
Syllabus Computability Theory

Sebastiaan A. Terwijn





Institute for Discrete Mathematics and Geometry
Technical University of Vienna
Wiedner Hauptstrasse 8–10/E104
A-1040 Vienna, Austria
terwijn@logic.at

2004, revised 2008
Copyright c© by Sebastiaan A. Terwijn
Cover picture and above close-up:
Sunflower drawing by Alan Turing,
c© copyright by University of Southampton and
King’s College Cambridge 2002, 2003.

iii



Emil Post (1897–1954) Alonzo Church (1903–1995)
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Chapter 1

Introduction

In this syllabus we discuss the basic concepts of computability theory, also called re-
cursion theory. There are various views as to what computability theory is. Odifreddi
[17, 18] defines it very broadly as the study of functions of natural numbers. Another
view is to see the subject as the study of definability (Slaman), thus stressing the
connections with set theory. But the most commonly held view is to see it as the
study of computability of functions of natural numbers. The restriction to functions
of natural numbers is, certainly at the start of our studies, a very mild one since, as
we will see, the natural numbers possess an enormous coding power so that many ob-
jects can be presented by them in one way or another. It is also possible to undertake
the study of computability on more general domains, leading to the subject of higher
computability theory (Sacks [24]), but we will not treat this in this syllabus.

In the choice of material for this syllabus we have made no effort to be original,
but instead we have tried to present a small core of common and important notions
and results of the field that have become standard over the course of time. The part
we present by no means includes all the standard material, and we refer the reader to
the “further reading” section for much broader perspectives. The advantage of our
narrow view is that we can safely say that everything we do here is important.

As a prerequisite for reading this syllabus only a basic familiarity with mathemat-
ical language and formalisms is required. In particular our prospective student will
need some familiarity with first-order logic. There will also be an occasional reference
to cardinalities and set theory, but a student not familiar with this can simply skip
these points.

The outline of the syllabus is as follows. In Chapter 2 we introduce the basic
concepts of computability theory, such as the formal notion of algorithm, recursive
function, and Turing machine. We show that the various formalizations of the in-
formal notion of algorithm all give rise to the same notion of computable function.
This beautiful fact is one of the cornerstones of computability theory. In Chapter 3
we discuss the basic properties of the computable and computably enumerable (c.e.)
sets, and venture some first steps into the uncomputable. In Chapters 4 and 5 we
introduce various measures to study unsolvability: In Chapter 4 we study the arith-
metical hierarchy and m-degrees, and in Chapter 5 we study relative computability
and Turing degrees. In Chapter 6 we introduce the priority method, and use it to
answer an important question about the Turing degrees of c.e. sets. Finally, in Chap-
ter 7 we give some applications of computability theory. In particular we give a proof
of Gödels incompleteness theorem.

1



2 Chapter 1. Introduction

1.1 Preliminaries

Our notation is standard and follows the textbooks [17, 27]. ω is the set of natural
numbers {0, 1, 2, 3 . . .}. By set we usually mean a subset of ω. The Cantor space 2ω

is the set of all subsets of ω. We often identify sets with their characteristic functions:
For A ⊆ ω we often identify A with the function χA : ω → {0, 1} defined by

χA(n) =

{
1 if n ∈ A

0 otherwise.

We will often simply write A(n) instead of χA(n). The complement ω−A is denoted
by A. By a (total) function we will always mean a function from ωn to ω, for some
n. We use the letters f , g, h to denote total functions. The composition of two
functions f and g is denoted by f ◦ g. A partial function is a function from ω to
ω that may not be defined on some arguments. By ϕ(n) ↓ we denote that ϕ is
defined on n, and by ϕ(n) ↑ that it is undefined. The domain of a partial function
ϕ is the set dom(ϕ) =

{
x : ϕ(x) ↓

}
, and the range of ϕ is the set rng(ϕ) =

{
y :

(∃x)[ϕ(x) = y]
}
. We use the letters ϕ and ψ, to denote partial functions. For such

partial functions, ϕ(x) = ψ(x) will mean that either both values are undefined, or
both are defined and equal. For notational convenience we will often abbreviate a
finite number of arguments x1, . . . , xn by ~x. We will make use of the λ-notation for
functions: λx1 . . . xn.f(x1, . . . , xn) denotes the function mapping ~x to f(~x). The set
of all finite binary strings is denoted by 2<ω. We use σ and τ for finite strings. The
length of σ is denoted by |σ|, and the concatenation of σ and τ is denoted by σ̂τ .
That τ is a subsequence (also called initial segment) of σ is denoted by τ ⊑ σ. For a
set A, A↾n denotes the finite string A(0)̂ A(1)̂ . . .̂A(n − 1) consisting of the first n
bits of A.

At the end of every chapter are the exercises for that chapter. Some exercises are
marked with a ⋆ to indicate that they are more challenging.



Chapter 2

Basic concepts

2.1 Algorithms

An algorithm is a finite procedure or a finite set of rules to solve a problem in a
step by step fashion. The name algorithm derives from the name of the 9th century
mathematician al-Khwarizmi and his book “Al-Khwarizmi Concerning the Hindu Art
of Reckoning”, which was translated into Latin as “Algoritmi de numero Indorum.”
For example, the recipe for baking a cake is an algorithm, where the “problem” is the
task of making a cake. However, the word algorithm is mostly used in more formal
contexts. The procedure for doing long divisions is an example of an algorithm that
everyone learns in school. Also, every computer program in principle constitutes an
algorithm, since it consists of a finite set of rules determining what to do at every
step.

For many centuries there did not seem a reason to formally define the notion of
algorithm. It was a notion where the adage “you recognize it when you see one”
applied. This became different at the turn of the 20th century when problems such
as the following were addressed:

• (The “Entscheidungsproblem”, ) Given a logical formula (from the first-order
predicate logic), decide whether it is a tautology (i.e. valid under all interpre-
tations) or not. This problem can be traced back to Leibniz [13].

• (Hilberts Tenth Problem) Given a Diophantine equation, that is a polynomial
in several variables with integer coefficients, decide whether it has a solution
in the integers. This problem comes from a famous list of problems posed by
Hilbert at the end of the 19th century [8].

A positive solution to these problems would consist of an algorithm that solves them.
But what if such an algorithm does not exist? If one wants to settle the above
problems in the negative, i.e. show that there exists no algorithm that solves them,
one first has to say precisely what an algorithm is. That is, we need a formal definition
of the informal notion of algorithm. This is the topic of this first chapter.

There are many ways to formalize the notion of algorithm. Quite remarkably, all
of these lead to the same formal notion! This gives us a firm basis for a mathematical
theory of computation: computability theory. Below, we give two of the most famous
formalizations: recursive functions and Turing computable functions. We then pro-
ceed by proving that these classes of functions coincide. As we have said, there are
many other formalizations. We refer the reader to Odifreddi [17] for further examples.

3



4 Chapter 2. Basic concepts

Returning to the above two problems: With the help of computability theory
it was indeed proven that both problems are unsolvable, i.e. that there exist no
algorithms for their solution. For the Entscheidungsproblem this was proved inde-
pendently by Church [2] and Turing [29] (see Theorem 7.1.6), and for Hilberts Tenth
Problem by Matijasevich [15], building on work of Davis, Putnam, and Robinson.

2.2 Recursion

The approach to computability using the notion of recursion that we consider in this
section is the reason that computability theory is also commonly known under the
name recursion theory. This approach was historically the first and is most famous
for its application in Gödels celebrated incompleteness results [7], cf. Section 7.1. In
fact, although the statements of these results do not mention computability, Gödel
invented some of the basic notions of computability theory in order to prove his
results.

2.2.1 The primitive recursive functions

Recursion is a method to define new function values from previously defined function
values. Consider for example the famous Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

which was discovered by Fibonacci in 1202. Every term in the sequence is obtained
by taking the sum of the two previous terms: F (n+2) = F (n+1)+F (n). To get the
sequence started we define F (0) = 1 and F (1) = 1. This sequence occurs in many
forms in nature, for example in the phyllotaxis of seeds in sunflowers (see Turings
drawing on the cover). Counting in clockwise direction we can count 21 spirals, and
counting counterclockwise yields 34 spirals. In this and in many other cases (e.g.
in pineapples or daisies) the numbers of these two kinds of spirals are always two
consecutive Fibonacci numbers. (Cf. also Exercises 2.5.1 and 2.5.2.) In general, a
function f is defined by recursion from given functions g and h if an initial value f(0)
is defined (using g) and for every n, f(n+1) is defined (using h) in terms of previous
values. The idea is that if we can compute g and h, then we can also compute f .
Thus recursion is a way to define more computable functions from given ones.

Definition 2.2.1 (Primitive recursion, Dedekind [3]) A function f is defined from
functions g and h by primitive recursion if

f(~x, 0) = g(~x)

f(~x, n + 1) = h(f(~x, n), ~x, n).

In this definition, f(n + 1) is defined in terms of the previous value f(n). A more
general form of recursion, where f(n + 1) is defined in terms of f(0), . . . , f(n) is
treated in Exercise 2.5.9.

Definition 2.2.2 (Primitive recursive functions, Gödel [7]) The class of primitive
recursive functions is the smallest class of functions
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1. containing the initial functions

O = λx.0 (constant zero function)

S = λx.x + 1 (successor function)

πi
n = λx1, . . . , xn.xi 1 ≤ i ≤ n, (projection functions)

2. closed under composition, i.e. the schema that defines

f(~x) = h(g1(~x), . . . , gn(~x))

from the given functions h and gi.

3. closed under primitive recursion.

For example, Grassmann gave in 1861 the following recursive definitions for the usual
integer addition + and multiplication · :

x + 0 = x

x + S(y) = S(x + y),

x · 0 = 0

x · S(y) = (x · y) + x.

Note that the first recursion reduces the definition of + to the initial function S, and
that the second reduces multiplication to addition. For a precise proof that + and ·
are primitive recursive see Exercise 2.5.3.

2.2.2 The recursive functions

Note that all primitive recursive functions are total functions. We will now give an
informal argument showing that it is essential for our theory to also consider partial
functions.

In any formalization of the notion of algorithm, an algorithm will be defined
syntactically by a finite set of symbols. In this sense every algorithmically computable
function will be a finite object. Now since the theory will require us to recognize an
effectively manipulate these objects, it is natural that there should also be an effective
way to list all computable functions by a listing of their algorithms: There should be
a computable function f such that f(n) is a code for the n-th algorithm, computing
the n-th computable function fn. Now suppose that we would only consider total
functions. Then the function F = λn.fn(n)+1 would also be a computable function,
the m-th in the list, say. But then

F (m) = fm(m) 6= fm(m) + 1 = F (m),

a contradiction. Note that the contradiction arises since we assumed that the value
fm(m) is always defined. This assumption is dropped if we also include partial func-
tions in our theory.

The above discussion suggests that the class of primitive recursive functions is not
big enough to capture the intuitive notion of computable function. Hence we add a
new operator to our basic tool kit: the µ-operator. For a predicate R,

(µn)
[
R(~x, n)

]
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denotes the least number n such that R(~x, n) holds. If such n does not exist then
(µn)[R(~x, n)] is undefined. Thus the µ operator allows us to search for certain values.
Since such a search can be unbounded, the µ-operator can take us out of the domain
of total functions.

Definition 2.2.3 (Recursive functions, Kleene [10]) The class of partial recursive
functions is the smallest class of functions

1. containing the initial functions

2. closed under composition and primitive recursion

3. closed under µ-recursion, i.e. the schema that defines the partial function

ϕ(~x) = (µy)
[
(∀z ≤ y)[ψ(~x, z)↓] ∧ ψ(~x, y) = 0

]

from a given partial function ψ.

A (general) recursive function is a partial recursive function that happens to be total.

Note that in the schema of µ-recursion the µ-operator searches for a smallest y such
that ψ(~x, y) = 0, but that it cannot “jump” over undefined values of ψ because of
the first clause. This corresponds with the intuition that the search for such a y is
performed by discarding values z for which we can see that ψ(~x, z) 6= 0. Also, as we
will later see, it is undecidable whether a computable function converges, so dropping
the clause would give us a class which is too large. (See also Exercise 2.5.17.)

Clearly, since the class of partial recursive functions contains partial functions, it
strictly extends the class of primitive recursive functions. However, there are also total
examples showing that the addition of the µ-operator allows us to define more total
functions than just the primitive recursive ones. Examples will be easy to construct
(cf. Exercise 2.5.12) as soon as we have developed the theory a bit more, in particular
after we have treated the method of arithmetization. This method will also allow us
to turn the informal discussion from the beginning of this section into a formal proof
that the partial recursive functions can, but the total recursive functions cannot, be
effectively listed.

2.3 Turing machines

In this section we consider a completely different formalization of the notion of al-
gorithm, namely the one using Turing machines [29]. Instead of inductively building
functions from previous ones, as in the definition of recursive function, this approach
investigates directly what it means to perform a computation of a function, using an
idealized device or machine. We imagine a tape of unbounded length, consisting of
infinitely many cells, extending in a one-way infinite row from left to right say. Each
cell either contains a 1 or a blank, i.e. nothing. We imagine further that we manip-
ulate the symbols on the tape in a completely prescribed way, according to a set of
rules or a program. The basic operations that we can perform while scanning a cell
are to change its content and to move either left or right. The action that we perform
may depend on the content of the cell and on the current state of the program. The
actions we thus perform may or may not terminate. In the latter case we say that we
have completed a computation, and may consider the content of the tape to be its
outcome. To model the intuition that our actions should be of limited complexity we
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require that there can be only finitely many states in the program. Instead of our-
selves performing the computation we can also imagine a device containing a program
to do it. We thus arrive at the picture of a Turing machine depicted in Figure 2.1.

1 1 1 1 1 1 1 · · ·
6

program

Figure 2.1: A Turing machine

Formally, the instructions in the program of a Turing machine are quintuples

(qi, x, qj , y, X),

where qi and qj are from a finite set Q of states, x and y are either 1 or B (for
“blank”), and X ∈ {L, R}. The interpretation of such an instruction is that if the
machine is in state qi and scanning a cell with the contents x, then this contents is
changed to y, the next machine state is qj , and the tape head moves one step in the
direction X, where L stands for “left” and R for “right”. A Turing machine program
is a set of instructions saying what to do in any of the possible situations the machine
may be in. Thus we formally define a Turing machine to be a function

M : Q × {1, B} → Q × {1, B} × {L, R}.

By convention, if the machine is scanning the leftmost cell and receives the instruction
to move left the computation is undefined. Furthermore, the set Q contains two
distinguished states: An initial state q0 and a final state qf . The interpretation is
that the machine starts in state q0 and halts whenever it reaches the final state qf .

We can think of Turing machines as idealized computers, with unlimited resources
such as time and memory. Notice that what is called a machine here would usually
be called a program, and that the “hardware” is represented here by the tape and the
reading head. A Turing machine is a finite set of instructions that can be depicted
as a finite state diagram. It is working on an infinite tape that we can think of as
an unbounded external memory. To model existing computers in a more detailed
way one can add to the Turing machine model the boundedness of computation time
and space. The resulting theory is a younger branch of computability theory called
complexity theory. We shall not touch the many intriguing results and questions from
this area here, but instead refer the reader to Odifreddi [18] for more information and
references.

Definition 2.3.1 An n-ary partial function ϕ is partial computable if there is a Tur-
ing machine M such that for any x1, . . . , xn and any initial configuration

x1 x2 · · · xn · · ·
6
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where by a cell with xi we actually mean xi+1 consecutive cells containing a 1 (this
is called the tally representation of xi), all other cells on the tape are blank, and the
tape head is scanning the leftmost cell, then by execution the program of the machine
(i.e. iteratively applying its defining function and starting in state q0) it halts after
finitely many steps in the halting state qf with the following tape configuration

ϕ(x1, . . . , xn) · · ·

where the tape head is scanning any cell, ϕ(x1, . . . , xn) is again in tally represen-
tation, and we do not care about the contents of the tape cells after the blank cell
following ϕ(x1, . . . , xn). (These cells may contain junk left over from the computa-
tion.) Furthermore, for all x1, . . . , xn such that ϕ(x1, . . . , xn)↑ the machine M does
not halt.

