
AN AXIOMATIC APPROACH TO SYMMETRIC1

EXTENSIONS2

PETER HOLY3

Abstract. We provide a collection of natural axioms centered
around the symmetric forcing theorem, which yield the concept of
symmetric extensions, avoiding the technicalities involved in any
standard presentation.

1. Introduction4

Symmetric extensions are an important concept in set theory, orig-5

inating from Paul Cohen’s famous proof of the independence of the6

axiom of choice from ZF, and they have since proven to be the key tool7

to obtain independence and consistency results over ZF, in the absence8

of the axiom of choice. In their usual presentation, they are based on9

technicalities like the concepts of genericity, forcing names and their10

evaluations, and on the recursively defined forcing predicates, the defi-11

nition of which is particularly intricate for the basic case of atomic first12

order formulas.13

In his [1], Rodrigo Freire has provided an axiomatic framework for14

set forcing over models of ZFC that is a collection of guiding principles15

for extensions over which one still has control from the ground model,16

and has shown that his axioms necessarily lead to the usual concepts17

of genericity and of forcing extensions, and also that one can infer from18

them the usual recursive definition of the forcing predicates. In [2],19

this was extended to class forcing by Freire and the author. Building20

on some of the basic ideas of Freire, we introduce an axiomatic frame-21

work for symmetric extensions over models of ZF, that also avoids the22

technicalities connected with any usual standard setup for symmetric23

extensions, in particular the concepts of genericity and, perhaps most24

importantly, the recursively defined forcing predicates. Instead, we25

provide a natural collection of axioms centered around the symmetric26

forcing theorem, that is the conjunction of the definability of the sym-27

metric forcing relations and the truth lemma, stating that anything28
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2 PETER HOLY

that holds true in a symmetric extension is forced by a condition in the1

relevant (symmetrically) generic filter, and show that this collection2

of axioms essentially induces the common standard concepts: that is,3

we derive the relevant concept of genericity, the usual recursive def-4

initions of forcing predicates, an analogue of the structure of names5

for elements of symmetric extensions and their evaluations, thus ex-6

actly the same symmetric extensions, and also the preservation of the7

axioms of ZF to symmetric extensions. The aim of this paper is es-8

sentially twofold. First, it is to provide a new viewpoint on a central9

technical tool in modern set theory: Within a suitable basic setup, re-10

quiring the symmetric forcing theorem is sufficient to yield exactly the11

concept of symmetric extensions. Second, it is supposed to provide a12

self-contained way of introducing symmetric extensions axiomatically.13

The only point in the paper where it is strictly necessary to refer to14

some sort of standard setup is when we briefly argue for our axioms15

to actually be consistent in Section 5. In this introductory section, we16

want to provide a rough description of our axiomatic framework, which17

will be followed with formal definitions in Sections 2 and 3.18

In the standard setup for symmetric extensions, they are based on19

so-called symmetric systems, that is, triples S = (P,G,F) where P is20

a forcing notion (i.e., a preorder1), G is a group of automorphisms of21

P, and F is a filter on the set of subgroups of G. Models of set theory22

have a large variety of symmetric systems, and these symmetric systems23

usually give rise to a vast number of different symmetric extensions.24

Symmetric systems themselves may already seem like a fairly technical25

notion, but in order to capture the magnitude of complex possibilities26

offered by the technique of symmetric extensions, it seems necessary27

for our basic setup to contain such notions offering a rich variety of28

options. Thus, just like usual (class) forcing notions were the basis29

of the axiomatic description of (class) forcing in [1] (and [2]), we will30

make the usual notion of symmetric system the basis of our symmetric31

extensions.32

Let us fix a transitive ground model M ∈ V for this discussion, and33

a symmetric system S = (P,G,F) ∈ M .2 For the sake of simplicity,34

we require that M |= ZF.3 We think of conditions (that is, elements35

of the domain P ) of P as having partial information on properties36

1A preorder is a reflexive and transitive binary relation.
2As is common pratice, we will use M for the domain of M, P for the domain

of P etc.
3The usual ways of avoiding this extra consistency assumption apply, see for

example [5].
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of our extensions. If q ≤ p in P, we say that q is stronger than p,1

