
ADDITIONS/ALTERNATIVES TO KUNEN

JAKOB KELLNER, 2011SS

1. Review of logic in the setting of set theory

You should already know the contents of this section from an introductory course
to logic.

1.A. Coding the natural numbers. The language of set theory is {∈}. Assume
for simplicity that we add to our language: the constant symbol ∅ for the empty set,
the successor function S, the union symbol ∪ and the pairing function symbol {·, ·}
(and that we add to ZF− the according defining axioms for these functions; e.g.,
∀xx /∈ ∅ is now an axiom and not the “defining property” of ∅). As described in
Kunen Ch. I, §13, this does not change anything, since these functions are definable
anyway.

Then we can code each natural number n as a term pnq, defined by induction:
p0q := ∅, p1q := S(∅), p1q := S(S(∅)) etc. We do not claim that pnq is “really”
the “true” form of n, or that the coding is in any way natural. The coding is just a
reasonable way to talk about natural numbers in pure set theory without the need
to add any objects that are not hereditery sets (and would violate the axiom of
extensionality).

Recall that we define (in ZF−) ω to be the first limit ordinal (bigger than 0).
Of course the “intention” is that ω should be the set {p0q, p1q, . . . }, but it

is important to note that ω = {p0q, p1q, . . . } is not the definition of ω. This
“definition” would be an infinite formula, i.e., not a valid first order formula. And
we know that we cannot express {p0q, p1q, . . . } in first order at all: Assume (as
always) that ZF− is consistent. Then we get:

Lemma 1.1. There is a model M = (M,E) of ZF− and a c ∈ M such that
M |= c ∈ ω but M |= c 6= pnq for all natural numbers n.

Proof. This is just the usual construction of a nonstandard model: First extend the
language by a new constant symbol c, and extend ZF− to a theory T by adding the
sentences c ∈ ω, c > 0, c > 1, etc. By the compactness theorem, T is consistent,
i.e., has a model M. �

1.B. Coding first order formulas. Completely analogously to natural numbers,
we can translate (code) formulas into terms in the language of set theory.

Fix (in the meta language) a first-order signature L. For simplicity, assume that
L is finite,1 as it is the case in set theory, where L = {∈}. (Also in many other
interesting theories the signature is finite, e.g., in Peano arithmetic, where L is
{0, 1,+, ·, <}).

1Of course it would not make any difference if we used a recursive infinite signature.
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We start with coding the alphabet (i.e., the set of symbols), by “arbitrarily”
assigning a natural number n (more exactly the corresponding term pnq) to each
symbol. For example, we could do the following:

• Assign terms of the form p2n+1q to the non-variable symbols: p∧q := p1q,
p¬q := p3q, p∃q := p5q, and so on for (, ),∈,= which are mapped to
p7q, . . . , p13q (if the language L has other nonlogical symbols, we add them
as well).

• Assign p2nq to the variable symbol vn, i.e., pv3q := p6q.
From here on, it is easy (and even “natural”) to define all the other notions of

mathematical logic inside ZF−. (Remark: This is just an instance of the following
general claim: All (“normal”) mathematical concepts and proofs can be carried out
naturally in ZF−, somtimes additionally AC is needed.)

• We can define (in ZF) “x is a symbol”, by the sentence

[(∃n ∈ ω)x = 2 · n] ∨ x = p1q ∨ x = p3q ∨ · · · ∨ x = p13q

• We can define “x is a string”, which just means x ∈ ω<ω and x(l) is a
symbol for each l ∈ dom(x).

• We can define “x is a formula”, which is a rather long and tedious but
entirely obvious definition, e.g., by induction on the length of the string x:
x ∈ ωn+1 is a formula if either there is a formula y ∈ ωn (this is already
defined by induction) such that x(0) = p¬q and x(l + 1) = y(l) for all
0 ≤ l < n, or . . . (add the other ways to build formulas here, including the
atomic formulas).

• We can define all the other syntactical properties, such as “v is a variable
symbol occuring freely in the formula x”, “the formula x is the result of
the conjunction of y and z” (or, informally, x = y ∧ z), etc etc.

Of course we can (in the object language) define all these notions for arbitary
signatures (not neccessarily recursive or countable ones). However, if we start with
a finite signature in the meta language and proceed as above, then we get a coding
of all formulas φ (in the meta language) into terms pφq of the object language;2

and (since all the simple syntactical properties are recursive) we get, e.g.: x is a
free variable of φ iff ZF− proves “pxq is a free variable of pφq”, and the same holds
for the other simple (recursive) syntactical properties of formulas.