A function is computable if it is partial computable and total. A set A is com-
putable if its characteristic function χA is computable.

It should be noted that this definition is very robust and allows for many inessential
variations. For example, one often sees presentations where the tape is infinite both
to the left and to the right, or where the tape head is allowed to stay in position
after carrying out an instruction, or where there is more than one tape, etc. Also,
one could consider larger alphabets than just {1, B}. With respect to this last point:
After seeing the coding techniques of Section 2.4 the reader will readily see that any
finite alphabet can be coded with two symbols, so that there is no loss in confining
ourselves to this alphabet.

The reader should play around a bit to see what can be done on a Turing machine.
A modular approach will show that simple functions are Turing machine computable,
and from these one can construct more complicated functions, much as in the way
the recursive functions were defined.

Example 2.3.2 We give a program for the constant 0 function. It suffices to, what-
ever input is written on the tape, print a 1 (the tally representation of 0) in the
leftmost cell and a blank in the second, and then halt. Since by convention the
machine starts from the leftmost cell the following program achieves this:

q0 1 q1 1 R move one step to the right
q1 1 qf B L if you see a 1 replace it by a blank and halt
q1 B qf B L if you see a blank just halt.

Notice that we have only listed instructions that are actually used. Formally the
program should also give values for the other combinations of states and cell contents,
but since these are irrelevant we have left them out. ¤

Example 2.3.3 We give a program for the successor function. It simply scans the
input to the right until it reaches a blank. This blank is replaced by a 1 and then the
machine halts:

q0 1 q0 1 R move to the right as long as you see ones
q0 B qf 1 L if you encounter a blank replace it by a 1 and halt. ¤
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Example 2.3.4 We give an example of a routine that copies the input. Such routines
are useful as building blocks for larger programs.

q0 1 q1 B R change initial 1 into B, move right
q1 1 q1 1 R keep moving right until
q1 B q2 B R the next blank,
q2 1 q2 1 R keep moving right
q2 B q3 1 L until second blank, change this into 1, move left
q3 1 q3 1 L move back
q3 B q4 B L to previous blank
q4 1 q4 1 L keep moving left
q4 B q5 1 R until first blank and change this into 1
q5 B qf B R if this was next to second blank halt
q5 1 q1 B R otherwise, change next 1 into B and repeat.

In the first instruction, the initial 1 (note that there always is an initial 1) is erased
so that later we can recognize the beginning of the tape without falling off. (Recall
the convention on page 7 about moving left when on the first tape cell.) ¤

The next result reveals the power of Turing machines:

Theorem 2.3.5 (Turing [29]) Every partial recursive function is partial computable.

Proof. The proof is by induction on the definition of the recursive function. It
suffices to show that the initial functions are computable, and that composition,
primitive recursion, and µ-recursion can all be simulated on a Turing machine. To
facilitate the induction we prove a slightly stronger statement, namely that every
partial computable function ψ can be computed in a tidy way, namely such that on
every halting computation ψ(~x)↓ the machine halts in the configuration

ψ(~x) ~x · · ·
6

with ψ(~x) and ~x in tally notation and the tape head scanning the leftmost cell of
~x. The advantage of tidy computations is that they preserve the input and leave the
tape head at a canonical place, which facilitates the merging of programs.

We leave it to the reader (Exercise 2.5.7) to write tidy programs for the initial
functions. (Note that these will be much larger than the programs from Exam-
ples 2.3.2 and 2.3.3!) Note that the routine from Example 2.3.4 is a tidy machine for
the projection function π1

1 = λx.x.

Below we will give informal descriptions of the cases of composition, primitive
recursion, and µ-recursion, and leave it to the reader to complete the proof.

Composition: Suppose that ϕ is defined by ϕ(~x) = χ(ψ1(~x), . . . , ψn(~x)). By
induction hypothesis χ and the ψi can be computed by tidy machines. Given input
~x, apply a tidy machine for ψ1. This gives an output that allows us to immediately
apply a tidy machine for ψ2, and so on until ψn. This gives as output z1, . . . , zn, ~x,
where zi = ψi(~x). Preserve the ~x by swapping it with the z1, . . . , zn and move the
tape head to the leftmost z1 for the final application of the tidy machine for χ. This
gives ~x, χ(z1, . . . , zn), z1, . . . , zn. Finally remove the zi’s and swap the ~x to output
χ(z1, . . . , zn), ~x.
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Primitive recursion: Suppose

ϕ(~x, 0) = ψ(~x)

ϕ(~x, n + 1) = χ(ϕ(~x, n), ~x, n).

Given input ~x, n we use n as a counter to count down to 0. On input ~x, n we
modify the input to n, ~x, m, where m is 0 (everything in tally representation). Ap-
ply a tidy machine for ψ to obtain the configuration n, ψ(~x), ~x, 0. Check if n > 0.
If n = 0 then erase and shift the appropriate cells to output ψ(~x), ~x, 0 and halt.
If n > 0 then decrease n by one tally, and increase m by one tally. Move the
tape head in the right position to apply a tidy machine for χ to obtain the output
n, χ(ϕ(~x, m), ~x, m), ϕ(~x, m), ~x, m. Check if n > 0. If n = 0 then m has become equal
to the original value of n, so we can erase the current n and ϕ(~x, m) and shift the
rest to the left to output χ(ϕ(~x, m), ~x, m), ~x, m and halt. If n > 0, erase ϕ(~x, m) and
repeat the above procedure.

µ-Recursion: Suppose that ϕ(~x) = µy(ψ(~x, y) = 0). On input ~x extend the input
to ~x, n, where initially n = 0. Apply a tidy machine for ψ to obtain the configuration
ψ(~x, n), ~x, n. Test if ψ(~x, n) = 0. If yes, output ~x, n. If no, erase ψ(~x, n), move ~x, n
to the far left of the tape, increase n by one tally, and repeat. ¤

2.4 Arithmetization

Arithmetization is a method of coding a language into the language of arithmetic, so
that statements from the original language are transformed into statements about the
natural numbers. This method was already envisaged by Leibniz [13], but again it
was first put to use by Gödel [7]. We will use arithmetization to prove a normal form
theorem for partial recursive functions and to prove the converse of Theorem 2.3.5.

2.4.1 Coding functions

We start by giving a coding of the plane ω2. We can do this by dovetailing:

(0, 3)

''PPPPP
. . .

(0, 2)

''PPPPP
(1, 2)

''PPPPP
. . .

(0, 1)

''PPPPP
(1, 1)

''PPPPP
(2, 1)

''PPPPP
. . .

(0, 0)

OO

(1, 0)

``A
A
A
A
A
A
A
A
A

(2, 0)

ddHHHHHHHHHHHHHHHHHHH

(3, 0) . . .

This counting of the pairs is implemented by the pairing function λx, y.〈x, y〉 from
ω2 to ω defined by

〈x, y〉 =
1

2

(
(x + y + 1)2 − (x + y + 1)

)
+ x =

1

2

(
(x + y)2 + 3x + y

)
.

Next we want a general coding mechanism for arbitrary finite sequences of numbers
x1, . . . , xn. For this we could make use of the above pairing function, but instead we
choose to use a coding using the prime numbers p0, p1, . . . (cf. Exercise 2.5.4). We
define the code number for the sequence x1, . . . , xn as

〈x0, . . . , xn〉 = px0+1
0 · px1+1

1 · · · pxn+1
n .

The code thus defined is not surjective, but we do not care about that. In order to
manipulate sequences we define several auxiliary functions:
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• The function exp(x, pi) giving the exponent of pi in the decomposition of x.
(Cf. Exercise 2.5.5.)

• (x)i = exp(x, pi)
.− 1, which gives the i + 1-th element xi of the sequence x.

Note that this is defined even if x is not the code of a sequence.

• The length of the sequence x can be defined as

lth(x) = max
{
n ≤ x : ∀m ≤ n. exp(x, pm) > 0

}
.

• Seq(x) ⇐⇒ (∀i ≤ x)
[
exp(x, pi) > 0 → i ≤ lth(x)

]
. Every x with Seq(x) is a

code of a sequence.

2.4.2 The normal form theorem

We now give a first example of arithmetization, namely the coding of the partial
recursive functions into arithmetic. This will yield several useful theorems about the
recursive functions.

Theorem 2.4.1 (Normal Form Theorem, Kleene [10]) There exists a primitive re-
cursive function U and primitive recursive relations Tn, n ≥ 1, such that for every
n-ary partial recursive function ϕ there exists a number e (called a code of ϕ) such
that

ϕ(x1, . . . , xn) = U
(
µyTn(e, x1, . . . , xn, y)

)
.

Proof. The idea is to code computations by numbers, using the coding of sequences
from the previous section. The predicate Tn(e, x1, . . . , xn, y) will then say that y is
a computation of the function with code e on the arguments x1, . . . , xn. The search
µyTn(e, x1, . . . , xn, y) will then give us one such a computation, and U will extract its
outcome. Conceptually the coding is not difficult, but it is a lot of work to carry it
out completely. It is a healthy exercise though, which should be done at least once.

Coding of the partial recursive functions. We inductively associate numbers with
partial recursive functions, following their definitions, as follows:

• 〈0〉 corresponds to O

• 〈1〉 to S

• 〈2, n, i〉 to πi
n

• 〈3, a1, . . . , an, b〉 to ϕ(~x) = χ(ψ1(~x), . . . , ψn(~x)), where a1, . . . , an and b corre-
spond to ψ1, . . . , ψn and χ, respectively.

• 〈4, a, b〉 to ϕ(~x, y) defined with primitive recursion from ψ and χ, where a and
b correspond to ψ and χ.

• 〈5, a〉 to ϕ(~x) = µy(ψ(~x, y) = 0), where a corresponds to ψ.

Computation trees. We describe computations by trees as follows. Every node in the
tree will consist of one computation step.

• At the leaves we write computations performed by the initial functions. So
these steps are of the form ϕ(x) = 0, ϕ(x) = x + 1, or ϕ(x1, . . . , xn) = xi.
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• Composition: If ϕ(~x) = χ(ψ1(~x), . . . , ψn(~x)) then the node ϕ(~x) = z has the
n + 1 predecessors

ψ1(~x) = z1, . . . , ψn(~x) = zn, χ(z1, . . . , zn) = z.

• Primitive recursion: If ϕ(~x, y) is defined with primitive recursion from ψ and
χ, then ϕ(~x, 0) = z has predecessor ψ(~x) = z and ϕ(~x, y + 1) = z has the two
predecessors ϕ(~x, y) = z1 and χ(z1, ~x, y) = z.

• µ-recursion: If ϕ(~x) = µy(ψ(~x, y) = 0) then the computation step ϕ(~x) = z has
the predecessors

ψ(~x, 0) = t0, . . . , ψ(~x, z − 1) = tz−1, ψ(~x, z) = 0

where the ti are all different from 0.

Coding of computation trees. The nodes of a computation tree are of the form ϕ(~x) =
z. We code these by the numbers 〈e, 〈x1, . . . , xn〉, z〉 where e is a code for ϕ. We
proceed by assigning codes to trees in an inductive way. Each tree T consists of a
vertex v with a finite number (possibly zero) of predecessor trees Ti, i = 1 . . .m. If the
subtrees Ti have been assigned the codes T̂i, we give T the code T̂ = 〈v, T̂1, . . . , T̂m〉.
The property of being a computation tree is primitive recursive. We show that there
is a primitive recursive predicate T (y) saying that y is a code of a computation tree.
We use the decoding function (x)i from Section 2.4.1. For notational convenience, we
write (x)i,j,k instead of (((x)i)j)k. Suppose that y is a code of a computation tree.

Then y = 〈v, T̂1, . . . , T̂m〉, hence

(y)1 = 〈e, 〈x1, . . . , xn〉, z〉
(y)1,1 = e
(y)1,2 = 〈x1, . . . , xn〉
(y)1,3 = z

(y)i+1 = T̂i

(y)i+1,1 = code of the vertex of T̂i.

We will express T (y) in terms of a number of smaller building blocks. First we let

A(y) ⇐⇒ Seq(y) ∧ Seq((y)1) ∧ lth((y)1) = 3 ∧ Seq((y)1,1) ∧ Seq((y)1,2).

Next we define primitive recursive predicates B, C, D, and E corresponding to the
cases of initial functions, composition, primitive recursion, and µ-recursion. We only
write out the case of B and leave the others as Exercise 2.5.8. For the initial functions,
there are three possibilities for v = (y)1:

〈〈0〉, 〈x〉, 0〉
〈〈1〉, 〈x〉, x + 1〉

〈〈2, n, i〉, 〈x1, . . . , xn〉, xi〉.
We thus let

B(y) ⇐⇒ lth(y) = 1 ∧
[[

(y)1,1 = 〈0〉 ∧ lth((y)1,2) = 1 ∧ (y)1,3 = 0
]
∨

[
(y)1,1 = 〈1〉 ∧ lth((y)1,2) = 1 ∧ (y)1,3 = (y)1,2,1 + 1

]
∨

[
lth((y)1,1) = 3 ∧ (y)1,1,1 = 2 ∧ (y)1,1,2 = lth((y)1,2) ∧

1 ≤ (y)1,1,3 ≤ (y)1,1,2 ∧ (y)1,3 = ((y)1,2)(y)1,1,3

]]
.
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Similarly, we can define C(y) to be the primitive recursive predicate expressing that
y is a code of a tree of which the vertex v is a computation defined by composing the
computations in the predecessor trees. So lth((y)1,1) ≥ 3, (y)1,1,1 = 3, and so forth.
We can let the predicate D(y) expresses the same for the case of primitive recursion,
and the predicate E(y) for the case of µ-recursion (cf. Exercise 2.5.8).

Having thus treated all cases we can define inductively

T (y) ⇐⇒ A(y) ∧
[
B(y) ∨ C(y) ∨ D(y) ∨ E(y)

]
∧

[
lth(y) > 1 → (∀i)2≤i≤lth(y)T ((y)i)

]
.

The predicate T is primitive recursive because it is defined in terms of primitive
recursive functions applied to previous values only. (Note that always (y)i < y.)
That is, we have used the course-of-values recursion scheme of Exercise 2.5.9.

The definition of Tn and U . Finally, we define for each n ≥ 1

Tn(e, x1, . . . , xn, y) ⇐⇒ T (y) ∧ (y)1,1 = e ∧ (y)1,2 = 〈x1, . . . , xn〉

and

U(y) = (y)1,3.

Obviously, Tn and U are primitive recursive. Now let ϕ be any n-ary partial recursive
function. Then ϕ has a code, say e. For every x1, . . . , xn, ϕ(x1, . . . , xn)↓ if and only
if there is a computation tree for ϕ(x1, . . . , xn). The value ϕ(x1, . . . , xn) is extracted
by U . So we have

ϕ(x1, . . . , xn) = U
(
µyTn(e, x1, . . . , xn, y)

)
.

for every x1, . . . , xn. ¤

Theorem 2.4.1 shows in particular that every partial recursive function can be defined
with one application of the µ-operator only.

2.4.3 The basic equivalence and Church’s thesis

Theorem 2.4.2 (Turing [29]) Every partial computable function is partial recursive.

Proof. Again this is proved by arithmetization. Instead of coding the computations
of partial recursive functions, as in the proof of Theorem 2.4.1, we now have to code
computations of Turing machines. Again, this can be done using primitive recursive
coding functions. After seeing the proof of Theorem 2.4.1, the reader should have an
idea of how to proceed. As before, a primitive recursive predicate Tn and an extraction
function U can be defined, with a similar meaning. E.g. Tn(e, x1, . . . , xn, y) will say
that y codes a computation of the Turing machine with code e on inputs x1, . . . , xn.
We leave it to the reader to carry this out. ¤

Combining Theorems 2.3.5 and 2.4.2 we obtain the following basic equivalence:

Theorem 2.4.3 A function is partial computable if and only if it is partial recursive.

