
Logic required for Set Theory I (see Kunen Ch. I,

§§ 13f)

Jakob Kellner, 2011SS

April 22, 2011

1 The case of natural numbers

Assume for simplicity that we add the constant symbol ∅ for the empty set and
the successor function S to our language. I.e., our language is not just {∈}, but
{∈, ∅, S}. This does not change anything since ∅ and S are definable anyway,
see Kunen Ch. I, §13; or Ziegler Skriptum Satz 7.4.

Recall that we can code each natural number n as a term pnq, defined by
induction: p0q := ∅, p1q := S(∅), p1q := S(S(∅)) etc.

We do not claim that pnq is “really” the “true” form of n, or that the coding
is in any way natural. The point is that the coding is just a reasonable way
to talk about natural numbers in pure set theory without the need to add any
additional symbols or non-hederity sets.

Recall that we define (in ZF) ω to be the first limit ordinal (bigger than 0).
Of course the “intention” is to describe the set {p0q, p1q, . . .}, but it is

important to note that ω = {p0q, p1q, . . .} is not the definition of ω! This
“definition” would be an infinite formula, which is not a valid first order formula.
And we know that we cannot express {p0q, p1q, . . .} in forst order at all:

Assume (as always) that ZF is consistent. Then we can construct a non-
standard model of ZF in the usual way: First extend the language by a new
constant symbol c, and extend ZF to a theory T by adding the sentences c ∈ ω,
c > 0, c > 1, etc. By the compactness theorem, T is consistent, i.e., has a model
M. Let cM be the interpretation of c in M. Then M |= cM ∈ ω, but for all
n ∈ N we have M |= c6=pnq.

2 Coding senteces

Completely analogously to natural numbers, we can translate (code) formulas
into terms in the language of set theory.

Fix a first-order signature L. For simplicity, assume that L is finite, as it
is the case in set theory, where L = {∈}, or in Peano arithmetic, where L is,
e.g., {0, 1,+, ·, <}). (Of course we could just as well use any infinite recursive
signature.)

1



We start with coding the alphabet (i.e., the set of symbols), by “arbitrarily”
assigning a natural number n (more exactly the corresponding term pnq) to
each symbol. E.g., we can assign terms of the form p3nq to the logical symbols
(other than variables): p(q := p0q, p)q := p3q, p∧q := p0q, and so on for ∨, ¬,
→, ∃, ∀, =; we assign p3n+ 1q to the variable symbol vn, i.e., pv0q := p1q etc;
and we assign terms of the form p3n+2q to the logical symbols; e.g., p∈q := p2q
(of course the logical symbols can be different for other signatures L).

From here on, it is easy (and even “natural”) to define all the other notions of
mathematical logic inside ZF. (Remark: This is just an instance of the following
general claim: All (“normal”) mathematical concepts and proofs can be carried
out naturally in ZF.)

Syntax:

• We can define (in ZF) “x is a symbol” (which just means that x = 3 ·n+1
for some n ∈ ω or that x is in a certain finite list of numbers).

• We can define “x is a string”, which just means x ∈ ω<ω and x(l) is a
symbol for each l ∈ dom(x).

• We can define “x is a formula”, which is a rather long and tedious but
entirely natural definition, e.g., by induction on the length of the string
x: x ∈ ωn+1 is a formula if EITHER there is a Formula y ∈ ωn (this is
already defined by induction) such that x(0) = p¬q and x(l + 1) = y(l)
for all 0 ≤ l < n, OR etc.

• We can define all the other syntactical properties, such as “v is a variable
symbol occuring freely in the formula x”, “the formula x is the result of
the conjunction of y and z” (or, informally, x = y ∧ z), etc etc.

Logical calculus/provability:

• We can define “x is a logical axiom” (again, a tedious case destinction).

• We can define in ZF: “s is a proof in T”. (I.e., T is a set of formulas, s is a
finite sequence of formulas, each one being a logical axiom or an element
of T or follows from previous ones by modus ponens).

• So we can define in ZF the formula “T ` x” with two free variables T and
x that expresses “the formula x is provable in T”.

• We can also formulate “The formula x is an instance of the Replacement
axiom scheme”. (And similarly for separation.)

• We can define the set of all ZF axioms (which we just call ZF). (This is
just the smalles subset of ω<ω containing all instances of replacement and
separation as well as the (finitely many) other axioms.)

• So we can also formulate in ZF the formula ZF` x (here x is the only free
variable).

2



Semantics:

• We can define “M is an L-structure” (which just says (in the case of
L = {∈}: M is a pair 〈M,E〉, M is nonempty, and E ⊆ M2. (If we
have other non-logical function or relation symbols we have to modify this
accordingly.)

• We can define “M |= ϕ(m̄)”.
Actually, later on it will be important to see how we can define M |=
ϕ(m̄). (We can define it with a very simple formula, which implies that
the definition is absolute for transitive models.)

• So we can define the formula “T � ϕ” with free variables T and ϕ that
expresses that T semantically implies ϕ.

Completeness theorem:

• We can now formulate (and prove!) in ZF the completeness theorem
(T � ϕ iff T ` ϕ), as well as the compactness theorem, Skolem Löwenheim
(we might need AC for that, though) etc etc.

Again, note that just as in the case of natural numbers, the set of Symbols
is not defined by {p∈q, p(q, . . . , p=q, pv0q, pv1q, . . .}; if a ZF-model M con-
tains nonstandard natural numbers than it also contain a nonstandard variable-
symbol, a formula containing nonstandard symbols, a formula of nonstandard
length, a nonstandard proof etc.

A special case of this effect arises in connection with Gödels incompleteness
theorem (which will be discussed below): If ZF is consistent, then (by the
incompleteness theorem) so is T:=ZF+¬Con(ZF). Let M be a model of T .
Then M thinks that there is a proof of ¬0 = 0 from ZF; obviously this proof
cannot be the code of a real proof but has to be a nonstandard proof.

3 Representing recursive and recursively enu-
merable sets

Actually, all the previous claims that certain properties are expressible in ZF
are special cases of the following important fact:

• A is strongly definable in ZF, if there is a formula ϕ such that

– n ∈ A iff ZF` ϕ(pnq).

– n ∈ N \A iff ZF` ¬ϕ(pnq).

• A is weakly definable in ZF, if there is a formula ϕ such that

– n ∈ A iff ZF` ϕ(pnq).

• A ⊆ N is recursive, iff A is strongly definable in ZF.

3



• A ⊆ N is recursively enumerable, iff A is weakly definable in ZF.

(We do not need ZF here, we get exactly the same result for much weaker
theories such as PA or Q.)

The proof is rather straightforward, just describe in ZF what the computer
is doing.

4 Fixed Point Lemma, Undefinability of Truth,
Incompleteness Theorem

The following is the “Fixed Point Lemma” (14.2 in Kunen): Let φ(x) be any
formula with one free variable x. Then there is a sentence ψ such that

ZF ` ψ ↔ φ(pψq)

One important consequence is that truth of a formula is undefinable! We
have seen that there is a ZF formula Pr(x) that expresses that x is provable in
ZFC; and that there is a ZF formula M |= x (with two free variables M , x) that
expresses that x is true in M ; but there is no ZF formula V |= x (with one free
variable x) that expresses that x is simply true, i.e., holds in the proper class
V of all sets. (Given any such formula V |= · There is always a ψ such that
ψ ↔ ¬V |= (ψ) holds, and is even provable in ZF.)

So the important point to remember is: For sets M we can formulate M |= x
inside of ZF; but for proper classes C we can not formulate C |= x (with x a
free parameter).

What we will don instead is to relativize a formula ϕ to a class C, by
replacing all ∀v by ∀v ∈ C (and the same for ∃), resulting in a new formula called
ϕC. (In the case of the universal class V , ϕC is of course logically equivalent
to ϕ.) So for a specific formula ϕ given in the meta language, we can formulate
C |= ϕ by simply stating (in the object language) the new formula ϕC. Note
that we can do this for one (or finitely many) formulas onyl, we cannot quantify
over ϕ in the object language. So in particular, it is completely trivial that for all
(in the meta language!) ϕ ∈ ZFC the following is provable in ZFC: ϕV (which
is just ϕ, of course); but we can not formulate in ZFC “for all ZFC-axioms x,
V |= x” (since there is no truth predicate).

Remark: We can of course formulate in ZF “there is a (set) M which is a
ZF-model M”, which is (by the completeness theorem) equivalent to Con(ZFC)
and therefore (by the incompleteness theorem) not provable in ZF.

Definability of truth will be investigated in more detail in advanced set
theory: It turns out that for a restricted (but infinite) class of formuals (e.g.,
Σn formulas) there is a truth predicate that works for this restricted class (and
is itself a Σn formula).

Another important consequence of the fixed point lemma is Gödel’s incom-
pleteness theorem (Kunen 14.3): Let T be any recursive, consistent set of for-
mulas containing ZF. Then in T we (can formulate but cannot prove) Con(T ).

4


