
SHARP CONVEX LORENTZ-SOBOLEV INEQUALITIES

MONIKA LUDWIG, JIE XIAO, AND GAOYONG ZHANG

Abstract. New sharp Lorentz-Sobolev inequalities are obtained by convexifying level sets
in Lorentz integrals via the Lp Minkowski problem. New Lp isocapacitary and isoperimetric
inequalities are proved for Lipschitz star bodies. It is shown that the sharp convex Lorentz-
Sobolev inequalities are analytic analogues of isocapacitary and isoperimetric inequalities.

1. Introduction

The optimal Lp Sobolev embedding states that for 1 ≤ p < n the inequality

(1) ‖∇f‖p ≥ αn,p‖f‖ np
n−p

holds for every f ∈ C∞0 (Rn), where C∞0 (Rn) denotes the set of functions on Rn that are
smooth and have compact support. Here ‖ · ‖q denotes the usual Lq norm for functions on
Rn,

αn,p = n
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pω

1
n
n

( p− 1

n− p
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)
Γ
(
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p

)
Γ(n)

) 1
n

is the best constant, Γ the gamma function and ωn the n-dimensional volume of the unit ball
in Rn. Inequality (1) was proved by Federer and Fleming [22] and Maz′ya [52] for p = 1
and by Aubin [5] and Talenti [72] for 1 < p < n. For strengthened versions of (1), see,
e.g., [7, 14,17,20,30,46,75,77] .

One of the most important lines of development with respect to (1) is the Lorentz-Sobolev
embedding theorem [4] (with sharp constants): If f ∈ C∞0 (Rn) and 1 ≤ p < n, then

(2) ‖∇f‖pp ≥ p−p(n− p)p−1nω
p
n
n

∫ ∞
0

V ([f ]t)
n−p
n dtp,

where [f ]t = {x ∈ Rn : |f(x)| ≥ t} and V is the n-dimensional volume (Lebesgue measure).
See also [1, 6, 18,23,50,56,63,64].

Maz′ya [56] deduced (2) from the Maz′ya Lp isocapacitary inequality (see [56]),

(3) V (K)
n−p
n ≤

(
p−1
n−p

)p−1
(nω

p
n
n )−1Cp(K) for compact K ⊂ Rn,

and the Maz′ya capacity strong-type inequality [53],

(4) ‖∇f‖pp ≥ p−p(p− 1)p−1

∫ ∞
0

Cp([f ]t) dt
p,

where Cp(K) is the Lp variational capacity of K defined by

Cp(K) = inf{‖∇f‖pp : f ∈ C∞0 (Rn) with f(x) ≥ 1 for x ∈ K}.

For more connections of (3) to Sobolev-type embeddings, see [26,55,57–60,62,76].
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The aim of this paper is to put forward convex Lorentz-Sobolev inequalities that strengthen
(1) in a way modeled after (2) and (4). Instead of Lorentz integrals using level sets [f ]t, our
approach is based on integrals using the Lp convexification of level sets 〈f〉t which arises via
the solution of the Lp Minkowski problem. The Lp convexification of level sets was defined
by Lutwak, Yang, and Zhang in [46, 77] and applied in [14, 30, 32, 49, 75]. The definition of
the convex sets 〈f〉t and an interpretation using Lp mixed volumes is given in Sections 3.3
and 4.1. For an even function f and p = 1, the L1 convexification 〈f〉t can be described in
the following way. The push-forward of the (n − 1)-dimensional Hausdorff measure on the
boundary of [f ]t using the Gauss map defines a measure on the unit sphere Sn−1 and the
solution to the classical Minkowski problems states that there is a unique origin-symmetric
compact convex set that defines the same measure on Sn−1. This set is the L1 convexification
of level sets 〈f〉t.

A sharp convex Lorentz-Sobolev inequality corresponding to (4) is the principal result of
this paper (see Theorem 2 below). To explain more generally the strength of convex Lorentz-
Sobolev inequalities, we compare the Lorentz-Sobolev inequality (2) to the corresponding
convex Lorentz-Sobolev inequality. Such a convex Lorentz-Sobolev inequality with sharp
constants can be deduced from the proof of the sharp Lp affine Sobolev inequality [46,77] and
is strengthened and implied by Theorem 2: If f ∈ C∞0 (Rn) and 1 ≤ p < n, then

(5) ‖∇f‖pp ≥ nω
p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt.

In [46], the following sharp inequality is proved,

(6)

∫ ∞
0

V (〈f〉t)
n−p
n dt ≥ αpn,p

nω
p/n
n

‖f‖pnp
n−p

for all f ∈ C∞0 (Rn) and 1 ≤ p < n. Since the inequalities (5) and (6) are both sharp, they
imply (1) with best constants. On the other hand, an inequality of Hardy, Littlewood and
Pólya [33] implies that ∫ ∞

0
V ([f ]t)

n−p
n dtp ≥ ‖f‖pnp

n−p
.

However, this inequality is not sharp unless p = 1. In view of this, the Lorentz-Sobolev
embedding (2) implies (1) but without sharp constant.

Further, whereas there is no known geometric inequality equivalent to (2), we will show in
Remark 3 that (5) has as a geometric analogue the following Lp isoperimetric inequality [41],

(7) Sp(K) ≥ nω
p
n
n V (K)

n−p
n ,

where K ⊂ Rn is compact, convex and origin-symmetric, Sp(K) is the Lp surface area of K
for p > 1 (see Section 5.3 for the definition) and S1(K) = S(K) is the surface area of K.
Moreover, in Section 6.4, we will show that for f ∈ C∞0 (Rn) and 1 ≤ p < n,

(8)
nω

p
n
n

pp(n− p)1−p

∞∫
0

V ([f ]t)
n−p
n dtp ≤

(
nω

p
n
n

∞∫
0

V (〈f〉t)
n−p
n dt

) 1
p ‖∇f‖p−1

p .