After seeing this equivalence, and emphasizing again that there are many other equiv-
alent formalizations, we can from now on be more informal in our descriptions of
algorithms, since the precise formalization is usually irrelevant. Other formalizations
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of the informal notion of algorithm include (cf. Odifreddi [17] for some of these) fi-
nite definability, representability in certain formal systems (cf. Theorem 7.1.4), being
computable by a while-program, λ-definability, computability on register machines,
and formal grammars. All of these can be proved to be equivalent by the method of
arithmetization. These equivalences are usually taken as indication that the informal
notion of algorithm is thus rightly formalized by any of these formalisms.

Church’s Thesis Every algorithmically computable (in the informal sense) function
is computable.

Note that Church’s Thesis is not a theorem, since it is not a formal statement, and
hence it cannot be formally proved. Rather, it is a statement expressing a certain
confidence in the right set-up of our theory.

Theorem 2.4.3 allows us to use the words recursive and (Turing) computable
interchangeably from now on. Following modern usage we will mostly talk about
computable functions.

Definition 2.4.4 Let U and Tn be as in the Normal Form Theorem 2.4.1.

1. ϕn
e , also denoted by {e}n,is the e-th partial computable n-ary function:

ϕn
e = U

(
µy Tn(e, x1, . . . , xn, y)

)
.

For the arity n = 1 we usually delete the n and simply write ϕe and {e}. We
also often suppress n altogether if the arity of the functions is clear from the
context.

2. ϕn
e,s, also denoted by {e}n

s , is the s-step finite approximation of ϕn
e :

ϕn
e,s(~x) =

{
ϕn

e (~x) if (∃y < s)
[
Tn(e, x1, . . . , xn, y)

]

↑ otherwise.

Recall the informal discussion at the beginning of Section 2.2.2. We can now make
the statements made there more precise.

Theorem 2.4.5 (The Enumeration Theorem) The partial computable functions can
be effectively enumerated in the following sense:

1. For every n and e, ϕn
e is a partial computable n-ary function.

2. For every partial computable n-ary function ϕ there is a code e such that ϕ = ϕn
e .

3. There exists a partial computable n+1-ary function ϕ such that for all e and ~x,

ϕ(e, ~x) = ϕn
e (~x).

Proof. This follows from the Normal Form Theorem 2.4.1: We can simply define
ϕ(e, ~x) = U

(
µy Tn(e, ~x, y)

)
. ¤

The Enumeration Theorem reveals an aspect that is very important to our subject,
namely the double role that numbers play. On the one hand, a number can act as
an input for a function, while on the other hand a number can also be a code of a
function. Thus the levels of functions and function inputs are blurred, which opens
up the possibility of self-reference: A number can be applied to itself. This will have
profound consequences later on.
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Lemma 2.4.6 (Padding Lemma) Given a code e of a partial computable function ϕ,
we can effectively enumerate infinitely many codes for ϕ.

Proof. We can add “dummy rules” to the program described by e that do not change
the function behaviour but that increase the size of the code. ¤

The next theorem provides a way to shift a number of function arguments into the
program.

Theorem 2.4.7 (The S-m-n Theorem) For every m and n there is an m + 1-ary
primitive recursive injective function Sm

n such that

{Sm
n (e, x1, . . . , xm)}(y1, . . . , yn) = {e}(x1, . . . , xm, y1, . . . , yn).

Proof. We use the arithmetization of the partial recursive functions from the proof
of Theorem 2.4.1. Note that there exists a primitive recursive function f that, given
c, outputs a code of λy1 . . . yn.c. (Cf. Exercise 2.5.4). Now we can simply define

Sm
n (e, x1, . . . , xm) =

〈
3, f(x1), . . . , f(xm), 〈2, n, 1〉, . . . , 〈2, n, n〉, e

〉
.

From the coding in the proof of Theorem 2.4.1 we see that this is a code of the compo-
sition of the function λx1 . . . xmy1 . . . yn.{e}(x1, . . . , xm, y1, . . . , yn) with the functions
λy1 . . . yn.xi, for i = 1 . . .m, and πj

n = λy1 . . . yn.yj , for j = 1 . . . n. Clearly, this com-
position is a function of y1, . . . , yn and it computes {e}(x1, . . . , xm, y1, . . . , yn). ¤

2.4.4 Canonical coding of finite sets

It will also often be useful to refer to finite sets in a canonical way. To this end we
define a canonical coding of the finite sets as follows. If A = {x1, . . . , xn} we give A
the code e = 2x1 + . . . + 2xn . We write A = De and call e the canonical code of A.
By convention we let D0 = ∅.

Note that the coding of finite sets is different from the coding of finite sequences
from Section 2.4.1. The main difference is that in a sequence the order and the
multiplicity of the elements matter, and in a set not. Also note that if we write a
canonical code e as a binary number then we can interpret it as the characteristic
string of De. Thus our coding of finite sets is consistent with our convention to
identify sets with characteristic strings, see Section 1.1.

2.5 Exercises

Exercise 2.5.1 Fibonacci discovered the sequence named after him by considering
the following problem. Suppose that a pair of newborn rabbits takes one month to
mature, and that every mature pair of rabbits every month produces another pair.
Starting with one pair of newborn rabbits, how many pairs are there after n months?

Exercise 2.5.2 Let F (n) be the n-th Fibonacci number. Let

G(n) =

(
1 +

√
5

2

)n+1

−
(

1 −
√

5

2

)n+1

.

1. Express G(n) in terms of the solutions to the equation x2 = x + 1.
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2. Use item 1 to show that
√

5
5 G(n) = F (n).

Exercise 2.5.3 Show precisely, using Definition 2.2.2, that addition + and multipli-
cation · are primitive recursive.

Exercise 2.5.4 Show that the following functions are all primitive recursive:

1. Constant functions: For any arity n and any constant c ∈ ω, the function
λx1 . . . xn.c.

2. The signum function

sg(x) =

{
1 if x > 0,

0 if x = 0.

3. Case distinction:

cases(x, y, z) =

{
x if z = 0,

y if z > 0.

4. Truncated subtraction: x .− y, which is 0 if y ≥ x and x − y otherwise. Hint:
First define the predecessor function

pd(0) = 0

pd(x + 1) = x.

5. The characteristic function χ= of the equality relation.

6. Bounded sums: Given a primitive recursive function f , define
∑

y≤z

f(~x, y).

7. Bounded products: Given f primitive recursive, define
∏

y≤z

f(~x, y).

8. Bounded search: Given a primitive recursive function f , define the function
µy ≤ z

(
f(~x, y) = 0

)
that returns the smallest y ≤ z such that f(~x, y) = 0, and

that returns 0 if such y does not exist.

9. Bounded maximum: For R primitive recursive, the function max
x≤y

R(x, y) is also

primitive recursive.

10. Bounded quantification: Given a primitive recursive relation R, the relations
P (x) = ∃y ≤ x R(y) and Q(x) = ∀y ≤ x R(y) are also primitive recursive.

11. Division: The relation x|y, x divides y.

12. Prime numbers: The function n 7→ pn, where pn is the n-th prime number,
starting with p0 = 2.

Exercise 2.5.5 Show that the function exp(y, k) from page 11 giving the exponent
of k in the decomposition of y is primitive recursive.

Exercise 2.5.6 (Concatenation of strings.) Show that there is a primitive recursive
operation F such that for all sequences σ = 〈x1, . . . , xm〉 and τ = 〈y1, . . . , yn〉,

F (σ, τ) = σ̂τ = 〈x1, . . . , xm, y1, . . . , yn〉.
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Exercise 2.5.7 Complete the proof of Theorem 2.3.5 by filling in the details. In
particular:

1. Give a tidy program for the constant 0 function O.

2. Give a tidy program for the successor function S.

3. Give a tidy program for the projection function πi
n.

4. Given tidy programs for the functions χ, ψ1, and ψ2, give a tidy program for
λx.χ(ψ1(x), ψ2(x)).

5. Give a tidy program for ϕ(x, y) defined with primitive recursion from the func-
tions ψ and χ, given tidy programs for the latter two functions.

6. Given a tidy program for ψ, give a tidy program for ϕ(x) = µy(ψ(x, y) = 0).

Exercise 2.5.8 Complete the proof of Theorem 2.4.1 by filling in the definitions of
the primitive recursive predicates C, D, and E on page 12.

Exercise 2.5.9 The course-of-values scheme of recursion is

f(~x, 0) = g(~x)

f(~x, n + 1) = h
(
〈f(~x, 0), . . . , f(~x, n)〉, ~x, n

)
.

Show, using the coding of sequences, that if g and h are primitive recursive, then so
is f .

Exercise 2.5.10 (Simultaneous recursion) Let f1 and f2 be defined as follows.

f1(0) = g1(0) f2(0) = g2(0)
f1(n + 1) = h1

(
f1(n), f2(n), n

)
f2(n + 1) = h2

(
f1(n), f2(n), n

)
.

Show that if g1, g2, h1, h2 are all are primitive recursive, then so are f1 and f2. (Hint:
use coding of pairs to make one function out of f1 and f2.)

Exercise 2.5.11 (Péter) Show that there is a computable function that enumer-
ates all primitive recursive functions. That is, construct a computable function
λe, x.f(e, x) such that for every e the function λx.f(e, x) is primitive recursive, and
conversely every primitive recursive function is equal to λx.f(e, x) for some e.

Exercise 2.5.12 Show that there is a (total) computable function that is not prim-
itive recursive. (Hint: use Exercise 2.5.11 and the discussion at the beginning of
Section 2.2.2.)

Exercise 2.5.13 The busy beaver function bb(n) is defined as follows. Given n,
consider all Turing machines with ≤ n states that are defined on input 0. Define
bb(n) to be the maximum of all their outputs. Show that bb is not computable.

Exercise 2.5.14 Let g be a partial computable function, and let R be a computable
predicate. Show that the function

ψ(x) =

{
g(x) if ∃y R(x, y),

↑ otherwise.

is partial computable. (This form of definition will be used throughout this syllabus.)
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Exercise 2.5.15 Prove or disprove: If f and g are not computable then also the
function λn.f(n) + g(n) is not computable.

Exercise 2.5.16 Show that there is a computable (even primitive recursive) function
f such that for all n and x,

{f(n)}(x) =

{
0 if x ∈ Dn,

↑ otherwise.

Exercise 2.5.17 Assume the existence of a noncomputable c.e. set A (an example
of which will be provided in the next chapter). Define

ψ(x, y) = 0 ⇐⇒ (y = 0 ∧ x ∈ A) ∨ y = 1

and let f(x) = (µy)
[
ψ(x, y) = 0

]
. Show that

1. ψ is partial computable.

2. f(x) = 0 ⇐⇒ x ∈ A.

3. f is not partial computable.

This exercise shows that we cannot simplify the scheme of µ-recursion in Defini-
tion 2.2.3 to ϕ(x) = (µy)

[
ψ(x, y) = 0

]
.
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Computable and computably

enumerable sets

3.1 Diagonalization

The method of diagonalization was invented by Cantor to prove that the set of real
numbers (or equivalently, the Cantor space 2ω) is uncountable. The method is of
fundamental importance to all of mathematical logic. A diagonal argument often
runs as follows: Given a (countable) list of objects Ai, i ∈ ω, we want to construct
a certain object A not in the list. This object A is constructed in stages, where at
stage i it is ensured that A 6= Ai. In Cantors example the Ai are a list of elements of
2ω, and at stage i the i-th element of A is defined to be 1 − Ai(i), so as to make A
different from Ai. The set A is called a diagonal set because it is defined using the
diagonal of the infinite matrix {Ai(j)}i,j∈ω The argument shows that no countable
list can include all elements of 2ω.

From Theorem 2.4.1 we see in particular that the set of computable functions is
countable since they can be coded with a countable set of codes. So from the uncount-
ability of 2ω we immediately infer that there are uncountably many noncomputable
functions. The informal argument showing the need for partial functions at the be-
ginning of Section 2.2.2 actually constituted our first example of the diagonalization
method. The function F = λn.fn(n)+1 defined there is another example of an object
obtained by diagonalization. Notice that diagonal objects like F have a self-referential
flavour since the n here simultaneously refers to the object level (namely its role as
the argument) and the meta-level (namely the position of the n-th object in the list).
Recall that we already encountered self-reference on page 14 when we discussed the
double role of numbers in computability theory. In this chapter we will develop the
basic theory of the computable and the computably enumerable sets. One of our
first results (Theorem 3.3.1) will exhibit both kinds of self-reference that we have just
seen.

3.2 Computably enumerable sets

A computably enumerable set is a set of which the elements can be effectively listed:

Definition 3.2.1 A set A is computably enumerable (c.e.) if there is a computable
function f such that A = rng(f), where rng(f) =

{
y : (∃x)[f(x) = y]

}
is the range

of f . For reasons of uniformity we also want to call the empty set ∅ computably
enumerable.

19
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C.e. sets are the effective analogue of Cantors countable sets. They can also be seen
as the analogue for sets of the notion of partial computable function. (Just as the
notion of computable set is the analogue of the notion of computable function.) Part
of the interest in c.e. sets is their abundance in mathematics and computer science.
A few important examples of c.e. sets are:

• The set of all theorems (coded as natural numbers) of any formal system with
a computable set of axioms.

• The set of Diophantine equations that have an integer solution.

• The set of words that can be produced with a given formal grammar (as in
formal language theory).

Many other examples come from computer science. The most famous one is the
following:

Definition 3.2.2 The halting problem is the set

H =
{
〈x, y〉 : ϕx(y)↓

}
.

The diagonal halting problem is the set

K =
{
x : ϕx(x)↓

}
.

The halting problem is the set representing the problem of deciding whether an arbi-
trary computation will yield an output, given a code of the function and the input.
We check that the sets H and K are indeed computably enumerable: Suppose that
m ∈ H is a fixed element. Then H is the range of the computable function

f(n) =

{
〈(n)0, (n)1〉 if ϕ(n)0,(n)2((n)1)↓
m otherwise.

Thus, f on input n = 〈x, y, s〉 checks whether the computation ϕx(y) converges in s
steps, and if so it outputs 〈x, y〉. We use m to make f total. Since for every convergent
computation ϕx(y) there is an s such that ϕx,s(y)↓, every such pair 〈x, y〉 will appear
in the range of f .1 That the set K is c.e. follows in a similar way.

Before we continue our discussion we make a number of general observations.
First we give a number of equivalent ways to define c.e. sets:

Theorem 3.2.3 For any set A the following are equivalent:

(i) A is c.e.

(ii) A = rng(ϕ) for some partial computable function ϕ.

(iii) A = dom(ϕ) =
{
x : ϕ(x)↓

}
for some partial computable function ϕ.

(iv) A =
{
x : (∃y)[R(x, y)]

}
for some computable binary predicate R.

1Note that f is total: Even if the input n is not a sequence number or not one of length 3, f(n)
is defined because the function (x)i is defined for all x and i, cf. Exercise 2.5.5.
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Proof. (i)=⇒(ii). Clearly, if A is the range of a total computable function it is also
the range of a partial one.
(ii)=⇒(iii). Suppose that A = rng(ϕe). Define the partial computable function ψ by

ψ(y) =

{
0 if ∃x∃s ϕe,s(x) = y,

↑ otherwise.

Then rng(ϕ) = dom(ψ). Note that this form of definition is allowed by Exercise 2.5.14.
(iii)=⇒(iv). It suffices to note that dom(ϕe) =

{
x : (∃s)[ϕe,s(x)↓]

}
has the required

form.
(iv)=⇒(i). Let A be as in the statement (iv) and suppose that A 6= ∅, say a ∈ A.
Define

f(n) =

{
(n)0 if R((n)0, (n)1)

a otherwise.

Then f is total and A = rng(f). ¤

Theorem 3.2.3 shows that we can alternatively define the c.e. sets as the domains of
partial computable functions. Thus we can assign codes to c.e. sets in a canonical
way, as we did for the partial computable functions:

Definition 3.2.4 We define
We = dom(ϕe)

and call this the e-th c.e. set. The number e is called a c.e. code, or simply a code of
We. Similarly we define

We,s = dom(ϕe,s).

