Modifikation der Übungsaufgabe 29 (Proseminar Blatt 7 vom 29.11.2005):

29. Sei
$$\mathcal{L} = \{+, \cdot, 0, 1, <\}$$
.

Gegeben seien die folgenden \mathcal{L} -Formeln:

$$\varphi_1 \equiv v_0 = 0$$

$$\varphi_2 \equiv (\exists v_0(v_0 + v_0 = v_0))$$

$$\varphi_3 \equiv (\exists v_1(v_1 + v_1 = v_2))$$

$$\varphi_4 \equiv (\exists v_1(v_1 + v_1 = v_3))$$

Sei $\mathfrak{N} = (\mathbb{N}, +^{\mathfrak{N}}, \cdot^{\mathfrak{N}}, 0^{\mathfrak{N}}, 1^{\mathfrak{N}}, <^{\mathfrak{N}})$ die gewöhnliche Struktur der natürlichen Zahlen. Für $i \in \{1, 2, 3, 4\}$ sei ψ_i die $(\mathcal{L}, \mathfrak{N})$ -Formel¹

$$\varphi_i[v_0 \mapsto 0, v_1 \mapsto 1, v_2 \mapsto 2, v_3 \mapsto 3].$$

Wie sehen die ψ_i aus? Welche der ψ_i gelten in \mathfrak{N} ? (D.h. für welche ψ_i gilt $\mathfrak{N} \vDash \psi_i$?)

 $^{^1}$ Bemerkung: Eigentlich müßte man z.B. bei $v_0\mapsto 0$ dazusagen, ob man 0 als Element von $\mathbb N$ (d.h. das neue Konstantensymbol) oder das alte $\mathcal L$ -Konstantensymbol 0 meint. Das macht aber keinen Unterschied, weil $0^{\mathfrak N}=0$. Formal müßte man solche Eindeutigkeits-Probleme natürlich dadurch verhindern, daß man beim Übergang von $\mathcal L$ zur neuen Sprache $(\mathcal L, \mathfrak N)$ nicht das Element x des Universums, sondern z.B. das Paar $(\mathcal L, x)$ als Konstantensymbol dazufügt. So ein paar kommt nämlich sicherlich nicht in $\mathcal L$ vor.