Thus the sharp convex Lorentz-Sobolev inequality (5) is stronger than the Lorentz-Sobolev
inequality (2).
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2. Statement of principal results

The geometric analogue of the L1 Sobolev inequality is the Euclidean isoperimetric inequal-
ity (see [22,24,52]). For E ⊂ Rn whose boundary is rectifiable, it states that if E has surface
area S(E), then

(9) S(E) ≥ nω1/n
n V (E)(n−1)/n

with equality if E is a ball in Rn.
Two invariants come to the picture for strengthening the isoperimetric inequality. The first

is the L1 variational capacity C := C1, which is invariant under rotations and translations.
For compact E ⊂ Rn with rectifiable boundary,

(10) S(E) ≥ C(E) ≥ nω1/n
n V (E)(n−1)/n

with equality if E is a closed ball in Rn (see [54, p. 105, (7)]), where S(E) = C(E) for E
compact and convex (see Section 6.1).

The second is the integral affine surface area Φ, which is SL(n) and translation invariant
(see Section 5.2 for the definition). For E ⊂ Rn with Lipschitz boundary,

(11) S(E) ≥ Φ(E) ≥ nω1/n
n V (E)(n−1)/n

with equality holding in the right side inequality if and only if E is an ellipsoid. For convex E,
the right side inequality of (11) is known as the Petty projection inequality (see [25,43,65,68]).
The general case of (11) was proved in [77].

Within the Lp Brunn-Minkowski theory (see [10,13–15,30–32,35,36,39–42,44–49,61,67,69–
71, 74]), the natural extension of integral affine surface area is the Lp integral affine surface
area Φp (see Section 5.2 for the definition) and the natural extension of surface area is the
Lp surface area Sp.

The following lemma is the key geometric result needed to establish our sharp convex
Lorentz-Sobolev inequalities. It generalizes inequalities (10) and (11) and strengthens the Lp

isoperimetric inequality (7). A set M is a Lipschitz star body if M is compact, star shaped
and has Lipschitz boundary.

Lemma 1. If M is a Lipschitz star body in Rn and 1 ≤ p < n, then

(12) Sp(M) ≥
(
p−1
n−p

)p−1
Cp(M) ≥ nω

p
n
n V (M)

n−p
n

and

(13) Sp(M) ≥ Φp(M) ≥ nω
p
n
n V (M)

n−p
n .

Equality in (12) holds if M is a ball centered at the origin. Equality in the right side of (13)
holds for p > 1 if and only if M is an ellipsoid centered at the origin and for p = 1 if and
only if M is an ellipsoid containing the origin.

The right-hand side inequality of (12) is due to Maz′ya [54] (the case p = 2 and n = 3 was
proved earlier by Pólya and Szegö [66]). The case p = 2 and n = 3 of the left-hand side
inequality of (12) goes back to Pólya and Szegö [66]. For compact convex sets, the right-hand
side inequality of (13) was proved in [45] (see [10] for an alternate proof).

Sharp convex Lorentz-Sobolev inequalities are stated in the following theorem.
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Theorem 2. If f ∈ C∞0 (Rn) and 1 ≤ p < n, then

(14) ‖∇f‖pp ≥
(
p−1
n−p

)p−1

∫ ∞
0

Cp(〈f〉t) dt ≥ nω
p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt

and

(15) ‖∇f‖pp ≥
∫ ∞

0
Φp(〈f〉t) dt ≥ nω

p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt.

Equality holds in all inequalities for p = 1, as f tends to the characteristic function of an
origin-centered ball and for p ∈ (1, n), as f tends to (a + b|x|p/(p−1))(p−n)/p with positive
constants a, b.

The left side inequality of (14) for p = 1 and the left side inequality of (15) were proved in [75].
The analytic inequalities (14) and (15) will be proved by using the geometric inequalities

(12) and (13). The following remark, which is proved in Section 6.3, shows that (12) and (13)
are geometric analogues of the analytic inequalities (14) and (15) respectively.

Remark 3. Theorem 2 implies Lemma 1 for origin-symmetric convex bodies. In particular,
the sharp convex Lorentz-Sobolev inequality (5) is the analytic analogue of the Lp isoperimetric
inequality (7).

The convex sets 〈f〉t can be used to define convexified Choquet spaces and thus the sharp
convex Lorentz-Sobolev inequalities imply new embedding theorems. For a nonnegative set
function, ψ, defined on a family F of subsets of Rn, the Choquet integral, ψ[f ], of a function
f on Rn with respect to ψ is defined as

ψ[f ] =

∫ ∞
0

ψ([f ]t) dt.

For p > 0, the p-Choquet space associated with the set function ψ consists of functions with
ψ[|f |p] <∞. The Lp Lorentz space is the p-Choquet space with the set function ψ = V (n−p)/n.
Choquet spaces are studied with respect to general capacities and find important applications
in potential theory and partial differential equations (see Adams’ survey paper [2]). Assume
that F is the family of compact convex sets in Rn and ψ is a nonnegative set function on F .
Define the convexified Choquet integral, ψ〈f〉, of a function f with respect to ψ as

ψ〈f〉 =

∫ ∞
0

ψ(〈f〉t) dt.

The set function ψ can be chosen as the integral affine surface area Φp or other important
geometric functionals of compact convex sets, in particular, valuations (see [3, 28, 29, 37, 38,
40]). This may be useful for finding new connections between functional analysis and convex
geometry. Note that the functional f 7→ ψ〈f〉 also depends on p. The convexified (p, q)-
Choquet space consists of functions with ψ〈|f |q〉 < ∞. The convexified Lp Lorentz space is

the convexified (p, 1)-Choquet space with ψ = V (n−p)/n. Hence, inequalities (14) and (15)
induce sharp embeddings of Sobolev spaces into convexified Choquet spaces.

