Adding the evasion number to Cichoń's Maximum

Jakob Kellner

2021-09-16

joint work with M. Goldstern, D. Mejía and S. Shelah

Evasion and prediction

Definition (Blass 1994 [6], Brendle 1995 [7])

- A predictor is a pair (D, π) with $D \in [\omega]^{\aleph_0}$, $dom(\pi) = D$, and $\pi(n) : \omega^{< n} \to \omega$ for $n \in D$.
- (D,π) predicts ("covers") an $f\in\omega^{\omega}$, if $\pi(n)(f\upharpoonright n)=f(n)$ for all but finitely many $n\in D$. (An F_{σ} relation.)
- ε, the evasion number, is the (un)bounding number of this covering relation: The smallest size of a set of functions not covered by a single predictor.
- ε[⊥] the dominating number:
 The smallest size of a set of predictors covering all functions.
- \mathfrak{e}_2 is the analoguous characteristic for prediction in 2^ω instead of ω^ω .

Note that $e \leq e_2$ (as it is easier to predict for 2^{ω}).

Evasion and prediction (ctd.)

A natural forcing to increase $\mathfrak e$ is the following:

Definition (Brendle, Shelah 1996 [9]; following Brendle 1995 [7])

- x is a "single prediction on n" if $x \in \omega^{n+1}$; the intention is that $x \upharpoonright n$ is predicted to be extended by x(n).
- A condition of $p \in \mathbb{Br}$ consists of
 - $n_p \in \omega$,
 - $d_p \in 2^n$, $(d_p^{-1}\{1\})$ is meant to approx. $\stackrel{\frown}{\mathbb{Z}}$),
 - a finite set P_d of single predictions on ℓ for $\ell \in d^{-1}\{1\}$.
 - a finite set F_d of functions, all splitting below n_p .
- A stronger condition q has larger n, F, P, a d extending the old one, and for all new $\ell \in d_q^{-1}\{1\}$ and all old $f \in F_p$, $f \upharpoonright (\ell+1)$ has to be in the new P_q .

 $\mathbb{B}_{\mathbb{T}}$ is σ -centred.

(The centering parameter of p is $(n_p, d_p, P_p, \{f \mid n_p : f \in F_p\})$.)

3/21

The result

- (Known [1, 3, 4, 5]) It is consistent that the characteristics in Cichoń's diagram, plus p, h, s, r are ordered as in the diagram.
- ullet s can be anywhere (regular) between $\mathfrak p$ and $\mathfrak b$, with $\mathfrak r$ dual.
- Instead of \mathfrak{s} , \mathfrak{r} , we can get \mathfrak{m} (between \aleph_1 and \mathfrak{p} .)
- New (in preparation): We can add the evasion number \mathfrak{e} and its dual \mathfrak{e}^{\perp} as indicated.

A mockery of an overview

All these proofs, old and new, have basically the following steps:

- Step 1 Left side only, with $cov(\mathcal{M}) = \mathfrak{c} > non(\mathcal{M})$ (but with "strong witnesses" for the Cichoń characteristics).
- Step 2 Boolean Ultrapowers (using LCs) or intersection with sequences of submodels (without LCs).

Questions

Obviously you can add lots of questions of varying difficulty and interest:

Cardinal characteristics:

- More characteristics?
- Other positions of the additional characteristics?
- Other orders in Cichoń's diagram?
- Singulars?

If you have a hammer...

Apply "magic" to other constructions (in particular, non-ccc).

The left side

From now on we only talk about getting the left hand side.

- We use a finite support ccc iteration P_{α} of length $\mathfrak{c} + \mathfrak{c}$; the first \mathfrak{c} iterands are Cohen. (\mathfrak{c} : desired target value for 2^{\aleph_0})
- \mathfrak{p} , \mathfrak{h} , and \mathfrak{m} (or \mathfrak{s} , \mathfrak{r}) are dealt with differently; we ignore them from now on.
- At each coordinate $\alpha \in \mathfrak{c} + \mathfrak{c}$ above \mathfrak{c} , we deal with a characteristic $\mathfrak{x} = \operatorname{add}(\mathcal{N})$, $\operatorname{cov}(\mathcal{N})$, \mathfrak{b} , $\operatorname{non}(\mathcal{M})$ (and now also \mathfrak{e}).
- We want $\mathfrak x$ to become some (regular) $\lambda_{\mathfrak x}$, $\aleph_1 \leq \lambda_{\mathfrak x} < \mathfrak c$.
- The iterands at $\mathfrak x$ -coordinates will be $<\lambda_{\mathfrak x}$ -sized versions of the forcing increasing $\mathfrak x$ (e.g., for $\mathfrak b$ Hechler, for $\mathfrak e$ $\mathbb B\mathfrak x$ and for non($\mathcal M$) E.D.). With book-keeping, this will force (a strong version of) $\mathfrak x \ge \lambda_{\mathfrak x}$.

