Adding the evasion number to Cichoń's Maximum Jakob Kellner 2021-09-16 joint work with M. Goldstern, D. Mejía and S. Shelah ## Evasion and prediction ## Definition (Blass 1994 [6], Brendle 1995 [7]) - A predictor is a pair (D, π) with $D \in [\omega]^{\aleph_0}$, $dom(\pi) = D$, and $\pi(n) : \omega^{< n} \to \omega$ for $n \in D$. - (D,π) predicts ("covers") an $f\in\omega^{\omega}$, if $\pi(n)(f\upharpoonright n)=f(n)$ for all but finitely many $n\in D$. (An F_{σ} relation.) - ε, the evasion number, is the (un)bounding number of this covering relation: The smallest size of a set of functions not covered by a single predictor. - ε[⊥] the dominating number: The smallest size of a set of predictors covering all functions. - \mathfrak{e}_2 is the analoguous characteristic for prediction in 2^ω instead of ω^ω . Note that $e \leq e_2$ (as it is easier to predict for 2^{ω}). ## Evasion and prediction (ctd.) A natural forcing to increase $\mathfrak e$ is the following: ## Definition (Brendle, Shelah 1996 [9]; following Brendle 1995 [7]) - x is a "single prediction on n" if $x \in \omega^{n+1}$; the intention is that $x \upharpoonright n$ is predicted to be extended by x(n). - A condition of $p \in \mathbb{Br}$ consists of - $n_p \in \omega$, - $d_p \in 2^n$, $(d_p^{-1}\{1\})$ is meant to approx. $\stackrel{\frown}{\mathbb{Z}}$), - a finite set P_d of single predictions on ℓ for $\ell \in d^{-1}\{1\}$. - a finite set F_d of functions, all splitting below n_p . - A stronger condition q has larger n, F, P, a d extending the old one, and for all new $\ell \in d_q^{-1}\{1\}$ and all old $f \in F_p$, $f \upharpoonright (\ell+1)$ has to be in the new P_q . $\mathbb{B}_{\mathbb{T}}$ is σ -centred. (The centering parameter of p is $(n_p, d_p, P_p, \{f \mid n_p : f \in F_p\})$.) 3/21 #### The result - (Known [1, 3, 4, 5]) It is consistent that the characteristics in Cichoń's diagram, plus p, h, s, r are ordered as in the diagram. - ullet s can be anywhere (regular) between $\mathfrak p$ and $\mathfrak b$, with $\mathfrak r$ dual. - Instead of \mathfrak{s} , \mathfrak{r} , we can get \mathfrak{m} (between \aleph_1 and \mathfrak{p} .) - New (in preparation): We can add the evasion number \mathfrak{e} and its dual \mathfrak{e}^{\perp} as indicated. ## A mockery of an overview All these proofs, old and new, have basically the following steps: - Step 1 Left side only, with $cov(\mathcal{M}) = \mathfrak{c} > non(\mathcal{M})$ (but with "strong witnesses" for the Cichoń characteristics). - Step 2 Boolean Ultrapowers (using LCs) or intersection with sequences of submodels (without LCs). #### Questions Obviously you can add lots of questions of varying difficulty and interest: #### Cardinal characteristics: - More characteristics? - Other positions of the additional characteristics? - Other orders in Cichoń's diagram? - Singulars? If you have a hammer... Apply "magic" to other constructions (in particular, non-ccc). #### The left side From now on we only talk about getting the left hand side. - We use a finite support ccc iteration P_{α} of length $\mathfrak{c} + \mathfrak{c}$; the first \mathfrak{c} iterands are Cohen. (\mathfrak{c} : desired target value for 2^{\aleph_0}) - \mathfrak{p} , \mathfrak{h} , and \mathfrak{m} (or \mathfrak{s} , \mathfrak{r}) are dealt with differently; we ignore them from now on. - At each coordinate $\alpha \in \mathfrak{c} + \mathfrak{c}$ above \mathfrak{c} , we deal with a characteristic $\mathfrak{x} = \operatorname{add}(\mathcal{N})$, $\operatorname{cov}(\mathcal{N})$, \mathfrak{b} , $\operatorname{non}(\mathcal{M})$ (and now also \mathfrak{e}). - We want $\mathfrak x$ to become some (regular) $\lambda_{\mathfrak x}$, $\aleph_1 \leq \lambda_{\mathfrak x} < \mathfrak c$. - The iterands at $\mathfrak x$ -coordinates will be $<\lambda_{\mathfrak x}$ -sized versions of the forcing increasing $\mathfrak x$ (e.g., for $\mathfrak b$ Hechler, for $\mathfrak e$ $\mathbb B\mathfrak x$ and for non($\mathcal M$) E.D.). With book-keeping, this will force (a strong version of) $\mathfrak x \ge \lambda_{\mathfrak x}$. (For the Cichoń characteristics, the left hand side was done 2016 by Goldstern, Mejía, Shelah [10].) ## Large and small - For $\mathfrak{x}=\mathfrak{b}$, the large $(\geq \lambda_{\mathfrak{b}})$ iterands are partial \mathbb{Br} and partial E.D., all other are $<\lambda_{\mathfrak{b}}$. - For $\mathfrak{x}=\mathfrak{e}$, the large $(\geq \lambda_{\mathfrak{e}})$ forcings are partial E.D., all other are $<\lambda_{\mathfrak{e}}$. #### Now what? So far the construction, and the observation $\mathfrak{x} \geq \lambda_{\mathfrak{x}}$, is straightforward. The obvious problem: How do we prove (a strong version of) $\mathfrak{x} \leq \lambda_{\mathfrak{x}}$? ## Strong witnesses for $\mathfrak x$ small (Recall: P_{α} a FS ccc iteration of length $\mathfrak{c}+\mathfrak{c}$; first \mathfrak{c} iterands Cohen; $\aleph_1 \leq \lambda_{\mathfrak{x}} < \mathfrak{c}$ regular is the target value for \mathfrak{x} .) #### **Definition** - Let $\bar{c} = (c_{\alpha})_{\alpha \in \lambda_{\mathfrak{x}}}$ be the first $\lambda_{\mathfrak{x}}$ many Cohen reals added. - \bar{c} is a strong witness := every real covers only boundedly many c_{α} . - ullet P_{lpha} forces a strong witness, if P_{lpha} forces that $ar{c}$ is a strong witness. (For b, covers means "eventually dominates", for e "predicts".) - P_{λ_x} forces a strong witness. (\underline{r} depends on boundedly many coordinates, every later c_{α} escapes.) - A strong witness implies $\mathfrak{x} \leq \lambda_{\mathfrak{x}}$. (As \bar{c} is unbounded.) - (And: "Strong witness" is suitable for right-hand-side magic.) #### The left side: keep it small So we have: $P_{\lambda_{\mathfrak{x}}}$ forces a strong witness $(\lambda_{\mathfrak{x}} < \mathfrak{c})$; and we want to show: $P_{\mathfrak{c}+\mathfrak{c}}$ preserves the strong witness. - For add(\mathcal{N}), cov(\mathcal{N}) and non(\mathcal{M}) we can use "goodness" (Judah, Shelah 1990 [11], Brendle 1991 [8]): - All iterands are $\lambda_{\mathfrak{x}}$ -good (for the \mathfrak{x} -relation), - goodness is preserved under limits, - goodness implies preservation of strong witnesses. The old arguments work without change, as the new iterands (partial $\mathbb{B}\mathbb{r})$ are $\sigma\text{-centered}.$ We will not say more about this. - For b use UF-limits. - Need: All large forcings have UF-limits. - Old proofs used that E.D. has UF-limits. - Now we additionally need that Br has UF-limits (easy). - (New) For ε, use FAM-limits. ## Indirect proof of $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ using UF-limits. - Assume towards a contradiction: p forces that the $P_{\mathfrak{c}+\mathfrak{c}}$ -name \underline{r} dominates unboundedly many c_{α} . - So: $E \in [\lambda_{\mathfrak{b}}]^{\lambda_{\mathfrak{b}}}$, and for $\alpha \in E$ there is $p_{\alpha} \leq p$ forcing that $c_{\alpha}(k) < \underline{r}(k)$ for all $k > n_{\alpha}$. - Make a Δ system of the domains of p_{α} , and "homogenize": - All $n_{\alpha} := n^*$, - $p_{\alpha}(\alpha)$ same Cohen condition c^* in V (of length $n^{**} > n^*$), - For a small heart-coordinate β , we identify Q_{β} with μ for some $\mu < \lambda_{\mathfrak{b}}$, all $p_n(\beta)$ are the same element of μ (determined in V). - For a large heart-coordinate β , Q_{β} (partial E.D. or \mathbb{Br}) all $p_n(\beta)$ have the same "centering parameter" (determined in V). • Pick any ω many of these conditions, call them p_{ℓ} , and the Cohen-coordinate they refer to α_{ℓ} (for $\ell \in \omega$). # Indirect proof of $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ (ctd.) | | domain in heart | | | | domain outside | | | | | | | | | | |-------|------------------------------------|-------------------|-------|----------------|----------------|-------|--------------|------------|------------|-------|------|---|-----|--| | | | large | ; | !
 | sma | ll | $lpha_{0}$ | α_1 | α_2 | | ? | ? | ? | | | p_0 | √00 | J_0^1 | | s ⁰ | s^1 | | <i>c</i> *^0 | | | | ? | | | | | p_1 | \mathcal{J}_1^0 | \mathcal{J}_1^1 | • • • | s ⁰ | s^1 | | !
 | $c^* ^1$ | | | 1 | ? | | | | p_2 | <i>J</i> ₂ ⁰ | \mathcal{J}_2^1 | • • • | s ⁰ | s^1 | • • • | !

 | | c^*^2 | • • • |
 | | ? | | | • • • | | • • • | | | • • • | | I | | | | İ | • | • • | | | q | q_2^0 | q_2^1 | | s^0 | s^1 | | !
 | | | | 1 | | | | - Modify each p_{ℓ} by extending $p_{\ell}(\alpha_{\ell})$ by ℓ . - Crucial requirement: There is a "limit" q forcing that infinitely many p'_n are in G. - This gives the desired contradiction: $$p_{\ell} \Vdash r(n^{**}) > c_{\alpha_{\ell}}(n^{**})$$, so $p'_{\ell} \Vdash r(n^{**}) > \ell$. #### **UF** limits | | domain in heart | | | domain outside | | | | | | | | | | | |-------|------------------------------------|-----------------------|-------|----------------|-------|----|--------------|------------|------------|-------|------|---|-----|--| | | | large | : | !
 | sma | 11 | $lpha_{0}$ | α_1 | α_2 | | ? | ? | ? | | | p_0 | √00 | \mathcal{J}_0^1 | | s ⁰ | s^1 | | <i>c</i> *^0 | | | | ? | | | | | p_1 | $\stackrel{\clipsup^0}{\sim}$ | \mathcal{J}_1^1 | • • • | s ⁰ | s^1 | |
 | $c^* ^1$ | | | 1 | ? | | | | p_2 | <i>J</i> ₂ ⁰ | \mathcal{J}_{2}^{1} | • • • | s ⁰ | s^1 | |

 | | c^*^2 | • • • |
 | | ? | | | • • • | | • • • | |
 - | • • • | | | | | | İ | • | • • | | | q | q_2^0 | q_2^1 | | s ⁰ | s^1 | | | | | | 1 | | | | How do we get such a limit q? - The domain of q will be the heart. - On the small indices, we use the constant conditions. - So we only have to deal with the large indices. We can do this as E.D. and Br have UF-limits (will not say more about this either, sorry). #### **UF** limits - Let $\mathbb Q$ be Eventually Different forcing or the $\mathbb Br$ forcing (or any other definable forcing). - We define for a "homogeneous" sequence \bar{p} of \mathbb{Q} -conditions and an ultrafilter U a limit $\lim_U (\bar{p}) \in \mathbb{Q}$ and require that it forces that "U-many p_ℓ are in G." - More correctly: - Let $A_{\bar{p}}$ be the Q-name $\{n \in \omega : p_n \in G\}$. - It is sufficient: Q forces that $U \cup \{A_{\bar{p}} : q = \lim_{U}(\bar{p}) \in G\}$ has FIP. - ullet We then have to choose the **partial** forcing Q_eta "closed enough": - For all ground-model sequences \bar{r} of P_{β} -names for Q_{β} -elements, - ullet and for "enough" P_{eta} -names \bullet for ultrafilters, - $\lim_{U}(\bar{r})$ is again in Q_{β} . - This property is "iterable", and in particular we can then show that the "crucial requirement" above is satisfied. # Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits. | | domain in heart | ·
· | α_2 | α_3 | $lpha_{ extsf{4}}$ | α_{5} | | |-----------------------|-----------------------------------|--------|------------|------------|--------------------|--------------|--| | | | !