In the following sections, the notion of Lp convexification is discussed and tools about Lp

geometric set functions are collected. The proofs of Lemma 1 and Theorem 2 are presented in
Section 6. In Section 7, invariance properties of the Lp convexification and of the inequalities
from Theorem 2 are discussed.
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3. The notion of Lp mixed volume

3.1. The Lp mixed volume of convex bodies. A convex body is a compact convex set in
Rn which is throughout assumed to contain the origin in its interior. We denote by Kn0 the
space of convex bodies equipped with the Hausdorff metric. Each convex body K is uniquely
determined by its support function hK : Rn → [0,∞) defined by

hK(x) = sup{x · y : y ∈ K}, x ∈ Rn,

and we also write h(K, ·) for hK .
For p ≥ 1 and convex bodies K and L, the Minkowski-Firey Lp sum K +p L is the convex

body whose support function is given by

h(K +p L, ·)p = h(K, ·)p + h(L, ·)p .

The Lp mixed volume Vp(K,L) of K,L ∈ Kn0 is defined by

Vp(K,L) =
p

n
lim
ε→0+

V (K +p ε
1
pL)− V (K)

ε
.

The existence of this limit was established in [41]. In particular,

(16) Vp(K,K) = V (K)

for every convex body K.
The Lp Minkowski inequality [41] states that for convex bodies K and L

(17) Vp(K,L)n ≥ V (K)n−pV (L)p

with equality if and only if K and L are dilates when p > 1 and if and only if K and L are
homothetic when p = 1. A simple consequence of the equality conditions in (17) is that for
1 < p 6= n, if K and K ′ are origin-symmetric convex bodies such that for all origin-symmetric
convex bodies L,

(18) Vp(K,L) = Vp(K
′, L), then K = K ′.

In [41], it was also shown that

(19) Vp(K,L) =
1

n

∫
Sn−1

hL(u)p dSp(K,u)

for K,L ∈ Kn0 , where Sp(K, ·) = h1−p
K SK is the Lp surface area measure of K and SK is the

classical surface area measure of K (see [68] for information on the surface area measure).
The Borel measure SK on the (n − 1)-dimensional unit sphere Sn−1 can be defined as the
measure such that

(20)

∫
Sn−1

g(u) dSK(u) =

∫
∂K

g(νK(x)) dx

for all g ∈ C(Sn−1), where νK(x) is the unit outer normal vector to K at x. For a convex

body K, SK is not supported on a great hypersphere. Hence, also Sp(K, ·) = h1−p
K SK is not

supported on a great hypersphere, that is,

(21)

∫
Sn−1

|u · v|p dSp(K,u) > 0, v ∈ Sn−1.
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Note that

(22) Sp(tK, ·) = tn−pSp(K, ·)

for all t > 0 and convex bodies K.

3.2. The Lp mixed volume of star bodies. A star body M is a compact set in Rn which is
star shaped with respect to the origin, i.e., if x ∈M , then the line segment joining the origin
to x is contained in M . Suppose that M is a Lipschitz star body, that is, M has Lipschitz
boundary ∂M . Then the unit outer normal νM (x) to M exists for almost all x in ∂M . The
radial function, ρM : Rn\{0} → R, of M is defined for x 6= 0 by

ρM (x) = max{λ ≥ 0 : λx ∈M}.

Note that for a Lipschitz star body M , the radial function ρM is locally Lipschitz continuous
when restricted to its core

(23) DM = {t x : t > 0, x ∈ ∂M, |x · νM (x)| > 0}.

For M a Lipschitz star body and L a convex body in Rn, the Lp mixed volume Vp(M,L) of
M and L is defined by

(24) Vp(M,L) =
1

n

∫
∂M

hL(νM (x))p|x · νM (x)|1−pdx.

While Vp(M,L) is well defined, it is not necessarily finite.
For p = 1, the Minkowski inequality (17) was extended to more general sets (see [9,73,77]).

We require the following special case: If M is a Lipschitz star body and L is a convex body
in Rn, then

(25) V1(M,L)n ≥ V (M)n−1V (L)

with equality if and only if M and L are homothetic. The next lemma extends this to p ≥ 1.

Lemma 4. If M is a Lipschitz star body in Rn and L a convex body in Rn, then for 1 ≤ p <∞.

(26) Vp(M,L)n ≥ V (M)n−pV (L)p.

Equality holds if and only if M is a dilate of the convex body L when p > 1 and if and only if
M is homothetic to the convex body L when p = 1.

Proof. The case p = 1 is just (25). Suppose p > 1. For a Lipschitz star body M ,

(27) nV (M) =

∫
∂M

x · νM (x) dx.
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The inequality (26) follows from (27), the Jensen inequality and (25),

Vp(M,L)

V (M)
=

1

nV (M)

∫
∂M

(
hL(νM (x))

x · νM (x)

)p
(x · νM (x)) dx

≥
(

1

nV (M)

∫
∂M

hL(νM (x)) dx

)p
=

(
V1(M,L)

V (M)

)p
≥

(
V (L)

V (M)

) p
n

.

Suppose that there is equality in (26). The equality conditions in (25) show that up to
translation by a vector y ∈ Rn, M and L are dilates. Hence M is convex and hM (νM (x)) =
x · νM (x) almost everywhere on ∂M . Combined with the equality conditions in Jensen’s
inequality it follows that hL(νM (x))/hM (νM (x)) is constant almost everywhere on ∂M . Thus
y = 0 and M and L are dilates. �

We also require the following lemmas.

Lemma 5. If M is a Lipschitz star body in Rn, then

(28) νM (x) = − ∇ρM (x)

|∇ρM (x)|

and

(29) ∇ρM (x) = − νM (x)

x · νM (x)

for almost all x ∈ ∂M ∩DM .

Proof. For x ∈ ∂M ∩DM , the definition of radial function implies that ρM (x) = 1. Since the
gradient ∇ρM (x) points in the direction of the normal vector −νM (x), we obtain (28). The
function ρM : Rn\{0} → R is homogeneous of degree −1, that is, for x 6= 0 and t > 0,

ρM (tx) =
1

t
.

Differentiating above equation withrespect to t and taking t = 1, shows that for almost all
x ∈ ∂M ∩DM ,

(30) x · ∇ρM (x) = −1.