Notice that the sets We,s are finite approximations to We and that we have We =⋃
s∈ω We,s. Also note that by the definition of ϕe,s there can be at most one element

in We,s+1 − We,s for every s. We will use these facts tacitly from now on.

Recall the definition of the halting problem H =
{
〈x, y〉 : ϕx(y) ↓

}
. Note that for

every 〈x, y〉 we have H(〈x, y〉) = Wx(y). In this sense H codes all the information
from all other c.e. sets. For this reason it is also called universal.

By definition the c.e. sets are the range of computable functions. We can also
characterize the computable sets as the range of functions:

Proposition 3.2.5 The following are equivalent:

(i) A is computable.

(ii) A = ∅ or A = rng(f) for some nondecreasing computable function f .

Proof. Suppose that A is computable and nonempty. Define f by

f(0) = µn. n ∈ A

f(n + 1) =

{
n + 1 if n + 1 ∈ A,

f(n) otherwise.

Then f is computable and has range A.
Conversely, if f is computable and nondecreasing then there are two cases.

Case 1: rng(f) is finite. Then clearly rng(f) is computable.
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Case 2: rng(f) is infinite. Then n ∈ rng(f) if and only if n = f(m), where m is the
smallest number such that f(m) ≥ n. Such m always exists because the range of f
is infinite. So also in this case rng(f) is computable. ¤

The notion of membership of an c.e. set A is asymmetric: If n ∈ A this can be
verified in finitely many steps, but if n /∈ A one may never find this out. The
following elementary result due to Post shows that indeed c.e. sets are in a sense
“half computable.”

Proposition 3.2.6 A set A is computable if and only if both A and its complement
A are c.e.

Proof. Informally: To decide whether x ∈ A, enumerate A and A until x appears in
one of them. For a formal proof see Exercise 3.8.1. ¤

3.3 Undecidable sets

We have called a set A computable if its characteristic function χA is computable
(Definition 2.3.1). A set A for which we are interested to know for every n whether
n ∈ A or n /∈ A is also called a decision problem, depending on the context. A
decision problem A that is computable is usually called decidable. Note that the
halting problem H is a decision problem.

Theorem 3.3.1 (Undecidability of the halting problem, Turing [29]) H is undecid-
able.

Proof. If H would be decidable then so would K since x ∈ K ⇔ 〈x, x〉 ∈ H. So
it suffices to show that K is undecidable. Suppose for a contradiction that K is
decidable. Then also its complement K is decidable, and in particular c.e. But then
K = We for some code e. Now

e ∈ K ⇐⇒ ϕe(e)↓⇐⇒ e ∈ We ⇐⇒ e ∈ K,

a contradiction. ¤

Theorem 3.3.1 shows that there are c.e. sets that are not computable. The proof that
K is undecidable is yet another example of the diagonalization method.

A natural property for a set of codes is to require that it is closed under functional
equivalence of codes:

Definition 3.3.2 A set A is called an index set if

(∀d, e)[d ∈ A ∧ ϕe = ϕd → e ∈ A].

All sets of codes that are defined by properties of the functions rather than their
codes are index sets. For example all of the following are index sets:

• Fin =
{
e : We is finite

}
.

• Tot =
{
e : ϕe is total

}
.

• Comp =
{
e : We is computable

}
.



3.3. Undecidable sets 23

All of these examples are important, and we will encounter them again in Chapter 4.
After seeing that K is undecidable it will not come as a surprise that Fin, Tot,

and Comp are also undecidable, since the task to decide whether a code e is a member
of any of these sets seems harder than just deciding whether it converges on a given
input. But in fact, the undecidability of these sets follows from a very general result
that says that essentially all index sets are undecidable:

Theorem 3.3.3 (Rice’s Theorem) Let A be an index set such that A 6= ∅ and A 6= ω.
Then A is undecidable.

Proof. Let A be as in the statement of the theorem. Suppose that e is a code of the
everywhere undefined function, and suppose that e ∈ A. Let d ∈ A and let f be a
computable function such that

ϕf(x) =

{
ϕd if x ∈ K,

↑ otherwise.

Then
x ∈ K =⇒ ϕf(x) = ϕd =⇒ f(x) /∈ A,

x /∈ K =⇒ ϕf(x) = ϕe =⇒ f(x) ∈ A.

Now if A would be decidable then so would K, contradicting Theorem 3.3.1. The
case e /∈ A is completely symmetric, now choosing d ∈ A. ¤

By Rice’s Theorem the only decidable examples of index sets are ∅ and ω. So we see
that undecidability is indeed ubiquitous in computer science.

By Proposition 3.2.6 a set A is computable if and only if both A and A are c.e.
We now consider disjoint sets of pairs of c.e. sets in general:

Definition 3.3.4 A disjoint pair of c.e. sets A and B is called computably separable
if there is a computable set C such that A ⊆ C and B ⊆ C. A and B are called
computably inseparable if they are not computably separable.

Note that the two halves of a computably inseparable pair are necessarily noncom-
putable. So the next theorem is a strong form of the existence of noncomputable c.e.
sets.

Theorem 3.3.5 There exists a pair of computably inseparable c.e. sets.

Proof. Define

A =
{
x : ϕx(x)↓= 0

}
,

B =
{
x : ϕx(x)↓= 1

}
.

Suppose that there is a computable set C separating A and B. Let e be a code of
the characteristic function of C: ϕe = χC . Then we obtain a contradiction when we
wonder whether e ∈ C:

e ∈ C =⇒ ϕe(e) = 1 =⇒ e ∈ B =⇒ e /∈ C,
e /∈ C =⇒ ϕe(e) = 0 =⇒ e ∈ A =⇒ e ∈ C. ¤

Computably inseparable pairs actually do occur in “nature”. E.g. it can be shown
that for formal systems F that are strong enough (at least expressible as arithmetic)
the sets of provably true and provably false formulas are computably inseparable.
(The proof consists of formalizing the above argument in F .)
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3.4 Uniformity

In Theorem 3.2.3 we proved that various ways of defining c.e. sets are equivalent. But
in fact some of these equivalences hold in a stronger form than was actually stated, as
can be seen by looking at the proof. Consider for example the direction (ii)=⇒(iii).
The function ψ there was defined in a computable way from the given function ϕ,
which means that there is a computable function h such that, if e is a given code for
ϕ, h(e) is a code of ψ. We will say that the implication (ii)=⇒(iii) holds uniformly ,
or uniform in codes. In fact one can show that the equivalences of (ii), (iii), and (iv)
are all uniform in codes (cf. Exercise 3.8.2).

With respect to the implication (iv)=⇒(i), note that in the proof we distinguished
between the cases A = ∅ and A 6= ∅. Now the set

{
e : We = ∅

}

is an index set, and hence by Theorem 3.3.3 undecidable. So we cannot effectively
discriminate between the two different cases. However we have uniformity in the
following form:

Proposition 3.4.1 There is a computable function f such that for every e,

We 6= ∅ =⇒ ϕf(e) total ∧ rng(ϕf(e)) = We.

Proof. Let d be a code such that

ϕd(e, s) =

{
m if m ∈ We,s+1 − We,s,

µn. n ∈ We otherwise.

Define f(e) = S1
1(d, e). Then f is total since S1

1 is, and when We is nonempty, ϕf(e)

is total with range We. ¤

As an example of a result that does not hold uniformly we consider the following. Note
that there are two ways to present a finite set: We can present it by its canonical code
as Dn for some n (see Section 2.4.4), i.e. provide a complete list of all its elements,
or we can present it by a c.e.-code as We for some e, i.e. provide only an enumeration
of its elements. Now we have:

Proposition 3.4.2 We can go effectively from canonical codes to c.e. codes, but not
vice versa.

Proof. By Exercise 2.5.16 there is a computable function f such that Wf(n) = Dn for
all n, so we can pass effectively from canonical codes to c.e. codes.

Now suppose that we could effectively go from c.e. codes to canonical codes, i.e.
suppose that there is a partial computable function ψ such that

We finite =⇒ ψ(e)↓ ∧ We = Dψ(e).

Define a computable function g such that

Wg(e) =

{
{e} if e ∈ K,

∅ otherwise.
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Then Wg(e) is always finite, so ψ(g(e))↓ for every e. But then we have

e ∈ K ⇐⇒ Wg(e) 6= ∅ ⇐⇒ Dψ(g(e)) 6= ∅.

But Dn = ∅ is decidable, so it follows that K is decidable, contradiction. Hence ψ
does not exist. ¤

In Proposition 3.7.2 we will use the recursion theorem to show that Proposition 3.2.5
also does not hold uniformly.

3.5 Many-one reducibility

When considering decision problems, or any other kind of problem for that matter,
it is useful to have a means of reducing one problem to another. If one can solve
a problem A, and problem B reduces to A, then we can also solve B. This also
works the other way round: If we know that B is unsolvable, then so must be A. In
the following we will encounter several notions of reduction. The simplest notion of
reduction between decision problems is maybe the one where questions of the form
“n ∈ A?” are effectively transformed into questions of the form “f(n) ∈ B?”, as in
the following definition. A much more general notion will be studied in Chapter 5.

Definition 3.5.1 A set A many-one reduces to a set B, denoted by A ≤m B, if there
is a computable function f such that

n ∈ A ⇐⇒ f(n) ∈ B

for every n. The function f is called a many-one reduction, or simply an m-reduction,
because it can be noninjective, so that it can potentially reduce many questions about
membership in A to one such question about B. We say that A is m-equivalent to
B, denoted A ≡m B, if both A ≤m B and B ≤m A. Clearly the relation ≡m is
an equivalence relation, and its equivalence classes are called many-one degrees, or
simply m-degrees.

Note that all computable sets (not equal to ∅ or ω) have the same m-degree. This is
at the same time the smallest m-degree, since the computable sets m-reduce to any
other set.

In the proof of Theorem 3.3.1 we proved that H was undecidable by proving that K
is undecidable and by m-reducing K to H. Also, in the proof of Rice’s Theorem 3.3.3
we showed that A was noncomputable by actually building an m-reduction from K
to A. That is, we used the following observation:

Proposition 3.5.2 If B is noncomputable and B ≤m A then also A is noncom-
putable.

Proof. Trivial. ¤

Proposition 3.5.3 A set A is c.e. if and only if A ≤m K.

Proof. (If) Suppose that x ∈ A ⇔ f(x) ∈ K for f computable. Then A =
{
x :

(∃s)[f(x) ∈ Ks]
}
, where Ks is the finite s-step approximation of K. So by Theo-

rem 3.2.3 A is c.e.
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(Only if) Using the S-m-n theorem we define f computable such that

ϕf(e,x)(z) =

{
0 if x ∈ We,

↑ otherwise.

Then for every e and x, x ∈ We ⇔ ϕf(e,x)(f(e, x)) ↓ ⇔ f(e, x) ∈ K. In particular
We ≤m K for every e. ¤

An element of a class for which every element of the class reduces to it (under some
given notion of reduction) is called complete. Proposition 3.5.3 shows that K is
m-complete for the c.e. sets. It immediately follows that the halting set H is also m-
complete. This we basically saw already on page 21 when we discussed its universality.

By counting we can see that there are many m-degrees:

Proposition 3.5.4 There are 2ℵ0 many m-degrees.

Proof. Note that for every A there are only ℵ0 many B such that B ≤m A since there
are only countable many possible computable functions that can act as m-reduction.
In particular every m-degree contains only ℵ0 many sets. (Cf. also Exercise 3.8.10.)
Since there are 2ℵ0 many sets the proposition follows. ¤

3.6 Simple sets

Up to now we have seen two kinds of c.e. set: computable ones and m-complete ones.
A very natural question is whether there are any other ones. That is, we ask whether
there exists a c.e. set that is neither computable nor m-complete. The existence of
such sets was shown by Post, and he proved this by considering sets that have a very
“thin” complement, in the sense that it is impossible to effectively produce an infinite
subset of their complement. We first note that no c.e. set is itself thin in this sense:

Proposition 3.6.1 (Post [20]) Every infinite c.e. set has an infinite computable sub-
set.

Proof. Exercise 3.8.5 ¤

Definition 3.6.2 A set is immune if it is infinite and it does not contain any infinite
c.e. subset. A set A is simple if A is c.e. and its complement A is immune.

It is immediate from the definition that simple sets are noncomputable. They are
also not complete:

Proposition 3.6.3 (Post [20]) If a set is m-complete then it is not simple.

Proof. First we prove that K is not simple. Notice that for every x we have that

Wx ⊆ K =⇒ x ∈ K − Wx (3.1)

because if x ∈ Wx then x ∈ K, and thus Wx 6⊆ K. We can use (3.1) to generate an
infinite c.e. subset of K as follows: Let f be a computable function such that for all x

Wf(x) = Wx ∪ {x}.
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Now start with a code x such that Wx = ∅ and repeatedly apply f to obtain the
infinite c.e. set V =

{
x, f(x), f(f(x)), . . . , f (n)(x), . . .

}
. By (3.1), V ⊆ K and V is

infinite. So K contains an infinite c.e. subset, and hence is not immune.

Next we prove that if K ≤m A, then the property that K is not simple transfers
to A. Suppose that K ≤m A via h. Let U be a c.e. subset of A. Then the inverse
image h−1(U) is a c.e. subset of K. Moreover, we can effectively obtain a code of
h−1(U) from a code of U . Using the procedure for K above we obtain an element
x ∈ K − h−1(U), and hence h(x) ∈ A − U . By iteration we obtain an infinite
c.e. subset of A. Formally: Let g(0) = h(x) where Wx = ∅. Note that g(0) ∈ A
by (3.1). Given the elements g(0), . . . , g(n) ∈ A, let ξ(n) be a code of the c.e. set
h−1({g(0), . . . , g(n)}). Then by (3.1) ξ(n) ∈ K − h−1({g(0), . . . , g(n)}) so we define
g(n + 1) = h(ξ(n)). Now clearly rng(g) is an infinite c.e. subset of A, and hence A is
not simple. ¤

Theorem 3.6.4 (Post [20]) There exists a simple set.

Proof. We want to build a coinfinite c.e. set A such that for every e the following
requirement is satisfied:

Re : We infinite =⇒ A ∩ We 6= ∅.

Now we can effectively list all c.e. sets, but we cannot decide which ones are infinite
by the results of Section 3.3. But given a We, we can just wait and see what happens
with it, and enumerate an element from it when we see one that is big enough. More
precisely, to keep A infinite we want to make sure that at most e elements from
{0, . . . , 2e} go into A. Since we can satisfy Re by just enumerating one element, it
suffices to allow Re to enumerate an element x only if x > 2e. Thus we build the set
A in stages as follows:
Stage s = 0. Let A0 = ∅.
Stage s + 1. At this stage we are given the current approximation As to A. Look for
the smallest e < s such that As ∩ We,s = ∅ and such that there exists an x ∈ We,s

with x > 2e. If such e and x are found, enumerate x into A, i.e. set As+1 = As ∪{x}.
If such e and x are not found do nothing, i.e. set As+1 = As. This concludes the
construction.

Now the constructed set A =
⋃

s∈ω As is coinfinite because only half of the el-
ements smaller than 2e can be enumerated into it. Moreover, if We is infinite it
contains an x > 2e, which means that some element from We is enumerated into A
at some stage. So the requirement Re is satisfied for every e. ¤

The proof of Theorem 3.6.4 exhibits several features that are typical of arguments in
computability theory. First notice that it is a diagonalization argument: The overall
requirement that the set should neither be computable nor complete is broken up
into infinitely many subrequirements Re. We then construct in infinitely many stages
a set A that satisfies all of these requirements. An important difference with the
examples from Section 3.1 like Cantors argument is that here we cannot take care
of requirement Re at stage e, because the construction has to be effective in order
to make A c.e. Thus, instead of trying to handle the requirements in order we take
a more dynamic approach, and just wait until we see that a possible action can be
taken. Second, there is a mild but decided tension between the requirements Re

that want to put elements into A, and are thus of a positive nature, and the overall
requirement that A should be coinfinite, which tries to keep elements out of A, and
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m b

n ϕϕn(m)

diagonal

f

¶¶

ϕϕx(x)

b ϕf◦ϕx(x) ϕϕb(b) = ϕf◦ϕb(b)

Figure 3.1: The matrix of the functions ϕϕn(m)

hence is negative in nature. This conflict in requirements was easily solved in this
case by restraining the Re from enumerating numbers that are too small. In general
the conflicts between requirements in a diagonalization argument may be of a more
serious nature, giving rise to more and more complicated methods to resolve them.

