Axiomatische Mengenlehre I, WS 2005/2006 1. Übung, 2005-10-13

Legende:

- Die Aufgabe ist nicht trivial. (+)
- (++)Eine etwas schwierigere Aufgabe.
- (+++)Benötigt Theorie die in der Vorlesung noch nicht besprochen wurde.

Es sollten im gesamten Semester $> 0.6 \cdot n$ Beispiele angekreuzt werden, wobei n die Gesamtzahl derjenigen Beispiele ist, die nicht mit (+++) markiert sind. (Der Beitrag dieses Übungsblattes zu n ist z.B. 4: 6 Beispiele, aber Bsp 3 und Bsp 6 sind zu schwer.)

Definition: $A \prec B$ heißt: Es gibt ein injektives $f: A \rightarrow B$.

Beispiel 1: Zeige (für beliebige Mengen A, B):

- i) $A \leq A$.
- ii) Wenn $A \leq B$ und $B \leq C$, dann $A \leq C$.
- iii) $\mathbb{N} \leq \mathbb{Q} \leq \mathbb{N}^2 = \{(n, m) : n, m \in \mathbb{N}\}.$
- iv) $\mathbb{N}^2 \leq \mathbb{Q} \leq \mathbb{N}$.

Definition: $A \leq^* B$ heißt: A ist leer oder es gibt ein surjektives $f: B \to A$. $2^{\mathbb{N}} = \{(a_0, a_1, \dots) : a_i \in \{0, 1\}\}.$

Beispiel 2: Zeige (für beliebige Mengen A, B):

- i) $A \leq B$ impliziert $A \leq^* B$.
- ii) (+) $2^{\mathbb{N}} \leq \mathbb{N}$ gilt nicht (Cantor). Das kann man auch $2^{\mathbb{N}} \nleq \mathbb{N}$ schreiben. (Siehe Hinweis 1.)

Beispiel 3: i) Zeige: $A \leq^* \mathbb{N}$ impliziert $A \leq \mathbb{N}$.

ii) (+++) Gilt $A \leq^* \mathbb{R}$ impliziert $A \leq \mathbb{R}$?

Beispiel 4: Zeige:

- i) (+) $2^{\mathbb{N}} \leq \mathbb{R}$. ii) (+) $\mathbb{R} \leq 2^{\mathbb{N}}$.

Definition: $A \cong B$ heißt: Es gibt ein bijektives $f: A \to B$.

Beispiel 5: Zeige:

- i) $A \cong B$ impliziert $A \preceq B$.
- ii) (++) Wenn $A \leq B$ und $B \leq A$, dann $A \cong B$ (Cantor-Schröder-Bernstein). (Siehe Hinweis 2.)

Beispiel 6: (+++) Gilt immer: $A \leq B$ oder $B \leq A$?

Hinweise:

- 1. Benutze Beispiel 2i. Nimm also an, es gäbe $\phi: \mathbb{N} \to 2^{\mathbb{N}}$ surjektiv. Schreibe ϕ als Folge von 0-1-Folgen und betrachte die Diagonale.
- 2. Seien $f:A\to B$ und $g:B\to A$ beide injektiv. Wir suchen ein $h:A\to B$ bijektiv.

Wir schreiben f''X für $\{f(x): x \in X\}$.

Setze $B_1 = f''(A)$ und $A_1 = A \setminus g''(B \setminus B_1)$. Fixiere $h: A \setminus A_1 \to B \setminus B_1$ durch g^{-1} . (Skizze!) Nun wiederhole die Konstruktion mit (B_1, A_1) anstelle von (A, B). Kann nach unendlich vielen Wiederholungen zum Schluß noch ein Rest von A bzw. B übrigbleiben? Ist das ein Problem?