But note that (just as in the case of natural numbers), the object language set of
terms is not (and can not be) defined as {pφ0q, pφ1q, . . . }, where φ0, . . . enumerates
the (meta language) terms: If a ZF− model M has a nonstandard natural number
c, then there will also be the nonstandard variable symbol xc (more exactly: the
code of this symbol, which we defined as 2·c) and therefore the nonstandard formula
xc = xc. This particular formula has “really finite” length, but there will of course
also be a nonstandard term of nonstandard length c, e.g., the term corresponding
to x0 = x0 ∧ x0 = x0 ∧ · · · ∧ x0 = x0 (c many times).

1.C. Representing recursive and recursively enumerable sets. Actually, the
previous claim that certain properties are expressible in ZF− are special cases of
the following important fact:

2recall that we added the function symbols {·, ·} and ∪; so we can write elements of ω<ω, i.e.,
sets of pairs of natural numbers, as terms.
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Definition 1.2. • A is strongly definable in ZF, if there is a formula ϕ such
that

– n ∈ A iff ZF` ϕ(pnq).
– n ∈ N \A iff ZF` ¬ϕ(pnq).

• A is weakly definable in ZF, if there is a formula ϕ such that
– n ∈ A iff ZF` ϕ(pnq).

Lemma 1.3. A ⊆ N is recursive, iff A is strongly definable in ZF. A ⊆ N is
recursively enumerable, iff A is weakly definable in ZF.

Proof. The proof is rather straightforward, just describe in ZF what the computer
is doing. �

(Of course we do not need ZF− here, we get exactly the same result for much
weaker theories such as PA or even finite subsets of PA.)

So in particular, whenever T is (in the meta language) a recursive set of sentences,
then we can strongly represent (i.e., define) T in ZF−. (The usual disclaimer: As
usual it cannot be guaranteed by ZF− that the represented T “is really the same”
as the set T in the meta language, as the ZF−-model might contain nonstandard
natural numbers and thus nonstandard elemets of T .)

1.D. Provability. Once we have defined (in the object language) what formuals
are, we can do the following (in ZF−):

• We can define “x is a logical axiom” (again, a simple but tedious case
destinction, or just use Lemma 1.3).

• We can define “s is a proof using the axioms T”. (I.e., T is a set of formulas,
s is a finite sequence of formulas, each one being a logical axiom or an
element of T or follows from previous ones by modus ponens).

• So we can define the formula “T ` x” with two free variables T and x that
expresses “the formula x is provable in T”.

The set ZF− of formulas clearly is recursive (and so is, of course, ZF and ZFC).
So according to Lemma 1.3, we can also define (more exactly: strongly represent)
any of these theories T in ZF−. (As usual: Generally a ZF−-model will contain
nonstandard T -axioms.)

In particualar, for a recursive T we can formulate T ` φ in ZF−. However, note
that this time we only have an r.e. property, not a recursive one, i.e., we only get
weak representation: T ` φ holds (“really”, i.e., in the meta language) iff ZF−

proves T ` φ. But T 6` φ does generally not imply that ZF− proves T 6` φ. An
important instance of this fact is the incompleteness theorem. (A direct argument
for T = ∅ is the following: It is well known that {φ : ∅ ` φ} is r.e. but not recursive,
i.e., the set {φ : 6 ∅ ` φ} is not r.e. But the set of φ such that ZF− proves “∅ 6` pφq”
is easily seen to be r.e.)

1.E. Defining semantics: satisfaction predicates.
• We can define “M is an L-structure”. In the case of L = {∈} this just says:
M is a pair 〈M,E〉, M is nonempty, and E ⊆M2. (If we have other non-
logical function or relation symbols we have to modify this accordingly.)

• We can define “M |= ϕ(m̄)” with free variables M, ϕ and m̄.
• So we can define the formula “T � ϕ” with free variables T and ϕ that

expresses that T semantically implies ϕ.
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We will be most interested in the case that L = {∈} and that the interpretation E
of the relation symbol ∈ is always as the “real” ∈-relation restricted to the model
M . So we can identify the {∈}-structure (called model) with its “universe” (ground
set). So more formally the previous claims say:

Lemma 1.4. There is a sentence ϕSAT(A, φ, p̄) with free variables A, φ, p̄ which
expresses (when A is a nonempty set, φ a formula of the language {∈} with free
variables among {xi : i < n} for some n ∈ ω and p̄ is in An) that (A,∈) |= φ under
the assignment that maps xi to p̄(i). We usually just write A |= φ(p̄) instead of
ϕSAT(A, φ, p̄).

