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1. Satisfaction relation and relativization

1.1. The satisfaction relation for sets. Recall that we can formulate A |= φ in
ZFC (cf. Kunen I§14 and IV§10).

For simplicity, we only use the first oder language with signature {∈}, and inter-
pret the relation symbol ∈ always as the “real” ∈-relation restricted to the model
A. So we can identify the {∈}-structure (called model) with its “universe” (ground
set).

More formally we claim that there is a sentence ϕSAT(A, φ, p̄) with free variables
A, φ, p̄ which expresses (when A is a nonempty set, φ a formula of the language
{∈} with free variables among {xi : i < n} for some n ∈ ω and p̄ is in An) that
(A,∈) |= φ under the assignment that maps xi to p̄(i). We usually just write
A |= φ(p̄) instead of ϕSAT(A, φ, p̄).

It is important, e.g., for the development of L, that the formula ϕSAT is absolute
for transitive models (this is shown in Lemma 5).

Recall that we can define A |= T (for T a set of sentences) to mean (∀ϕ ∈ T )A |=
ϕ. In particular, if T is (in the metalanguage) a recursive set of sentences, then we
can represent/define T in ZF−, and thus formulate A |= T . (Note that, as usual,
it cannot be guaranteed that the represented T “is really the same” as the set T
in the metalanguage, as the universe might contain nonstandard natural numbers
and thus nonstandard elemets of T .)

As mentioned, we can prove the completeness and the incompleteness theorems
inside of ZF (AC is not needed), so we get the following (in ZF):

From the incompleteness theorem (Kunen I 14.3) we get: If T is a recursive,
consistent superset of ZF−, then

T 6` Con(T ).

The completeness theorem (which we can prove in ZF) says:
Con(T ) iff there is a set M and a relation E ⊆ M2 such that
(M,E) |= T .

So in particular
T 6` (∃M,E)(M,E) |= T

(Note that this gives an alternative proof of Kunen IV 7.7 under the suitable as-
sumptions.)

Note however that Con(T ) this is NOT equivalent to: there is a set M such that
M |= T (where we use the ∈-relation). Rather, the Mostowski collapsing theorem
gives us (assuming that T contains the axiom of extensionality):

(∃M)M |= T iff (∃M transitive)M |= T iff (∃M,E) (M,E) |= T and E is wellfounded

And ZF proves:
1
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Lemma 1. If there is an M such that M |=ZF, then Con(ZF+Con(ZF)).

Proof. If M |=ZF, then clearly Con(ZF) holds. But Con(ZF) is an absolute state-
ment for transitive models (since it only quantifies over natural numbers, i.e., it is
∆0 when ω is considered a constant). So M |=Con(ZF); and therefore ZF+Con(ZF)
is consistent. �

Remark: In the same way M |=ZF implies also Con(ZF+Con(ZF+Con(ZF))),
Con(ZF+Con(ZF+Con(ZF+Con(ZF)))), etc.

Lemma 2. ZF does not prove that (∃M,E) (M,E) |= T implies (∃M)M |= T .

Proof. Otherwise, ZF+Con(ZF) would prove Con(ZF+Con(ZF)), contradicting the
incompleteness theorem. �

1.2. The satisfaction predicate is absolute. In the following, let M ⊆ N be
nonempty classes (possibly sets).

• We already know that ∆0-formulas are absolute for transitive classes (Kunen
IV 3.6).
• We call a formula ψ is upwards absolute between M and N, if ψM (p̄) →
ψN (p̄) for all p̄ ∈M.
• Similarly, ψ is downwards absolute between N and M, if ψN (p̄)→ ψM (p̄),

again for all p̄ ∈M.
• So by definition, ψ is absolute between M and N iff it is upwards and

downwards absolute.

Lemma 3. If M ⊆ N and φ(x1, . . . , xn, y1, . . . , ym) is absolute, then ∃x1, . . . , xnφ
is upwards absolute and ∀x1, . . . , xnφ is downwards absolute.

(The proof is trival.)

Lemma 4. Let M ⊆ N both satisfy some basic theory S ⊂ZFC. Let ζ(ȳ) be any
formula, and assume that there are absolute formulas φ(x̄, ȳ) and ψ(x̄, ȳ) such that

S ` ∀ȳ ( ζ ↔ ∃x̄φ ↔ ∀x̄ψ ).