Combining the results of this section we obtain:

Corollary 3.6.5 There exists a c.e. set that is neither computable nor m-complete.

In Section 7.3 we will see a natural example of such a c.e. set of intermediate m-degree.

3.7 The recursion theorem

The following theorem is also sometimes called the fixed-point theorem. It has a
strong self-referential flavour, and the short and deceptively simple proof does not
seem to explain much of the mystery.

Theorem 3.7.1 (The Recursion Theorem, Kleene [11]) For every computable func-
tion f there exists an e (called a fixed-point of f) such that ϕf(e) = ϕe.

Proof. The function λx, z. ϕf◦ϕx(x)(z) is computable by the Enumeration Theo-
rem 2.4.5.3, so it has a code c. By the S-m-n theorem let b be a code such that
ϕb(x) = S1

1(c, x). Note that ϕb is total because S1
1 is primitive recursive. Then we

have
ϕϕb(x)(z) = ϕc(x, z) = ϕf◦ϕx(x)(z),

so ϕb(b) is a fixed-point of f . ¤

To better understand the proof of Theorem 3.7.1 we offer the viewpoint of Owings
[19], who suggested to look at the proof as a diagonal argument that fails. The
form of the theorem suggests that we look at functions of the form ϕϕn(m), put in
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a two-dimensional matrix as in figure 3.1. Here we introduce the convention that
ϕϕn(m) denotes the totally undefined (empty) function if ϕn(m)↑. Now consider the
diagonal ϕϕx(x) of this matrix. Contrary to the usual situation in diagonal arguments,
this diagonal, as a function of x, is itself again a row of the matrix! Furthermore,
every function f defines a mapping of the rows, mapping the row ϕϕx(y) to ϕf◦ϕx(y).
Since all this is effective there is a code b such that

ϕϕb(x) = ϕf◦ϕx(x).

Taking x = b we see that f has the fixed-point ϕb(b).

The self-referential flavour of Theorem 3.7.1 lies in the fact that it can be used to
define a function in terms of its own code. Namely it is often used in the following
form: One defines an object like a partial computable function or a c.e. set A using
an arbitrary code e. If the definition of A depends on e in an effective way, i.e. if
there is a computable function f such that A = Wf(e), then by Theorem 3.7.1 we
may conclude that there is an e for which A = We. This justifies writing things like:
“Let e be a code such that We = A” where e itself occurs in the definition of A, as
long as A depends effectively on e.

A consequence of Theorem 3.7.1 is the existence of programs that print themselves
when they are run. Formally, by the S-m-n Theorem 2.4.7 let f be a computable
function such that for every x, ϕf(e)(x) = e. By Theorem 3.7.1 there is a fixed point
e for which holds that ϕe(x) = e for every x, i.e. the program e prints itself on any
input.

As another paradoxical example, Theorem 3.7.1 implies the existence of an e such
that ϕe(x) = ϕe(x) + 1 for every x. But of course the way out of this paradoxical
situation is that ϕe can be everywhere undefined, which reminds us of the importance
of the fact that we are working with partial functions.

In the next proposition we apply the recursion theorem to show that Proposi-
tion 3.2.5 does not hold uniformly.

Proposition 3.7.2 There does not exist a partial computable function ψ such that
for every e, if ϕe is nondecreasing then ψ(e)↓ and ϕψ(e) = χrng(ϕe).

Proof. Suppose that such ψ does exist, and let ψs denote the s-step approximation
of ψ. By the recursion theorem, let e be a code such that

{e}(s) =

{
1 if ψs(e)↓ and ϕψ(e),s(1)↓= 0,

0 otherwise.

Then {e} is nondecreasing, so ψ(e) must be defined and ϕψ(e) is total. Now either
ϕψ(e)(1) = 1, in which case rng({e}) contains only 0, or ϕψ(e)(1) = 0, in which case
1 ∈ rng({e}). In both cases ϕψ(e)(1) 6= rng({e})(1). ¤

3.8 Exercises

Exercise 3.8.1 Give a formal proof of Proposition 3.2.6.

Exercise 3.8.2 Prove that the equivalences of (ii), (iii), and (iv) in Theorem 3.2.3
are all uniform in codes.

Exercise 3.8.3 Prove the following:



30 Chapter 3. Computable and computably enumerable sets

(i) ≤m is transitive.

(ii) If X ≤m Y and Y is c.e. then X is c.e.

(iii) X ≤m Y precisely when X ≤m Y .

Exercise 3.8.4 The join A ⊕ B of two sets A and B is defined as

A ⊕ B =
{
2x : x ∈ A

}
∪

{
2x + 1 : x ∈ B

}
.

The A ⊕ B contains precisely all the information from A and B “zipped” together.
Prove that for every C, if both A ≤m C and B ≤m C then A⊕B ≤m C. Since clearly
A, B ≤m A⊕B this shows that on the m-degrees ⊕ gives the least upper bound of A
and B.

Exercise 3.8.5 Prove Proposition 3.6.1. (Hint: Proposition 3.2.5.)

Exercise 3.8.6 Prove that the c.e. sets are closed under

(i) intersections,

(ii) bounded quantification,

(iii) images of partial computable functions.

Exercise 3.8.7 (Uniformization) A set A ⊆ ω2 is single-valued if

∀x, y, z
(
(x, y) ∈ A ∧ (x, z) ∈ A → y = z

)
.

Define dom(A) = {x : ∃y (x, y) ∈ A}. Prove that for every c.e. A ⊆ ω2 there is a
single-valued c.e. B ⊆ A such that dom(A) = dom(B).

Exercise 3.8.8 (Reduction property) Show that for any two c.e. sets A and B there
are c.e. sets A′ ⊆ A and B′ ⊆ B such that A′ ∩ B′ = ∅ and A′ ∪ B′ = A ∪ B.

Exercise 3.8.9 Prove that K and H have the same m-degree.

Exercise 3.8.10 In the proof of Proposition 3.5.4 it was shown that every m-degree
contains at most ℵ0 many sets. Show that also every m-degree contains at least ℵ0

many sets.

Exercise 3.8.11 Give a reduction K ≤m {e : We = ∅}.

Exercise 3.8.12 Give reductions K ≤m X and K ≤m X for every X ∈ {Fin, Tot,
Comp}.

Exercise 3.8.13 Show that Fin ≡m Tot ≡m {e : rng(ϕe) is infinite}.

Exercise 3.8.14 Show that the intersection of two simple sets is again simple. Prove
or disprove: The union of two simple sets is again simple.

Exercise 3.8.15 Use the recursion theorem to show that the following exist:

• An e such that We = {e}.

• An e such that for every x, ϕe(x)↓⇐⇒ ϕ2e(x)↓.
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• An e such that We = De, where Dn is the canonical listing of all finite sets from
Section 2.4.4.

Exercise 3.8.16 A computable function f is self-describing if e = (µx)[f(x) 6= 0]
exists and ϕe = f . Show that self-describing functions exist.

Exercise 3.8.17⋆ Show that there exists a computable function f such that for all n,
f(n) < f(n + 1) and Wf(n) = {f(n + 1)}.



Chapter 4

The arithmetical hierarchy

In Chapter 3 we introduced m-reducibility as a tool to study decidability. But we can
also view m-degrees as a measure for the degree of unsolvability of sets and functions.
In Section 3.6 we saw by counting that there are 2ℵ0 many m-degrees, and also that
there are more than two c.e. m-degrees. (A degree is called c.e. if it contains a c.e.
set.) This suggests to classify various sets from mathematics and computer science
according to their m-degree. This is precisely what we do in this chapter. It turns
out that for many naturally defined sets there is moreover a nice relation with the
complexity of their defining formulas. So we start out by defining a hierarchy based
on this idea.

4.1 The arithmetical hierarchy

Many sets of natural numbers from mathematics and computer science can be defined
by a formula in the language of arithmetic L. Usually, this language is taken to be
the language of the standard model of arithmetic 〈ω, S, +, ·〉, i.e. the natural numbers
with successor, plus, and times. By arithmetization we can represent all primitive
recursive functions in this model (cf. Theorem 7.1.4), so there is no harm in extending
the language L with symbols for every primitive recursive predicate. Let us call this
extension L∗. We also assume that L∗ contains constants to denote every element
of ω. For ease of notation we denote the constant denoting the number n also by n.
The intended model for L∗ are the natural numbers with all the primitive recursive
functions, which we denote again by ω. Thus by ω |= ϕ we denote that the formula
ϕ is true in this model.

Definition 4.1.1 An n-ary relation R is arithmetical if it is definable by an arith-
metical formula, i.e. if there is an L∗-formula ϕ such that for all x1, . . . , xn,

R(x1, . . . , xn) ⇐⇒ ω |= ϕ(x1, . . . , xn).

We can write every L∗-formula ϕ in prenex normal form, i.e. with all quantifiers in
front (the prefix of ϕ) and quantifying over a propositional combination of computable
predicates (the matrix of ϕ). Now the idea is that we distinguish defining formulas
by their quantifier complexity. First note that two consecutive quantifiers of the same
kind can be contracted into one, using coding of pairs. E.g. if ϕ has the form

. . .∃x∃y . . . R(. . . x . . . y . . .)

then ϕ can be transformed into the equivalent formula

. . .∃z . . . R(. . . (z)0 . . . (z)1 . . .).

32
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The same holds for consecutive blocks of universal quantifiers. So we will measure
quantifier complexity by only counting alternations in quantifiers.

Definition 4.1.2 (The Arithmetical Hierarchy) We inductively define a hierarchy as
follows.

• Σ0
0 = Π0

0 = the class of all computable relations.

• Σ0
n+1 is the class of all relations definable by a formula of the form ∃xR(x, ~y)

where R is a Π0
n-predicate.

• Π0
n+1 is the class of all relations definable by a formula of the form ∀xR(x, ~y)

where R is a Σ0
n-predicate.

• ∆0
n = Σ0

n ∩ Π0
n for every n.

So Σ0
n is the class of relations definable by an L∗-formula in prenex normal form with

n quantifier alternations, and starting with an existential quantifier. Idem for Π0
n,

but now starting with a universal quantifier. It follows from Proposition 3.2.6 that
∆0

1 consists precisely of all the computable relations, and from Theorem 3.2.3 that
Σ0

1 consists of the c.e. relations. The superscript 0 in the notation for the classes in
the arithmetical hierarchy refers to the fact that they are defined using first-order
formulas, that is formulas with quantification only over numbers. There are indeed
higher order versions defined using more complex formulas, but we will not treat
these here. For example, the classes of the analytical hierarchy, denoted with a
superscript 1, are defined using second-oder quantification, where quantifiers are also
allowed to run over sets of natural numbers.

Proposition 4.1.3 (Closure properties)

1. R ∈ Σ0
n if and only if R ∈ Π0

n.

2. Σ0
n, Π0

n, and ∆0
n are closed under intersections, unions, and bounded quantifi-

cation.

3. ∆0
n is closed under taking complements.

4. For n ≥ 1, Σ0
n is closed under existential quantification, and Π0

n is closed under
universal quantification.

Proof. Item 1 follows from the standard procedure of pulling negations through
quantifiers. For items 2 and 3 see Exercise 4.3.1. Item 4 follows from the contraction
of quantifiers discussed on page 32. ¤

The next theorem shows that our hierarchy does not collapse, and is strict at all
levels.

Theorem 4.1.4 (Hierarchy Theorem) For every n ≥ 1 the following hold:

1. Σ0
n − Π0

n 6= ∅, and hence ∆0
n ( Σ0

n.

2. Π0
n − Σ0

n 6= ∅, and hence ∆0
n ( Π0

n.

3. Σ0
n ∪ Π0

n ( ∆0
n+1.
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Figure 4.1: The Arithmetical Hierarchy

Proof. We define analogues Kn of the diagonal set K for every level Σ0
n, and we

imitate the proof of Theorem 3.3.1 to show that Kn is not in Π0
n. Define

K2n =
{
e : ∃x1∀x2 . . .∃x2n−1∀s ϕ2n

e,s(e, x1, . . . , x2n−1)↑
}
,

K2n+1 =
{
e : ∃x1∀x2 . . .∀x2n∃s ϕ2n+1

e,s (e, x1, . . . , x2n)↓
}
.

Clearly Kn ∈ Σ0
n for every n. Also note that K1 = K. Now suppose that Kn ∈ Π0

n

and that n is odd. (The case of even n is similar.) Then Kn ∈ Σ0
n, so Kn ={

z : ∃x1∀x2 . . .∃xn R(z, x1, . . . , xn)
}

for some computable predicate R. Now by
Theorem 3.2.3 there is a code e such that for every z, x1, . . . , xn−1

∃xn R(z, x1, . . . , xn) ⇐⇒ ∃s ϕe,s(z, x1, . . . , xn−1)↓ .

Now we obtain a contradiction by considering z = e:

e ∈ Kn ⇐⇒ ∃x1∀x2 . . .∃xn R(e, x1, . . . , xn)

⇐⇒ ∃x1∀x2 . . .∀xn−1∃s ϕe,s(z, x1, . . . , xn−1)↓
⇐⇒ e ∈ Kn.

Hence Kn /∈ Π0
n. Item 2 immediately follows from this, since Kn ∈ Π0

n − Σ0
n.
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For item 3 consider the predicate R defined by

R(e, i) ⇐⇒
[
e ∈ Kn ∧ i = 0

]
∨

[
e ∈ Kn ∧ i = 1

]
.

This predicate is not in Π0
n, for otherwise also R′(e) = R(e, 0) would be Π0

n. But
R′(e) is just Kn, and this is not Π0

n as we have just seen. The same reasoning shows
that R is not Σ0

n. However, it is easy to check that R is both Σ0
n+1 and Π0

n+1. So
R ∈ ∆0

n+1 − (Σ0
n ∪ Π0

n). ¤

For the sets Kn from the proof of Theorem 4.1.4 we can actually show more, namely
that they are m-complete at their respective levels:

Proposition 4.1.5 Kn is m-complete for Σ0
n.

Proof. Suppose that n is odd. (Again the case of even n is similar.) Consider any Σ0
n

set A =
{
e : ∃x1∀x2 . . .∃xn R(e, x1, . . . , xn)

}
. Define a computable function f such

that

ϕn
f(e)(z, x1, . . . , xn−1) =

{
0 if ∃xn R(e, x1, . . . , xn)

↑ otherwise.

Then

e ∈ A ⇐⇒ ∃x1∀x2 . . .∃xn R(e, x1, . . . , xn)

⇐⇒ ∃x1∀x2 . . .∀xn−1∃s ϕn
f(e),s(f(e), x1, . . . , xn−1)↓

⇐⇒ f(e) ∈ Kn.
¤

Next we consider a famous application of the arithmetical hierarchy, namely Tarski’s
theorem saying that arithmetical truth is itself not an arithmetical notion. Let ϕ 7→
pϕq be a primitive recursive coding of L∗-sentences, mapping sentences to numbers.
pϕq is called the Gödel number of ϕ.

Theorem 4.1.6 (Tarski [28]) The set

{
pϕq : ω |= ϕ

}

of true arithmetical formulas is not arithmetical.

Proof. Exercise 4.3.3. ¤

4.2 Computing levels in the arithmetical hierarchy

Given an arithmetically defined set it is usually easy to establish some upper bound
on the level of the set in the arithmetical hierarchy, simply by writing out its defin-
ing formula in prenex normal form and counting the quantifier alternations. But of
course we often want to know the exact level instead of just an upper bound. Propo-
sition 4.1.5 provides us with a method to establish lower bounds, namely if we can
show that Kn ≤m A or Kn then we know that A cannot occur at a lower level. We
now give a number of examples, of growing complexity, illustrating this method.