and we think of stronger conditions as having more information. The2

automorphisms π ∈ G will naturally extend to maps Ω(π) on M , and3

we consider x ∈ M to be symmetric in case it is mapped to itself4

by a large number of maps Ω(π), namely whenever π comes from a5

certain set in F . Any particular symmetric extension is built out of6

such symmetric elements,4 serving as names for the elements of the7

symmetric extension, together with a choice of filter on P. We think of8

such a filter as a selection of conditions which have correct information9

about our symmetric extension, and we will refer to such conditions as10

being correct. The motivation for using a filter of conditions can be11

explained exactly as in [2]:12

• If we consider the information that a condition q has to be13

correct, then any weaker condition p has less information than14

q, and this information should therefore also be correct. This15

corresponds to the upwards closure property of filters.16

• If p and q are correct conditions, we consider the information17

that is jointly collected by p and q to be correct. We require that18

there is a condition that collects this joint information and that19

we consider to be correct. This corresponds to the property of a20

filter that any two of its elements are compatible, as witnessed21

by yet another element of the filter.22

We require that for any condition p ∈ P , there exists a filter G of23

correct conditions of which p is an element, so that no condition is24

a priori incorrect. A number of natural axioms will make sure that25

we have ground model control over our symmetric extension, which we26

denote as MS[G], in a sufficiently simple way. We require the existence27

of a definable relation on our ground model, which, following [1], we28

call the P-membership relation. It is supposed to relate to partial29

knowledge about the membership relation in symmetric extensions. If30

a, b ∈M and p ∈ P , we say that a is an element of b according to p, and31

write a ∈p b in case the triple (p, a, b) stands in this relation.5 We want32

to define a membership relation for MS[G], letting the object denoted33

by a be an element of the object denoted by b in case a is an element34

of b according to some correct condition (that is, ∃p ∈ G a ∈p b).35

4In fact, we only use hereditarily symmetric elements later on.
5This relation corresponds to the relation that (a, p) ∈ b in the standard setup,

given that a, b are usual (hereditarily symmetric) forcing names. In this sense, the
symmetric ground model objects that we will make use of as names can immediately
be seen to be very similar to the usual (hereditarily) symmetric names for elements
of symmetric extensions.
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In order to be able to obtain a transitive model as our symmetric1

extension, we require the relation ∃p ∈ P a ∈p b to be well-founded.2

The relation ∃p ∈ G a ∈p b will usually not be extensional, but we3

nevertheless obtain a transitive ∈-structure (which will serve as our4

generic extension MS[G]) as the image of the homomorphism that is5

our evaluation map FG, recursively defined by setting FG(b) = {FG(a) |6

a ∈G b} for every symmetric b in M . In order to be able to show that7

MS[G] is well-defined and satisfies the axioms of ZF, we will need to8

require the following:9

• Set-likeness of the P-membership relation: for any symmetric10

b ∈M ,11

{a | ∃p ∈ P a ∈p b} is a set in M .12

• High degrees of freedom for the P-membership relation: for any13

symmetric relation S on M ×P in M , we find b ∈M for which14

{(a, p) | a ∈p b} = S.15

Furthermore, we also require the existence of forcing predicates de-16

finably over M, individually for each first order formula. We do not17

require any particular defining instances for these predicates, we only18

require them to be connected to truth in generic extensions by the fol-19

lowing two axioms (these requirements correspond to what is usually20

known as the forcing theorem in any standard setup):21

• Whatever holds in MS[G] is forced by some condition in G.22

• Whatever is forced by some condition in G holds true inMS[G].23

Let us mention two additional observations that this paper will help24

us make: First, our framework will help us to establish what the right25

notion of genericity with respect to symmetric systems is, namely that26

of symmetric rather than full genericity, a notion that was only recently27

introduced in [4]. Second, we will make the easy observation that one28

of the axioms in [1] and [2] was in fact unnecessary, as it easily folllows29

from the remaining axioms, namely the requirement that any condition30

in P forces at least as much as any weaker condition in P does.31

2. The basic setup32

Let L(∈) denote the collection of first order formulas in the language33

with the ∈-predicate. We consider equality between sets to abbreviate34

the statement that they have the same elements. We start by providing35

the definition of a symmetric framework, which will be the basic formal36

concept in our approach.37
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Definition 2.1. A symmetric framework is a tuple of the form(
M, S,Ω, R, (⊩φ)φ∈L(∈) ,G

)
with the following properties.