Then ζ is absolute.

(This is in some way similar to Kunen IV 3.7. and 3.10)

Proof. ζM ↔
M |=S

(∃x̄φ)M →
u. abs.

(∃x̄φ)N ↔
N |=S

ζN ↔
N |=S

(∀x̄ψ)N →
d. abs.

(∀x̄ψ)M ↔
M |=S

ζM . �

Usually the theory S involved is “completely harmless”, e.g., a finite subset of
ZF−\Powerset. And usually it is not neccessary to keep track of such harmless S.

Lemma 5. The satisfaction relation is absolute between transitive models.

Proof. To see whether A |= ϕ(p̄), we have to inductively calculate the truth value
of A |= ψ(ā) for all formulas ψ and all possible parameters ā (of course we do only
need subformulas of ϕ, but that does not make much difference). Let us set Fml
to be the set of forumals and Z = Fml × A<ω. We say that f is a truth function,
if the following is satisfied:

• f is a function from Z to {true, false}.
• If φ is a formula of the form xn = xm (for variables xn, xm) and if p ∈Mk

for some k > max(n,m) then f(φ, p) = true iff p(n) = p(m).
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• Analogously for ∈ instead of =.
• If φ is a formula of the form ψ1 ∧ψ2, then f(φ, p) = true iff f(ψ1, p) = true

and f(ψ2, p) = true.
• Similarly for ∨, ¬, →.
• If φ is a formula of the form ∃xnψ, then f(φ, p̄) = true iff there is a k bigger

than n and than all indices of free variables in φ and a p′ ∈ P k such that
for p̄(l) = p̄′(l) for all l 6= n in the domain of p such that f(ψ, p̄′) = true.
• Analogously for ∀.

So A |= ϕ(p̄) iff there is some truth function f with f(ϕ, p̄) = true, and equiva-
lently iff for all truth functions f we have f(ϕ, p̄) = true.

Note that the following are absolute for transitive models:
• ϕ1(ω) saying “ω is the set of natural numbers”. )Kunen IV 5.1)
• ϕ2(Fml) saying “Fml is the set of formulas”.
• ϕ3(Z,Fml, A) saying “Z = Fml×A<ω”. (Kunen IV 3.10, 3.11, 5.3).
• ζ(f,A) saying “f is a truth function”. Note that this formula is even ∆0

when we consider Fml, ω and Z as constants, since in the definition of truth
function we only quantify over formulas, parameters, and natural numbers.

• ψ(f, φ, p̄) which says “f(φ, p̄) = true. (This is obviously even ∆0.)
So A |= ϕ(p̄) is equivalent to

(∃f) ζ(f,A) ∧ ψ(f, φ, p̄)

as well as to
(∀f) ζ(f,A)→ ψ(f, φ, p̄)

Since both ζ(f,A) ∧ ψ(f, φ, p̄) as ζ(f,A) → ψ(f, φ, p̄) are absolute for transitive
models; A |= ϕ(p̄) is absolute for transitive models as well. �

1.3. ∆1 properties. The following is not needed for the course. We can define a
more restricted class of absolute formulas, called ∆1 formulas, and show:

• ∆1 formulas are absolute for transitive models,
• all the formulas that we proved to be absolute for transitive models are in

fact ∆1.

Definition 1. • A formula ψ is Π1 if it has the form ∀x1 . . . ∀xnφ where φ
is ∆0.
ψ is Σ1 if it has the form ∃x1 . . . ∃xnφ where φ is ∆0. A formula ζ is called
∆1 with respect ot a basic theory S, if there are a Π1 formula ψ and a Σ1

formula φ such that

S ` ∀x̄ (ψ ↔ φ↔ ζ).

The following is an immediate consequence of Lemma 4:

Lemma 6. Assume that M ⊆ N are transitive (and nonempty). Then every Σ1

formula is upwards absolute and every Π1 formula is downwards absolute. If M
and N both satisfy S, then every ∆1 formula (with respect to S) is absolute.

The following should be clear (using prenex normal form):

Lemma 7. If ϕ1, ϕ2 are Σ1 formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∃xϕ1, (∀t ∈ x)ϕ1

are logically equivalent to a Σ1 formula (and ¬ϕ1 is logically equivalent to a Π1

formual).
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Similarly, if ϕ1, ϕ2 are Π1 formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∀xϕ1, (∃t ∈ x)ϕ1

are logically equivalent to a Π1 formula (and ¬ϕ1 is logically equivalent to a Σ1

formual).