Proposition 4.2.1 The set A =
{
e : We = ∅

}
is m-complete for Π0

1.
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Proof. Since e ∈ A ⇔ ∀x∀s ϕe,s(x)↑ we see that A is at most Π0
1. Rice’s Theorem 3.3.3

shows us that A is noncomputable, but we can actually show that A is m-complete
for Π0

1: Let B = W e be an arbitrary Π0
1 set. Let f be a computable function such

that

ϕf(x)(z) =

{
0 if x ∈ We,

↑ otherwise.

Then x ∈ We ⇔ Wf(x) 6= ∅, so B ≤m A via f . Since B was arbitrary this shows the
completeness of A. N.B. The reader that has done Exercise 3.8.11 could also have
concluded the completeness from there. ¤

Proposition 4.2.2 • Fin =
{
e : We is finite

}
is m-complete for Σ0

2.

• Tot =
{
e : ϕe is total

}
is m-complete for Π0

2.

Proof. We leave it to the reader to verify that Fin ∈ Σ0
2 and Tot ∈ Π0

2 (Exercise 4.3.4).
We prove the two items simultaneously by providing one reduction for both of them.
Let A =

{
e : ∀x∃y R(e, x, y)

}
be any Π0

2 set. Define a computable function f such
that

ϕf(e)(z) =

{
0 if (∀x < z)(∃y)[R(e, x, y)],

↑ otherwise.

Then
e ∈ A ⇐⇒ ∃x∀y ¬R(e, x, y) ⇐⇒ f(e) ∈ Fin,
e ∈ A ⇐⇒ ∀x∃y R(e, x, y) ⇐⇒ f(e) ∈ Tot.

¤

Theorem 4.2.3 (Rogers, Mostowski) Comp =
{
e : We is computable

}
is m-comp-

lete for Σ0
3.

Proof. That Comp is Σ0
3 is shown in Exercise 4.3.4. Let A =

{
e : ∃x∀y∃z R(e, x, y, z)

}

be any Σ0
3 set. Given e we want to build a c.e. set Wf(e) that is either cofinite (and

hence computable) or simple1 (and hence noncomputable), depending on whether
e ∈ A or not. We will enumerate Wf(e) in an effective construction by stages. The
n-th element of the complement of Wf(e),s will be denoted by as

n. So at stage s we
have

Wf(e),s =
{
as

0 < as
1 < as

2 < . . .
}

We think of the as
n as markers moving to ever higher positions. Note that Wf(e) is

coinfinite if and only if every marker eventually comes to a rest, i.e. if an = lims→∞ as
n

exists for every n. Call x infinitary if ∀y∃z R(e, x, y, z), and call x finitary otherwise.
Every time we see evidence that x is infinitary we will enumerate as

x into Wf(e). So if
x really is infinitary this will make Wf(e) cofinite. We will let Wf(e) contain a simple
set (which exists by Theorem 3.6.4). Hence Wf(e) will be simple itself if and only if
it is coinfinite. The construction is as follows.
Stage s = 0. We start with Wf(e) = S, where S is a simple set. (Since we cannot
actually enumerate all elements of S in one stage, what we actually mean by this
is that we enumerate all the elements of S into Wf(e) over the construction.) We
will maintain a length function l(x, s) monitoring whether x is infinitary. Define

1In most textbook proofs Wf(e) is made Turing complete, but we have not treated T-reducibility
at this point yet. Moreover, just making Wf(e) simple greatly simplifies the proof.
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l(x, 0) = 0 for every x.
Stage s + 1. Define

l(x, s) = max
y<s

(∀y′ < y)(∃z < s)[R(e, x, y′, z)].

Let x ≤ s be minimal such that l(x, s + 1) > l(e, s). If such x is found enumerate as
x

into Wf(e), i.e. set Wf(e),s+1 = Wf(e),s ∪ {as
x}. This concludes the construction.

Now to verify that Wf(e) is what we want we consider the following cases. First
suppose that all x are finitary. Then an = lims→∞ as

n exists for every n and hence
Wf(e) is coinfinite. Since Wf(e) also contains the simple set S it is itself simple, and
hence noncomputable. Second suppose that there is an x that is infinitary. Then
we already observed above that Wf(e) is cofinite, and hence computable. Since the
construction of Wf(e) depends effectively on e the function f is computable, and is
thus an m-reduction witnessing that A ≤m Comp. Since A was arbitrary it follows
that Comp is m-complete for Σ0

3. ¤

The construction in the proof of Theorem 4.2.3 is actually our first example of a
priority construction, a method that we will study in more detail in Chapter 6. As a
corollary to the proof we have:

Corollary 4.2.4 • The set Cof =
{
e : We is cofinite

}
is m-complete for Σ0

3.

• The set
{
e : We is simple

}
is m-complete for Π0

3.

It so happens that most naturally defined arithmetical sets are m-complete for some
level of the arithmetical hierarchy, so that the above method works most of the time
(although the computations can get rather hairy at higher levels). However, there
do exist natural examples (e.g. from the theory of randomness, cf. Proposition 7.3.3)
of arithmetical sets that are not m-complete for any level, so the method does not
always work.

4.3 Exercises

Exercise 4.3.1 Prove items 1 – 4 from Proposition 4.1.3.

Exercise 4.3.2 Complement Proposition 4.1.3 by showing that

(i) Π0
n and ∆0

n are not closed under ∃.

(ii) Σ0
n and ∆0

n are not closed under ∀.

(iii) Σ0
n and Πn are not closed under complementation.

Exercise 4.3.3⋆ Prove Theorem 4.1.6.

Exercise 4.3.4 Verify the following items:

1. Fin ∈ Σ0
2.

2. Tot ∈ Π0
2.

3. Comp ∈ Σ0
3.

4. Cof ∈ Σ0
3.
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5.
{
e : We is simple

}
∈ Π0

3.

Exercise 4.3.5 Show that for the notion of T-completeness defined in Chapter 5,{
e : We is T-complete for Σ0

1

}
∈ Σ0

4.

Exercise 4.3.6 Recall the definition of self-describing functions from Exercise 3.8.16.
Classify {e : ϕe is self-describing} in the arithmetical hierarchy.



Chapter 5

Relativized computation and Turing

degrees

5.1 Turing reducibility

In Definition 3.5.1 we defined a notion of reduction where, in order to decide whether
n ∈ A, we were allowed to ask one question about B, namely whether f(x) ∈ B. This
can obviously be generalized to two, three, or finitely many questions about B, in any
precisely prescribed way. Rather than studying such generalizations of m-reducibility
here, we immediately jump to one of the most liberal notions of reduction, where
questions of the form “n ∈ A?” are solved by using any finite amount of information
from B, in any computable way. Thus, when reducing A to B, we pretend that all the
information in B is given, and use this to solve A. To model that B is given we can for
example add its characteristic function χB to the initial functions in Definition 2.2.3:

Definition 5.1.1 (Turing [30]) Let A be any set. The class of partial A-recursive
functions is the smallest class of functions

1. containing the initial functions and χA,

2. closed under composition, primitive recursion, and µ-recursion.

An A-recursive function is a partial A-recursive function that is total.

Alternatively, we could have defined the class of A-computable functions by using
an extension of the Turing machine model, where the information in A is written on
an extra infinite input tape. We can again show the equivalence of this approach to
Definition 5.1.1 using arithmetization, exactly as in Chapter 2. So henceforth, we shall
speak about the A-computable functions, by which we will mean any of the equivalent
concepts so obtained. All the basic results about the computable functions carry over
to the A-computable functions. In particular we have a coding as in Theorem 2.4.1,
and we can define:

Definition 5.1.2 The e-th partial A-computable function is denoted by ϕA
e or {e}A.

Definition 5.1.3 (Post [21]) We say that A is Turing reducible to B, denoted A ≤T

B, if A is B-computable. We say that A and B are T-equivalent , denoted A ≡T B if
both A ≤T B and B ≤T A. The equivalence classes of ≡T are called Turing degrees,
or simply T-degrees.

39
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When A ≤T B we will also say that A is computable relative to B. The set B is also
sometimes called an oracle, since the information contained in it is given for free. The
notion of relative computation is central in computability theory, since it embodies
how one can use information in any computable way. Note that it is indeed more
liberal than many-one reducibility, that is, we have

A ≤m B =⇒ A ≤T B,

as the reader can easily verify (Exercise 5.6.1).

Many notions from computability theory can be relativized to an arbitrary oracle
A, i.e. their definitions can be generalized by considering A-computable functions
instead of computable ones. For example, an A-c.e. set is a set that can be enumer-
ated by an A-computable function. Many basic results in computability theory also
relativize in the sense that they remain true when they are relativized to an arbitrary
oracle. For example all of the basic notions and results from Chapter 3 relativize (cf.
Exercise 5.6.3).

The following basic observation about relativized computations is fundamental,
and expresses that any convergent computation, relativized or not, can use only a
finite amount of information from an oracle.

Proposition 5.1.4 (Use Principle) Let A be any oracle and suppose that {e}A
s (x)↓.

Then there is a finite string σ ⊏ A such that {e}σ
s (x) ↓. In particular {e}B

s (x) ↓ for
any B ⊐ σ.

Proof. Any convergent computation consists of a finite number of computation steps.
Hence only a finite number of bits of A can occur in it. ¤

If {e}A(x)↓ the maximum number of A that is used in the computation (which exists
by Proposition 5.1.4) is called the use of the computation.

5.2 The jump operator

We can also relativize the diagonal halting set K to an arbitrary oracle A, and we
denote the result by A′:

A′ =
{
x : ϕA

x (x)↓
}
.

(A′ is pronounced as “A prime”.) Now it is easily verified that the proof of The-
orem 3.3.1 relativizes, so that A′ is not an A-computable set. Since we also have
that A ≤m A′ the operator ′ is called the jump operator. Notice that ∅′ = K. (∅′ is
pronounced as “zero prime”.) We denote the n-th iterate of the jump of A by A(n).
Note that ∅(n) ∈ Σ0

n (Exercise 5.6.4).

The difference between many-one and Turing reducibility can be nicely charac-
terized in terms of the arithmetical hierarchy:

Proposition 5.2.1 (i) ∆0
n+1 =

{
A : A ≤T ∅(n)

}
for every n.

(ii) Σ0
n =

{
A : A ≤m ∅(n)

}
for every n.

(iii) Σ0
n+1 consists of all the sets that are ∅(n)-c.e., that is, enumerable by a ∅(n)-

computable function.
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Figure 5.1: The Turing universe

Proof. For (i) we show that ∆0
2 =

{
A : A ≤T K

}
and notice that the result relativizes.

Suppose that A = {e}K . Note that we can approximate the computation {e}K(e)
by computably approximating K. Now the sequence of computations {e}Ks(e) need
not be stable: it may happen that {e}Ks(e)↓ and {e}Ks+1(e)↑. However, by the Use
Principle (Proposition 5.1.4), if {e}K(e)↓ with use u then {e}Ks(e)↓ for every s such
that Ks↾u = K↾u. So we see that

{e}K(e)↓ ⇐⇒ (∃s)(∀t > s)
[
{e}Kt

t (e)↓
]
,

which is a Σ0
2-predicate, so A ∈ Σ0

2. Since A ≤T A the same argument shows that
A ∈ Σ0

2, so A ∈ ∆0
2.

For the converse direction suppose that both A and A are in Σ0
2. Now every Σ0

1

set is K-computable, so both A and A can be defined by an existential quantification
over a K-computable predicate. By the relativized version of Theorem 3.2.3 both A
and A are K-c.e. It then follows by the relativized version of Proposition 3.2.6 that
A is K-computable.

Item (ii) is the relativization of Proposition 3.5.3.
For item (iii), suppose first that A ∈ Σ0

n+1. By item (i), every set in Π0
n is ∅(n)-

computable. So A is definable over a ∅(n)-computable set by an existential quantifier.
By the relativized version of Theorem 3.2.3 A is ∅(n)-c.e.

For the converse direction suppose that A is ∅(n)-c.e. Then A is also ∅(n)-c.e.,
hence c.e. in a Π0

n set. By the relativized version of Theorem 3.2.3 A is definable with
an existential quantifier over a Π0

n set, hence Σ0
n+1. ¤

From Proposition 5.2.1 we see that K is Turing complete for ∆0
2, and that the sequence

∅, ∅′, ∅′′, . . . , ∅(n), . . . constitutes a kind of backbone of the arithmetical hierarchy.

5.3 Limit computable sets

It often happens in mathematics and computer science that new objects are defined as
limits from more basic objects. (E.g. the definition of the reals as limits of sequences
of rationals, the approximation of continuous functions by polynomials, or the c.e. set
We as the limit of We,s, s ∈ ω.) Here we are interested in the complexity of objects
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defined as the limit of computable processes. Again it turns out that the arithmetical
hierarchy is useful for this purpose.

Definition 5.3.1 A unary function f is limit computable if there is a computable
binary function g such that for all n,

f(n) = lim
s→∞

g(n, s).

A set A is limit computable if its characteristic function χA is.

Proposition 5.3.2 (Limit Lemma, Shoenfield [25]) A set A is limit computable if
and only if A ∈ ∆0

2.

Proof. (If) We use that ∆0
2 =

{
A : A ≤T K

}
(Proposition 5.2.1). Suppose that

A ≤T K, say A = {e}K . Define

g(x, s) =

{
{e}Ks

s (x) if {e}Ks
s (x)↓,

0 otherwise.

Now in general the limit lims→∞{e}Ks
s (x) need not exist, since it may happen that

{e}K(x) ↑ but still {e}Ks
s (x) ↓ for infinitely many s. But in our case we know that

{e}K(x)↓ for every x, since it is equal to A(x). So we have that lims g(x, s) = A(x)
for every x.

(Only if) Suppose that g is a computable function such that A(x) = lims g(x, s)
for every x. Then

x ∈ A ⇐⇒ (∃s)(∀t > s)[g(x, t) = 1]

⇐⇒ (∀s)(∃t > s)[g(x, t) = 1].

So A is both Σ0
2 and Π0

2, hence ∆0
2. ¤

5.4 Incomparable degrees

At this point we have seen that there are more than two c.e. m-degrees, and that in
general there are uncountably many m-degrees. The same counting argument that
we used for m-degrees shows that there are 2ℵ0 many T-degrees (Exercise 5.6.5). A
priori it would be possible that the T-degrees are linearly ordered. In this section we
show that this is not the case. Namely, we show that there are sets A and B such
that A 6≤T and B 6≤T A. Such sets A and B are called Turing incomparable, and we
denote this by A|T B.

Theorem 5.4.1 (Kleene and Post [12]) There is a pair of Turing incomparable sets.

Proof. We build a pair of incomparable sets A and B by finite extensions, that is, we
define two series of finite strings σs and τs, s ∈ ω, such that σs ⊏ σs+1, τs ⊏ τs+1, and
A =

⋃
s∈ω σs and B =

⋃
s∈ω τs. The property that A and B should be incomparable

can be split into infinitely many requirements:

R2e : A 6= {e}B,

R2e+1 : B 6= {e}A.
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We build A and B in infinitely many stages s, where at stage s = 2e we take care of
R2e and at stage s = 2e + 1 of R2e+1. We start with σ0 = τ0 = ∅.
Stage s = 2e. At this stage σs and τs are already defined, and we define σs+1 and
τs+1. To satisfy R2e we need a witness x such that

A(x) 6= {e}B(x). (5.1)

Let x be the smallest number for which A is not yet defined, i.e. let x = |σs|. If the
right hand side of (5.1) would be undefined we could take for A(x) whatever we want,
and if it were defined we would let A(x) be different from it. First we see if there is
any τ ⊒ τs such that {e}τ (x) ↓. If such τ does not exist we let A(x) = 0. If such τ
exists, choose the minimal one (in a fixed computable ordering of all binary strings) of
length greater than x and define τs+1 = τ . Further define σs+1 = σŝ

(
1−{e}τs+1(x)

)
.