Combining (28) and (30), we obtain for almost all x ∈ ∂M ∩DM ,

x · νM (x) =
1

|∇ρM (x)|
,

and thus (29).
�
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Lemma 6. If M is a Lipschitz star body in Rn and g : (0,∞)→ R is strictly monotone, then
for f : Rn → R defined by f(x) = g(1/ρM (x)),

|∇f(x)| = |g
′(ρM (x))|
|z · νM (z)|

holds for almost all x ∈ Rn, where

z =
x

ρM (x)
∈ ∂M ∩DM and νM (z) = − ∇f(x)

|∇f(x)|
=
∇(1/ρM )(z)

|∇(1/ρM )(z)|
.

Proof. It is enough to handle the case that g is strictly decreasing. Assume this and consider
the level sets

Mt = {x ∈ Rn : f(x) ≥ t}, t ∈ R.
It is easy to see that

Mt = {x ∈ Rn : 1/ρM (x) ≤ s} = sM, t = g(s).

For x ∈ ∂Mt, let s = ρM (x) and x = sz. Then z ∈ ∂M ∩ DM and hence ρM (z) = 1. Note
now that 1/ρM is homogeneous of degree 1. So we have

∇f(x) = g′(s/ρM (z))∇(1/ρM )(z) = g′(s)∇(1/ρM )(z).

Combined with Lemma 5, this completes the proof of the lemma. �

3.3. The Lp mixed volume of functions. A new approach to understand sharp Lp Sobolev
inequalities was presented in [49]. For 1 ≤ p < n, an origin-symmetric convex body 〈f〉
(depending on p) is associated to f ∈ C∞0 (Rn) such that

(31) Vp(〈f〉, L) =
1

n

∫
Rn
h(L,−∇f(x))p dx

for all origin-symmetric convex bodies L. Note that (31) is the Sobolev norm of f with respect
to the norm whose unit ball is the polar body of L. The approach uses the solution of the

Even Lp Minkowski Problem. Suppose µ is an even Borel measure on Sn−1 that is not
supported on a great hypersphere of Sn−1. Then for 1 ≤ p 6= n there exists a unique origin-
symmetric convex body K such that

µ = Sp(K, ·),

that is, µ is the Lp surface area measure of K.

For p = 1, the Minkowski problem and its solution are classical (see [68]). For p > 1, the
even Lp Minkowski problem was first posed and solved in [41] (see also [44, 46]). We remark
that the question for not necessarily even data was solved by Chou and Wang [15] (The case
of p ≥ n was solved by Guan and Lin [27]). Different approaches were given in [36]. For
generalizations, see Hu, Ma and Shen [35].

For f ∈ C∞0 (U), where U ⊂ Rn is open, and 1 ≤ p < n, define the origin-symmetric convex
body 〈f〉 (depending on p) as the unique origin-symmetric convex body such that

(32)

∫
Sn−1

g(u) dSp(〈f〉, u) =

∫
U
g(−∇f(x)) dx
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for all even g ∈ C(Sn−1) extended to Rn to be homogeneous of degree p. To see that 〈f〉
exists and is unique, define the even Borel measure µ (depending on p) by

(33)

∫
Sn−1

g(u) dµ(u) =

∫
U
g(−∇f(x)) dx

for all even g ∈ C(Sn−1) extended to Rn to be homogeneous of degree p. For f not vanishing
identically, the measure µ in (33) is not supported on any great hypersphere {x · v = 0}, since
taking g(u) = |u · v|p in (33) shows that∫

Sn−1

|u · v|p dµ(u) =

∫
U

∣∣∣∂f
∂v

(x)
∣∣∣p dx > 0,

where the above integral is positive since f is compactly supported in U . Hence, by the
solution to the even Lp Minkowski problem, 〈f〉 exists and is uniquely determined. Equation
(31) follows from (32) and the definition of Lp mixed volume (19). More generally, for C∞(U),
where U ⊂ Rn is open and bounded, we use

(34)

∫
Sn−1

g(u) dSp(〈f〉, u) =

∫
U
g(−∇f(x)) dx

to define 〈f〉, if

(35)

∫
U

∣∣∂f
∂v

(x)
∣∣p dx > 0

for all v ∈ Sn−1.

4. The notion of Lp convexification

4.1. The Lp convexification of level sets. By the co-area formula (see, e.g., [54, Theorem
1.2.4]) and (31), we obtain that for 1 ≤ p < n, origin-symmetric L ∈ Kn0 and f ∈ C∞0 (Rn),

Vp(〈f〉, L) =
1

n

∫
Rn
h(L,−∇f(x))p dx

=
1

n

∫
Rn
h(L, ν(x))p |∇f(x)|p dx(36)

=
1

n

∫ ∞
0

∫
∂[f ]t

h(L, ν(x))p |∇f(x)|p−1 dx dt

where ν(x) = −∇f(x)/|∇f(x)|. By Sard’s theorem, for almost all t > 0, we have ∇f(x) 6= 0
on ∂[f ]t and hence ν(x) is well defined. Equation (36) motivates the following definition of a
local version of 〈f〉 (see [46] and [49] and for the case of p = 1, [8] and [77]).

Let f : U → R, where U ⊂ Rn is open, be locally Lipschitz, let t > 0, and suppose
∇f(x) 6= 0 a.e. on ∂[f ]t = {x ∈ U : f(x) = t}. For 1 ≤ p < n, define the Lp convexification
〈f〉t of the level set [f ]t as the unique origin-symmetric convex body such that

(37)

∫
Sn−1

g(u) dSp(〈f〉t, u) =

∫
∂[f ]t

g(ν(x)) |∇f(x)|p−1dx
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for all even g ∈ C(Sn−1). To see that 〈f〉t exists and is unique, define the even Borel measure
µt (depending on p) by

(38)

∫
Sn−1

g(u) dµt(u) =

∫
∂[f ]t

g(ν(x)) |∇f(x)|p−1dx

for all even g ∈ C(Sn−1). The measure µt is not supported on any great hypersphere {x·v = 0},
since taking g(u) = |u · v| in (38) shows that∫

Sn−1

|u · v| dµt(u) =

∫
∂[f ]t

|v · ν(x)| |∇f(x)|p−1 dx > 0.