! | | | | | | | p_2 | $1_0^2 \cdots s^0 \cdots$ |
 | <i>c</i> * | | | | | | <i>p</i> ₃ | $\mathcal{J}_0^3\cdots s^0\cdots$ | !
 | | <i>c</i> * | | | | | p_4 | $\mathcal{J}_0^4\cdots s^0\cdots$ | | | | <i>c</i> * | | | | p_5 | $\mathcal{J}_0^5\cdots s^0\cdots$ | !
 | | | | <i>c</i> * | | | • • • | ••• |
 | | | • • • | | | - As before, an indirect argument gives us a homogeneous Δ -system, indexed by a subset of $E \in [\lambda_{\mathfrak{e}}^{\lambda_{\mathfrak{e}}}]$, take ω many elements. - So p_n forces that (\bar{x}, \bar{p}) predicts c_{α_n} above n^* ; and at coordinate α_n the Cohen condition $p_n(\alpha_n)$ is c^* , of length $n^{**} > n^*$. # Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits. | | domain in heart | ·
· | α_2 | α_3 | α_{4} | α_{5} | | |-----------------------|-----------------------------------|--------|---------------|---------------|---------------|---------------|-------| | | | !
! | | | • | | | | p_2 | $1_0^2 \cdots s^0 \cdots$ |
 | <i>c</i> *^00 | | | | | | <i>p</i> ₃ | $\int_0^3 \cdots s^0 \cdots$ | !
 | | <i>c</i> *^01 | | | • • • | | p_4 | $\mathcal{I}_0^4\cdots s^0\cdots$ | | | | <i>c</i> *^10 | | • • • | | p_5 | $\mathcal{J}_0^5\cdots s^0\cdots$ | !
 | | | | <i>c</i> *^11 | • • • | | • • • | • • • • |
 | | | • | | | - ullet Fix a partition of ω with $|\mathit{I}_{\ell}|=2^{\ell}$: $\mathit{I}_{1}=\{0,1\}$, $\mathit{I}_{2}=\{2,3,4,5\}$, \ldots - Modify $p_n \in I_\ell$ by extending $p_n(\alpha_n) = c^*$ by all possibilities for 2^ℓ . - If $k \in [n^{**}, n^{**} + \ell 1] \cap \mathcal{D}$, then $\pi(k)$ excludes 50% of the $c^{*} \circ s$; so $\leq 50\%$ of the p_n can be in G. - Crucial requirement: There are infinitely many ℓ such that more than half of the p_n (for $n \in I_{\ell}$) are in G. (I.e.: we want a limit forcing this.) # Indirect proof of $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ using FAM-limits. | | domain in heart | | α_2 | α_3 | α_{4} | α_{5} | | |-----------------------|-----------------------------------|--------|---------------|---------------|---------------|---------------|-------| | | | | | | • | | | | p_2 | $1_0^2 \cdots s^0 \cdots$ |
 | <i>c</i> *^00 | | | | | | <i>p</i> ₃ | $\mathcal{J}_0^3\cdots s^0\cdots$ | !