It will be important later that the formula ϕSAT is quite simple and therefore
absolute for transitive models (this is shown in Lemma 3.5).

1.F. Completeness, compactness, Skolem Löwenheim. We can now formu-
late (and prove) in ZF− the completeness theorem:

Lemma 1.5. (∀T, φ) T � ϕ iff T ` ϕ.

This implies the compactness theorem in the usual way. We do not need AC,
since we assume that the signature is finite (wellordered would be enough). We can
of course also prove the other model theoretic sentences such as Skolem Löwenheim
(but we might need AC for that).

1.G. Undefinability of truth, incompleteness theorem. The following is the
“Fixed Point Lemma” (14.2 in Kunen):

Lemma 1.6. Let φ(x) be any formula with one free variable x. Then there is a
sentence ψ such that

ZF ` ψ ↔ φ(pψq)

One important consequence of the fixed point lemma is Gödel’s incompleteness
theorem (Kunen 14.3):

Lemma 1.7. Let T be any recursive, consistent set of formulas containing ZF.
Then in T we (can formulate but cannot prove) Con(T ).

Another important consequence is that the truth of a formula cannot be descibed:
We have seen that there is a ZF formula M |= x (with two free variables M , x)
that expresses that x is true in (the set) M ; but there is no ZF formula V |= x
(with one free variable x) that expresses that x is simply true, i.e., holds in the
proper class V of all sets. (If SATV were such a formula, then pick a ψ such that
ZF proves ψ ↔ ¬SATV(pψq) holds, which obviously contradicts that SATV is a
truth predicate.) We summarize that as:

Lemma 1.8. For a class M there is generally no truth predicate. In particular this
is the case for M = V.

So the important point to remember is: For sets M we can formulate M |= x
inside of ZF; but for proper classes M we can not formulate M |= x (with x a free
parameter).

2. More logic in set theory

In this section, we give a few additions to Kunen I–IV.
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2.A. Relativisation. So we have seen that we gernerally can not define a truth
predicate for a class. What we will do instead is to relativise a formula ϕ to a class
M, by replacing all ∀v by ∀v ∈M (and the same for ∃), resulting in a new formula
called ϕM. (In the case of the universal class V, ϕV is of course logically equivalent
to ϕ.) Note that this is a process in the meta language: For a specific formula ϕ
given in the meta language, we can construct the formula ϕM.

If ϕ is a “standard” formula (from the meta language) and M is a set, then
relativisation and the satisfaction predicate can both be used and actually are
equivalent:

Lemma 2.1. (Kunen IV 10.1.) For any ϕ(x1, . . . , xn), ZF− proves the following

(∀M)(∀p1, . . . , pn ∈M) ϕSAT(M,∈, pϕq, < p1, . . . , pn >) ↔ ϕM (p1, . . . , pn)

Note that we can apply relativisation only to one (or finitely many) formulas:
we cannot create a single formula that expresses M |= T for an infinite (recursive)
set T of formulas.

We will use the notation M |= φ to denote φM; and despite the fact that we
cannot formulate M |= T we will nevertheless use the notation M |= T (but should
add “with respect to ZF”): By this, we mean: For all ϕ ∈ T (in the meta language),
ZF` ϕM. (We might use ZF− or ZFC instead of ZF.)

So in particular, note that it is a completely trivial statement that V |=ZF (or
ZFC etc), but we can not formulate in ZF “for all ZF-axioms x, V |= x” (since
there is no truth predicate). We can of course formulate in ZF “there is a (set) M
which is a model of ZF”, but we cannot prove it (by the incompleteness theorem).

The central observation for using relativisation in consistency proofs is Kunen
IV 2.3, which we give in a special form:

Lemma 2.2. Let T extend ZF and assume that M |= T (with respect to ZF, M
nonempty). Then Con(ZF) implies Con(T ).

(This is proved “syntactically” in IV §8; but since we do believe in infinite
methods in the meta theory we can give a more natural proof given in IV §9).

As an example, we will later show that L |=ZFC+GCH; so this shows that
Con(ZF) implies Con(ZFC+GCH).