(For the Cichoń characteristics, the left hand side was done 2016 by Goldstern, Mejía, Shelah [10].)

Large and small

- For $\mathfrak{x}=\mathfrak{b}$, the large $(\geq \lambda_{\mathfrak{b}})$ iterands are partial \mathbb{Br} and partial E.D., all other are $<\lambda_{\mathfrak{b}}$.
- For $\mathfrak{x}=\mathfrak{e}$, the large $(\geq \lambda_{\mathfrak{e}})$ forcings are partial E.D., all other are $<\lambda_{\mathfrak{e}}$.

Now what?

So far the construction, and the observation $\mathfrak{x} \geq \lambda_{\mathfrak{x}}$, is straightforward.

The obvious problem:

How do we prove (a strong version of) $\mathfrak{x} \leq \lambda_{\mathfrak{x}}$?

Strong witnesses for $\mathfrak x$ small

(Recall: P_{α} a FS ccc iteration of length $\mathfrak{c}+\mathfrak{c}$; first \mathfrak{c} iterands Cohen; $\aleph_1 \leq \lambda_{\mathfrak{x}} < \mathfrak{c}$ regular is the target value for \mathfrak{x} .)

Definition

- Let $\bar{c} = (c_{\alpha})_{\alpha \in \lambda_{\mathfrak{x}}}$ be the first $\lambda_{\mathfrak{x}}$ many Cohen reals added.
- \bar{c} is a strong witness := every real covers only boundedly many c_{α} .
- ullet P_{lpha} forces a strong witness, if P_{lpha} forces that $ar{c}$ is a strong witness.

(For b, covers means "eventually dominates", for e "predicts".)

- P_{λ_x} forces a strong witness. (\underline{r} depends on boundedly many coordinates, every later c_{α} escapes.)
- A strong witness implies $\mathfrak{x} \leq \lambda_{\mathfrak{x}}$. (As \bar{c} is unbounded.)
- (And: "Strong witness" is suitable for right-hand-side magic.)

The left side: keep it small

So we have: $P_{\lambda_{\mathfrak{x}}}$ forces a strong witness $(\lambda_{\mathfrak{x}} < \mathfrak{c})$; and we want to show: $P_{\mathfrak{c}+\mathfrak{c}}$ preserves the strong witness.

- For add(\mathcal{N}), cov(\mathcal{N}) and non(\mathcal{M}) we can use "goodness" (Judah, Shelah 1990 [11], Brendle 1991 [8]):
 - All iterands are $\lambda_{\mathfrak{x}}$ -good (for the \mathfrak{x} -relation),
 - goodness is preserved under limits,
 - goodness implies preservation of strong witnesses.

The old arguments work without change, as the new iterands (partial $\mathbb{B}\mathbb{r})$ are $\sigma\text{-centered}.$

We will not say more about this.

- For b use UF-limits.
 - Need: All large forcings have UF-limits.
 - Old proofs used that E.D. has UF-limits.
 - Now we additionally need that Br has UF-limits (easy).
- (New) For ε, use FAM-limits.

Indirect proof of $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ using UF-limits.

- Assume towards a contradiction: p forces that the $P_{\mathfrak{c}+\mathfrak{c}}$ -name \underline{r} dominates unboundedly many c_{α} .
- So: $E \in [\lambda_{\mathfrak{b}}]^{\lambda_{\mathfrak{b}}}$, and for $\alpha \in E$ there is $p_{\alpha} \leq p$ forcing that $c_{\alpha}(k) < \underline{r}(k)$ for all $k > n_{\alpha}$.
- Make a Δ system of the domains of p_{α} , and "homogenize":
 - All $n_{\alpha} := n^*$,
 - $p_{\alpha}(\alpha)$ same Cohen condition c^* in V (of length $n^{**} > n^*$),
 - For a small heart-coordinate β , we identify Q_{β} with μ for some $\mu < \lambda_{\mathfrak{b}}$, all $p_n(\beta)$ are the same element of μ (determined in V).
 - For a large heart-coordinate β , Q_{β} (partial E.D. or \mathbb{Br}) all $p_n(\beta)$ have the same "centering parameter" (determined in V).

• Pick any ω many of these conditions, call them p_{ℓ} , and the Cohen-coordinate they refer to α_{ℓ} (for $\ell \in \omega$).

