)p−1
+ kt(x− y) 1{f<r}(y) dxdy dr

= p

∫ ∞

0

∫
Rn

∫
Rn

(f(x)− r)p−1
+ kt(x− y)(1− 1{f≥r}(y)) dx dy dr.

Let r, t > 0. Note that
∫
Rn(f(x)− r)p−1

+ dx < ∞ and that

∫
Rn

∫
Rn

(f(x)− r)p−1
+ kt(x− y)(1− 1{f≥r}(y)) dxdy

= p ∥kt∥1
∫
Rn

(f(x)− r)p−1
+ dx− p

∫
Rn

∫
Rn

(f(x)− r)p−1
+ kt(x− y) 1{f≥r}(y) dxdy.

The first term is finite since {f > r} has finite measure, f ∈ L
np

n−ps (Rn) and
np

n−ps > p − 1. Clearly the first term is invariant under Schwarz symmetrization.

For the second term, by the Riesz rearrangement inequality, Theorem 2, we have∫
Rn

∫
Rn

(f(x)− r)p−1
+ kt(x− y) 1{f≥r}(y) dxdy

≤
∫
Rn

∫
Rn

(f⋆(x)− r)p−1
+ k⋆t (x− y) 1{f⋆≥r}(y) dxdy

for r, t > 0. Note that

(f(x)− r)p−1
+ = (p− 1)

∫ ∞

0

(r̃ − r)p−2
+ 1{f≥r̃}(x) dr̃
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and that the corresponding equation holds for f⋆. Hence, if there is equality in
(21), then, for (r̃, r, t) ∈ (0,∞)3\M with |M | = 0, we have∫

Rn

∫
Rn

1{f≥r̃}(x) 1t−1/(n+ps)K(x− y) 1{f≥r}(y) dx dy

=

∫
Rn

∫
Rn

1{f⋆≥r̃}(x) 1t−1/(n+ps)K⋆(x− y) 1{f⋆≥r}(y) dx dy.

For almost every (r̃, r) ∈ (0,∞)2, we have (r̃, r, t) ∈ (0,∞)3\M for almost every
t > 0. For such (r̃, r) with r̃ ≤ r and t > 0 sufficiently large, the assumptions of
Theorem 3 are fulfilled and therefore there are a centered ellipsoid D and a, b ∈ Rn

(depending on (r̃, r, t)) such that

{f ≥ r̃} = a+ αD, t−1/(n+ps)K = b+ βD, {f ≥ r} = c+ γD

where c = a + b. Since K = t1/(n+ps)b + (|K|/|D|)1/nD, the centered ellipsoid D
does not depend on (r̃, r, t) and also a, c do not depend on t. It follows that b = 0
and that K is a multiple of D. Hence, a = c is a constant vector which concludes
the proof. □

The following result is a variation of [17, Theorem 3.1].

Theorem 12. If f ∈ Lp(Rn) is non-negative and K ⊂ Rn a star body, then∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
K

dx dy ≥
∫
Rn

∫
Rn

|f⋆(x)− f⋆(y)|p

∥x− y∥n+ps
K⋆

dxdy.

Equality holds for non-zero f ∈ W s,p(Rn) if and only if K is a centered ellipsoid
and f is a translate of f⋆ ◦ ϕ for some ϕ ∈ SL(n).

Proof. Since∫
Rn

∫
Rn

(f(x)− f(y))p−

∥x− y∥n+ps
K

dxdy =

∫
Rn

∫
Rn

(f(x)− f(y))p+

∥x− y∥n+ps
−K

dx dy,

the result follows from Theorem 11 for K and −K. □

7. Affine Fractional Pólya–Szegő Inequalities

We establish affine Pólya–Szegő inequalities for fractional asymmetric and sym-
metric Lp polar projection bodies.

Theorem 13. If f ∈ W s,p(Rn) is non-negative, then

|Π∗,s
p,+ f |−ps/n ≥ |Π∗,s

p,+ f⋆|−ps/n.

Equality holds if and only if f is a translate of f⋆ ◦ ϕ for some ϕ ∈ SL(n).

Proof. By Theorem 11, (16) and the dual mixed volume inequality, we obtain for
K ⊂ Rn a star body that

Ṽ−ps(K,Π∗,s
p,+ f) ≥ Ṽ−ps(K

⋆,Π∗,s
p,+ f⋆)

≥ |K⋆|(n+ps)/n|Π∗,s
p,+ f⋆|−ps/n(22)

= |K|(n+ps)/n|Π∗,s
p,+ f⋆|−ps/n.

Setting K = Π∗,s
p,+ f , we see that

|Π∗,s
p,+ f | = Ṽ−ps(Π

∗,s
p,+ f,Π∗,s

p,+ f) ≥ |Π∗,s
p,+ f |(n+ps)/n|Π∗,s

p,+ f⋆|−ps/n,
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which completes the proof of the inequality. By Theorem 11, there is equality in
(22) if and only if f is a translate of f⋆ ◦ ϕ for some ϕ ∈ SL(n). □

The following result is obtained in the same way as Theorem 13 by replacing
Theorem 11 with Theorem 12.