! | | <i>c</i> *^01 | | | | | <i>p</i> ₄ | $1_0^4 \cdots s^0 \cdots$ | | | | <i>c</i> *^10 | | • • • | | p_5 | $1_0^5 \cdots s^0 \cdots$ |
 | | | | <i>c</i> *^11 | | | • • • | |
 | | | | | | - Again, only the large forcings (here: E.D.) are relevant. - It is sufficient that large forcings have FAM (finitely additive measure) limits. (Something like: We can force arbitrary FAM-large set of indices ℓ satisfy that an arbitrary large percentage of $n \in I_{\ell}$ satisfies $p_n \in G$. Let us not say more about this either.) #### Well... - Problem: E.D. does not have FAM limits. - Luckily this problem is already solved (2019 joint with Latif and Shelah [2]): We used FAM limits (based on Shelah 2000 [12]) to force an alternative ordering in Cichoń's Maximum: We replace E.D. with a suitable creature forcing E' which has FAM (But E' is not σ -centered. But close enough...) - ullet Also luckily, E' does not only have FAM-limits, but also UF-limits. - So we are done: limits. $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$ as all large forcings (partial \mathbb{Br} and E') have UF-limits; $\mathfrak{e} \leq \lambda_{\mathfrak{e}}$ as all large forcings (partial E') have FAM-limits. ## Another old result: The other ordering The (only known) alternative ordering (2019, with Latif and Shelah [2].) (Partial) random is \mathfrak{b} -large, but does not have UF-limits. But it has FAM-limits, so all \mathfrak{b} -large forcings (random and E') have FAM-limits, which also implies $\mathfrak{b} \leq \lambda_{\mathfrak{b}}$. ## Bibliography: The presented results - [1] M. Goldstern, J. K., and S. Shelah. "Cichoń's maximum". In: *Ann. of Math.* 190.1 (2019). arXiv:1708.03691, pp. 113–143. - [2] J. K., S. Shelah, and A. Tănasie. "Another ordering of the ten cardinal characteristics in Cichoń's Diagram". In: *Comment. Math. Univ. Carolin.* 60.1 (2019), pp. 61–95. - [3] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Cichoń's maximum without large cardinals". In: *J. Eur. Math. Soc. (JEMS)* (to appear). arXiv:1906.06608. - [4] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Controlling cardinal characteristics without adding reals". In: J. Math. Log. (to appear). arXiv:1904.02617. - [5] M. Goldstern, J. K., D. A. Mejía, and S. Shelah. "Preservation of splitting families and cardinal characteristics of the continuum". In: *Israel J. Math.* (to appear). arXiv:2007.13500. ## Bibliography: Some classics - [6] A. Blass. "Cardinal characteristics and the product of countably many infinite cyclic groups". In: *J. Algebra* 169.2 (1994), pp. 512–540. - [7] J. Brendle. "Evasion and prediction—the Specker phenomenon and Gross spaces". In: Forum Math. 7.5 (1995), pp. 513–541. - [8] J. Brendle. "Larger cardinals in Cichoń's diagram". In: J. Symbolic Logic 56.3 (1991), pp. 795–810. - [9] J. Brendle and S. Shelah. "Evasion and prediction. II". In: J. London Math. Soc. (2) 53.1 (1996), pp. 19–27. - [10] M. Goldstern, D. A. Mejía, and S. Shelah. "The left side of Cichoń's diagram". In: Proc. Amer. Math. Soc. 144.9 (2016), pp. 4025–4042. - [11] H. Judah and S. Shelah. "The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing)". In: J. Symbolic Logic 55.3 (1990), pp. 909–927. - [12] S. Shelah. "Covering of the null ideal may have countable cofinality". In: Fund. Math. 166.1-2 (2000). Saharon Shelah's anniversary issue, pp. 109–136.