Stage s = 2e + 1. Here we do exactly the same as at stage 2e, except with A and B
interchanged. This completes the construction.

Now first note that
⋃

s∈ω σs and
⋃

s∈ω τs are total, since at every stage they become
defined on a new number x. Second, R2e is satisfied at stage 2e by the choice of σs+1

and τs+1, and similarly for R2e+1. ¤

The method used in the proof of Theorem 5.4.1 is quite powerful and yields a wealth
of information about the structure of the Turing degrees. Arguments where sets
are constructed using finite extensions as in the above proof are called Kleene-Post
arguments. The proof of Theorem 5.4.1 can be extended to show much more, namely
that there is a set of size 2ℵ0 such that every two of them are mutually incomparable
(Exercise 5.6.8). This shows that the Turing universe is as least as wide as it is high.

5.5 Inverting the jump

Since for the jump A′ of any set A we obviously have A′ ≥T ∅′, the range of the jump
operator is included in the cone

{
B : B ≥T ∅′

}
. In this section we show, using a

Kleene-Post argument, that the range of the jump operator is in fact equal to this
cone.

Theorem 5.5.1 (Jump Inversion Theorem, Friedberg [6]) The range of the jump
operator is

{
B : B ≥T ∅′

}
.

Proof. We show that for every B ≥T ∅′ there is an A such that A′ = B. So let B ≥T ∅′.
We define A =

⋃
s∈ω σs by finite extensions, as in the proof of Theorem 5.4.1. We

start with σ0 = ∅.
Stage s = 2e. At this stage σs is already defined, and we define σs+1. Look if there
is a σ ⊒ σs such that

{e}σ(e)↓ .

If such σ exists, take the smallest one and define σs+1 = σ.
Stage s = 2e + 1. At this stage we code B into A by setting

σs+1 = σŝB(e).

This completes the construction. We verify that A is as we wanted. First note that
the construction is computable in B: the even stages can be computed by ∅′, and
hence by B since ∅′ ≤T B, and the odd stages can be computed by B directly.
Second note that the construction is also A ⊕ ∅′-computable, since the even stages
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are ∅′-computable, so given ∅′ we can for every e compute σ2e+1 from σ2e and then
with the help of A compute σ2e+2, hence B(e). So we have

B ≤T A ⊕ ∅′ ≤T A′.

The second inequality holds because both A ≤T A′ and ∅′ ≤T A′. (Cf. Exercise 5.6.2.)
Conversely, A′ ≤T A⊕∅′ since to decide whether {e}A(e)↓ we simulate the construc-
tion until at stage 2e we can compute whether σ exists. If so, we know we took it
so e ∈ A′, and if not then necessarily e /∈ A′. Now we also have A ≤T B since the
construction is B-computable, as already remarked above. Summarizing we have

A′ ≤T A ⊕ ∅′ ≤T B.

Combining this with what we had before we see that A′ ≡T B, as we wanted. ¤

The proofs of Theorem 5.4.1 and Theorem 5.5.1 are extensions of the diagonalization
method discussed at the beginning of Section 3.1. In particular the proof of Theo-
rem 5.5.1 contains germs of the method of forcing, which is yet another incarnation of
the diagonalization method and that has been pushed to great heights in set theory.
We will further discuss the power of diagonalization in the next chapter.

5.6 Exercises

Exercise 5.6.1 Verify the following items:

1. A ≤m B ⇒ A ≤T B.

2. A ≤T A.

3. A ≤T B 6⇒ A ≤m B.

Exercise 5.6.2 Recall the join operator ⊕ defined in Exercise 3.8.4. Show that ⊕
also is a least upper bound operator in the Turing degrees, i.e. prove that for every
C, if both A ≤T C and B ≤T C then A ⊕ B ≤T C.

Exercise 5.6.3 • Verify that Theorem 3.2.3 relativizes.

• Show that A ≤m A′ and that Theorem 3.3.1 relativizes.

Exercise 5.6.4 Show that ∅(n) is in Σ0
n, and that it is m-complete for Σ0

n.

Exercise 5.6.5 Show that every T-degree is countable, and that there are 2ℵ0 many
T-degrees.

Exercise 5.6.6 Show that there is a pair of Turing incomparable sets in ∆0
2. (Hint:

Show that the construction in the proof of Theorem 5.4.1 is computable in K.)

Exercise 5.6.7 Show that the m-degrees are not linearly ordered. (Hint: Build sets
A and B such that for every e the following requirements are satisfied:

R2e : ϕe total =⇒ A 6≤m B via ϕe,

R2e+1 : ϕe total =⇒ B 6≤m A via ϕe.

To satisfy R2e, find a witness x such that A(x) 6= B(ϕe(x)). Idem for R2e+1.)
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Exercise 5.6.8⋆ Show that there is a set of 2ℵ0 many T-degrees that are pairwise
incomparable. (Hint: construct a perfect set, i.e. a subtree of 2ω, such that any two
infinite paths in it satisfy the requirements of Theorem 5.4.1.)

Exercise 5.6.9⋆ A set A is low if the jump of A is as low as possible, namely A′ ≤T ∅′.
Let A be a c.e. set and suppose that A has a computable enumeration {As}s∈ω such
that for all e ∈ ω

(∃∞s)
[
{e}As

s (e)↓
]

=⇒ {e}A(e)↓ .

Prove that then A is low. (Hint: use the Limit Lemma.)

Exercise 5.6.10 (Continuous functionals) A computable functional (also called a
Turing functional) F : 2ω → 2ω is a total function of the form F (X)(n) = {e}X(n),
that is, the n-th bit of the output is given by the computation {e}X(n). Similarly,
an A-computable functional is a total function of the form F (X)(n) = {e}A⊕X(n).

1. Show that every A-computable functional is continuous. (Hint: Use Proposi-
tion 5.1.4.)

2. Conversely, show that for every continuous functional F there is an A such that
F is A-computable. (Hint: Let A code the modulus of continuity of F .)

3. Conclude that there are 2ℵ0 continuous functionals.
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The priority method

6.1 Diagonalization, again

In Section 3.1 we discussed the method of diagonalization. Afterwards we encoun-
tered the method in several of our fundamental results, such as the undecidability of
the halting problem (Theorem 3.3.1), the existence of computably inseparable sets
(Theorem 3.3.5), the existence of simple sets (Theorem 3.6.4), the recursion theorem
(Theorem 3.7.1), and the existence of incomparable Turing degrees (Theorem 5.4.1).

In general, in a diagonal argument one tries to construct an object A with some
global property P by splitting P into infinitely many subrequirements Re. The object
A is then built using a construction with infinitely many stages. For example, in
Cantors diagonalization construction A is a set with the global property that it is
not on a given countable list of sets Ai. This property can be split into the infinitely
many subrequirements Ri saying that A 6= Ai for every i. In the construction we can
simply satisfy all Ri in order by defining A(i) = 1 − Ai(i).

After the proof of Theorem 3.6.4 we discussed how it is not always possible to
satisfy the requirements in a diagonalization argument in order, but that due to
effectivity constraints we sometimes have to adopt a more dynamic approach. In this
chapter we further generalize the method in order to solve an important question
about the c.e. Turing degrees.

Apart from the problem that sometimes we cannot effectively see how to satisfy
a requirement it may happen that the requirements in a diagonalization construction
are in conflict with each other. Note that in Cantors argument the actions taken to
satisfy every requirement do not interfere with each other. However, in Theorem 3.6.4
we already saw a conflict between requirements wanting to keep elements out of A
and requirements trying to put elements into it. Also in the proof of Theorem 4.2.3
there were conflicting requirements, although at that point we did not need to make
this explicit. However, for what follows it will be instructive to explicitly analyze
these requirements. We use the notation from the proof. In the proof we built a
c.e. set Wf(e) that was cofinite if an infinitary x existed, and coinfinite otherwise.
The requirement that Wf(e) be coinfinite can be split up into the requirements Rx

saying that the marker as
x comes to a rest, i.e. that lims→∞ as

x is finite for every x.
However, if x is infinitary then lims as

x = ∞ and therefore also lims as
y = ∞ for every

y > x. That is, the action of enumerating as
x is in conflict with Ry. This conflict is

resolved by giving the first action priority over the second. Thus, if x is infinitary,
every requirement Ry with y > x fails to be satisfied. If on the other hand all x are
finitary every Rx is satisfied.

In general, the priority method is a method for resolving conflicts between re-
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quirements. If in a construction an action taken to satisfy a requirement Ri conflicts
with that of a requirement Rj we say that Rj is injured . In this chapter we will only
consider constructions where the conflicts between requirements are of a mild nature,
namely where every requirement is injured only finitely often. Such arguments are
called finite injury priority arguments. The finite injury method is significantly more
powerful than the Kleene-Post finite extension method from Chapter 5, and can be
used to answer many questions for which the latter fails to provide an answer. In the
next section we discuss the first example of such a question.

6.2 A pair of Turing incomparable c.e. sets

In Theorem 3.6.4 we showed that there are c.e. sets of intermediate m-degree. After
proving this Post asked the following famous question [20]:

Posts Problem Do there exist c.e. sets of intermediate Turing degree? That is, is
there a c.e. set that is neither computable nor Turing-complete for the c.e. sets?

In Theorem 5.4.1 we showed the existence of a pair of Turing incomparable sets. By
Exercise 5.6.6 these such pairs exist also below K. If we would succeed in making
these sets c.e. we would have settled Posts Problem in the affirmative. This is exactly
how Friedberg [5] and Muchnik [16] solved the problem, independently of each other.

Theorem 6.2.1 (Solution to Posts Problem, Friedberg [5] and Muchnik [16]) There
exists a pair of Turing incomparable c.e. sets.

Proof. We build a pair of incomparable c.e. sets A and B, using the same requirements
as in the proof of Theorem 5.4.1: For every e we want to ensure

R2e : A 6= {e}B,

R2e+1 : B 6= {e}A.

As before, for R2e we need a witness x such that A(x) 6= {e}B(x). We can pick a
witness x and initially define A(x) = 0, and wait until {e}Bs

s (x) converges for some
s. If this never happens R2e is automatically satisfied. If {e}Bs

s (x)↓= 1 we are done,
and if {e}Bs

s (x) ↓= 0 we can enumerate x into A so that A(x) = 1 and again R2e is
satisfied. The difference with Theorem 5.4.1 is that here we have no complete control
over the set B. In fact, we know in advance that A and B will be noncomputable,
and for a typical noncomputable set one can never know whether maybe later some
small element will appear in the set (cf. Proposition 3.2.5). Having satisfied R2e as
above, it might happen that R2e+1 wants to enumerate some element into B below
the use of the computation {e}Bs

s (x)↓, and thus spoiling it. To resolve such conflicts,
we give the requirements the priority ordering

R0 > R1 > R2 > R3 > . . .

In case of a conflict we allow the highest priority requirement Ri (i.e. the one with the
smallest index i) to proceed, thus possibly injuring lower priority requirements. On
the other hand, if i < j we will not allow the low priority requirement Rj to injure a
computation of Ri. We now give the formal construction of A and B by describing
their enumerations As and Bs, s ∈ ω. To monitor the numbers that requirement Re

wants to keep out of A or B we will use a restraint function r(e, s). We will say that
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a requirement Re is initialized at a stage s when its current witness xe,s is redefined
to a number greater than any number previously used in the construction, and by
setting the restraint r(e, s) to 0. We will say that R2e requires attention at stage s
if since the last stage that R2e was initialized no action for it was taken, and for the
current witness x2e,s it holds that {e}Bs

s (x2e,s)↓. Similarly for R2e+1.
Stage s = 0. Let A0 = B0 = ∅. Initialize all requirements by setting xe,0 = e and
r(e, 0) = 0 for every e.
Stage s + 1. Let e be the minimal number smaller than s such that Re requires
attention. Define

r(e, s + 1) = use
(
{e}Bs

s (xe,s)
)

and say that Re acts. Suppose that e is even. If {e}Bs
s (xe,s) = 0 define As+1(xe,s) = 1.

Since this action may injure lower priority requirements, we initialize all Rj with j > e.
The case where e is odd is completely symmetrical, interchanging the role of A and
B. This completes the construction.

We verify that all requirements are satisfied. We prove by induction that every
requirement acts only finitely often, and is only finitely often initialized. Suppose that
s is a stage such that no requirement Rj , j < e acts after stage s. Then Re is never
initialized after stage s, and limt→∞ xe,t = xe,s. If Re never requires attention after
stage s then it is automatically satisfied. If Re requires attention at some stage t ≥ s
then its restraint r(e, t) is set to the use of the computation {e}Bs

s (xe,s) (in case e is
even). Since all Rj with j > e are initialized at stage t, in particular their witnesses
are redefined to be greater than r(e, t + 1), so no such requirement can change this
computation. Since also no Rj with j < e acts after t the computation is preserved
forever, and hence Re is satisfied. So we see that every requirement is initialized only
finitely often, and afterwards is satisfied either vacuously or by one additional action,
and hence also acts only finitely often. ¤

6.3 Exercises

Exercise 6.3.1⋆ Show that the c.e. m-degrees are not linearly ordered. (Hint: Build
sets A and B as in Exercise 5.6.7, except that now the construction has to be effective.)

Exercise 6.3.2⋆ Show that there is a low simple set A. Note that such a set provides
another solution to Posts Problem. (Hint: use the priority method to build A in
stages. Use the characterization from Exercise 5.6.9 to make A low, and use the
strategy from Theorem 3.6.4 to make A simple.)
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Applications

Computability theory is a standard ingredient in any course in mathematical logic.
Although branches like model theory, set theory, and proof theory have developed into
individual subjects of their own, the ties with computability theory remain numerous,
and new ones keep on being found. Besides, with the rise of computer science it has
become indispensable as a background theory for this relatively new area. Several
computer science topics have stemmed from computability theory, such as complexity
theory, learning theory, and formal language and automata theory. (The latter is built
on yet another characterization of the computable sets, namely as those that can be
generated by a grammar.) In many ways various of the above areas do not have a
clear separation. E.g. in the view of Odifreddi [17, 18], the areas of complexity and
computability theory and descriptive set theory are all the same.

In this chapter we briefly indicate three other areas where computability theory
is pivotal, namely proof theory, constructivism, and randomness.

7.1 Undecidability in logic

By a formal system we will mean any c.e. set F of logical formulas. This is of course
a crude version of the notion of formal system usually employed in mathematics
and computer science (with proper axioms and deduction rules and the like) but it
will suffice here and make what follows all the more general. By arithmetization
we may treat any formal system F as a set of natural numbers (recall the Gödel
numbering from page 35). In particular, we can speak of F being decidable or not.
The requirement that F is c.e. corresponds to the fact that most natural formal
systems have a computable set of axioms from which all theorems of the system are
deduced, so that the set of deduced formulas is c.e. Such systems are also called
axiomatizable. If a formula ϕ is enumerated into F we say that F proves ϕ and we
call ϕ a theorem of F , and denote this by F ⊢ ϕ. The above definitions apply to
formal systems in any logical language, but as in Chapter 4 we will concentrate on
formal systems in the language of arithmetic. Recall that we use ω |= ϕ to denote
that an arithmetical sentence ϕ holds in the standard model of arithmetic.

Some essential properties of a logical system are whether what it proves is true,
whether it is consistent, and whether it decides the truth of every formula:

Definition 7.1.1 Let F be a formal system in the language of arithmetic.

• F is sound if F ⊢ ϕ implies that ω |= ϕ.

• F is consistent if there is no formula ϕ such that both ϕ and ¬ϕ belong to F .
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• F is complete if for every formula ϕ, either F ⊢ ϕ or F ⊢ ¬ϕ. Otherwise F is
called incomplete.

Proposition 7.1.2 A consistent and complete formal system is decidable.