• M is a transitive set-size model of ZF.1

• S = (P,G,F) ∈M .2

– P = ⟨P,≤⟩ is a preorder with weakest element 1.63

– G is a group of automorphism of P.4

– F is a filter on the set of subgroups of G.5

– We refer to such S as a symmetric system.6

• Ω is a map with domain G, and for π ∈ G, Ω(π) : M → M is7

such that {(π, x) | x ∈ Ω(π)} is definable (over M).8

• The P-membership relation R is a definable (over M) relation9

on P ×M ×M . We denote the property R(p, a, b) as a ∈p b.
7

10

We also write b =R {(a, p) | a ∈p b}.11

• G is a second order unary predicate on P , i.e. a unary predicate12

on P(P ), and we require that G(G) implies that G ⊆ P is a13

filter. If G(G) holds, we say that G is a symmetrically generic14

filter. Whenever we quantify over G in the following, we tacitly15

assume that we quantify over G’s such that G(G) holds.16

• For every φ ∈ L(∈), ⊩φ is a definable (over M) predicate17

(which we also call a forcing relation for φ) on P ×Mm, where18

m denotes the number of free first order variables of φ.19

If ⟨q, a0, . . . , am−1⟩ ∈ ⊩φ, we also write q⊩φ(a0, . . . , am−1).20

3. The basic axioms21

In this section, we present our basic axioms for symmetric frame-22

works.23

(1) Existence of generic filters: ∀p ∈ P ∃G p ∈ G.824

(2) Well-Foundedness: The binary relation ∃p ∈ P a ∈p b on M25

is well-founded.26

Using axiom 2, we can define a notion of name rank, letting, for27

a ∈M ,28

rank a = sup{rank(b) + 1 | ∃p ∈ P b ∈p a}.

6We use preorders rather than (the perhaps more common restriction to) partial
orders, dropping the requirement of antisymmetry (this more general context nat-
urally appears for example in the case of (symmetric) iterations of forcing notions).

7In a standard forcing setup, this would correspond to the property that (a, p) ∈
b.

8Remember that by our above convention, we tacitly require here that G(G)
holds.
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(3) Extension: For all a, b ∈M , and π ∈ G,1

Ω(π)(b) =R {(Ω(π)(a), π(p)) | a ∈p b}.
Let the symmetry group of a ∈ M be sym(a) = {π ∈ G | Ω(π)(a) =2

a}. We say that a ∈ M is symmetric if sym(a) ∈ F , and we let N3

denote the collection of all symmetric objects (fromM). We say (induc-4

tively, using the axiom of well-foundedness) that b ∈ N is hereditarily5

symmetric if a is hereditarily symmetric whenever ∃p ∈ P a ∈p b.6

We let HS denote the collection of all hereditarily symmetric objects7

(from M). Elements of HS will serve as names for the elements of our8

symmetric extensions defined below.9

Assume that G is such that G(G) holds. Define a relation ∈G on HS10

by letting a ∈G b if ∃p ∈ G a ∈p b. Using axiom (2), this relation is11

well-founded, and since HS ∈ V , we may thus recursively define our12

evaluation function FG along the relation ∈G, letting FG(b) = {FG(a) |13

a ∈G b} for each b ∈ HS.9 Let MS[G] denote the ∈-structure on14

the transitive set FG[HS]:
10 That is, let MS[G] = ⟨MS[G],∈⟩, where15

MS[G] = FG[HS] = {FG(a) | a ∈ HS}. We refer to MS[G] as a16

symmetric extension of M .17

The next two axioms should be seen as the most crucial ones, and18

they state that a natural form of the forcing theorem holds, that is19

based on our forcing relations. Given a finite tuple a⃗ = ⟨ai | i < n⟩20

of elements of HS (we simply say a⃗ ∈ HS in this case), let FG(⃗a) =21

⟨FG(ai) | i < n⟩.22

(4) Truth Lemma: For all φ ∈ L(∈), all a⃗ ∈ HS and all G,23

MS[G] |= φ(FG(⃗a)) iff ∃p ∈ G p⊩φ(⃗a).

(5) Definability Lemma: For all φ ∈ L(∈), all a⃗ ∈ HS and p ∈ P ,24

p⊩φ(⃗a) iff ∀G ∋ p MS[G] |= φ(FG(⃗a)).
11

Our final two axioms make sure that our setup is reasonable, with25

the former assuming that names have set-like properties with respect26

9It may seem like we are taking some sort of transitive collapse of the structure
⟨M[G],∈G⟩, however note that there is no reason to assume that ∈G is extensional,
or that ∈G can be factorized in order to obtain an extensional relation.

10For the moment, this notation is somewhat ambiguous, for MS[G] may not
only depend on M, S and G, but also on the P-membership relation. We will
however show at the end of this section that under additional assumptions, MS[G]
is uniquely determined.

11Note that we already required the forcing relations to be predicates of our
model in our basic setup, however this axiom connects them with their intended
meaning, and it thus seems justified to consider it to be our version of the definability
lemma.



AXIOMS FOR SYMMETRIC EXTENSIONS 7

to the P-membership relation, and the latter making sure that we have1

a sufficient amount of names available.122

(6) Set-Likeness: If b ∈ HS, then {a | ∃p ∈ P a ∈p b} ∈M .3

(7) Universality: There is a map Γ: M → HS that is definable4

over M, such that if S ∈ M is a symmetric subset of HS× P ,5

that is,6

∃F ∈ F ∀π ∈ F ∀(a, p) ∈ S (Ω(π)(a), π(p)) ∈ S,

then Γ(S) =R S, and Γ(S) is the unique T ∈ HS for which7

T =R S.8

The statement of the following lemma was taken to be an axiom in9

[1] and [2], however it is easily provable (and would also have been10

easily provable in [1] or [2]) from axiom 5, which has been overlooked11

in earlier work on the subject.12

Lemma 3.1. For all φ ∈ L(∈), for all a⃗ ∈ HS, and p, q ∈ P , if13

p⊩φ(⃗a) and q ≤ p, then q⊩φ(⃗a).14

Proof. Assume p⊩φ(⃗a) and q ≤ p. Then, axiom 5 implies that15

∀G ∋ p MS[G] |= φ(FG(⃗a)).