Thus by the solution to the Lp Minkowski problem 〈f〉t exists and is uniquely determined.
The Lp convexification 〈f〉t depends only on ∇f restricted to ∂[f ]t. Note that for 1 ≤ p < n
and L an origin-symmetric convex body,

(39) Vp(〈f〉, L) =

∫ ∞
0

Vp(〈f〉t, L) dt.

A simple consequence of (39) is the following lemma, which shows that 〈f〉t is a local version
of 〈f〉.

Lemma 7. If f ∈ C∞0 (Rn) and |∇f(x)| 6= 0 on ∂[f ]t for t > 0, then for 1 ≤ p < n,

lim
ε→0

1

2ε
Sp(〈ft,ε〉, ·) = Sp(〈f〉t, ·)

weakly, where ft,ε(x) = f(x) for t− ε < |f(x)| < t+ ε and ft,ε(x) = 0 otherwise.

Proof. Since |∇f(x)| 6= 0 on ∂[f ]t, (35) holds for

U = {x ∈ Rn : t− ε < |f(x)| < t+ ε}.
Hence 〈ft,ε〉 is well defined. By (34), the co-area formula and (37),∫

Sn−1

g(u) dSp(〈ft,ε〉, u) =

∫
U
g(−∇f(x)) dx

=

∫ t+ε

t−ε

∫
∂[f ]τ

g(ν(x))|∇f(x)|p−1 dxdτ

=

∫ t+ε

t−ε

(∫
Sn−1

g(u) dSp(〈f〉τ , u)

)
dτ

for all even g ∈ C(Sn−1). Applying Lebesgue’s differentiation theorem concludes the proof of
the lemma. �

We also require the following result.

Lemma 8. If K is an origin-symmetric convex body in Rn and f(x) = g(1/ρK(x)), where
g ∈ C1(0,∞) is strictly decreasing, then for t > 0 and 1 ≤ p < n, the convex bodies of the Lp

convexification of the level sets of f are dilates of K, that is,

〈f〉t = cp(t)K,

and cp(t)
n−p = |g′(s)|p−1sn−1, where t = g(s).
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Proof. Clearly, [f ]t = sK with t = g(s). By Lemma 6, we get

|∇f(x)| = |g′(s)|/hK(u),

where u = −∇f/|∇f |. Using this and (37), for any even function h ∈ C(Sn−1),∫
Sn−1

h(u) dSp(〈f〉t, u) =

∫
∂[f ]t

h(νK(x))|∇f(x)|p−1 dx

=

∫
∂K

h(νK(x))
( |g′(s)|
hK(νK(x))

)p−1
sn−1 dx

= |g′(s)|p−1sn−1

∫
Sn−1

h(u) dSp(K,u).

Thus, the uniqueness of the solution of the even Lp Minkowski problem and (22) imply that
〈f〉t = cp(t)K where cp(t)

n−p = |g′(s)|p−1sn−1 and t = g(s). �

4.2. The Lp convexification of star bodies. The following application of Lp convexifica-
tion is of special interest. Let M be a Lipschitz star body in Rn and set

f(x) = ρM (x)

for x ∈ DM , where DM is defined in (23). Note that ∇f 6= 0 a.e. on DM . For 1 ≤ p < n,
define

M̆p = 〈f〉1
We call M̆p the Lp convexification of M . Thus, by Lemma 5 and (37), M̆p is the unique
convex body that satisfies for all even g ∈ C(Sn−1) the equation

(40)

∫
Sn−1

g(u) dSp(M̆p, u) =

∫
∂M

g(νM (x))|x · νM (x)|1−pdx

for 1 ≤ p < n. As an immediate consequence, we obtain the following two lemmas.

Lemma 9. If M is a Lipschitz star body in Rn with Lp convexification M̆p, then for 1 ≤ p < n,

(41) Vp(M,K) = Vp(M̆p,K)

for any convex body K.

Proof. Equation (41) follows from (24), (40) and (19). �

Lemma 10. If M is a Lipschitz star body in Rn with Lp convexification M̆p, then for 1 ≤
p < n,

V (M̆p) ≥ V (M).

Equality holds if and only if M and M̆p are dilates when p > 1 and if and only if M and M̆p

are homothetic when p = 1.

Proof. By Lemmas 9 and 4, for 1 ≤ p < n, we have

V (M̆p) = Vp(M̆p, M̆p) = Vp(M,M̆p) ≥ V (M)
n−p
n V (M̆p)

p
n .

This completes the proof of the lemma. �
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5. Geometric set functions in the Lp Brunn-Minkowski theory

5.1. The Lp variational capacity. Recall that for a compact subset E of Rn and p ≥ 1,
the Lp variational capacity Cp(E) is defined by

Cp(E) = inf{‖∇f‖pp : f ∈ C∞0 (Rn) with f ≥ 1E},
where 1E is the indicator function of E. Note that for the unit ball B of Rn, we have

Cp(B) = nωn
(n−p
p−1

)p−1
(cf. [54, p. 106]). For more information on Lp variational capacity,

see [16,21,54].
The Lp variational capacity has the following invariance properties:

(42)
Cp(λE) = λn−pCp(E) for all λ > 0

Cp(φE) = Cp(E) for each rotation or translation φ.

The sharp Lp Maz′ya isocapacitary inequality (see [54, p. 105]) states that

(43)
(
p−1
n−p

)p−1
Cp(E) ≥ nωp/nn V (E)(n−p)/n

for all compact E ⊂ Rn and p ≥ 1. Equality in (43) holds for balls. At the end-point case
p = 1,

(44) S(M) ≥ C(M) = C1(M)

holds for all Lipschitz star bodies M (see [54, p. 107]).