The properties listet in Kunen IV 3.9, 3.11 and 5.1 are ∆0. One can show that
the other properties that are shown to be absolute for transitive models in Kunen
IV 3.14, 5.3, 5.4, 5.5, 5.7 are in fact ∆1. In particular:

Lemma 8. The following are ∆1:
• z = A<ω

• A |= φ(ā)
• R is a wellorder on A
• α+ β, αβ (ordinal)

Later one can show

Lemma 9. The function α 7→ L(α) is ∆1

Note that “α is a cardinal”, “α is regular” and “α is a limit cardinal” are Π1

statements (but not ∆1, which follows, e.g., from Kunen p. 141).
Of course functions can be ∆1 as well:

Definition 2. A functions F is called Σ1 if “F(x̄) = y” is Σ1. Similarly for Π1

and for ∆1.

Lemma 10. The composition of ∆1 functions is ∆1.

Proof. F(G1(x̄), . . . ,Gn(x̄)) = z can be written as:

∀y1, . . . , yn [ (y1 = G1(x̄) ∧ · · · ∧ yn = Gn(x̄)) → z = F(y1, . . . , yy) ]

which can be written as Π1 (since Gn can be written as Σ1 and F as Π1), but it is
also equivalent to:

∃y1, . . . , yn [ (y1 = G1(x̄) ∧ · · · ∧ yn = Gn(x̄)) ∧ z = F(y1, . . . , yy) ]

which can be written as Σ1 (since F is also Σ1). �

Lemma 11. Assume that F is a Σ1 function. More exactly, assume that some
S proves that the according Σ1 formula defines a function (on the ordinals, say).
Then F is actually ∆1 (with respect to S-models).

Proof. By assumption, z = F(x) is expressed by a Σ1 formula φ(x, z). We have to
show that there is a Π1 formula ψ(x, z) which is equivalent to φ (modulo S). But
z = F(x) iff

∀t ( t = z ∨ t 6= F(x))

This is Π1 (since t 6= F(x) is Π1). �

Lemma 12. If F is a ∆1 function, and φ a ∆1 property, then ψ(x̄) := (∃t ∈
F(x̄))φ(t, x̄) is ∆1, and the same holds for (∀t ∈ F(x̄))φ(t, x̄).

Proof. ψ(x̄) iff ∀z (z = F(x̄)→ ∃t ∈ zφ(t, x̄)) iff ∀z (z = F(x̄) ∧ ∃t ∈ zφ(t, x̄)). �

So for example whenever φ is ∆1, then so is (∀n ∈ ω)φ and (∃n ∈ ω)φ, since ω
can be interpreted as a (constant) ∆1 (and in fact even ∆0) function.
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Lemma 13. Assume that F is a function on the ordinals which is defined by
recursion on a Σ1 function G, by

F(α) = G(F � α).

Then F is Σ1 (and therefore ∆1).

Proof. For an oridnal α (which is a ∆0 property), y = F(α) is equivalent to:

∃f : α→ V (∀β < αf(β) = G(f � β) ∧ y = G(f)).

�

1.4. Satisfaction for classes: relativization. Note that we have a satisfaction
predicate only for sets M , not for classes. In general, if M is a class, then there is
no predicate ϕM

SAT(φ) that expresses that φ holds in M, see the remark after Kunen
I 14.2 (which shows this fact for M = V). However, there is a different way to
express that φ holds in M (where M can be a set or a proper class): Relativize
φ to the formula φM. If ϕ is a “standard” formula (from the meta theory) and
M is a set, then both notions can be used and actually are the same: For any
ϕ(x1, . . . , xn), ZF− proves the following (Kunen IV 10.1.):

(∀M)(∀p1, . . . , pn ∈M) M |= ϕ(p̄) ↔ ϕM (p1, . . . , pn)

(More formally, here we should write ϕSAT(M,∈, pϕq, < p1, . . . , pn >) instead of
M |= ϕ(p̄).)