But since any G is a filter, it contains p whenever it contains q, hence it16

clearly follows that ∀G ∋ q MS[G] |= φ(FG(⃗a)), which again by axiom17

5 is equivalent to q⊩φ(⃗a), as desired. □18

We close this section by a lemma which in particular shows that19

MS[G] does in fact not depend on the choice of the P-membership20

relation.21

Lemma 3.2. Assume that we have two symmetric frameworks which
are based on the same model M and symmetric system S = (P,G,F):(

M,S,Ω, R, (⊩φ)φ∈L(∈) ,G
)

and (
M,S,Ω′, R′,

(
⊩′

φ

)
φ∈L(∈) ,G

′
)
,

and that G is such that both G(G) and G′(G) hold. We will write22

a ∈p b and a ∈′
p b in case R(p, a, b) or R′(p, a, b) hold. We will use23

HS′ to denote the version of HS, we use F ′
G to denote the version of24

FG, and we use Γ′ to denote the version of Γ provided by the latter25

symmetric framework.26

If a ∈ HS, then there is b ∈ HS′ such that FG(a) = F ′
G(b).27

12The uniqueness requirement in axiom 7 below could be avoided, however it is
very natural and easily available in any sort of setup for symmetric extensions.
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Proof. Making use of the map Γ′, we define a translation function1

h : HS → HS′ by induction on name rank, and simultaneously show2

that for any c ∈ HS and π ∈ G, Ω′(π)(h(c)) = h(Ω(π)(c)). For c ∈ HS,3

consider the set C = {(d, p) | d ∈p c}, and let F ∈ F be such that4

∀π ∈ F ∀(d, p) ∈ C (Ω(π)(d), π(p)) ∈ C, using that c is symmetric.5

Let C ′ = {(h(d), p) | (d, p) ∈ C} ⊆ HS′ × P . Let π ∈ F and pick6

(h(d), p) ∈ C ′. Then, (Ω′(π)(h(d)), π(p)) = (h(Ω(π)(d)), π(p)) ∈ C ′,7

and thus we may invoke axiom 7, letting8

h(c) = Γ′(C ′) ∈ HS′.

Now if π ∈ G, then9

Ω′(π)(h(c)) =R′ {(Ω′(π)(h(d)), π(p)) | d ∈p c} = {(h(Ω(π)(d)), π(p)) | d ∈p c}.
On the other hand, h(Ω(π)(c)) =R {(h(Ω(π)(d)), π(p)) | d ∈p c} as10

well, thus Ω′(π)(h(c)) = h(Ω(π)(c)) by the uniqueness requirement in11

axiom 7.12

Concluding the proof of the lemma, we show by induction on name13

rank that for any c ∈ HS, F ′
G(h(c)) = FG(c). Let c ∈ HS. Inductively,14

F ′
G(h(c)) = {F ′

G(h(d)) | ∃p ∈ G d ∈p c} = {FG(d) | ∃p ∈ G d ∈p c} = FG(c),

as desired. □15

4. Forcing predicates, density, and symmetry16

We will use our axioms to verify some of the basic properties of17

forcing, and in particular to verify that the forcing predicates satisfy18

their usual defining clauses, by arguments that are partially similar19

to the arguments of [1, Section 4] or [2, Section 4]. However, we are20

making strong use of the universality axiom, the analogue of which was21

only introduced much later in both [1] and [2], already in the proof of22

Lemma 4.3. We start by observing that we obtain the usual defining23

clause for the forcing relation for negated formulae.24

Lemma 4.1. For all φ ∈ L(∈), p ∈ P and a⃗ ∈ HS, we have that25

p⊩¬φ(⃗a) iff ∀q ≤ p q ̸ ⊩φ(⃗a).