Remark: it is possible to define satisfaction predicates for classes for a restricted
family of formulas, see section 3.C.

2.B. Existence of models vs. existance of wellfounded models. Let T be
(in the meta language) a recursive, consistent superset of ZF−. The completeness
theorem (which we can prove in ZF−) says:

Con(T ) iff (∃M,E) (M,E) |= T .
Note however that Con(T ) this is NOT equivalent to ∃MM |= T (where we use the
∈-relation). Rather, by Mostowski collapsing theorem (since T contains the axiom
of extensionality) the following is proved in ZF to be equivalent:

• (∃M)M |= T
• (∃M transitive)M |= T
• (∃M,E) (M,E) |= T and E is wellfounded

(Remark: Note that T can include the foundation axiom, i.e. the statement that ∈
is wellfounded, without the T -model (M,E) actually having a wellfounded E. This
can be seen by construcing a nonstandard model of T .)
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And ZF proves:

Lemma 2.3. If there is an M such that M |=ZF, then Con(ZF+Con(ZF)).

Proof. If M |=ZF, then clearly Con(ZF) holds. But Con(ZF) is an absolute state-
ment for transitive models (since it only quantifies over natural numbers, i.e., it is
∆0 when ω is considered a constant). So M |=Con(ZF); and therefore ZF+Con(ZF)
is consistent. �

Remark: In the same way M |=ZF implies also Con(ZF+Con(ZF+Con(ZF))),
Con(ZF+Con(ZF+Con(ZF+Con(ZF)))), etc.

Lemma 2.4. ZF does not prove Con(ZF ) → (∃M)M |= ZF .

Proof. Otherwise, ZF+Con(ZF) would prove Con(ZF+Con(ZF)), contradicting the
incompleteness theorem. �

Remark: In the proof of Lemma 2.3 we used absoluteness: If φ is simple enough,
then ZF proves: φ is absolute for transitive models. In other words: If M is a
class (can be a set), and φ simple enough, then ZF` φ ↔ φM. In particular, if
N is a model of ZF (we can also write V instead of N) and if M is a transitive
class, then ωM = ωV, i.e., M and N contain exactly the same antural numbers.
In particular, if N does not contain nonstandard natural numbers, then M cannot
contain nonstandard numbers either (but if N contains nonstandard nonstandard
natural numbers, then M has to contain the same nonstandard numbers as well).
In any case, all sentences of elementary number theory are absolute between N and
M. In particular, Con(T ) for any recursive T is absolute.

Remark: This remark also shows that the usual set theoretic methods to prove
independence (inner models such as L, and forcing) can never be used to prove
the independence of elementary number theoretic statements (since they use tran-
sitive models). In particular, if one proves a number theoretic statement using the
additional axiom V = L, then one can prove the same statement just in ZF. (In
particular, the use of the axiom of choice can always be eliminated in all proofs for
elementary number theoretic statements.)

2.C. Reflection, elementary submodels. Using the satisfaction relation, we
can define “φ is absolutene between M , N” (for sets M ⊆ N) as a single formula
with free variables φ,M,N . More formally, we call φ absolute between M ,N if
(∀p̄ ∈ Mn)M � ϕ(p̄) iff N � ϕ(p̄), where n is minimal such that the free variables
of ϕ are among {xi : i < n}.

Definition 2.5. M � N (M is an elementary submodel of N), if all formulas are
absolute.

Analogously to Kunen IV 7.3, one can proves (in ZF):

Lemma 2.6. (Tarski Vaught criterion:) Assume that M ⊆ N . Then Then the
following are equivalent:
(a) M � N
(b) If φ is of the form ∃xψ(x, y1, . . . , ym), then

(∀p̄ ∈Mm)
[
(∃a ∈ N)N |= ψ(a, p̄)→ (∃a ∈M)N |= ψ(a, p̄)

]
.

Kunen IV 7.8 can easily be modified to sets:
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Lemma 2.7. Let N be a (well-orderable) set and X ⊆ N . Then there is an
elementary submodel M of N such that |M | ≤ max(ℵ0, |X|).

Of course, ZF− proves the following: If M and M ′ are isomorphic, then M
and M ′ satisfy exactly the same sentences (without free variables). This is a “set
version” of 7.9.

So in particular, 7.10 can be formulated for sets the following way:

Lemma 2.8. Let N be a (wellorderable) set and X ⊆ N transitive. Then there
is a transitive M satisfying the same setences as N and such that X ⊆ M and
|M | ≤ max(ℵ0, |X|).