So for classes we can only use the form φM (which is a new formula constructed
from φ in the meta-theory). We will also write M |= φ(p̄) instead of φM(p̄), but you
should be aware that this means something different than the satisfaction relation.
In particular we can only talk about finitely many φ, so we cannot really formulate
M |= T for, e.g., infinite recursive T . We will still write M |= T , by which we mean
something like: For all φ ∈ T (in the metalanguage), ZF− (or another appropriate
theory) proves φM. Note that in particular V |=ZF− holds trivially (and the same
for V |=ZFC, if we assume ZFC as basic theory); and is not a contradiction to the
incompleteness theorem.

1.5. Restricted satisfaction predicate for classes. The following is not re-
quired for the course:

For a class M it is possible to define satisfaction predicates for restricted set of
formulas. Let us just give the example of Σ1 formulas and M = V. In this case we
can even define a Σ1 formula ϕM

SAT Σ1
(φ, p̄) (with free two variables φ and p̄) such

that for all Σ1 formulas ψ ZF proves the following

(∀p̄) ψM ↔ ϕM
SAT Σ1

(ψ, p̄)

(This does not contradict Kunen I 14.2, since the negation of a Σ1 formula is not
Σ1 any more.)

How to define this formula? Recall that any Σ1 formula is upwards absolute for
transitive models. So if ψ is a Σ1 formula, then ψ(p̄) holds (in V ) iff

(∃A) A is transitive ∧ p̄ ∈ A ∧ A |= ψ(p̄)

This is a Σ1 formula (since we can write A |= ψ(p̄) as a Σ1 formula). Similarly,
there are Σn formulas that capture Σn-truth in V for any natural (meta-language)
number n.
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There are several important applications of this fact; as a “toy application”
(which is not important) we can slightly strengthen reflection: By reflection we can
get the the absoluteness of the Σ1010 satisfaction formula between R(β) and V,
which in turn implies absoluteness of all Σ1010 formulas.

2. Reflection, elementary submodels

Using the satisfaction relation, we can define (in the object language) for sets
M ⊆ N : a formula φ (with free variables among {xi : i < n} with n ∈ ω) is
absolute between M ,N if (∀p̄ ∈Mn)M � ϕ(p̄) iff N � ϕ(p̄).

Definition 3.
M � N (M is an elementary submodel of N), if all formulas are absolute.

Analogously to Kunen IV 7.3, one proves (all of the following are in the object
language): Assume that M ⊆ N . Then Then the following are equivalent:
(a) M � N
(b) If φ is of the form ∃xψ(x, y1, . . . , ym), then (∀p̄ ∈Mm)

[
(∃a ∈ N)N |= ψ(a, p̄)→

(∃a ∈M)N |= ψ(a, p̄)
]
. (This is called the Tarski Vaught criterion).

Kunen IV 7.8 can easily be modified to sets:

Lemma 14. Let N be a (well-orderable) set and X ⊆ N . Then there is an ele-
mentary submodel M of N such that |M | ≤ max(ℵ0, |X|).

Of course, ZF− proves the following: If M and M ′ are isomorphic, then M
and M ′ satisfy exactly the same sentences (without free variables). This is a “set
version” of 7.9.

So in particular, 7.10 can be formulated for sets the following way:

Lemma 15. Let N be a (wellorderable) set and X ⊆ N transitive. Then there
is a transitive M satisfying the same setences as N and such that X ⊆ M and
|M | ≤ max(ℵ0, |X|).

(We could also allow formulas with parameters in X, since these parameters are
not moved by the Mostowsky collapse.)

3. Further reading

The following is interesting but not important for the rest of the book (and will
not be required in an exam):

We already know (from IV 6.9) that we cannot prove in ZFC that there is a
(strongly) inaccessible cardinal. I also proved (using the incompleteness theorem)
that even something stronger is true: ZFC plus the existence of an inaccessible even
has higher consistency strenght than just ZFC. This is also proved in Kunen p.145.

I also recommend to read the “curious example” on p.146.

4. The definable subsets

This section replaces Kunen V.
Given a set A, let D(A) be the family of definable subsets of A (by formulas

with parameters in A). This is welldefined since we have the satisfaction relation
for sets.
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So X ∈ D(A) iff there is a formula φ(x, y1, . . . , yn) and there are a1, . . . , an ∈ A
such that

X = {t ∈ A : A |= φ(t, a1, . . . , an)}

Lemma 16. • D(A) ⊆ P(A).
• If A is transitive, then D(A) is a transitive superset of A .
• A ∈ D(A).
• Every finite subset of A is in D(A).