Proof. Let us assume that26

(i) p⊩¬φ(⃗a).27

By axiom (5), equivalently28

(ii) ∀G ∋ p M[G] |= ¬φ(FG(⃗a)).29

By axiom (4), this is equivalent to30

(iii) ∀G ∋ p ∀q ∈ G q ̸ ⊩φ(⃗a).31
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We want to argue that this in turn is equivalent to our desired statement1

that2

(iv) ∀q ≤ p q ̸ ⊩φ(⃗a).3

Thus, assume first that (iii) holds, and let q ≤ p. By axiom (1), we4

may pick a generic filter G ∋ q, which will thus also contain p as an5

element. By (iii), we thus have that q ̸ ⊩φ(⃗a), as desired.6

Conversely, assume that (iv) holds. Let G be a generic filter that7

contains p as an element, and assume for a contradiction that there8

is r ∈ G such that r⊩φ(⃗a). Since G is a filter, we may pick q below9

both p and r. By Lemma (3.1), it follows that q⊩φ(⃗a), contradicting10

(iv). □11

The next lemma provides us with objects that represent ground12

model elements in our symmetric extensions.13

Lemma 4.2 (Ground model elements). There is a definable map :̌ M →14

HS, a 7→ ǎ, such that ∀a ∈M ∀G15

FG(ǎ) = a ∧ sym(ǎ) = G.

Proof. Using axiom (7), by recursion on von Neumann rank in M , for16

b ∈ M , let b̌ = Γ({(ǎ, 1) | a ∈ b}). Now, for any b, FG(b̌) = b and17

sym(b̌) = G is easily shown by induction on the rank of b̌, using that18

π(1) = 1 for the latter. □19

A subset D of P is symmetrically dense if it is dense (i.e., ∀p ∈20

P ∃q ≤ p q ∈ D) and ∃F ∈ F ∀π ∈ F π[D] = D. We will show that21

our axioms imply generic filters to intersect all symmetrically dense22

subsets of P in M .1323

Lemma 4.3. Let D ∈M be such that D ⊆ P is symmetrically dense.24

If G is a generic filter, then G intersects D.25

Proof. Let Ḋ = Γ({(∅̌, d) | d ∈ D}). Clearly, Ḋ is symmetric with26

sym(Ḋ) = G. Let p ∈ P and assume p⊩ Ḋ = ∅. Then ∃q ≤ p q ∈ D,27

hence ∅̌ ∈q Ḋ, so FG(Ḋ) ̸= ∅ whenever q ∈ G, that is, by axiom28

5, q⊩ Ḋ ̸= ∅, contradicting Lemma 4.1. Thus, again by Lemma 4.1,29

1⊩ Ḋ ̸= ∅. It follows that for all G, FG(Ḋ) ̸= ∅, and hence D ∩ G ̸=30

∅. □31

13It may be somewhat surprising that we do not obtain our generic filters to
intersect all dense subsets of P. However, it was already noted in [4] by Asaf
Karagila and Jonathan Schilhan that this seems to be the right notion of genericity
in the context of symmetric extension. This could be seen to further be supported
by our lemma below, the proof of which does not extend to arbitrary dense subsets
of P .
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We next need another auxiliary result on symmetric open dense sets1

(which could easily be extended to arbitrary dense sets, but the current2

version is sufficient for our purposes). We say that a subset A of a3

preorder P is open if it is downward closed, that is if p ∈ A and q ≤ p,4

then also q ∈ A.5

Lemma 4.4. If D ⊆ P is open and symmetric, D ∈ M , then D is6

dense below p if and only if7

(†) ∀G ∋ pD ∩G ̸= ∅.