5.2. The Lp integral affine surface area. For u ∈ Sn−1, let ū be the line segment whose
support function is given by

(45) hū(x) =
1

2
|u · x|, x ∈ Rn,

that is, ū is a line segment of unit length that is parallel to u and is centered at the origin.
For a Lipschitz star body M in Rn and p ≥ 1, the Lp integral affine surface area Φp(M) is

defined by

(46) Φp(M) =
(nωn)

n+p
n

βn,p

(∫
Sn−1

Vp(M, ū)
−n
p du

)− p
n

,

where

(47) βn,p = Vp(B, ū) =
1

2pn

∫
Sn−1

|u · v|p dv.

The normalization of Φp is chosen so that Φp(B) = nωn.
When K is a convex body, the following Lp affine isoperimetric inequality was proved in [45]

(see [10] for an alternate proof),

(48) Φp(K) ≥ nωp/nn V (K)(n−p)/n.

Equality holds for p > 1 if and only if K is an ellipsoid centered at the origin, and for p = 1
if and only if K is an ellipsoid that contains the origin in its interior.

In [45], it is proved that for a convex body K,

(49) Φp(ψK) = |detψ|
n−p
n Φp(K)

for ψ ∈ GL(n).
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5.3. The Lp surface area. Let M be a Lipschitz star body in Rn. For p ≥ 1, the Lp surface
area Sp(M) of M is defined by

(50) Sp(M) = nVp(M,B) =

∫
∂M
|x · νM (x)|1−pdx,

where B is the closed unit ball in Rn. Note that for p > 1, the Lp surface area Sp(M) is not
finite for all Lipschitz star bodies. It is normalized so that Sp(B) = nωn.

By (50) and (45), the Lp surface area has the following integral formula

(51) Sp(M) =
1

βn,p

∫
Sn−1

Vp(M, ū) du.

where βn,p is defined in (47). An important property of Lp surface areas is the following
monotonicity result.

Proposition 11. If M is a Lipschitz star body in Rn, then we have for 1 ≤ q < p < n,

(52)

(
Sq(M)

nωn

) 1
n−q
≤
(
Sp(M)

nωn

) 1
n−p

with equality if and only if M is a ball centered at the origin.

Proof. To prove (52), it suffices to consider the case Sp(M) <∞ (otherwise there is nothing
to prove). Since S1(M) = S(M), (50) and Jensen’s inequality for the probability measure
S1(M)−1dx on ∂M yield(Sq(M)

S1(M)

) 1
q−1

=

(
1

S1(M)

∫
∂M
|x · νM (x)|1−qdx

) 1
q−1

≤
(

1

S1(M)

∫
∂M
|x · νM (x)|1−pdx

) 1
p−1

=
(Sp(M)

S1(M)

) 1
p−1

,

which implies

(53) Sq(M)
p−1
q−1 ≤ S1(M)

p−q
q−1Sp(M)

with equality if and only if |x · νM (x)| is constant on ∂M . Furthermore, an application of
(27), the Jensen inequality and (50) imply( Sq(M)

nV (M)

)− 1
q

=

((
nV (M)

)−1
∫
∂M
|x · νM (x)|−q|x · νM (x)|dx

)− 1
q

≤
( S1(M)

nV (M)

)−1
.

Hence by the isoperimetric inequality (9),

Sq(M) ≥ S1(M)q
(
nV (M)

)1−q ≥ ((nωn)
q−1
n−qS1(M)

)n−q
n−1

,
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that is,

(54) S1(M) ≤ (nωn)
1−q
n−qSq(M)

n−1
n−q .

Combining (54) and (53) gives

Sq(M)
n−p
n−q ≤ (nωn)

q−p
n−qSp(M).

This yields (52). The equality condition follows from the equality condition of the isoperimet-
ric inequality – since |x · νM (x)| is constant on ∂M under this circumstance. �

6. Proofs of the principal results

6.1. Proof of Lemma 1. First, note that the right side inequality of (12) is a special case
of (43). For p = 1, the left side inequality of (12) is just (44) since S1(M) = S(M). We prove
the left side inequality for 1 < p < n. For a Lipschitz star body M , let

f(x) = g(1/ρM (x)), g(s) = min{1, s
n−p
1−p }.

We have that [f ]t = sM where t = g(s). By the co-area formula, Lemma 6, Fubini’s theorem
and (50), we obtain∫

Rn
|∇f(x)|pdx =

∫ ∞
0

∫
∂[f ]t

|∇f(x)|p−1 dx dt

=

∫ 1

0

∫
∂[f ]t

|g′(1/ρM (x))|p−1 |∇(1/ρM )(x)|p−1 dx dt

=

∫ ∞
1
|g′(s)|p sn−1

∫
∂M
|y · νM (y)|1−p dy ds

=
(∫ ∞

1
|g′(s)|p sn−1 ds

)
Sp(M).

Since ∫ ∞
1
|g′(s)|p sn−1 ds =

(n− p
p− 1

)p−1
,

standard limiting arguments show that the left side inequality of (12) is valid.
Second, the left side inequality of (13) follows from the Jensen inequality, (51) and (46). To

prove the right side inequality of (13), we consider the Lp convexification M̆p of a Lipschitz
star body M defined by (40). By Lemma 9, we have

(55) Vp(M, ū) = Vp(M̆p, ū)

for 1 ≤ p < n. By (46) and (55), it follows that

(56) Φp(M) = Φp(M̆p).

By (56), (48), and Lemma 10, we have for 1 ≤ p < n,

Φp(M) = Φp(M̆p) ≥ nω
p
n
n V (M̆p)

n−p
n ≥ nω

p
n
n V (Mp)

n−p
n .

This concludes the proof ot the right side inequality of (13).
Third, let us handle the equality conditions of inequalities (12) and (13). By the equality

conditions in Lemma 10 and the equality conditions of the inequality (48), the equality in the
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right side of (13) holds if and only if M is an ellipsoid centered at the origin when p > 1 and
M is an ellipsoid that contains the origin when p = 1. It is easily verified that equalities in
(12) hold if M is a ball centered at the origin.