Theorem 14. If f ∈ Lp(Rn) is non-negative, then

|Π∗,s
p f |−ps/n ≥ |Π∗,s

p f⋆|−ps/n.

Equality holds for f ∈ W s,p(Rn) if and only if f is a translate of f⋆ ◦ ϕ for some
ϕ ∈ SL(n).

We remark that by Theorem 10 we obtain from Theorem 14 in the limit as
s → 1− that

|Π∗
p f |−p/n ≥ |Π∗

p f
⋆|−p/n,

which is equivalent to the Pólya–Szegő inequality for Lp projection bodies by
Cianchi, Lutwak, Yang, and Zhang [11, Theorem 2.1]. Similarly, by Theorem 9
we obtain from Theorem 13 in the limit as s → 1− that

|Π∗
p,+ f |−p/n ≥ |Π∗

p,+ f⋆|−p/n,

which is equivalent to the Pólya–Szegő inequality for asymmetric Lp projection
bodies by Haberl, Schuster and Xiao [15, Theorem 1].

8. Affine Fractional Asymmetric Lp Sobolev Inequalities

We establish the following affine fractional asymmetric Lp Sobolev inequalities
and show that they are stronger than Theorem 1.

Theorem 15. Let 0 < s < 1 and 1 < p < n/s. For non-negative f ∈ W s,p(Rn),

∥f∥p np
n−ps

≤ 2σn,p,snω
n+ps

n
n |Π∗,s

p,+ f |−
ps
n ≤ 2σn,p,s

∫
Rn

∫
Rn

(f(x)− f(y))p+
|x− y|n+ps

dxdy.

There is equality in the first inequality if and only if f = hs,p◦ϕ for some ϕ ∈ GL(n)
where hs,p is an extremal function of (1). There is equality in the second inequality
if f is radially symmetric.

Proof. By Theorem 13,

|Π∗,s
p,+ f |−ps/n ≥ |Π∗,s

p,+ f⋆|−ps/n,

with equality if f is a translate of f⋆ ◦ ϕ for some ϕ ∈ SL(n). Since f⋆ is radially
symmetric, Π∗,s

p,+ f⋆ = Π∗,s
p,− f⋆ is a ball. Hence, it follows from (16) that

2nω
n+ps

n
n |Π∗,s

p,+ f⋆|−
ps
n = 2

∫
Rn

∫
Rn

(f⋆(x)− f⋆(y))p+
|x− y|n+ps

dx dy

=

∫
Rn

∫
Rn

|f⋆(x)− f⋆(y)|p

|x− y|n+ps
dxdy.

The fractional Sobolev inequality (1) shows that

σn,p,s

∫
Rn

∫
Rn

|f⋆(x)− f⋆(y)|p

|x− y|n+ps
dxdy ≥ ∥f⋆∥p np

n−ps
.

Combining these inequalities and their equality cases, we complete the proof of the
first inequality of the theorem.
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For the second inequality, we set K = Bn in (16) and apply the dual mixed
volume inequality (6) to obtain∫

Rn

∫
Rn

(f(x)− f(y))p+
|x− y|n+ps

dxdy = nṼ−ps(B
n,Π∗,s

p,+ f) ≥ nω
n+ps

n
n |Π∗,s

p,+ f |−
ps
n .

There is equality precisely if Π∗,s
p,+ f is a ball, which is the case for radially symmetric

functions. □

Note that it follows from the definition of fractional symmetric and asymmetric
Lp polar projection bodies that

Π∗,s
p f = Π∗,s

p,+ f +̃−ps Π
∗,s
p,− f.

We use the dual Brunn–Minkowski inequality (5) and obtain that

|Π∗,s
p f |−

ps
n ≥ |Π∗,s

p,+ f |−
ps
n + |Π∗,s

p,− f |−
ps
n ,

with equality precisely if the star bodies Π∗,s
p,+ f and Π∗,s

p,− f are dilates. Thus, it
follows that for non-negative f , Theorem 15 implies Theorem 1 and it is, in general,
substantially stronger than Theorem 1. Of course, they coincide for even functions.

9. Affine Fractional Lp Sobolev Inequalities: Proof of Theorem 1

For non-negative f , the first inequality in Theorem 1 follows from Theorem 15,
as mentioned before. For general f and x, y ∈ Rn, we use

|f(x)− f(y)| ≥
∣∣|f(x)| − |f(y)|

∣∣,
where equality holds if and only if f(x) and f(y) are both non-negative or non-
positive. We obtain∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy ≥

∫
Rn

∫
Rn

∣∣|f(x)| − |f(y)|
∣∣p

|x− y|n+sp
dx dy,

with equality if and only if f has constant sign for almost every x, y ∈ Rn. Using
the result for |f |, we obtain the first inequality of the theorem and its equality case.

For the second inequality, we set K = Bn in (10) and apply the dual mixed
volume inequality (6) as in the proof of Theorem 15.

10. Optimal Fractional Lp Sobolev Bodies

The following important question was asked by Lutwak, Yang and Zhang [25] for
a given f ∈ W 1,p(Rn) and 1 ≤ p < n: For which origin-symmetric convex bodies
K ⊂ Rn is

(23) inf
{∫

Rn

∥∇f(x)∥pK∗ dx : K origin-symmetric convex body, |K| = ωn

}
attained? An optimal Lp Sobolev body of f is a convex body where the infimum
is attained.

Lutwak, Yang ang Zhang [25] showed that the infimum in (23) is attained (up to
normalization) at the unique origin-symmetric convex body ⟨f⟩p in Rn such that

(24)

∫
Sn−1

g(ξ) dSp(⟨f⟩p, ξ) =
∫
Rn

g(∇f(x)) dx
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for every even g ∈ C(Rn) that is positively homogeneous of degree p, where Sp(K, ·)
is the Lp surface area measure of K. Setting g = ∥ · ∥K∗ , they obtain from the
Lp Minkowski inequality that

(25)
1

n

∫
Rn

∥∇f(x)∥pK∗ dx = Vp(⟨f⟩p,K) ≥ |⟨f⟩p|
(n−p)/n|K|p/n,

with equality precisely if K and ⟨f⟩p are homothetic (see [28, Section 9.1] for the

definition of the Lp mixed volume Vp(·, ·) and the Lp Minkowski inequality). Hence,
they obtain from their solution to their functional version (24) of the Lp Minkowski
problem that ⟨f⟩p is the optimal Lp Sobolev body associated to f . Tuo Wang [31]

obtained corresponding results for f ∈ BV (Rn) and p = 1.
Let 0 < s < 1 and 1 < p < n/s. The results by Lutwak, Yang and Zhang [25]

suggest the following question for a given f ∈ W s,p(Rn): For which star bodies
L ⊂ Rn is

(26) inf
{∫

Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
L

dxdy : L star body, |L| = ωn

}
attained? An optimal s-fractional Lp Sobolev body of f is a star body where the
infimum is attained.

By (10) and the dual mixed volume inequality (6),

1

n

∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
L

dxdy = Ṽ−ps(L,Π
∗,s
p f) ≥ |L|(n+ps)/n|Π∗,s

p f |−(ps)/n,

and there is equality precisely if L is a dilate of Π∗,s
p f . Hence, Π∗,s

p f is the unique
optimal s-fractional Lp Sobolev body associated to f .

To understand how the solutions to (23) and (26) are related, we use the following
result: For f ∈ W 1,p(Rn) and L ⊂ Rn a star body,

(27) lim
s→1−

p(1− s)

∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
L

dxdy =

∫
Rn

∥∇f(x)∥Z∗
pL

dx,

where the convex body Zp K, defined for ξ ∈ Sn−1 by

hZpL(ξ)
p =

∫
Sn−1

|⟨ξ, η⟩|pρL(η)n+p dη,

is a multiple of the Lp centroid body of L. This can be proved as in [21], where
the corresponding result was established for a convex body L (with a different
normalization of Zp L). It also follows from Theorem 10. Indeed, by (10) and (20),

lim
s→1−

p(1− s)

∫
Rn

∫
Rn

|f(x)− f(y)|p

∥x− y∥n+ps
L

dx dy = Ṽ−p(L,Π
∗
p f).

Using that

(28) Π∗
p f = Π∗

p ⟨f⟩p
for f ∈ W 1,p(Rn), which follows from (24) by setting g = |⟨·, η⟩|p for η ∈ Sn−1 and
using (8) and (9) (cf. [25]), and that

(29) Vp(K,Zp L) = Ṽ−p(L,Π
∗
p K)

for K a convex body and L a star body, a well-known relation that follows from
Fubini’s theorem, we now obtain (27) from the first equation in (25).
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Using (27), we obtain from (26) in the limit as s → 1− for a given f ∈ W 1,p(Rn),
the following question: For which star bodies L ⊂ Rn is

(30) inf
{∫

Rn

∥∇f(x)∥Z∗
pL

dx : L star body, |L| = ωn

}
attained? By (25) and the dual mixed volume inequality (6), we have

1

n

∫
Rn

∥∇f(x)∥pZ∗
pL

dx = Vp(⟨f⟩p,Zp L) = Ṽ−p(L,Π
∗
p f) ≥ |L|(n+p)/n|Π∗

p f |−p/n,

with equality precisely if L and Π∗
p f are dilates, where we have used (28) and (29).

From Theorem 10, we obtain that a suitably scaled sequence of optimal s-fractional
Sobolev bodies converges to a multiple of the optimal body for (30) as s → 1−.
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