Proof. Assume first that (†) holds. Let r ≤ p, and using axiom (1), let8

G be a generic filter with r ∈ G. It follows that also p ∈ G, and thus9

using (†), we obtain s ∈ D ∩ G. Since D is open and G is a filter, we10

obtain q below both r and s that is an element of D∩G, showing that11

D is dense below p.12

On the other hand, assume that D is dense below p, and let G be a13

generic filter containing p as an element. Let E = D ∪ {q ∈ P | ∀r ≤14

q r ̸∈ D}. Then, E is clearly dense, as for any q ∈ P , either some r ≤ q15

is in D, or if not, then q ∈ E. But E is also symmetric. Let π be such16

that π[D] = D. If q ∈ D, then π(q) ∈ D ⊆ E. If q ∈ E \ D, this is17

because no r ≤ q is in D. But then, no r ≤ π(q) is in π[D] = D; that18

is, π(q) ∈ E. By Lemma 4.3, it follows that G ∩ E ̸= ∅. Since p ∈ G19

and G is a filter, it thus follows that G ∩D ̸= ∅, as desired. □20

It is now possible to show that the usual defining clauses for the21

forcing relation can be recovered from our basic axioms. For a, b ∈ HS22

and p ∈ P , let a∈p b abbreviate the statement that ∃q ≥ p a ∈q b.23

Lemma 4.5. For any p ∈ P , φ, ψ ∈ L(∈), and a, b ∈ HS,24

(1) p⊩ a ∈ b iff ∀r ≤ p∃s ≤ r ∃x ∈ HS [x∈s b ∧ s⊩ a = x].25

(2) p⊩ a ⊆ b iff ∀x ∈ HS∀r ∈ P [x∈r a → ∀q ≤ p, r ∃s ≤26

q s⊩x ∈ b].27

(3) p⊩ a = b iff [p⊩ a ⊆ b ∧ p⊩ b ⊆ a].28

(4) p⊩[φ ∧ ψ](⃗a) iff p⊩φ(⃗a) ∧ p⊩ψ(⃗a).29

(5) p⊩[φ ∨ ψ](⃗a) iff ∀r ≤ p ∃q ≤ r [q⊩φ(⃗a) ∨ q⊩ψ(⃗a)].30

(6) p⊩ ∃xφ(x, a⃗) iff ∀r ≤ p ∃q ≤ r ∃x ∈ HS q⊩φ(x, a⃗).31

(7) p⊩ ∀xφ(x, a⃗) iff ∀x ∈ HS p⊩φ(x, a⃗).32

Proof. (1) Let us assume that (i) p⊩ a ∈ b.33

By axiom (5), this is equivalent to (ii) ∀G ∋ p FG(a) ∈ FG(b).34

By the definition of FG, this in turn is equivalent to35

(iii) ∀G ∋ p ∃x ∈ HS [FG(a) = FG(x) ∧ ∃q ∈ G x ∈q b].36

Using axiom (4), we obtain the following equivalent form.37
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(iv) ∀G ∋ p∃x ∈ HS [∃r ∈ G r⊩ a = x ∧ ∃q ∈ G x ∈q b].1

Now we make use of Lemma 3.1, equivalently obtaining that2

(v) ∀G ∋ p∃s ∈ G∃x ∈ HS [s⊩ a = x ∧ x∈s b].3

Now note that {s ∈ P | ∃x ∈ M [s⊩ a = x ∧ x∈s b]} is open with4

symmetry group sym(a) ∩ sym(b) ∈ F . Thus, as desired, Lemma 4.45

equivalently yields:6

(vi) ∀r ≤ p ∃s ≤ r ∃x ∈ HS [x∈s b ∧ s⊩ a = x].7

(2) Let us assume that (i) p⊩ a ⊆ b.8

By axiom (5), this is equivalent to (ii) ∀G ∋ p FG(a) ⊆ FG(b).9

By the definition of FG and axiom (4), this in turn is equivalent to10

(iii) ∀G ∋ p ∀x ∈ HS∀r ∈ P [(x∈r a ∧ r ∈ G) → ∃s ∈ G s⊩x ∈ b].11

Since all relevant r will be compatible with p, we may equivalently12

assume that r ≤ p, and thus obtain the following equivalent form.13

(iv) ∀x ∈ HS∀r ≤ p∀G ∋ r [x∈r a→ ∃s ∈ G s⊩x ∈ b].14

Now note that {s ∈ P | s⊩x ∈ b} is open with symmetry group15

sym(x) ∩ sym(b) ∈ F . Thus, Lemma 4.4 equivalently yields:16

(v) ∀x ∈ HS∀r ≤ p [x∈r a→ ∀q ≤ r ∃s ≤ q s⊩x ∈ b].17

Finally, it is easy to check that we equivalently obtain our desired18

statement below.19

(vi) ∀x ∈ HS∀r ∈ P [x∈r a→ ∀q ≤ r, p ∃s ≤ q s⊩x ∈ b].20

(3) is very easy. The remaining clauses are verified by induction on21

formula complexity, with (4) being very easy. Let us verify (5) and22

thus assume that23

(i) p⊩(φ ∨ ψ)(⃗a).24

By axiom (5), this is equivalent to25

(ii) ∀G ∋ p MS[G] |= (φ ∨ ψ)(FG(⃗a)).26

This in turn is equivalent to27

(iii) ∀G ∋ p [MS[G] |= φ(⃗a) ∨MS[G] |= ψ(⃗a)].28

By axiom (4), we obtain the following equivalent form.29

(iv) ∀G ̸= p [∃q ∈ G q⊩φ(⃗a) ∨ ∃q ∈ G q⊩ψ(⃗a)].30

Now note that {q ∈ P | q⊩φ(⃗a) ∨ q⊩ψ(⃗a)} is open with symmetry31

group sym(a) ∈ F . Thus, Lemma 4.4 equivalently yields our desired32

equivalent form:33

(v) ∀q ≤ p ∃r ≤ q r⊩φ(⃗a) ∨ r⊩ψ(⃗a).34
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Let us verify (6) and thus assume that (i) p⊩ ∃xφ(x, a⃗).1