(We could also allow formulas with parameters in X, since these parameters are
not moved by the Mostowsky collapse.)

2.D. Further reading (Not required for this course.) We already know (from
IV 6.9) that we cannot prove in ZFC that there is a (strongly) inaccessible cardinal.
Using the incompleteness theorem, even something much stronger can be shown:
ZFC plus the existence of an inaccessible has higher consistency strenght than just
ZFC. This is also proved in Kunen p.145.

Read the “curious example” on Kunen p.146.

3. Absoluteness of satisfaction, the constructible universe

In this section, we give some additions/alternatives to Kunen V–VI.

3.A. The satisfaction predicate is absolute. Recall the definition of “φ is ab-
solute between M and N” and of “φ is absolute for transitive models”. In the
following, if we just say “φ is absolute”, we always mean absolute for transitive
models. More formally:

Definition 3.1. In the following, “φ(x̄) is absolute with respect to S” means: S ⊂
ZF− is a finite set of sentences, and if M is a class (possibly using parameters p̄),
then ZF proves:
For all p̄, if M is transitive, nonempty and satisfies S, then (∀x̄ ∈M) φ↔ φM.

Usually the theory S involved is “completely harmless”, e.g., a finite subset of
ZF−\Powerset. And usually it is not neccessary to keep track of such harmless S,
so we will just omit the “with respect to S”.

We already know that ∆0-formulas are absolute (Kunen IV 3.6).

Definition 3.2. Let M ⊆ N be nonempty classes (possibly sets). ψ(x̄) is upwards
absolute between M and N, if (∀x̄ ∈ M) ψM → ψN . Similarly, ψ is downwards
absolute, if (∀x̄ ∈M) ψM ← ψN .

So by definition, ψ is absolute between M and N iff it is upwards and downwards
absolute.

Lemma 3.3. If M ⊆ N and φ(x1, . . . , xn, y1, . . . , ym) is absolute, then ∃x1, . . . , xnφ
is upwards absolute and ∀x1, . . . , xnφ is downwards absolute.

Proof. Straight. �
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Lemma 3.4. Let M ⊆ N both satisfy some finite S ⊂ZF. Let ζ(ȳ) be any formula,
and assume that there are absolute formulas φ(x̄, ȳ) and ψ(x̄, ȳ) such that

S ` ∀ȳ ( ζ ↔ ∃x̄φ ↔ ∀x̄ψ ).

Then ζ is absolute between M and N.

(This is in some way similar to Kunen IV 3.7. and 3.10)

Proof. ζM ↔
M |=S

(∃x̄φ)M →
upw.abs.

(∃x̄φ)N ↔
N |=S

ζN .

And ζN ↔
N |=S

(∀x̄ψ)N →
downw.abs.

(∀x̄ψ)M ↔
M |=S

ζM . �

Lemma 3.5. The satisfaction relation is absolute.

Proof. To see whether A |= ϕ(p̄), we have to inductively calculate the truth value
of A |= ψ(ā) for all formulas ψ and all possible parameters ā (of course we do only
need subformulas of ϕ, but that does not make much difference). Let us set Fml
to be the set of forumals and Z = Fml× A<ω. We say that f is a truth function,
if the following is satisfied:

• f is a function from Z to {true, false}.
• If φ is a formula of the form xn = xm (for variables xn, xm) and if p ∈Mk

for some k > max(n,m) then f(φ, p) = true iff p(n) = p(m).
• Analogously for ∈ instead of =.
• If φ is a formula of the form ψ1 ∧ψ2, then f(φ, p) = true iff f(ψ1, p) = true

and f(ψ2, p) = true.
• Similarly for ∨, ¬, →.
• If φ is a formula of the form ∃xnψ, then f(φ, p̄) = true iff there is a k bigger

than n and than all indices of free variables in φ and a p′ ∈ P k such that
for p̄(l) = p̄′(l) for all l 6= n in the domain of p such that f(ψ, p̄′) = true.

• Analogously for ∀.
So A |= ϕ(p̄) iff there is some truth function f with f(ϕ, p̄) = true, and equiva-

lently iff for all truth functions f we have f(ϕ, p̄) = true.
Note that the following are absolute for transitive models:

• ϕ1(ω) saying “ω is the set of natural numbers”. (Kunen IV 5.1)
• ϕ2(Fml) saying “Fml is the set of formulas”.
• ϕ3(Z,Fml, A) saying “Z = Fml×A<ω”. (Kunen IV 3.10, 3.11, 5.3).
• ζ(f,A) saying “f is a truth function”. Note that this formula is even ∆0

when we consider Fml, ω and Z as constants, since in the definition of truth
function we only quantify over formulas, parameters, and natural numbers.