Complete equality conditions for (12) are not known. We always have C1(K) = S(K)
whenever K is a convex body. The following is a proof of this fact (see also [54, p. 107]). Of
course, due to (44) we are only required to show C1(K) ≥ S(K). Let f be a function so that
f ≥ 1K . Then, K is a subset of [f ]t for t ∈ (0, 1), and hence

V1(K, ū) ≤ V1(〈f〉t, ū), u ∈ Sn−1.

By the co-area formula [54, Theorem 1.2.4], (37) and (19), it follows that∫
Rn
|u · ∇f(x)| dx =

∫ ∞
0

∫
∂[f ]t

|u · ∇f(x)||∇f(x)|−1dx dt

= 2n

∫ ∞
0

V1(〈f〉t, ū) dt

≥ 2nV1(K, ū).

Integration with respect to u, Fubini’s theorem and (51) give

‖∇f‖1 ≥ S(K),

and thus C1(K) ≥ S(K).

6.2. Proof of Theorem 2. By (31) and (50), we have

(57)

∫
Rn
|∇f(x)|pdx =

∫ ∞
0

Sp(〈f〉t) dt.

By Lemma 1 we have∫ ∞
0

Sp(〈f〉t) dt ≥
(
p−1
n−p

)p−1

∫ ∞
0

Cp(〈f〉t) dt ≥ nω
p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt

and ∫ ∞
0

Sp(〈f〉t) dt ≥
∫ ∞

0
Φp(〈f〉t) dt ≥ nω

p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt.

The above inequalities imply (14) and (15). The equality conditions follow from those of (1).

6.3. Explanation of Remark 3. It is shown above that Lemma 1 implies Theorem 2. To
see that Theorem 2 also implies Lemma 1 for origin-symmetric convex bodies, we take

(58) f(x) = g(1/ρK(x)) where g(s) = (1 + s
p
p−1 )

1−n
p

for origin-symmetric K ∈ Kn0 . By (57), Lemma 8, and an elementary calculation, the analytic
inequalities (14) and (15) imply the geometric inequalities (12) and (13) for origin-symmetric
convex bodies.

Assume the Lp isoperimetric inequality (7). By (57), we have∫
Rn
|∇f(x)|pdx =

∫ ∞
0

Sp(〈f〉t) dt ≥ nω
p
n
n

∫ ∞
0

V (〈f〉t)
n−p
n dt.

Thus, the sharp convex Lorentz-Sobolev inequality (5) holds. To show that the inequality (5)
also implies the inequality (7), we again take the function f defined in (58).
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6.4. Proof of inequality (8). Let f̄ be the symmetric rearrangement of f , defined by

f̄(x) = inf{t > 0 : V ([f ]t) < ωn|x|n}, x ∈ Rn.

The Pólya-Szegö principle [72] says that

(59) ‖∇f̄‖p ≤ ‖∇f‖p.

Let f̂ be the increasing function on (0,∞) defined by f̂(1/|x|) = f̄(x). If t = f̂(s), then
V ([f ]t) = ωns

−n. It was shown in [46, Lemma 5.1] that

ω
n−p
n

n

∫ ∞
0

f̂ ′(s)ps2p−n−1 ds = np−1

∫ ∞
0

V ([f ]t)
p(n−1)
n
(
− d

dt
V ([f ]t)

)1−p
dt.

Hence the Hölder inequality gives that∫ ∞
0

V ([f ]t)
n−p
n dtp

= pω
n−p
n

n

∫ ∞
0

f̂(s)p−1f̂ ′(s)sp−n ds

≤ pω
n−p
n

n

(∫ ∞
0

f̂ ′(s)ps2p−n−1 ds
) 1
p
(∫ ∞

0
f̂(s)psp−n−1 ds

)1− 1
p

(60)

= pω
(n−p)(p−1)

np
n

(
np−1

∫ ∞
0

V ([f ]t)
p(n−1)
n
(
− d

dt
V ([f ]t)

)1−p
dt
) 1
p

×
(∫ ∞

0
f̂(s)psp−n−1 ds

)1− 1
p
.

It was shown in [46, (6.3)] that the following differential inequality holds

(61) np−1V ([f ]t)
(n−1)p
n

(
− d

dt
V ([f ]t)

)1−p
≤ V (〈f〉t)

n−p
n .

Integrating both sides of the inequality (61) gives

(62) np−1

∫ ∞
0

V ([f ]t)
p(n−1)
n
(
− d

dt
V ([f ]t)

)1−p
dt ≤

∫ ∞
0

V (〈f〉t)
n−p
n dt.

The case p = 1 of (62) yields (8) right away. Note that the following Hardy inequality in
Rn holds for 1 < p < n (see [19,34,51]),∫

Rn
|f(x)|p|x|−pdx ≤ pp(n− p)−p‖∇f‖pp.
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Using polar coordinates, the definition of f̄ , the Hardy inequality, and the Pólya-Szegö prin-
ciple (59), we have that if 1 < p < n then∫ ∞

0
f̂(s)psp−n−1 ds =

∫ ∞
0

rn−1−pf̂(r−1)p dr

= (nωn)−1

∫ ∞
0

(∫
rSn−1

|f̄ |p du
)dr
rp

= (nωn)−1

∫
Rn

( |f̄(x)|
|x|

)p
dx

≤ (nωn)−1
( p

n− p

)p
‖∇f̄‖pp

≤ (nωn)−1
( p

n− p

)p
‖∇f‖pp.

By (60), (62) and (63), this concludes the proof of (8).