By axiom (5), this is equivalent to (ii) ∀G ∋ p MS[G] |= ∃xφ(x, FG(⃗a)).2

This in turn is equivalent to3

(iii) ∀G ∋ p ∃x ∈ HSMS[G] |= φ(FG(x), FG(⃗a)).4

Now we use our induction hypothesis for φ, equivalently obtaining that5

(iv) ∀G ∋ p ∃q ∈ G∃x ∈ HS q⊩φ(x, a⃗).6

Now note that {q ∈ P | ∃x ∈ HS q⊩φ(x, a⃗)} is open and symmetric.7

Then, as desired, Lemma 4.4 equivalently yields:8

(v) ∀r ≤ p ∃q ≤ r ∃x ∈ HS q⊩φ(x, a⃗).9

Finally, (7) is easy to verify, and we will leave this to the interested10

reader. □11

The next lemma shows that, as one would perhaps hope, our forcing12

relations are symmetric.13

Lemma 4.6. For all φ ∈ L(∈), a⃗ ∈ HS, p ∈ P and π ∈ G,14

p⊩φ(a0, . . . , am−1) if and only if π(p)⊩φ(Ω(π)(a0), . . . ,Ω(π)(am−1)).

Proof. By induction on formula complexity. For atomic formulas, we15

simultaneously argue for ∈ and = by induction on name rank (or, more16

precisely, by induction on pairs of name ranks, ordered lexicographi-17

cally). By Lemma 4.5, p⊩ a ∈ b iff18

∀r ≤ p∃s ≤ r ∃x ∈M [x∈s b ∧ s⊩ a = x].

Note that rank(x) < rank(b) in the above. Inductively, and using the19

symmetry axiom, we obtain that20

Ω(π)(x)∈π(s) Ω(π)(b) ∧ π(s)⊩Ω(π)(a) = Ω(π)(x).

Using Lemma 4.5, it follows that π(p)⊩Ω(π)(a) ∈ Ω(π)(b). The reverse21

direction follows making use of π−1 ∈ G. The argument for equality is22

analogous, using the respective statement in Lemma 4.5. For the case23

of negations, assume that p⊩¬φ(a0, . . . , am−1). By Lemma 4.1, equiv-24

alently, ∀q ≤ p q ̸ ⊩φ(a0, . . . , am−1). Applying π, we obtain (inductively,25

using Lemma 4.1) that26

π(p)⊩¬φ(Ω(π)(a0), . . . ,Ω(π)(am−1)).

The reverse direction is again obtained by simply using π−1 in the27

same way. The remaining cases are essentially analogous to the case of28

negations, using the remaining clauses of Lemma 4.5. □29
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5. ZF in symmetric extensions1

In this section, we consider the following statement.2

(*) Preservation of axioms: ∀G MS[G] |= ZF.143

Let us start with the important remark that our axioms (1)–(7), as4

well as (*), hold in the standard setup for symmetric extensions, as5

described for example in [4]:15 Given a countable transitive model M6

of ZF and a symmetric system S ∈M , interpreting a ∈p b as (a, p) ∈7

b, letting Ω(π)(b) = {(Ω(π)(a), π(p)) | (a, p) ∈ b}) for any b ∈ M ,8

letting G(G) hold if and only if G is a filter on P that intersects every9

symmetrically dense subset of P , and using the standard inductive10

definitions for the forcing predicates (which are exactly the ones we11

derived in Section 4), we arrive at a symmetric framework. The easy12

standard result known as the Rasiowa-Sikorski lemma implies that (1)13

for every p ∈ P , there is a (fully) P-generic filter over M that contains14

p as an element. Axioms (2) and (3) are immediate from our above15

definitions. Verifying axioms (4) and (5) amounts to the proof of the16

forcing theorem in the standard setup (see for example [4]). Axiom (6)17

is immediate from our definitions, and axiom (7) follows taking, in the18

notation of that axiom, T = S, by a straightforward calculation using19

axiom (3) and the fact that any F ∈ F is closed under the taking of20

inverses (this is needed to check that T ∈ HS). It is well-known [4] how21

to verify (*) with respect to M and S in this context.22

We can however also derive axiom (*) from axioms (1)–(7). There23

are two different ways to do so. The first possibility is to make use24

of Lemma 3.2, showing that MS[G] is just the standard symmetric25

extension of M by the S-generic filter G, and thus, again by the same26

standard arguments [4], MS[G] |= ZF. The second possibility is to27

actually verify the axioms of ZF in MS[G] using axioms (1)–(7). The28

advantage of this second option, which we choose in the below, is that29

the argument is self-contained.30

Theorem 5.1. Axioms (1)–(7) imply that (*) MS[G] |= ZF.31

Proof. Since MS[G] is a transitive ∈-structure, it clearly satisfies Reg-32

ularity and Extensionality. Using axiom (7), MS[G] satisfies Pairing:33

14Due to axiom 5, this statement could equivalently be replaced by a scheme of
axioms, consisting of statements of the form 1⊩φ for every φ ∈ ZF.