• ψ(f, φ, p̄) which says “f(φ, p̄) = true. (This is obviously even ∆0.)

So A |= ϕ(p̄) is equivalent to

(∃f) ζ(f,A) ∧ ψ(f, φ, p̄)

as well as to
(∀f) ζ(f,A)→ ψ(f, φ, p̄)

Since both ζ(f,A) ∧ ψ(f, φ, p̄) as ζ(f,A) → ψ(f, φ, p̄) are absolute for transitive
models; A |= ϕ(p̄) is absolute for transitive models as well, according to Lemma 3.4.

�
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3.B. ∆1 properties (Not needed for this course.) We can define a more re-
stricted class of absolute formulas, called ∆1 formulas, and show:

• ∆1 formulas are absolute for transitive models,
• all the formulas that we proved to be absolute for transitive models are in

fact ∆1.

Definition 3.6. • A formula ψ is Π1 if it has the form ∀x1 . . . ∀xnφ where
φ is ∆0.
• ψ is Σ1 if it has the form ∃x1 . . . ∃xnφ where φ is ∆0.
• A formula ζ is called ∆1 with respect ot a basic theory S, if there are a Π1

formula ψ and a Σ1 formula φ such that

S ` ∀x̄ (ψ ↔ φ↔ ζ).

The following is an immediate consequence of Lemmas 3.17 and 3.4:

Lemma 3.7. Assume that M ⊆ N are transitive (and nonempty). Then every Σ1

formula is upwards absolute and every Π1 formula is downwards absolute. If M
and N both satisfy S, then every ∆1 formula (with respect to S) is absolute.

The following should be clear (using prenex normal form):

Lemma 3.8. If ϕ1, ϕ2 are Σ1 formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∃xϕ1, (∀t ∈ x)ϕ1

are logically equivalent to a Σ1 formula (and ¬ϕ1 is logically equivalent to a Π1

formula).
Similarly, if ϕ1, ϕ2 are Π1 formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 ∀xϕ1, (∃t ∈ x)ϕ1

are logically equivalent to a Π1 formula (and ¬ϕ1 is logically equivalent to a Σ1

formual).

The properties listet in Kunen IV 3.9, 3.11 and 5.1 are ∆0. One can show that
the other properties that are shown to be absolute for transitive models in Kunen
IV 3.14, 5.3, 5.4, 5.5, 5.7 are in fact ∆1. In particular:

Lemma 3.9. The following are ∆1:
• z = A<ω

• A |= φ(ā)
• R is a wellorder on A
• α+ β, αβ (ordinal)

(Later, one can show: The function α 7→ L(α) is ∆1.)
Note that “α is a cardinal”, “α is regular” and “α is a limit cardinal” are Π1

statements (but not ∆1, since they are not absolute, which follows, e.g., from Kunen
p. 141).

As with ∆0, we can define ∆1 for functions:

Definition 3.10. A functions F is called Σ1 if “F(x̄) = y” is Σ1. Similarly for Π1

and for ∆1.

It turns out that Σ1, Π1 and ∆1 are the same for functions:

Lemma 3.11. Assume that F is a Σ1 or a Π1 function. More exactly, assume
that some S proves that the according Σ1 (or Π1) formula defines a function (on
the ordinals, say). Then F is actually ∆1 (with respect to S).
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Proof. By assumption, z = F(x) is expressed by a Σ1 formula φ(x, z). We have to
show that there is a Π1 formula ψ(x, z) which is equivalent to φ (modulo S). But
z = F(x) iff

∀t ( t = z ∨ t 6= F(x))
This is Π1 (since t 6= F(x) is Π1). �

Lemma 3.12. The composition of ∆1 functions is ∆1.

