Solution to Exercise A3.

Let $f \in M$ be an injection from $2^{<\omega}$ to \mathbb{P} , satisfying the following condition:

$$\forall s,t \in 2^{<\omega} \ (s \bot t \iff f(s) \bot f(t)).$$

This is possible because $\mathbb P$ is non-atomic.

Next, let $\alpha > o(M)$ be a countable ordinal, let E_{α} be a relation on ω coding α , and let $z_{\alpha} \in 2^{\omega}$ canonically encode E_{α} (note that we can effectively identify $\mathcal{P}(\omega \times \omega), 2^{\omega \times \omega}$ and 2^{ω}). Now let H be the filter generated by $\{f(z_{\alpha} \mid n) \mid n < \omega\}$. The assumption on f guarantees that all elements from this set are compatible, so H is indeed a filter.

But now, in M[H], we can use the function f (which is in M and hence in M[H]) to decode the real z_{α} , by using $z_{\alpha} = \bigcup f^{-1}[H]$. Therefore $z_{\alpha} \in M[H]$ and hence also $E_{\alpha} \in M[H]$. Then (ω, E_{α}) is a well-ordered set of ordertype α , but on the other hand $o(M[H]) = o(M) < \alpha$, so $\alpha \notin M[H]$. But then M[H] cannot be a model of ZFC, since it is a theorem of ZFC that every well-ordered set is isomorphic to an ordinal.