Proof. This is a form of Proposition 3.2.6. If F is complete we can enumerate the
theorems of F until either ϕ or ¬ϕ appears. By consistency of F at most one can
appear, and by completeness at least one will appear. Hence we can compute whether
ϕ is a theorem of F or not. ¤

In the rest of this section we will work with Robinson Arithmetic Q, which contains
the constant 0, the function symbols S, +, and ·, and the following axioms (besides
the axioms for first-order predicate logic with equality):

A1. S(x) = S(y) → x = y

A2. S(x) 6= 0

A3. x 6= 0 → (∃y)[x = S(y)]

A4. x + 0 = x

A5. x + S(y) = S(x + y)

A6. x · 0 = 0

A7. x · S(y) = x · y + x

Note that the last four axioms are just the recursive relations for + and · we already
encountered on page 5. It would be possible to work with systems weaker than Q, but
Q will be convenient for our purposes. The system PA of Peano Arithmetic, which
is very often used as a basic system of arithmetic, is obtained from Q by adding to it
the axiom scheme of induction.

A crucial notion is the power that formal systems have to represent functions:

Definition 7.1.3 A function f is representable in a formal system F if there is a
formula ϕ such that for all x and y,

f(x) = y ⇐⇒ F ⊢ ϕ(x, y),

f(x) 6= y ⇐⇒ F ⊢ ¬ϕ(x, y).

Here the x and y in ϕ(x, y) are shorthand for the terms Sx(0) and Sy(0).

The following result adds yet another characterization of the notion of computable
function to our list.

Theorem 7.1.4 Every computable function is representable in Q. Conversely, every
Q-representable function is computable.

Proof. Both directions can be proved using arithmetization (cf. Section 2.4). We
will not prove this here. A proof can be found in Odifreddi [17]. That every repre-
sentable function is computable is a straightforward application of arithmetization:
arithmetize proofs in Q. That every computable function is representable requires
one more idea, namely the elimination of primitive recursion using coding. This can
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be done as in the proof of Theorem 2.4.1, except that now we cannot use the cod-
ing functions from Section 2.4.1 since these were defined using primitive recursion.
Instead we need to define different coding functions not using primitive recursion.
Gödel [7] defined such a coding function β using the Chinese Remainder Theorem
(cf. Odifreddi [17]). ¤

The following result is Gödels celebrated (first) incompleteness theorem. It shows
that every formal system is either too weak to contain elementary arithmetic, or
incomplete.

Theorem 7.1.5 (The first incompleteness theorem, Gödel [7]) Any consistent for-
mal system F extending Q is undecidable and incomplete.

Proof. Let F be as in the theorem, and suppose that F is decidable. Let {ψn}n∈ω be
an effective enumeration of all formulas of one variable. Define the diagonal D by

n ∈ D ⇐⇒ F ⊢ ψn(n).

Since F is decidable D is computable, hence by Theorem 7.1.4 it is representable.
Say that ψe represents D in Q. Then, since F extends Q, we have

n ∈ D ⇐⇒ F ⊢ ψe(n).

Then for n = e we obtain a contradiction. This shows that F is undecidable. That
F is incomplete now follows from Proposition 7.1.2. ¤

For consistent formal systems F extending Q Gödel also proved that a specific sen-
tence is unprovable in F , namely the sentence ConF expressing the consistency of F .
This result is called the second incompleteness theorem.

By Proposition 3.5.3 the set K is Π0
1-complete. Let F be a sound formal system.

Then it cannot be the case that for every n ∈ K the system F proves that n ∈ K,
since then, because the set of theorems of F is c.e. and F is sound, K would be Σ0

1.
So we see that there are (in fact infinitely many) sentences of the form n ∈ K that
are true but that F cannot prove.

The next result is the negative solution to the Entscheidungsproblem mentioned
on page 3:

Theorem 7.1.6 (The unsolvability of the Entscheidungsproblem, Church [2] and
Turing [29]) First-order predicate logic is undecidable.

Proof. We use that Q has a finite axiomatization. Let
VQ be the conjunction of all

axioms of Q. Then we have for any formula ϕ that

Q ⊢ ϕ ⇐⇒ ⊢ VQ → ϕ,

where the ⊢ on the right hand side refers to deducibility in first-order logic. Now
if first-order logic would be decidable it would follow that also Q were decidable,
contradicting Theorem 7.1.5. ¤
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7.2 Constructivism

In mathematics one can often prove the existence of objects indirectly by showing
that the assumption that they do not exist leads to a contradiction, or by deriving
the existence from a disjunction A ∨ ¬A without knowing which case obtains. It
may easily happen that one can show the existence of something in this way without
having a clue about how to obtain a concrete example. In constructive mathematics
one tries to prove theorems or construct objects in an explicit way. There are different
schools of constructivism, according to the different meanings that can be given to the
word “constructive”. The school of intuitionism founded by the Dutch mathematician
L. E. J. Brouwer proceeded by restricting the means of reasoning from classical logic,
by for example not allowing indirect forms of reasoning as in the example above.
Another important interpretation is to interpret “constructive” by “computable”.
The relation between these two approaches to constructivism is an interesting field
of study in itself, but in this section we will stick to the latter approach and merely
indicate how computability theory can be used to analyze the constructive content of
theorems from classical mathematics. We will discuss only a single example, namely
Königs Lemma.

Definition 7.2.1 A (binary) tree is a subset T of 2<ω that is closed under the sub-
sequence relation ⊑, i.e. if τ ⊑ σ and σ ∈ T then also τ ∈ T . A tree is computable
simply if it is computable when coded as a set of numbers (using any computable
coding of 2<ω). A path in T is an infinite branch of the tree, that is a set A ∈ 2ω

such that A↾n ∈ T for every n.

Theorem 7.2.2 (Königs Lemma) Every infinite binary tree has a path.

Proof. Let T be an infinite binary tree. We inductively “construct” a path trough T
as follows. Let σ0 = ∅. Given σn such that the set

{
τ ∈ T : τ ⊒ σn

}

is infinite, at least one of σn̂0, σn̂1 has infinitely many extensions on T . Define
σn+1 = σn̂0 if this holds for σn̂0, and define σn+1 = σn̂1 otherwise. Now clearly⋃

n σn is a path in T . ¤

Könings Lemma holds in more generality for finitely branching trees, i.e. trees that are
not necessarily binary but in which still every node has only finitely many successors.
The next result shows that in general Königs Lemma is not constructive.

Proposition 7.2.3 There is an infinite computable binary tree without a computable
path.

Proof. By Exercise 7.4.3, for any disjoint pair A,B of c.e. sets there is a computable
tree such that the paths in T are precisely the sets separating A and B. Taking A
and B a pair of computably inseparable sets (Theorem 3.3.5) we see that T has no
computable paths. ¤

Now we want to analyze exactly how difficult it is to compute a path in an infinite
tree. The following result shows that having K as an oracle suffices.

Proposition 7.2.4 (Kreisel Basis Lemma) Every infinite computable binary tree
has a path in ∆0

2.
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Proof. For a computable tree, the decision in the proof of Theorem 7.2.2 is computable
in K. Thus the path constructed there is also K-computable. ¤

Proposition 7.2.4 can be significantly improved as follows. In Exercise 5.6.9 we intro-
duced the low sets as the sets that have the same jump as computable sets. In this
sense they are close to computable sets. Note for example that a low set is not Turing
complete since complete sets jump above ∅′′. Now by Proposition 7.2.3 we cannot
expect a computable tree to have a computable path, but the next result shows we
can get quite close:

Theorem 7.2.5 (Low Basis Theorem, Jockusch and Soare [9]) Every infinite com-
putable binary tree has a low path.

Proof. The proof is a magnificent example of the method of tree-forcing. A discussion
of this method, however, would carry us too far at this point. A proof can be found
in Odifreddi [17] or Soare [27]. ¤

We remark that all the results of this section can be relativized by increasing the
complexity of the tree, so that they are not only about computable trees but really
state how difficult it is in general to compute paths in any kind of tree.

The preceding sequence of results illustrate how one often can analyze the con-
structive content of mathematical theorems using measures and notions from com-
putability theory. Notice that we were not only able to conclude that Königs Lemma
is not constructive, but also obtained a precise bound on how nonconstructive it is in
terms of Turing degrees.

Another field where the strength of mathematical theorems is studied is the area
of reverse mathematics. Although here the main tools of study are axiomatic com-
putability theory also plays an important role. Many other examples such as the one
above can be found in the book by Simpson [26].

7.3 Randomness and Kolmogorov complexity

According to classical probability theory every string of a given length n is just as
probable as another. Yet we feel that there are great qualitative differences between
strings. E.g. the sequence 000 . . . 0 consisting of 100 zeros appears to us as special
among all strings of length 100. This is part of the motivation for introducing a
complexity measure for individual strings and reals. A general introduction to this
area is Li and Vitányi [14].

Fix a universal Turing machine U . (That is, a Turing machine that can simulate
all other Turing machines. Such machines exist for the same reason that universal
c.e. sets exist, cf. page 21.) Given a string σ ∈ 2<ω, define the Kolmogorov complexity
of σ as

C(σ) = min{|τ | : U(τ) = σ}.
We list some basic facts of C:

• Note that C depends on the choice of the universal machine U . However the
choice of U matters only an additive constant in the theory: For any two uni-
versal machines U and V and the corresponding complexity functions CU and
CV we have that CV (σ) ≤ CU (σ) + O(1) for every σ, where the constant O(1)
depends only on U and V . Since the choice of U does not matter much, we will
henceforth simply write C instead of CU .
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• Since every string is a description of itself, we have that the complexity of any
string is bounded by its length. That is, for all σ we have

C(σ) ≤ |σ| + O(1).

Now the idea is that a random string is a string that lacks structure that could be
used to obtain a short description of it. For example the string 000 . . . 0 consisting
of 1000 zeros is quite long but is easy to describe. On the other hand, a sequence
obtained by 1000 coin flips will probably not have a description that is much shorter
than 1000 bits. So we define:

Definition 7.3.1 A string σ is k-random if C(σ) ≥ |σ| − k.

Proposition 7.3.2 For every k there exist k-random strings.

Proof. This can be shown by simple counting: For any given length n, there are

n−k−1∑

i=0

2i = 2n−k − 1

programs of length < n − k, so there are at least 2n − 2n−k + 1 k-random strings of
length n. ¤

In Theorem 3.6.4 we constructed a simple set by brute force. The next result shows
that there are also natural examples of simple sets:

Proposition 7.3.3 (Kolmogorov) For any k, the set of non-k-random strings is sim-
ple.

Proof. We leave it to the reader to verify that the set of nonrandom strings is c.e.
(Exercise 7.4.5.) We have to show that for every k the set of k-random strings
is immune, i.e. does not contain any infinite c.e. subsets. Suppose that it is not
immune. Then for every m we can compute a string ψ(m) with C(ψ(m)) ≥ m. But
then m ≤ C(ψ(m)) ≤ log m + O(1), which can only be true for finitely many m, a
contradiction. ¤

Corollary 7.3.4 1. C is not a computable function.

2. If m(x) = min{C(y) : y ≥ x} then m is unbounded.

3. m grows slower than any monotone unbounded computable function.

Proof. See Exercise 7.4.6. That m is unbounded is because we run out of short
programs. That it grows slower than any computable function is because otherwise
we could enumerate infinitely many high-complexity strings, which is impossible by
Proposition 7.3.3. ¤



7.4. Exercises 55

7.4 Exercises

Exercise 7.4.1 Let “e ∈ Tot” abbreviate the formula ∀x∃s {e}s(x) ↓. Let F be a
sound formal system. Use Proposition 4.2.2 to show that there are e ∈ Tot for which
F 6⊢ e ∈ Tot.

Exercise 7.4.2 Prove the result of Exercise 7.4.1 by constructing such an e by direct
diagonalization. (Hint: Let {e}(x)↓ for every x for which F does not prove in x steps
that e ∈ Tot. As soon as F proves that e ∈ Tot let {e} be undefined on all further
arguments.)

Exercise 7.4.3 Let A,B be any pair of disjoint c.e. sets. Show that there is a com-
putable tree T such that the sets that are a separation of A and B are precisely the
paths in T .

Exercise 7.4.4 Let F be a formal system. A complete extension of F is any set
separating

{
ϕ : F ⊢ ϕ

}
and

{
ϕ : F ⊢ ¬ϕ

}
.

Show that there is a complete extension of F of low degree. (Hint: Use the
previous exercise and the low basis theorem.) For F a strong formal system such as
Q or PA this shows that, although the set

{
ϕ : F ⊢ ϕ

}
is Σ0

1-complete, there is
always a complete extension that has incomplete Turing degree. In general, however,
such a low extension cannot be c.e.

Exercise 7.4.5 Show that for any k the set of k-random strings is Π0
1.

Exercise 7.4.6 Verify the facts of Corollary 7.3.4.



Further reading

The first textbook solely devoted to computability theory was Rogers [22]. Although it
is now outdated in several respects, it is still a good read, and perfectly acceptable for
use as an introduction. Another, but much shorter and advanced, early reference that
was quite influential is Sacks [23]. The monumental two-volume work by Odifreddi [17,
18] is the most extensive and broadest treatment of the subject to-day. The number
of topics discussed in this book an the ease of presentation are quite astounding. The
encyclopaedic character of the book may render it less suited for an introduction, but
as reference it has become indispensable. Soares book [27] was written as a modern
replacement of Rogers’ book. It is an excellent reference for the more advanced topics
in computability theory, with a focus on the treatment of the c.e. Turing degrees
and the priority method. Sacks [24] treats computability theory on ordinals other
than ω. In Chapter 7 we have already mentioned various references for applications
of computability theory. An extensive collection of survey papers on computable
mathematics can be found in [4]. Numerous other treatments of computability theory,
often in tandem with subjects like complexity- or automata theory, can be found in
any mathematics or computer science library. One can of course also always consult
the original papers by the pioneers of the subject. In this case these include the
ground-breaking papers by Gödel [7], Church [2], Kleene [10], Turing [29], and Post
[20].
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[14] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its appli-
cations, Springer-Verlag, 1993.

[15] Yu. V. Matijasevich, Enumerable sets are Diophantine, Dokl. Acad. Nauk. 191
(1970) 279–282.

57



58 Bibliography

[16] A. A. Muchnik, On the unsolvability of the problem of reducibility in the theory
of algorithms, Dokl. Akad. Nauk SSSR, N.S. 108 (1956) 194–197 (Russian).

[17] P. G. Odifreddi, Classical recursion theory, Vol. 1, Studies in logic and the foun-
dations of mathematics Vol. 125, North-Holland, 1989.

[18] P. G. Odifreddi, Classical recursion theory, Vol. 2, Studies in logic and the foun-
dations of mathematics Vol. 143, North-Holland, 1999.

[19] J. C. Owings, Diagonalization and the recursion theorem, Notre Dame Journal
of Formal Logic 14 (1973) 95–99.

[20] E. L. Post, Recursively enumerable sets of positive integers and their decision
problems, Bull. Amer. Math. Soc. 50 (1944) 284–316.

[21] E. L. Post, Degrees of recursive unsolvability, Bull. Amer. Math. Soc. 54 (1948)
641–642.

[22] H. Rogers Jr., Theory of recursive functions and effective computability, McGraw-
Hill, 1967.

[23] G. E. Sacks, Degrees of unsolvability, Annals of Mathematics Studies 55, Prince-
ton University Press, 1963.

[24] G. E. Sacks, Higher recursion theory, Springer Verlag, 1990.

[25] J. R. Shoenfield, On degrees of unsolvability, Annals of Mathematics 69 (1959)
644–653.

[26] S. G. Simpson, Subsystems of second-order arithmetic, Springer-Verlag, 1999

[27] R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, 1987.

[28] A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Phil. 1
(1936) 261–405.

[29] A. M. Turing, On computable numbers with an application to the Entschei-
dungsproblem, Proc. London Math. Soc. 42 (1936) 230–265, corrections ibid.
43 (1937) 544–546.

[30] A. M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. 45
(1939) 161–228.



Index

A′, jump of A, 40
A(n), n-th jump of A, 40
2ω, Cantor space, 2
2<ω, finite binary strings, 2
∆0

n, 33
Π0

n, 33
Σ0

n, 33
F ⊢ ϕ, F proves ϕ, 49
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