Proof. F(G1(x̄), . . . ,Gn(x̄)) = z can be written as:

∀y1, . . . , yn [ (y1 = G1(x̄) ∧ · · · ∧ yn = Gn(x̄)) → z = F(y1, . . . , yy) ]

which can be written as Π1 (since Gn can be written as Σ1 and F as Π1), but it is
also equivalent to:

∃y1, . . . , yn [ (y1 = G1(x̄) ∧ · · · ∧ yn = Gn(x̄)) ∧ z = F(y1, . . . , yy) ]

which can be written as Σ1 (since F is also Σ1). �

Lemma 3.13. If F is a ∆1 function, and φ a ∆1 property, then ψ(x̄) := (∃t ∈
F(x̄))φ(t, x̄) is ∆1, and the same holds for (∀t ∈ F(x̄))φ(t, x̄).

Proof. ψ(x̄) iff ∀z (z = F(x̄)→ ∃t ∈ zφ(t, x̄)) iff ∀z (z = F(x̄) ∧ ∃t ∈ zφ(t, x̄)). �

So for example whenever φ is ∆1, then so is (∀n ∈ ω)φ and (∃n ∈ ω)φ, since ω
can be interpreted as a (constant) ∆1 (and in fact even ∆0) function.

Lemma 3.14. Assume that F is a function on the ordinals which is defined by
recursion on a ∆1 function G, by

F(α) = G(F � α).

Then F is ∆1.

Proof. For an oridnal α (which is a ∆0 property), y = F(α) is equivalent to:

∃f : α→ V (∀β < αf(β) = G(f � β) ∧ y = G(f)). �

3.C. Restricted satisfaction predicate for classes (Not needed for this
course.) For a class M it is possible to define satisfaction predicates for restricted
set of formulas. Let us just give the example of Σ1 formulas and M = V. In this
case we can even define a Σ1 formula ϕΣ1

SAT (φ, p̄) (with free two variables φ and p̄)
such that for all Σ1 formulas ψ ZF proves the following

(∀p̄) ψ ↔ ϕΣ1
SAT (pψq, p̄)

(This does not contradict Kunen I 14.2, since the negation of a Σ1 formula is not
Σ1 any more.)

How to define this formula? Recall that ∆0 formulas φ are absolute for transitive
models. If ψ(p̄) = ∃x̄φ(x̄, p̄) holds in V, then pick a witness x̄ ans let A be the
transitive closure of {x̄, p̄}. Then A |= φ(x̄, p̄) and therefore A |= ψ(p̄). On the
other hand, the Σ1 formula ψ is upwards absolute; so we get: If ψ is a Σ1 formula,
then ψ(p̄) holds (in V) iff

(∃A) A is transitive ∧ p̄ ∈ A ∧ A |= ψ(p̄)

This is a Σ1 formula in the variables ψ, p̄ (since we can write A |= ψ(p̄) as a
Σ1 formula). Similarly, there are Σn formulas that capture Σn-truth in V for any
natural (meta language) number n.
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There are several important applications of this fact; as an unimportant “toy
application” we can slightly strengthen reflection: By reflection we can get the the
absoluteness of the Σ1010 satisfaction formula between R(β) and V, which in turn
implies absoluteness of all Σ1010 formulas.

3.D. The definable subsets. (This section replaces much of Kunen V. Note that
we do not mention HOD in this course.)

Definition 3.15. Given a set A, let D(A) be the family of definable subsets of A
(by formulas with parameters in A).

This is welldefined since we have the satisfaction relation for sets.
So X ∈ D(A) iff there is a formula φ(x, y1, . . . , yn) and there are a1, . . . , an ∈ A

such that
X = {t ∈ A : A |= φ(t, a1, . . . , an)}

Lemma 3.16. • D(A) ⊆ P(A).
• If A is transitive, then D(A) is a transitive superset of A .
• A ∈ D(A).
• Every finite subset of A is in D(A).

Proof. If A is transitive, then b ∈ A can be written as {t ∈ A : A |= t ∈ b}, so
A ⊆ D(A) (and D(A) is trivially transitive as well).
A = {t ∈ A : t = t}.
If {a1, . . . , an} ⊆ A, then use the formula φ(x) of the form x = a1 ∨ · · · ∨

x = an. (Note: In Kunen VI 1.3(c) this fact has to be proved differently, since
Kunen uses the satisfatcion relation only in the form of (meta-theoretic) relativised
formulas.) �

Lemma 3.17. (1) x = D(A) (a formula with the two free variables x and A)
is absolute for transitive models.3

(2) From a wellorder <A on A we can construct/define a wellorder < on D(A).
This construction is also absolute.4

(3) If A can be wellordered, then |D(A)| = max(ℵ0, |A|).