15Earlier references tend to make use of fully generic rather than just symmetri-
cally generic filters, leading to a somewhat more restricted setting which simplifies
the verification of (*), as it is possible to make use of the fact that symmetric ex-
tensions are submodels of fully generic extensions in this setting (as for example in
[3]).
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If a, b ∈ HS, let c =R {(a, 1), (b, 1)}, and let F = sym(a)∩ sym(b) ∈ F ,1

since F is a filter. Then, for every π ∈ F , clearly, π(c) = c ∈ HS, and2

FG(c) = {FG(a), FG(b)}. By Lemma 4.2, MS[G] satisfies Infinity.3

Let us treat the union axiom: Let a ∈ HS. We need to show that4

for some b ∈ HS,
⋃
FG(a) ⊆ FG(b). Let X = {c | ∃p c ∈p a} ∈ M by5

axiom (6). Let Y = {d | ∃c ∈ X ∃q d ∈q c} ∈ M by axiom (6). Using6

axiom (7), let b =R {(d, 1) | d ∈ Y }. It is straightforward to check that7

FG(b) ⊇
⋃
FG(a). It remains to show that b ∈ HS. Let π ∈ sym(a). It8

follows that Ω(π)[X] = X, which in turn implies that Ω(π)[Y ] = Y . It9

clearly follows that Ω(π)(b) = b, and hence that sym(b) ⊇ sym(a) ∈ F .10

We now show that MS[G] satisfies collection: Let a, t ∈ HS, let φ be11

a first order formula, and assume that p⊩ ∀x ∈ a∃y φ(x, y, t). We will12

find b ∈ HS such that p⊩ ∀x ∈ a∃y ∈ b φ(x, y, t). Let X = {c | ∃r c ∈r13

a} ∈ M . Using the axiom of collection in M, let Y ⊆ HS, Y ∈ M , be14

such that whenever c ∈ X and s ∈ P are such that s ≤ p and s⊩ c ∈ a,15

if there is y ∈ HS such that s⊩φ(c, y, t), then there is y ∈ Y such16

that s⊩φ(c, y, t). Let Y ∗ = {Ω(π)(y) | y ∈ Y ∧ π ∈ G} ∈ M . Let17

b =R {(y, 1) | y ∈ Y ∗} ∈ HS. Now if c ∈ X and s ≤ p forces that c ∈ a,18

by Lemma 4.5, there is u ≤ s and y ∈ HS such that u⊩φ(c, y, t). This19

shows that p⊩ ∀x ∈ a ∃y ∈ b φ(x, y, t), as desired.20

Let us next show that MS[G] satisfies separation: Let a, t ∈ HS and21

let φ be a first order formula. Let X = {c | ∃p c ∈p a} ∈M . Let22

b =R {(c, p) | c ∈ X ∧ p⊩[c ∈ a ∧ φ(c, t)]}.
Clearly, b ∈ HS for sym(b) ⊇ sym(a) ∩ sym(t), since π[X] = X for π ∈23

sym(a), and by Lemma 4.6. But clearly also, 1⊩ b = {x ∈ a | φ(x, t)}.24

25

Finally, we argue that the powerset axiom is preserved toMS[G]: Let26

a ∈ HS, and let X = {c | ∃p c ∈p a} ∈ M . For d ⊆ X × P in M , let27

xd =R d. Let b =R {(xd, 1) |M ∋ d ⊆ X×P}. If π ∈ G and d ⊆ X×P28

in M , let π∗[d] = {(Ω(π)(c), π(p)) | (c, p) ∈ d}. If π ∈ sym(a), then29

Ω(π)[X] = X and Ω(π)(xd) = xπ∗[d], thus Ω(π)(b) = b. Now assume30

that e ∈ HS is such that FG(e) ⊆ FG(a) inMS[G]. Let p ∈ G force that31

e ⊆ a. Let d = {(c, r) ∈ X × P | ∃q, f f ∈q e ∧ r ≤ p, q ∧ r⊩ f = c}32

and let x = xd =R d. Since FG(xd) ∈ FG(b) by the definition of b, it33

only remains to check that FG(e) = FG(x). Let q ∈ G and f ∈ HS be34

such that f ∈q e. Then there is r ≤ p, q in G and c ∈ X such that35

r⊩ f = c, i.e., (c, r) ∈ d. This however implies that FG(f) ∈ FG(x).36

On the other hand, if there is r ∈ G and c ∈ HS such that c ∈r x, this37

means that (c, r) ∈ d. But then, there is q ∈ G and f ∈q e such that38

r⊩ f = c. This implies that FG(c) ∈ FG(e), as desired. □39
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