7. Invariance properties of the inequalities

Let Aff(n) denote the group of invertible affine transformations of Rn, that is, every map
Ψ ∈ Aff(n) is a general linear transformation followed by a translation. Let Sim(n) be the
group of similarities of Rn, that is, every map Ψ ∈ Sim(n) is a rotation followed by a dilation
(x 7→ t x for x ∈ Rn and t > 0) followed by a translation. There is a natural left action of
R\{0} ×Aff(n) and R\{0} × Sim(n) on functions f : Rn → R, given by

(63) f 7→ s f ◦Ψ−1

for each (s,Ψ) in R\{0}×Aff(n) and R\{0}×Sim(n), respectively. An inequality L[f ] ≤ R[f ]
for a class of functions f : Rn → R is called affine if

(64)
L[s f ◦Ψ−1]

R[s f ◦Ψ−1]
=
L[f ]

R[f ]

for each (s,Ψ) ∈ R\{0} × Aff(n). It is called similarity invariant if (64) holds for each
(s,Ψ) ∈ R\{0} × Sim(n). By (42) and (49), the inequalities (2) and the left side inequalities
of (14) and (15) are similarity invariant. We show that the the right side inequality of
(15) is affine and that the right side inequality of (14) is similarity invariant. We use the
following transformation properties of the support function and the Lp mixed volume that
follow immediately from their definition and (16), (19) and (22): for a convex body L and
u ∈ Rn,

(65) h(ψL, u) = h(L,ψtu)

for all ψ ∈ GL(n), where ψt denotes the transpose of ψ, and for convex bodies K and L,

(66)

Vp(ψK,L) = | detψ|Vp(K,ψ−1L)

Vp(K, sL) = sp Vp(K,L)

Vp(sK,L) = sn−p Vp(K,L)

for every ψ ∈ GL(n) and s > 0. We require the following two lemmas.
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Lemma 12. Let p ∈ [1, n). If f ∈ C∞0 (Rn), then

〈s f ◦Ψ−1〉 = s
p

n−p ψ〈f〉
for s > 0 and Ψ ∈ Aff(n) given by Ψ(x) = ψx+ y where ψ ∈ GL(n) and y ∈ Rn.

Proof. Note that

∇(s f ◦Ψ−1)(x) = sψ−t∇f(Ψ−1x).

Hence, for L an origin-symmetric convex body, by (31), (65) and (66),

Vp(〈s f ◦Ψ−1〉, L) =
1

n

∫
Rn
h(L,−sψ−t∇f(Ψ−1x))p dx

=
1

n
|detψ|

∫
Rn
h(sψ−1L,−∇f(y))p dy

= |detψ|Vp(〈f〉, s ψ−1L)

= Vp(s
p

n−pψ〈f〉, L).

Since these equations hold for all origin-symmetric convex bodies L, (18) implies the state-
ments of the lemma. �

Lemma 13. Let p ∈ [1, n). If f ∈ C∞0 (Rn) and ∇f(x) 6= 0 on ∂[f ]t for t > 0, then

〈s f ◦Ψ−1〉t = s
p

n−p ψ〈f〉t
for s > 0 and Ψ ∈ Aff(n) given by Ψ(x) = ψx+ y where ψ ∈ GL(n) and y ∈ Rn.

Proof. Since (s f ◦Ψ−1)t,ε = s ft,ε ◦Ψ−1, Lemma 12 implies

〈(s f ◦Ψ−1)t,ε〉 = s
p

n−p ψ〈ft,ε〉.
Hence, by (22),

Sp(〈(s f ◦Ψ−1)t,ε〉, ·) = spSp(ψ〈ft,ε〉, ·).
By (19), this implies

Vp(〈(s f ◦Ψ−1)t,ε〉, L) = sp Vp(ψ〈ft,ε〉, L).

for all convex bodies L. Hence Lemma 7 and (66) give

Vp(〈s f ◦Ψ−1〉t, L) = sp Vp(ψ〈f〉t, L) = Vp(s
p

n−pψ〈f〉t, L).

Since these equations hold for all origin-symmetric convex bodies L, (18) implies the state-
ments of the lemma. �

Proposition 14. For p ∈ [1, n) and f ∈ C∞0 (Rn),(∫ ∞
0

Φp(〈f〉t) dt
)/(∫ ∞

0
V (〈f〉t)

n−p
n dt

)
is invariant under the natural action of R\{0} ×Aff(n) and(∫ ∞

0
Cp(〈f〉t) dt

)/(∫ ∞
0

V (〈f〉t)
n−p
n dt

)
is invariant under the natural action of R\{0} × Sim(n).
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Proof. By Lemma 13 and (42), we get

Cp(〈s f ◦Ψ−1〉t) = Cp(|s|
p

n−p ψ〈f〉t) = |s|p | detψ|
n−p
n Cp(〈f〉t)

for (s,Ψ) ∈ R\{0} × Sim(n). By Lemma 13 and (49), we get

Φp(〈s f ◦Ψ−1〉t) = Φp(|s|
p

n−p ψ〈f〉t) = |s|p | detψ|
n−p
n Φp(〈f〉t).

for (s,Ψ) ∈ R\{0} ×Aff(n). Note also that Lemma 13 yields

V (〈s f ◦Ψ−1〉t)
n−p
n = |s|p |detψ|

n−p
n V (〈f〉t)

n−p
n

for (s,Ψ) ∈ R\{0} × Aff(n). Combining the last three equations gives the statement of the
proposition. �

8. A question

Since

S1(K) = S(K) = C(K) = C1(K) for all K ∈ Kn0 ,
it follows from (11) that

Φ(K) ≤ C(K) for all K ∈ Kn0 ,
and thus ∫ ∞

0
Φ(〈f〉t) dt ≤

∫ ∞
0

C(〈f〉t) dt for all f ∈ C∞0 (Rn).

This naturally leads to the following

Question. Are the geometric inequality

Φp(K) ≤
(
p−1
n−p

)p−1
Cp(K) for all K ∈ Kn0 ,

and the analytic inequality∫ ∞
0

Φp(〈f〉t) dt ≤
(
p−1
n−p

)p−1

∫ ∞
0

Cp(〈f〉t) dt for all f ∈ C∞0 (Rn)

true for 1 < p < n?
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