Indirect proof of $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ (ctd.)

	domain in heart				domain outside									
		large	;	! 	sma	ll	$lpha_{0}$	α_1	α_2		?	?	?	
p_0	√00	J_0^1		s ⁰	s^1		<i>c</i> *^0				?			
p_1	\mathcal{J}_1^0	\mathcal{J}_1^1	• • •	s ⁰	s^1		! 	$c^* ^1$			1	?		
p_2	<i>J</i> ₂ ⁰	\mathcal{J}_2^1	• • •	s ⁰	s^1	• • •	! 		c^*^2	• • •	 		?	
• • •		• • •			• • •		I				İ	•	• •	
q	q_2^0	q_2^1		s^0	s^1		! 				1			

- Modify each p_{ℓ} by extending $p_{\ell}(\alpha_{\ell})$ by ℓ .
- Crucial requirement: There is a "limit" q forcing that infinitely many p'_n are in G.
- This gives the desired contradiction:

$$p_{\ell} \Vdash r(n^{**}) > c_{\alpha_{\ell}}(n^{**})$$
, so $p'_{\ell} \Vdash r(n^{**}) > \ell$.

UF limits

	domain in heart			domain outside										
		large	:	! 	sma	11	$lpha_{0}$	α_1	α_2		?	?	?	
p_0	√00	\mathcal{J}_0^1		s ⁰	s^1		<i>c</i> *^0				?			
p_1	$\stackrel{\clipsup^0}{\sim}$	\mathcal{J}_1^1	• • •	s ⁰	s^1		 	$c^* ^1$			1	?		
p_2	<i>J</i> ₂ ⁰	\mathcal{J}_{2}^{1}	• • •	s ⁰	s^1		 		c^*^2	• • •	 		?	
• • •		• • •		 -	• • •						İ	•	• •	
q	q_2^0	q_2^1		s ⁰	s^1						1			

How do we get such a limit q?

- The domain of q will be the heart.
- On the small indices, we use the constant conditions.
- So we only have to deal with the large indices. We can do this as E.D. and Br have UF-limits (will not say more about this either, sorry).

UF limits

- Let $\mathbb Q$ be Eventually Different forcing or the $\mathbb Br$ forcing (or any other definable forcing).
- We define for a "homogeneous" sequence \bar{p} of \mathbb{Q} -conditions and an ultrafilter U a limit $\lim_U (\bar{p}) \in \mathbb{Q}$ and require that it forces that "U-many p_ℓ are in G."
- More correctly:
 - Let $A_{\bar{p}}$ be the Q-name $\{n \in \omega : p_n \in G\}$.
 - It is sufficient: Q forces that $U \cup \{A_{\bar{p}} : q = \lim_{U}(\bar{p}) \in G\}$ has FIP.
- ullet We then have to choose the **partial** forcing Q_eta "closed enough":
 - For all ground-model sequences \bar{r} of P_{β} -names for Q_{β} -elements,
 - ullet and for "enough" P_{eta} -names \bullet for ultrafilters,
 - $\lim_{U}(\bar{r})$ is again in Q_{β} .
- This property is "iterable", and in particular we can then show that the "crucial requirement" above is satisfied.

Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits.

	domain in heart	· ·	α_2	α_3	$lpha_{ extsf{4}}$	α_{5}	
		! !					
p_2	$1_0^2 \cdots s^0 \cdots$	 	<i>c</i> *				
<i>p</i> ₃	$\mathcal{J}_0^3\cdots s^0\cdots$! 		<i>c</i> *			
p_4	$\mathcal{J}_0^4\cdots s^0\cdots$				<i>c</i> *		
p_5	$\mathcal{J}_0^5\cdots s^0\cdots$! 				<i>c</i> *	
• • •	•••	 			• • •		

- As before, an indirect argument gives us a homogeneous Δ -system, indexed by a subset of $E \in [\lambda_{\mathfrak{e}}^{\lambda_{\mathfrak{e}}}]$, take ω many elements.
- So p_n forces that (\bar{x}, \bar{p}) predicts c_{α_n} above n^* ; and at coordinate α_n the Cohen condition $p_n(\alpha_n)$ is c^* , of length $n^{**} > n^*$.

Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits.

	domain in heart	· ·	α_2	α_3	α_{4}	α_{5}	
		! !			•		
p_2	$1_0^2 \cdots s^0 \cdots$	 	<i>c</i> *^00				
<i>p</i> ₃	$\int_0^3 \cdots s^0 \cdots$! 		<i>c</i> *^01			• • •
p_4	$\mathcal{I}_0^4\cdots s^0\cdots$				<i>c</i> *^10		• • •
p_5	$\mathcal{J}_0^5\cdots s^0\cdots$! 				<i>c</i> *^11	• • •
• • •	• • • •	 			•		

- ullet Fix a partition of ω with $|\mathit{I}_{\ell}|=2^{\ell}$: $\mathit{I}_{1}=\{0,1\}$, $\mathit{I}_{2}=\{2,3,4,5\}$, \ldots
- Modify $p_n \in I_\ell$ by extending $p_n(\alpha_n) = c^*$ by all possibilities for 2^ℓ .
- If $k \in [n^{**}, n^{**} + \ell 1] \cap \mathcal{D}$, then $\pi(k)$ excludes 50% of the $c^{*} \circ s$; so $\leq 50\%$ of the p_n can be in G.
- Crucial requirement: There are infinitely many ℓ such that more than half of the p_n (for $n \in I_{\ell}$) are in G. (I.e.: we want a limit forcing this.)

Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits.

	domain in heart		α_2	α_3	α_{4}	α_{5}	
					•		
p_2	$1_0^2 \cdots s^0 \cdots$	 	<i>c</i> *^00				
<i>p</i> ₃	$\mathcal{J}_0^3\cdots s^0\cdots$! !		<i>c</i> *^01			
<i>p</i> ₄	$1_0^4 \cdots s^0 \cdots$				<i>c</i> *^10		• • •
p_5	$1_0^5 \cdots s^0 \cdots$	 				<i>c</i> *^11	
• • •		 					

- Again, only the large forcings (here: E.D.) are relevant.
- It is sufficient that large forcings have FAM (finitely additive measure) limits.

(Something like: We can force arbitrary FAM-large set of indices ℓ satisfy that an arbitrary large percentage of $n \in I_{\ell}$ satisfies $p_n \in G$. Let us not say more about this either.)

Well...

- Problem: E.D. does not have FAM limits.
- Luckily this problem is already solved (2019 joint with Latif and Shelah [2]): We used FAM limits (based on Shelah 2000 [12]) to force an alternative ordering in Cichoń's Maximum: We replace E.D. with a suitable creature forcing E' which has FAM

(But E' is not σ -centered. But close enough...)

- ullet Also luckily, E' does not only have FAM-limits, but also UF-limits.
- So we are done:

limits.

 $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ as all large forcings (partial \mathbb{Br} and E') have UF-limits; $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ as all large forcings (partial E') have FAM-limits.

Another old result: The other ordering

The (only known) alternative ordering (2019, with Latif and Shelah [2].) (Partial) random is \mathfrak{b} -large, but does not have UF-limits. But it has FAM-limits, so all \mathfrak{b} -large forcings (random and E') have FAM-limits, which also implies $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$.

Bibliography: The presented results

- [1] M. Goldstern, J. K., and S. Shelah. "Cichoń's maximum". In: *Ann. of Math.* 190.1 (2019). arXiv:1708.03691, pp. 113–143.
- [2] J. K., S. Shelah, and A. Tănasie. "Another ordering of the ten cardinal characteristics in Cichoń's Diagram". In: *Comment. Math. Univ. Carolin.* 60.1 (2019), pp. 61–95.
- [3] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Cichoń's maximum without large cardinals". In: *J. Eur. Math. Soc. (JEMS)* (to appear). arXiv:1906.06608.
- [4] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Controlling cardinal characteristics without adding reals". In: J. Math. Log. (to appear). arXiv:1904.02617.
- [5] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Preservation of splitting families and cardinal characteristics of the continuum". In: *Israel J. Math.* (to appear). arXiv:2007.13500.

Bibliography: Some classics

- [6] A. Blass. "Cardinal characteristics and the product of countably many infinite cyclic groups". In: *J. Algebra* 169.2 (1994), pp. 512–540.
- [7] J. Brendle. "Evasion and prediction—the Specker phenomenon and Gross spaces". In: Forum Math. 7.5 (1995), pp. 513–541.
- [8] J. Brendle. "Larger cardinals in Cichoń's diagram". In: J. Symbolic Logic 56.3 (1991), pp. 795–810.
- [9] J. Brendle and S. Shelah. "Evasion and prediction. II". In: J. London Math. Soc. (2) 53.1 (1996), pp. 19–27.
- [10] M. Goldstern, D. A. Mejía, and S. Shelah. "The left side of Cichoń's diagram". In: Proc. Amer. Math. Soc. 144.9 (2016), pp. 4025–4042.
- [11] H. Judah and S. Shelah. "The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing)". In: J. Symbolic Logic 55.3 (1990), pp. 909–927.
- [12] S. Shelah. "Covering of the null ideal may have countable cofinality". In: Fund. Math. 166.1-2 (2000). Saharon Shelah's anniversary issue, pp. 109–136.