Proof. A |= φ(a) is absolute for transitive models (see Lemma 3.5). So also the
formula X = {t ∈ A : A |= φ(t, a)} (with free variables X,A, φ, a) is absolute (for
transitive models). Also, the set of formulas and the set of parameters, A<ℵ0 , is
absolte, which implies that D(A) is absolte.

Let Fm be the set of formulas, i.e., Fm ⊆ ω. Given a wellorder of A, we can
construct (in an absolute way) a wellorder <Z of Z := Fm × A<ω (as in Kunen I
10.12 and 10.13, absoluteness follows from Kunen IV 5.6). And there is the obvious
surjective map

f : Z → D(A)
which defines a wellorder on D (and since f is absolutene, the wellorder is defined
absolutely as well).

In more detail:

3As always, assuming the model M satisfies some “harmless” finite S. Note that if M satisfies
comprehension for the satisfaction formula, then D(A) ∈M for all A ∈M.

4I.e., there is a formula Ψ(x, y, A, <A) which expresses x < y for the order constructed from
<A; this formula is absolute fore transitive models and defines a wellorder on D(A).
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Given φ and p̄, let f(φ, p̄) be {t ∈ A : A |= φ(t, p̄)} (if the length of p covers all
free variables of φ, set f(φ, p̄) = 0 otherwise). As shown above, the function f is
absolute.

Now fix a1 6= a2 in D(A). There is a <Z-minimal b1 such that f(b1) = a1,
analogously define b2. Obviously b1 6= b2. Set a1 < a2 iff b1 < b2. This shows that
(given <Z) we can define in an absolute way a wellorder on D(A).

Note that |Z| = |ℵ0 × A<ω| = |ℵ0 × A| (Kunen I 10.13), so since f : Z → D(A)
is a surjection we get |D(A)| = max(ℵ0, |A|). �

3.E. L: Kunen VI. As mentioned, our Section 3.D replaces Kunen V as well as
Kunen VI 1.1–1.3:

• Instead of VI 1.1., we give our own Definition 3.15 of D(A).
• VI 1.2 follows from Lemma 2.1 (which is the same as Kunen IV 10.1.).
• VI 1.3 follows from Lemmas 3.16 and 3.17

From here on, we follow Kunen VI, with the following exceptions:
• Ignore all references to HOD (we did not define this class, if you are inter-

ested what it is read Kunen V §2).
• In the proof of VI 3.2, we of course use Lemma 3.17 instead of V 1.7.
• Instead of Definition V 4.1 and V 4.3, we use the following Definitions 3.18

and 3.20. We repeat Kunen VI 4.5(a) as Lemma 3.19.

Definition 3.18. We define by induction the relation <α satisfying:
• <α is a wellorder on L(α).
• If α < β, then L(α) is an initial segment of L(β) under <β; and <α is the

restriction of <β to L(α).
. The induction proceeds as follows: If δ is a limit, then <δ is

⋃
α<δ <α. (I.e., for

x, y ∈ L(δ), we set x <δ y iff x <α y for some (or: all) α < δ with x, y ∈ L(α).)
So assume that we deal with the successor case α+ 1: Let x, y ∈ L(α+ 1).
We set x <α+1 y, if one of the following holds:

• x, y ∈ L(α) and x <α y.
• x ∈ L(α) and y /∈ L(α).
• x and y both are not in L(α), and x < y in the order that we define (in an

absolute way) from the wellorder <α on L(α) as in Lemma 3.17.
.

Lemma 3.19. The Defintion of <α has the properties claimed above, and is abso-
lute for transitive models. (I.e., the function that maps α to the set <α is absolute;
and also the relation x <α y with three variables x, y, α is absolute.)

Proof. We know that by Lemma 3.17) the wellorder on D(A) is defined absolutely,
and the rest of the inductive construction uses absolute case distinctions and func-
tions as well; so the inductively defined function is absolute. �

Definition 3.20. We define x <L y for x, y ∈ L by x <α y for some (or equiva-
lently: all) α with x, y ∈ L(α).

Note: Lemma 3.19 is Kunen VI 4.5 (a). Compare that to Kunen VI 4.5 (c): It is
not true that x <L y (a formuly with only two variables x, y) is absolute: It is true
for transitive proper classes, but generally not for transitive sets, simply because a
set M can think that x /∈ L while really x ∈ L(β) for some β /∈ M . That this can
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actually happen (and that in fact V 6= L is consistent) can be proven only later on
using forcing.