Proof. Any b ∈ A can be written as {t ∈ A : A |= t ∈ b} (since A is transitive), so
A ⊆ D(A).

If X ∈ D(A), then X ⊆ A, so if t ∈ X then t ∈ A and so t ∈ D(A), which shows
that D(A) is again transitive.
A = {t ∈ A : t = t}.
If {a1, . . . , an} ⊆ A, then use the formula φ(x) of the form x = a1 ∨ · · · ∨

x = an. (Note: In Kunen VI 1.3(c) this fact has to be proved differently, since
Kunen uses the satisfatcion relation only in the form of (meta-theoretic) relativized
formulas.) �

Lemma 17. (1) x = D(A) (a formula with the two free variables x and A) is
absolute for transitive models (of some finite S ⊆ZF).

If a transitive model M satisfies comprehension for the satisfaction for-
mula, then D(A) ∈M for all A ∈M.

(2) From a wellorder <A on A we can construct/define a wellorder on D(A).
This construction is also absolute.

(3) If A can be wellordered, then |D(A)| = max(ℵ0, |A|).

Proof. A |= φ(a) is absolute for transitive models (see Lemma 5). So also the
formula X = {t ∈ A : A |= φ(t, a)} (with free variables X,A, φ, a) is absolute.
Also, the set of formulas and the set of parameters, A<ℵ0 , is absolte, which implies
that D(A) is absolte.

Let Fm be the set of formulas, i.e., Fm ⊆ ω. Given a wellorder of A, we can
construct (in an absolute way) a wellorder <Z of Z := Fm × A<ω (as in Kunen I
10.12 and 10.13, absoluteness follows from Kunen IV 5.6). This in turn defines a
wellorder on D in the obvious way.

In more detail: There is a n absolute, surjective map f from Z to D(A): Given φ
and p̄, let f(φ, p̄) be {t ∈ A : A |= φ(t, p̄)} (if the length of p covers all free variables
of φ, set f(φ, p̄) = 0 otherwise). Now fix a1 6= a2 in D(A). There is a <Z-minimal
b1 such that f(b1) = a1, analogously define b2. obviously b1 6= b2. Then set a1 < a2

iff b1 < b2. This shows that (given <Z) we can define in an absolute way a wellorder
on D(A).

Note that |Z| = |ℵ0 × A<ω| = |ℵ0 × A| (Kunen I 10.13), so since f : Z → D(A)
is a surjection we get |D(A)| = max(ℵ0, |A|). �

5. L

(The following corresponds to Kunen VI §1 and §2, details can be found there.)

5.1. Definition and basic properties.
• L(0) = 0,
• L(α+ 1) = D(L(α)),
• L(δ) =

⋃
α<δ L(α) for δ limit.
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The class L is defined as
⋃
α∈ON L(α).

Lemma 18. • L(α) is transitive.
• L(α) ⊆ L(β) whenever α < β.
• L(α) ∈ L(α+ 1).
• L(α) ⊆ R(α).
• ON ∩ L(α) = α.
• L(n) = R(n) for n ∈ ω, L(ω) = R(ω).
• |L(α)| = |α| for all α ≥ ω.

Proof. The proof is an easy induciton, using Lemmas 16 and 17 in successor steps.
(For the last item, just use AC. However, AC is not neccessary, since D(A) can be
canonically wellordered. We will come back to this later.) �

Lemma 19. L |=ZF. (More exactly: For each φ in ZF, we can prove (in ZF) that
φL holds.)

Proof. All of this is straightforward, apart from Comprehension. For Compre-
hension, note that the L-hierarchy satisfies the requirements for reflection. This
implies:

Given φ0, . . . , φn (in the meta theory), we can prove in ZF: For
each α there is a β > α such that φ0, . . . , φn are absolute between
L and L(β).

So we want to show that comprehension for φ holds in L, i.e., that for all z ∈ L the
set

X := {t ∈ z : L |= φ(t)}
is in L. Chose α large enough so that z (and any parameters) are in L(α). Reflection
gives a β > α such that L |= φ(t) iff L(β) |= φ(t) for all t ∈ L(β) and therefore for
all t ∈ z. This shows that X is a definable subset of L(β), i.e., X ∈ L(β + 1), and
so X ∈ L. �


