
THE ORDERING PRINCIPLE AND THE AXIOM OF

DEPENDENT CHOICE

PETER HOLY AND JONATHAN SCHILHAN

Abstract. We introduce finite support iterations of symmetric systems, and

use them to provide a strongly modernized proof of David Pincus’ classical
result that the axiom of dependent choice is independent over ZF with the

ordering principle together with a failure of the axiom of choice.

1. Introduction

The ordering principle, OP, is the statement that every set can be linearly or-
dered. The axiom of choice, AC, in one of its equivalent forms, states that every
set can be wellordered, and thus clearly implies OP. That this implication cannot
be reversed was shown by Halpern and Lévy (see [1, Section 5.5]): The argument
proceeds by showing that the basic Cohen model, which is well-known to satisfy
ZF+¬AC (see [1, Section 5.3]), satisfies OP. This model is obtained by first forcing
to add countably many Cohen reals, and then passing to a symmetric submodel
of this extension, in which we still have the set of those Cohen reals, but no well-
ordering of it. We may informally say that we forget about the wellordering in this
submodel. On the other hand, it is easy to see that this submodel already fails
to satisfy the axiom of dependent choice DC: The generic set of Cohen reals that
were added is clearly infinite, however Dedekind-finite (see [1, Exercise 5.18]), i.e.,
ω does not inject into it. It is well-known (and an easy exercise) that DC implies
the notions of being finite and of being Dedekind-finite to coincide.

The goal of our paper is to provide a new and strongly modernized proof of the
following classical result of Pincus [5]:

Theorem 1 (Pincus). [5] DC is independent over ZF+OP+ ¬AC.

Given the properties of the basic Cohen model that we reviewed above, this
amounts to verifying the relative consistency of ZF+OP + DC + ¬AC, starting
from ZF.

Pincus’ paper makes use of the ramified forcing notation which developed directly
out of Cohen’s independence proof for CH. This old-fashioned way of presenting
forcing already became outdated and essentially obsolete by the time [5] was pub-
lished (see e.g. Shoenfield’s [6]) and therefore, while he provides a very nice outline

2020 Mathematics Subject Classification. 03E25,03E35.
Key words and phrases. Ordering Principle, Dependent Choice, Symmetric extensions,

Iterations.
The second author was supported in part by a UKRI Future Leaders Fellowship

[MR/T021705/1]. This research was funded in whole or in part by the Austrian Science Fund
(FWF) [10.55776/ESP5711024]. For open access purposes, the authors have applied a CC BY

public copyright license to any author-accepted manuscript version arising from this submission.

1

2 PETER HOLY AND JONATHAN SCHILHAN

of his arguments, from a modern point of view, the details in his paper are diffi-
cult to grasp. For this reason, we think that providing a modern and essentially
self-contained account of his result will be very interesting for and helpful to the
set theoretic community. Furthermore, this paper provides an application of the
technique of symmetric iterations that has been initiated by Asaf Karagila and has
been further developed with the second author in [3]. Although finite support it-
erations have already appeared in some form in Karagila’s [2], we provide a more
compact and, at least in our view, simpler approach that follows more closely the
familiar notation from usual forcing iterations. It is our hope that the presentation
we give below can at some point become part of the general folklore, just as is the
case for forcing. For this to happen, the method must be applicable in a broad
sense, and our article is a proof-of-concept for this.

Our basic line of argument towards Pincus’ result essentially follows the outline
at the beginning of [5, Section 1]: The starting point is the basic Cohen model.
It has a set of Cohen reals with no wellordering, and in fact, no countably infinite
subset. In order to resurrect DC, one simply adds a surjection from ω onto this
set, thus, however, even resurrecting AC. So what Pincus actually does is he adds
not just one, but countably many such surjections, and then passes to a symmetric
submodel of this second extension in which he forgets about the ordering of this
set of surjections, thereby obtaining a new failure of DC. The failure of DC is thus
shifted to a higher level of complexity. Now, the idea is to continue this process
for ω1-many stages, and that any possible failure of DC will somehow appear at an
intermediate stage, and will actually be fixed by the very next stage, i.e., DC will
hold in the final model. What we will actually show however, is something slightly
stronger, namely that σ-covering holds between our symmetric extension and the
corresponding full forcing extension, and that this in turn implies DC to hold in
our symmetric extension. Finally, modifying the standard arguments for the basic
Cohen model, it is still possible to show that OP holds in our symmetric extension,
while AC fails in it.

Using this as a basic guideline, instead of following any of the further details in
Pincus’ paper, we came up with our own arguments, which we will provide below.

This paper is organised as follows: In Section 2, we will introduce some basic ter-
minology regarding symmetric systems and extensions. In Section 3, we will briefly
comment on how to deal with second order models in the context of symmetric
extensions. In Section 4, we will introduce finite support iterations of symmetric
systems. In Section 5, we will formally introduce the symmetric iteration that we
will use to produce our desired model. In Section 6, we will verify that the ordering
principle holds in our symmetric extension. In Section 7, we will show that DC
holds in our symmetric extension, thus establishing Theorem 1.

2. Preliminaries

A symmetric system is a triple of the form S = (P,G,F), where (P,≤) is a
preorder, G is a group of automorphisms of P and F is a normal filter on the set of
subgroups of G. If ẋ is a P-name and π ∈ G, we inductively let

π(ẋ) = {(π(p), π(ẏ)) | (p, ẏ) ∈ ẋ},

THE ORDERING PRINCIPLE 3

and we let sym(ẋ) = {π ∈ G | π(ẋ) = ẋ}. The following fact is well-known and
used throughout the paper:

Fact 2. Let ẋ0, . . . , ẋn be P-names, π an automorphism of P, p ∈ P and φ(v0, . . . , vn)
some formula in the language of set theory. Then

p ⊩P φ(ẋ0, . . . , ẋn) if and only if π(p) ⊩P φ(π(ẋ0), . . . , π(ẋn)).

We say that a P-name ẋ is symmetric (according to S) if sym(ẋ) ∈ F . We
(inductively) say that ẋ is hereditarily symmetric (according to S) if ẋ is symmetric
and whenever (p, ẏ) ∈ ẋ, ẏ is hereditarily symmetric. Given a symmetric system S,
we let HSS denote the collection of hereditarily symmetric P-names, and we omit
the subscript S when it is clear from context. We also refer to elements of HS as
S-names. The class HS is further stratified into sets HSα = HSS,α, α an ordinal,
consisting of the S-names of rank < α.

An interesting fact is that we do not have to require our generic filters to be fully
generic for P: satisfying the weaker property of being symmetrically generic suffices.
This will briefly be useful in Section 4, but isn’t necessary for understanding the
main result.

Definition 3. We say that a dense set D ⊆ P is symmetric if sym(D) = {π ∈ G :
π[D] = D} ∈ F . Let G be a filter on P. Then G is S-generic, or symmetrically
generic, over M , if for every symmetric dense subset D ⊆ P in M , G ∩D ̸= ∅.

If M is a transitive model of ZF, a symmetric extension of M via S, or in other
words, an S-generic extension of M , is a model of the form M [G]S = {ẋG | ẋ ∈
HS} for an S-generic filter G over M . We let ⊩S denote the (symmetric) forcing
relation of the system S, which is defined inductively just like the usual forcing
relation, however restricting to hereditarily symmetric names (in particular also in
the existential and universal quantification steps). The forcing theorem holds with
respect to this relation and S-generic extensions [3].

Fact 4 (see [3]). Let G be S-generic over M . Then we have the following:

• The symmetric forcing theorem: The forcing theorem holds with respect to
⊩S and S-generic extensions of M .

• M [G]S |= ZF.
• There is a P-generic H over M so that M [H]S = M [G]S .

The last item really says that there is no distinction between the models obtained
via full versus symmetric generics.

If A is a set of P-names, then A• = {1} ×A is the canonical P-name for the set
containing the elements of A (or more precisely, their evaluations by the generic
filter). Similar notation is applied to sequences of P-names, so that for instance
⟨ȧi : i < n⟩• becomes the canonical name for the ordered tuple of ȧi, i < n.

We will sometimes use the following general fact, which says that we can uni-
formly find names for definable objects.

Fact 5. Let S = (P,G,F) be a symmetric system, and let φ(u, v0, . . . , vn) be a
formula in the language of set theory. Then, there is a definable class function F
so that for any S-names ẋ0, . . . , ẋn and p ∈ P with

p ⊩S ∃!yφ(y, ẋ0, . . . , ẋn),

4 PETER HOLY AND JONATHAN SCHILHAN

ẏ = F (p, ẋ0, . . . , ẋn) is an S-name with
⋂

i≤n sym(ẋi) ≤ sym(ẏ) so that

p ⊩S φ(ẏ, ẋ0, . . . , ẋn).

Proof. Let γ be the least ordinal such that

p ⊩S ∃y ∈ HS•γ φ(y, ẋ0, . . . , ẋn).

Let ẏ be the set of all pairs (q, ż) ∈ P×HSγ so that

q ⊩ ∀y(φ(y, ẋ0, . . . , ẋn) → ż ∈ y)}.

□

3. Symmetric extensions as second order models

Let S = (P,G,F) be a symmetric system in a model M = (M, C) of GB, that
is Gödel-Bernays set theory, with M its domain of sets, and with C its domain of
classes. In case we are starting with a model of ZF, it yields a model of GB when
endowed with its definable classes. In M, we say that a class Ẋ ⊆ P×HS is a class
S-name if

sym(Ẋ) := {π ∈ G | π(Ẋ) = Ẋ} ∈ F ,

where π(Ẋ) = {(π(p), π(ẋ)) : (p, ẋ) ∈ Ẋ}. Let G be an S-generic filter over M,
and let N = M[G]S = (M [G]S , C[G]S), where C[G] is obtained by evaluating
class names in C with G.1 We will use uppercase letters to refer to classes and class
names, while lowercase letters indicate sets or set names. When we allow for classes
as parameters in first order formulas, we also mean to include additional atomic
formulas of the form x ∈ X.

Proposition 6. The symmetric forcing theorem can be extended to first order for-
mulas using classes as parameters, and N |= GB.

Proof. The verification of the extension of the symmetric forcing theorem is very
much standard (proceeding exactly as for the usual forcing theorem) - see also [3].
Let us verify that the axiom of Collection holds in N . So assume φ is a first order

formula using class parameters, and p ∈ P is such that p⊩S ∀x ∃y φ(x, y, X⃗), with X⃗
a finite sequence of class S-names, and let ȧ ∈ M be a P-name. Since we may code
any finite number of classes by a single class, it suffices to consider a single class
S-name Ẋ ∈ C, which we may also assume to code the set parameters appearing
in φ. Let ż = {(q, ẏ) | ∃ẋ ∈ ran(ȧ) ẏ is of minimal rank s.t. q⊩S φ(x, ẏ, Ẋ)}. Then,
sym(ż) ≥ sym(Ẋ)∩sym(ȧ) ∈ F , and p⊩S ∀x ∈ ȧ ∃y ∈ ż φ(x, y, Ẋ), thus witnessing
Collection to hold in N . Comprehension, and Class Comprehension, that is, the
closure of C[G] under definability, are verified in similar ways (and somewhat more
easily). We thus leave the details here to our readers. □

4. Finite support iterations of symmetric systems

Definition 7 (Two-step iteration, see e.g. [3]). Let S = (P,G,F) be a symmetric

system and Ṫ = (Q̇, Ḣ, Ė)• be an S-name for a symmetric system, where sym(Ṫ) =

G. Then, we define the two-step iteration S ∗ Ṫ = (P ∗S Q̇,G ∗S Ḣ,F ∗S Ė), where

1Note that the classes of N thus include all definable classes of M (for they have canonical
symmetric names).

THE ORDERING PRINCIPLE 5

(1) P ∗S Q̇ consists of all pairs (p, q̇), where p ∈ P and q̇ is an S-name for an

element of Q̇, together with the usual order on P ∗ Q̇,2

(2) G ∗S Ḣ consists of all pairs (π, σ̇), where π ∈ G and σ̇ is an S-name for an

element of Ḣ, and (π, σ̇) is identified with the map

(p, q̇) 7→ (π(p), σ̇(π(q̇))),

(3) F ∗S Ė is generated by all groups of the form (H0, Ḣ1), where H0 ∈ F and

Ḣ1 is an S-name for an element of Ė with H0 ≤ sym(Ḣ1), and (H0, Ḣ1) is

identified with {(π, σ̇) : π ∈ H0,⊩S σ̇ ∈ Ḣ1}.

A few remarks have to be made about this definition. The fact that we identify
pairs with other types of objects should not lead to any confusion. When we write
σ̇(π(q̇)), what we mean is a particular S-name for the result of σ̇ applied to π(q̇).3

While there is in fact a way to uniformly choose such a name (see [3]), the easiest
way to make sense of this, and what we will actually do, is to simply identify a pair
(p, q̇) with the set of equivalent conditions {(p, ṙ) : ṙ ∈ HSγ , ⊩S q̇ = ṙ}, where γ

is least so that this set is nonempty. This has the added advantage that P ∗S Q̇
really becomes a set, while technically, there are proper class many possible names
for elements of Q̇. Again, this identification makes no difference in practice.

It is then relatively straightforward to check that (π, σ̇) preserves the order on

P ∗S Q̇. One can compute ([3, proof of Lemma 3.2]) that

(π0, σ̇0) ◦ (π1, σ̇1) = (π0 ◦ π1, σ̇0 ◦ π0(σ̇1)),

and that

(π, σ̇)−1 = (π−1, π−1(σ̇−1)),

where σ̇0 ◦ π0(σ̇1) and σ̇−1 are S-names for the respective objects. In particular,

(π, σ̇) is an automorphism, and G ∗S Ḣ forms a group.

Now, it is possible to make sense of (3), as it can be checked that the sets (H0, Ḣ1)

are subgroups of G ∗S Ḣ = (G, Ḣ). It turns out that the filter F ∗S Ė generated by
these subgroups is in fact a normal filter. This is a bit more tricky to prove and,
letting π̄ = (π0, π̇1), it is generally not the case that π̄(H0, Ḣ1)π̄

−1 is a group of the

form (K0, K̇1) as in (3) again. On the other hand, if H0 ≤ sym(π−1
0 (π̇−1

1)), which

we may achieve by shrinking H0, then π̄(H0, Ḣ1)π̄
−1 = (π0H0π

−1
0 , π̇1π0(Ḣ1)π̇

−1
1) –

see [3, proof of Lemma 3.2].

Lemma 8 ([3, Lemma 3.2]). S ∗ Ṫ is a symmetric system.

Moreover, one can prove a factorization theorem ([3, Theorem 3.3]) that ex-

presses precisely that an extension via S ∗ Ṫ is of the form M[G]S [H]T and vice-
versa. There is some care to be taken though: It does not follow from G’s P-
genericity over M and H’s Q̇G-genericity over M[G]S , that G ∗ H = {(p, q̇) ∈
P ∗SQ̇ : p ∈ G ∧ q̇G ∈ H} is itself P ∗SQ̇-generic over M. Rather, the factorization
theorem states that if G is S-generic (that is, symmetrically generic) over M and

H is Ṫ G-generic over M[G]S , then G∗H is also S ∗ Ṫ -generic over M. Conversely,

if K is some S ∗Ṫ -generic over M, then K = G∗H, where G = domK is S-generic

2Note that this is a dense subset of the usual forcing iteration P ∗ Q̇.
3π(q̇) denotes the usual application of π to the S-name q̇. Note that since sym(Q̇) = G, π(q̇)

is again an S-name for an element of Q̇.

6 PETER HOLY AND JONATHAN SCHILHAN

over M and H = {q̇G : q̇ ∈ ran(K)} is Ṫ G-generic over M[G]S . In either case,
M[G]S [H]Ṫ G = M[G ∗H]S∗Ṫ .

On the level of the models alone, there is no difference between those obtained
via full generics or those obtained via symmetric generics. Thus, it is nevertheless
the case than an S ∗ Ṫ -extension obtained via a full generic is exactly the result of
extending in succession using full generics of the respective systems, and vice-versa.

Definition 9 (Finite support iteration). Let δ be an ordinal. Let

⟨Sα, Ṫα : α < δ⟩ = ⟨(Pα,Gα,Fα), (Q̇α, Ḣα, Ėα)• : α < δ⟩,

be such that each Sα is a symmetric system, Ṫα is an Sα-name for a symmetric
system and sym(Ṫα) = Gα. Then we call this sequence a finite support iteration of
length δ if for each α < δ:

(1) (a) Pα consists of sequences p̄ = ⟨ṗ(β) : β < α⟩, where p̄ ↾ β ∈ Pβ and

ṗ(β) is an Sβ name for an element of Q̇β , for all β < α.
(b) Gα consists of automorphisms of Pα represented, as detailed below, by

sequences π̄ = ⟨π̇(β) : β < α⟩, where π̄ ↾ β ∈ Gβ and π̇(β) is an Sβ

name for an element of Ḣβ , for all β < α.
(c) Fα is generated by subgroups of Gα represented, as detailed below, by

sequences H̄ = ⟨Ḣ(β) : β < α⟩, where H̄ ↾ β ∈ Fβ , Ḣ(β) is an Sβ

name for an element of Ėβ and H̄ ↾ β ≤ symSβ
(Ḣ(β)), for all β < α.

(2) Sα+1 = Sα ∗ Ṫα, where pairs (p̄, q̇), (π̄, σ̇), (H̄, K̇) as in Definition 7 are

identified with sequences p̄⌢q̇, π̄⌢σ̇ and H̄⌢K̇ respectively.

For α < δ limit,

(3) (a) Pα consists exactly of those p̄ as above, so that ⊩Sβ
ṗ(β) = 1 for all

but finitely many β < α, and q̄ ≤ p̄ iff q̄ ↾ β ≤ p̄ ↾ β for each β < α,
(b) Gα consists exactly of those π̄ as above, so that ⊩Sβ

π̇(β) = id for all
but finitely many β < α, and

π̄(p̄) =
⋃
β<α

(π̄ ↾ β)(p̄ ↾ β),

(c) Fα is generated by the subgroups of the form H̄ = ⟨Ḣ(β) : β < α⟩
as above, where ⊩Sβ

Ḣ(β) = Ḣβ for all but finitely many β < α, and

π̄ ∈ H̄ iff π̄ ↾ β ∈ H̄ ↾ β for all β < α.

As it stands, the above is just a definition. But of course, the way to read this
in practice is as an instruction on how to recursively construct a finite support
iteration. The definition says precisely what to do in each step of the construction.
In the successor step, when constructing Sα+1 = Sα ∗ Ṫα, we already know that
this results in a symmetric system. On the other hand, to ensure that such a
construction always makes sense we still need to check that if the limit step is
defined as in (3), we really do obtain a symmetric system again.

Before doing so, let’s make a few simple observations about finite-support iter-
ations. Let supp(p̄) := {α : ¬ ⊩Sα

ṗ(α) = 1}, supp(π̄) := {α : ¬ ⊩Sα
π̇(α) = id}

and supp(H̄) := {α : ¬ ⊩Sα
Ḣ(α) = Ḣα}. We refer to the above as support in each

case.

Lemma 10. Let ⟨Sα, Ṫα : α < δ⟩ be a finite support iteration as above, α < δ
arbitrary.

THE ORDERING PRINCIPLE 7

(1) All p̄ ∈ Pα, π̄ ∈ Gα, H̄ ∈ Fα have finite support.
(2) For any p̄ ∈ Pα, π̄ ∈ Gα, supp(p̄) = supp(π̄(p̄)).
(3) For any p̄ ∈ Pα, π̄ ∈ Gα, β ≤ α, π̄(p̄) ↾ β = (π̄ ↾ β)(p̄ ↾ β).
(4) For any β ≤ α, p̄ ∈ Pβ, π̄ ∈ Gβ and H̄ ∈ Fβ, we have that p̄⌢⟨1̇γ : γ ∈

[β, α)⟩ ∈ Pα, π̄
⌢⟨ ˙idγ : γ ∈ [β, α)⟩ ∈ Gα, H̄

⌢⟨Ḣγ : γ ∈ [β, α)⟩ ∈ Fα, where

1̇γ is a name for the trivial condition of Q̇γ and ˙idγ for the identity in Ḣγ .
In particular, Pβ = {p̄ ↾ β : p̄ ∈ Pα}.

(5) For any π̄, σ̄ ∈ Gα, π̄ ◦ σ̄ = ⟨π̇(β)◦ (π̄ ↾ β)(σ̇(β)) : β < α⟩ and supp(π̄ ◦ σ̄) ⊆
supp(π̄) ∪ supp(σ̄). In particular, (π̄ ◦ σ̄) ↾ β = (π̄ ↾ β) ◦ (σ̄ ↾ β), for all
β ≤ α.

(6) For any π̄ ∈ Gα, π̄−1 = ⟨(π̄ ↾ β)−1(π̇(β)−1) : β < α⟩ and supp(π̄−1) =
supp(π̄). In particular, (π̄−1) ↾ β = (π̄ ↾ β)−1, for all β ≤ α.

(7) For any of the generators H̄, K̄ ∈ Fα as in (1)(c) in the definition of a

finite support iteration, Ē = ⟨Ė(β) : β ≤ α⟩ ∈ Fα, where Ė(β) is a name

for Ḣ(β) ∩ K̇(β) for each β < α, supp(Ē) ⊆ supp(H̄) ∪ supp(K̄) and
Ē ≤ H̄ ∩ K̄.

(8) For each p̄ ∈ Pα, π̄ ∈ Gα there are H̄, K̄ ∈ Fα so that H̄ ↾ β ≤ sym(ṗ(β))
and K̄ ↾ β ≤ sym((π̄ ↾ β)−1(π̇(β)−1)) for each β < α.

(9) For any π̄ ∈ Gα and H̄ ∈ Fα, where for each β < α,

H̄ ↾ β ≤ sym((π̄ ↾ β)−1(π̇(β)−1)),

we have that

π̄H̄π̄−1 = ⟨π̇(β)(π ↾ β)(Ḣ(β))π̇(β)−1 : β < α⟩
and supp(π̄H̄π̄−1) = supp(H̄).

(10) If ⟨P′
β , Q̇β : β ≤ α⟩ is the usual finite-support iteration of forcing notions,

then Pα is a dense subposet of P′
α.

Proof. These are all straightforward inductions on α. For (5) and (6), use the
inverse and composition formulas we have already given for the two-step iteration.
For (9) use the analogous statement for two-step iterations we have mentioned
above. Note that since our conditions have finite supports, limit stages in (10) are
trivial. □

Lemma 11. Let ⟨Sβ , Ṫβ : β < α⟩ be a finite-support iteration and let Sα =
(Pα,Gα,Fα) be defined as in (3) of Definition 9. Then, Sα is a symmetric sys-
tem.

Proof. Pα is clearly a forcing poset. Next, let π̄ ∈ Gα and p̄ ∈ Pα be given.
According to Item (3) of Lemma 10, (π̄ ↾ β)(p̄ ↾ β) ⊆ (π̄ ↾ γ)(p̄ ↾ γ) for every
β ≤ γ < α, so π̄(p̄) is a sequence as in (1)(a) of Definition 9. Items (1) and (2)
of Lemma 10 imply that supp(π̄(p̄)) is still finite, so π̄(p̄) ∈ Pα. Clearly, π̄ is also
order-preserving and the inverse and composition formulas given in (5) and (6)
above also work for the elements of Gα. Thus, Gα is a group of automorphisms,
and similarly, any H̄ as in (3)(c) of Definition 9 is a subgroup of Gα. It remains
to check that Fα is normal. So let H̄ ∈ Fα, π̄ ∈ Gα be arbitrary. supp(π̄) ⊆ β for
some β ≤ α and using (7) and (8) above we can find K̄ ∈ Fβ , K̄ ≤ H̄ ↾ β, so that
K̄ ↾ γ ≤ sym((π̄ ↾ γ)−1(π̇(γ)−1)) for each γ < β. Then H̄ ′ := K̄⌢H̄ ↾ [β, α) ≤ H̄
and H̄ ′ ∈ Fα. From (9), also using (5), we can compute that

π̄H̄ ′π̄−1 = ⟨π̇(γ)(π ↾ γ)(Ḣ ′(γ))π̇(γ)−1 : γ < α⟩,

8 PETER HOLY AND JONATHAN SCHILHAN

which has finite support and thus is in Fα. □

Lemma 12. Let ⟨Sα, Ṫα : α < δ⟩ be a finite support iteration as above. Fix some
α < δ, let π̄, σ̄ ∈ Gα, p̄ ∈ Pα, and assume that for all β < α, p̄ ↾ β ⊩ π̇(β) = σ̇(β).
Then, for any Pα-name ẋ,

p̄ ⊩ π̄(ẋ) = σ̄(ẋ).

Proof. This is essentially the same as [3, Lemma 5.5]. More precisely, work with a
generic G ∋ p̄ and show by induction on β ≤ α that for any q̄, (π̄ ↾ β)(q̄ ↾ β) ∈ G
iff (σ̄ ↾ β)(q̄ ↾ β) ∈ G. The rest then follows by induction on the rank of ẋ. □

A factorization theorem can also be proven for finite support iterations, similarly
to the one for two-step iterations. We will not need this anywhere in our results,
so the reader may immediately skip to the next section, but it is still important
enough for the general theory so that we would like to include it.

Suppose that ⟨Sα, Ṫα : α ≤ δ⟩ is a finite support iteration and α ≤ δ is fixed.

By recursion on the length δ, one defines an Sα-name ⟨Ṡα,γ , Ṫα,γ : γ ∈ [α, δ]⟩•
for a finite support iteration that naturally corresponds to the tail of the iteration.
Simultaneously, one defines for each Sδ-name ẋ, an Sα-name [ẋ]α,δ for an Ṡα,δ-name,

and similarly, for each Sα-name ẏ for an Ṡα,δ-name, an Sδ-name]ẏ[α,δ. Further,
for any p̄ ∈ Pδ, π̄ ∈ Gδ and H̄ ∈ Fδ, one defines Sα-names [p̄ ↾ [α, δ)], [π̄ ↾ [α, δ)]

and [H̄ ↾ [α, δ)] for respective objects in the system Ṡα,δ.

The recursive construction proceeds as follows: For δ = α, we let Ṡα,γ be a name
for the trivial system ({1}, {id}, {{id}}). [p̄ ↾ [α, α)] is simply a name for 1. At
each step δ, by recursion on the rank of names, we define

[ẋ]α,δ = {(p̄ ↾ α, ([p̄ ↾ [α, δ)], [ż]α,δ)
•) : (p̄, ż) ∈ ẋ},

and similarly,

]ẏ[α,δ= {(p̄,]ż[α,δ) : p̄ ↾ α ⊩Sα ([p̄ ↾ [α, δ)], ż)• ∈ ẏ}.

We let Ṫα,δ = [Ṫδ]α,δ. For δ = γ + 1, we define

[p̄ ↾ [α, δ)] = ([p̄ ↾ [α, γ)]⌢[ṗ(γ)]α,γ))
•,

and for δ limit,

[p̄ ↾ [α, δ)] =
⋃

γ∈[α,δ)

[p̄ ↾ [α, γ)].

Similarly for [π̄ ↾ [α, δ)] and [H̄ ↾ [α, δ)].
The properties claimed above are easily checked by induction on δ.

Theorem 13 (Factorization for finite support iterations). Whenever G is Sα-

generic over M and H is ṠG
α,δ-generic over M[G]Sα

, then G ∗ H = {p̄ : p̄ ↾ α ∈
G ∧ [p̄ ↾ [α, δ)]G ∈ H} is Sδ-generic over M. Similarly, whenever K is Sδ-generic
over M, then K = G ∗H, where G = {p̄ ↾ α : p̄ ∈ K} is Sα-generic over M and

H = {[p̄ ↾ [α, δ)]G : p̄ ∈ K} is ṠG
α,δ-generic over M[G]Sα .

In either case, ([ẋ]G)H = ẋG∗H for every Sδ-name ẋ and]ẏ[G∗H= (ẏG)H for

every Sα-name ẏ for an Ṡα,δ-name. In particular, M[G ∗H]Sδ
= M[G]Sα

[H]ṠG
α,δ

.

Proof. If D ⊆ Pδ is open dense, show by induction on δ that the set

[D]α,δ = {(p̄ ↾ α, [p̄ ↾ [α, δ)]) : p̄ ∈ D}

THE ORDERING PRINCIPLE 9

is an Sα-name for an open dense subset of the forcing Ṗα,δ corresponding to Ṡα,δ.
Moreover, if H̄ ≤ sym(D), then H̄ ↾ α ≤ sym([D]α,δ) and ⊩Sα

[H̄ ↾ [α, δ)] ≤
sym([D]α,δ). This is how we check that G ∗H is Sδ-generic, given the genericity of
G and H.

The other direction, starting from an Sδ-generic and obtaining the genericity of
G and H, is completely analogous: From a name Ḋ for an open dense subset of
Ṗα,δ, define

]Ḋ[α,δ= {p̄ : p̄ ↾ α ⊩Sα [p̄ ↾ [α, δ)] ∈ Ḋ}.
Everything else is just as straightforward and similar to [3, Theorem 3.3]. □

5. The symmetric extension

Definition 14. Given a forcing notion R, we let T (R) = (Q,H, E) denote the
symmetric system where

• Q is the finite support product of ω-many copies of R, i.e., Q consists of
finite partial functions p : ω → R together with the extension relation given
by q ≤ p iff dom p ⊆ dom q and

∀n ∈ dom p q(n) ≤ p(n),

• H is the group of finitary permutations of ω,4 where π ∈ H acts on Q
coordinate-wise, i.e., domπ(q) = π′′ dom q and

π(q)(n) = q(π−1(n))

for every n ∈ ω,
• E is generated by the subgroups of H of the form

fix(e) = {π ∈ H : ∀n ∈ e π(n) = n},
for e ∈ [ω]<ω.

To see that E is normal, simply note that for any π ∈ H, π fix(e)π−1 = fix(π′′e).
The system for the basic Cohen model (see [1, Section 5.3]) is exactly T (C), where
C is Cohen forcing.

We will construct a finite support symmetric iteration of the form

⟨Sα, Ṫα : 1 ≤ α ≤ ω1⟩ = ⟨(Pα,Gα,Fα), (Q̇α, Ḣα, Ėα)• : 1 ≤ α ≤ ω1⟩,

where for each α < ω1, Ṫα is an Sα-name for a symmetric system of the form T (Ṙα),

where Ṙα is an Sα-name for a forcing notion. We start by letting S1 be the basic
Cohen system, i.e., S1 = T (C) where C is Cohen forcing, and we will inductively
define the remainder of our symmetric iteration.5

Suppose we have constructed Sδ, for some δ ≤ ω1. Before defining Ṙδ (in case
δ < ω1), we first verify some general properties about the iteration up to δ.6 To
simplify notation, for the rest of this section, let us abbreviate S = Sδ, P = Pδ,
G = Gδ, and F = Fδ.

4A permutation π : ω → ω is finitary if π(n) = n for all but finitely many n ∈ ω.
5We start the iteration at index 1 rather than 0 for notational convenience related to the

coherence of the indexing at steps below ω and after. One could also start with letting S0 be some

trivial system and then ignore the first coordinate when writing p̄, π̄ or H̄.
6We will only know precisely what Sδ is once we have specified what happens in each step,

but the description we have given so far is sufficient to make some general observations.

10 PETER HOLY AND JONATHAN SCHILHAN

For e ∈ [δ × ω]<ω, write eα for the αth section of e, i.e., eα = {n : (α, n) ∈ e}.
Let fix(e) = ⟨fix(eα)̌ : α < δ⟩ ∈ F . While F contains more complicated groups,
it usually suffices to only consider those of the form fix(e), as can be seen by the
following:

Lemma 15. Let ẋ ∈ HS, p̄ ∈ P. Then there is q̄ ≤ p̄, ẏ ∈ HS and e ∈ [δ× ω]<ω so
that fix(e) ≤ sym(ẏ) and q̄ ⊩ ẋ = ẏ.

Proof. Let H̄ ≤ sym(ẋ), q̄ ≤ p̄, and e ∈ [δ × ω]<ω, so that

q̄ ↾ α ⊩Pα Ḣ(α) = fix(eα)̌

for every α < δ. This is easy to achieve by extending p̄ finitely often, deciding all
Ḣ(α) for α ∈ supp(H̄). Let γ be least so that ẋ ∈ HSγ and let ẏ consist of all pairs

(r̄, ż) ∈ P × HSγ so that r̄ ↾ α ⊩Pα
Ḣ(α) = fix(eα)̌ for all α < δ, and r̄ ⊩ ż ∈ ẋ.

Clearly q̄ ⊩ ẋ = ẏ.

Claim 16. fix(e) ≤ sym(ẏ).

Proof. Let π̄ ∈ fix(e), and let (r̄, ż) ∈ ẏ be arbitrary. Consider σ̄ ∈ G where each

σ̇(α) is so that the following is forced: “either Ḣ(α) = fix(eα)̌ and σ̇(α) = π̇(α), or

Ḣ(α) ̸= fix(eα)̌ and σ̇(α) is the identity”. Such a name can be chosen uniformly

by Fact 5. Then, σ̄ ∈ H̄, and we note that also σ̄(r̄) ↾ α ⊩ Ḣ(α) = fix(eα)̌ , for each

α, as σ̄ ↾ α ∈ H̄ ↾ α ≤ sym(Ḣ(α)). Thus, also σ̄(r̄) ↾ α ⊩ π̇(α) = σ̇(α) for each α.
By Lemma 12, we have that σ̄(r̄) ⊩ π̄(ż) = σ̄(ż). In particular, σ̄(r̄) ⊩ π̄(ż) ∈ ẋ.
On the other hand, we may also verify by induction that the conditions σ̄(r̄) and
π̄(r̄) are equivalent. This implies that (π̄(r̄), π̄(ż)) ∈ ẏ, as desired. □

□

Something similar can be done on the level of the automorphisms themselves.
Let f be a function from δ to finitary permutations of ω, so that for all but finitely
many α < δ, f(α) is the identity. Then, we can consider τf = ⟨f̌(α) : α < δ⟩ ∈ G.
f acts naturally on δ × ω via

f · (α, n) = (α, f(α)(n)).

For any e ∈ [δ × ω]<ω,

τf fix(e)τ
−1
f = fix(f · e),

where f · e = {f · (α, n) : (α, n) ∈ e}.

Lemma 17. Let π̄ ∈ G, p̄ ∈ P, and let ẋ be an arbitrary P-name. Then, there is
q̄ ≤ p̄ and f as above such that

q̄ ⊩ π̄(ẋ) = τf (ẋ).

Moreover, whenever π̄ ∈ fix(e), we can ensure that τf ∈ fix(e) as well.

Proof. Let q̄ decide π̇(α) for each α and then use Lemma 12. □

This shows that we can in fact consider the simpler system S ′ = (P,G′,F ′)
where G′ consists only of the automorphisms of the form τf and F ′ is generated
by only the groups fix(e)∩G′. Observe for instance that Lemma 15 can be applied
hereditarily to show that for any p̄, and ẋ ∈ HSS , there is q̄ ≤ p̄ and ẏ ∈ HSS′ so
that q̄ ⊩ ẋ = ẏ.

THE ORDERING PRINCIPLE 11

This is an instance of a much more general situation in which we want to consider
only particular names for the conditions, automorphisms and generators of the filter
at each iterand of our symmetric iteration. In the language of [3, Section 5], S ′

would be called a reduced iteration. It won’t be necessary for us to actually pass to
S ′, and we haven’t even shown that S ′ is a symmetric system, albeit this is easy to
check. Rather, it will be sufficient to use the previous lemmas directly in order to
simplify our arguments.

For (α, n) ∈ δ× ω, let ġα,n be a canonical name for the Ṙα-generic added in the

nth coordinate of Q̇α. To be precise, let γα be least so that for any Sα-name ṡ for
an element of Ṙα, there is ṙ ∈ HSSα,γα

with ⊩Sα
ṡ = ṙ. Let

ġα,n = {(p̄, ṙ) : p̄ ∈ Pα+1 ∧ ṙ ∈ HSSα,γα
∧ p̄ ↾ α ⊩Sα

ṙ = ṗ(α)(n)}.
Then, ġα,n ∈ HS and fix({α, n}) ≤ sym(ġα,n). More generally, note that if π̄ ∈ G is
such that ⊩ π̇(α)(ň) = m̌, then we will have that π̄(ġα,n) = ġα,m.

We define

Ȧδ = {π̄(ġα,n) : π̄ ∈ G, (α, n) ∈ δ × ω}• ∈ HS.

Clearly, sym(Ȧδ) = G, and by Lemma 17,

⊩ Ȧδ = {ġα,n : (α, n) ∈ δ × ω}•.

Concluding our definition, if δ < ω1, we let Ṫδ = (Q̇δ, Ḣδ, Ėδ)• be an Sδ-name for

T (Coll(ω, Ȧδ)): recall that for a set A, Coll(ω,A) is the poset consisting of finite

partial functions from ω to A ordered by extension. As sym(Ȧδ) = G = Gδ, Fact 5

shows that we can indeed require that sym(Ṫδ) = Gδ.

6. The ordering principle

In this section, we show that the ordering principle OP holds after performing
the above-described symmetric iteration of length ω1 over a ground model of ZFC
with a definable wellorder of its universe. For example, we may work over Gödel’s
constructible universe. From now on, let S = Sω1

, P = Pω1
, G = Gω1

, and F = Fω1
.7

Lemma 18. Let ẋi ∈ HS, α < ω1, ei ∈ [α×ω]<ω and fix(ei) ≤ sym(ẋi), for i < n.
Let φ(v0, . . . , vn−1) be a formula with all free variables shown, and let p̄, q̄ ∈ P.
Then, whenever p̄ ↾ α = q̄ ↾ α, it holds that

p̄ ⊩S φ(ẋ0, . . . , ẋn−1) iff q̄ ⊩S φ(ẋ0, . . . , ẋn−1).

Proof. Suppose p̄ ⊩S φ(ẋ0, . . . , ẋn−1) but r̄ ⊩S ¬φ(ẋ0, . . . , ẋn−1) for some r̄ ≤ q̄.
It suffices to find π̄ ∈

⋂
i<n fix(ei) so that π̄(r̄) ∥ p̄, to yield a contradiction. Simply

let π̇(β) be a name for the identity for all β < α, thus already ensuring that
π̄ ∈

⋂
i<n fix(ei), and then define π̇(β), for β ≥ α inductively as follows: When

π̄ ↾ β has been defined, simply let π̇(β) be a name for a finitary permutation of ω
mapping the domain of (π̄ ↾ β)(ṙ(β)) away from the domain of ṗ(β). If a, b ⊆ ω are
finite, then a finitary permutation π such that π[a] ∩ b = ∅ can of course be easily
defined from a and b as parameters. So Fact 5 shows that such an Sβ-name π̇(β)
exists.8 □

7In fact, while this is not needed for our main result, note that the results of this section would

hold for any δ ≤ ω1 rather than just ω1.
8Of course we are basically just showing that every tail of the iteration is homogeneous with

respect to the group G.

12 PETER HOLY AND JONATHAN SCHILHAN

Define Γ̇ = {π̄(Ġ) : π̄ ∈ G}•, where Ġ is the canonical name for the P-generic
filter. While Γ̇ is not an S-name in general, it is still a symmetric P-name and it
plays an important role in any symmetric system. The following is a quite general

observation and shows that M [G]S = HOD
M [G]
M(A)∪{Γ}, where Γ = Γ̇G.9

Lemma 19. Let ẋ ∈ HS and e ∈ [ω1 × ω]<ω so that fix(e) ≤ sym(ẋ). Whenever

G is P-generic over M, x = ẋG and Γ = Γ̇G, then x is definable in M[G] from
elements of V , from Γ and from ġGα,n for (α, n) ∈ e, as the only parameters.

Proof. In M[G], define y to consist exactly of those z so that z ∈ ẋH for some
H ∈ Γ with ġHα,n = ġGα,n for all (α, n) ∈ e. We claim that x = y. Clearly, x ⊆ y as

G ∈ Γ. Now suppose that H ∈ Γ is arbitrary, so that ġHα,n = ġGα,n, for all (α, n) ∈ e.

Then H = π̄(Ġ)G, for some π̄ ∈ G, and further, by Lemma 17, H = τf (Ġ)G for
some f . We obtain that ġHα,n = τf (ġα,n)

G = ġGα,n, for each (α, n) ∈ e. But this is

only possible if τf ∈ fix(e). So also ẋH = τf (ẋ)
G = ẋG and we are done. □

The following is very specific to the way we chose Ṫα:

Lemma 20. Let p̄ ∈ P, ẋ ∈ HS and e ∈ [ω1 × ω]<ω be non-empty with fix(e) ≤
sym(ẋ). Further, let α = maxdom(e). Then there is q̄ ≤ p̄ and ẏ ∈ HS with
fix({α} × eα) ≤ sym(ẏ) so that q̄ ⊩ ẏ = ẋ.

Proof. By the previous lemma, for any generic G, ẋG is definable in M[G] from

Γ̇G, ⟨ġGβ,n : (β, n) ∈ e⟩ and parameters in V . But note that each ġGβ,n, for β < α,

is itself definable from any ġGα,m, as the latter enumerate ȦG
α . Thus, ẋG is already

definable from Γ̇G, ⟨ġGα,n : n ∈ eα⟩ and parameters in V . So we can find q̄ ≤ p̄ and
a formula φ so that

q̄ ⊩P ẋ = {z : φ(z, Γ̇, ⟨ġα,n : n ∈ eα⟩•, v̌0, . . . , v̌k)},
for some v0, . . . , vk ∈ M. For some large enough γ, define

ẏ = {(r̄, ż) ∈ P×HSγ : r̄ ⊩ φ(ż, Γ̇, ⟨ġα,n : n ∈ eα⟩•, v̌0, . . . , v̌k)}.
We obtain that fix({α} × eα) ≤ sym(ẏ) and q̄ ⊩ ẏ = ẋ. □

Lemma 21. Let α < ω1, p̄ ∈ P, a0, a1 ∈ [ω]<ω and ẋ, ẏ ∈ HS such that

(1) p̄⊩ ẋ = ẏ,
(2) fix({α} × a0) ≤ sym(ẋ),
(3) fix({α} × a1) ≤ sym(ẏ).

Then, there is q̄ ≤ p̄, e ∈ [(α + 1) × ω]<ω and ż ∈ HS so that eα = a0 ∩ a1,
fix(e) ≤ sym(ż) and q̄⊩ ż = ẋ.

Proof. First, applying Lemma 15, we find q̄ ≤ p̄ such that fix(e′) ≤ sym(q̇(α)) for
some e′ ∈ [α× ω]<ω. We define e = e′ ∪ {α} × (a0 ∩ a1). Next, instead of ẏ, let us
consider

ẏ′ = {(r̄, τ) : ∃(s̄, τ) ∈ ẏ (r̄ ≤ q̄, s̄)},
and note that, q̄⊩ ẏ′ = ẏ = ẋ. We let

ż =
⋃

π̄∈fix(e)

π̄(ẏ′).

9It is based on the fact that the names of the form (ġα0,n0 , . . . , ġαk,nk)
• for (αi, ni) ∈ ω1 × ω

form a respect-basis for S (see more in [3, Section 6.4]).

THE ORDERING PRINCIPLE 13

Now clearly, fix(e) ≤ sym(ż). We claim that q̄ ⊩ ż = ẋ. Towards this end,
let G be an arbitrary generic containing q̄. As ẏ′ = id(ẏ′) ⊆ ż, we have that
ẋG = ẏG = ẏ′G ⊆ żG. To see that żG ⊆ ẋG, we show that π̄(ẏ′)G ⊆ ẋG, for
every π̄ ∈ fix(e). So fix π̄ ∈ G now. According to Lemma 17, there is f so that
π̄(ẏ′)G = τf (ẏ

′)G and τf ∈ fix(e).
If τf (q̄) /∈ G, clearly τf (ẏ

′)G = ∅ ⊆ ẋG, as every condition appearing in a pair in
τf (ẏ

′) is below τf (q̄).
So assume that τf (q̄) ∈ G. Consider for a moment the Qα-generic H over M[Gα]

given by G, where Gα = {r̄ ↾ α : r̄ ∈ G}. More precisely,

H = {ṡGα : ∃r̄ ∈ G(ṙ(α) = ṡ)}.

We have that s = q̇(α)Gα ∈ H and moreover, as τf ↾ α ∈ sym(q̇(α)),

f(α)(s) = f(α)(q̇(α)Gα)

= f(α)
(
(τf ↾ α)(q̇(α))Gα

)
= τf (q̄)(α)

Gα ∈ H.

Let d = {n ∈ ω : f(α)(n) ̸= n} ∪ a0 ∪ dom(s), which is finite. By a density
argument over M[Gα], we can find a finitary permutation σ of ω that switches
a1 \ a0 with a set disjoint from d, leaves everything else fixed, and is such that
σ(s) ∈ H. In particular, σ fixes a0. Moreover, note that f(α)(σ(s)) ∈ H as well:
σ(s) ↾ σ[a1 \ a0] is not moved by f(α), and σ(s) ↾ (ω \ σ[a1 \ a0]) ⊆ s, where we
know that f(α)(s) ∈ H.

Back in M, let h(β) = id for every β ∈ ω1 \ {α} and let h(α) = σ. Then,
τh ∈ fix({α} × a0) and

τh(q̄) ↾ (α+ 1), τf (τh(q̄)) ↾ (α+ 1) ∈ Gα+1 = {r̄ ↾ (α+ 1) : r̄ ∈ G}.

Then we obtain that τh(q̄) ⊩ ẋ = τh(ẏ
′) = τh(ẏ). By Lemma 18, this is already

forced by τh(q̄) ↾ (α+1)⌢⟨1̇β : β ∈ [α+1, ω1)⟩ ∈ G. Thus, ẋG = τh(ẏ
′)G = τh(ẏ)

G.
Also, we note that τf ∈ fix({α} × ((a0 ∩ a1) ∪ σ[a1 \ a0])) ≤ sym(τh(ẏ)) (see

the paragraph after Lemma 15). Hence, τf (τh(ẏ)) = τh(ẏ) and τf (τh(q̄)) ⊩ τf (ẋ) =
τh(ẏ). Similarly to before, this implies that τf (ẋ)

G = τh(ẏ)
G. Since τf (q̄) ⊩ τf (ẋ) =

τf (ẏ
′) and τf (q̄) ∈ G, we have τf (ẋ)

G = τf (ẏ
′)G. So finally, we obtain that

ẋG = τh(ẏ)
G = τf (ẋ)

G = τf (ẏ
′)G,

which is what we wanted to show. □

Definition 22. Let p̄ ∈ P, ẋ ∈ HS, α < ω1 and a ∈ [ω]<ω be so that fix({α}×a) ≤
sym(ẋ). We say that α is a minimal index for ẋ below p̄ if for any β < α, a′ ∈ [ω]<ω

and ż ∈ HS with fix({β} × a′) ≤ ż,

p̄ ⊩ ẋ ̸= ż.

We say that {α} × a is a minimal support for ẋ below p̄ if α is a minimal index
for ẋ below p̄ and for any q̄ ≤ p̄, a′ ∈ [ω]<ω and ż ∈ HS with fix({α}×a′) ≤ sym(ż),
if q̄ ⊩ ẋ = ż, then a ⊆ a′.

Corollary 23. For any ẋ ∈ HS and p̄ ∈ P, there is q̄ ≤ p̄, ẏ ∈ HS, α < ω1 and
a ∈ [ω]<ω so that q̄ ⊩ ẋ = ẏ and {α} × a is a minimal support for ẏ below q̄.

14 PETER HOLY AND JONATHAN SCHILHAN

Proof. From Lemma 20, there is a minimal α where we can find q̄ ≤ p̄, ẏ and a so
that q̄ ⊩ ẏ = ẋ and fix({α} × a) ≤ sym(ẏ). In that case, α is a minimal index for
ẏ below q̄. Moreover then, fixing that minimal α, there is a ⊆-minimal a for which
we find q̄, ẏ as above. We claim that {α} × a is a minimal support for ẏ below q̄.
Otherwise, there are q̄′ ≤ q̄, a′ and ż with fix({α}×a′) ≤ sym(ż) so that q̄′ ⊩ ẏ = ż
but a ̸⊆ a′. In particular a ∩ a′ is a strict subset of a. According to Lemma 21,
there is q̄′′ ≤ q̄′, e ∈ [(α + 1) × ω]<ω, eα = a ∩ a′, and ż′ with fix(e) ≤ ż′, so that
q̄′′ ⊩ ż′ = ż = ẏ. If α = 0, then a was not ⊆-minimal. If α > 0, then a ∩ a′ ̸= ∅
since otherwise α was not minimal, by Lemma 20. But then again, according to
Lemma 20, a was not ⊆-minimal – contradiction. □

Note that in the above corollary, neither α nor the set a is necessarily unique.
However, what is easily seen to be true using Lemma 21 is that if {α} × a and
{β} × b both are minimal supports for ẏ below the same condition q̄, then α = β
and a = b.

Lemma 24. There is an S-name <̇ for a linear order of Ȧ, such that sym(<̇) = G.

Proof. In any model of ZF, we can consider the definable sequence of sets ⟨Xα : α ∈
Ord⟩, obtained recursively by setting X0 = ω, Xα+1 = (Xα)

ω and Xα =
⋃

β<α Xβ

for limit α. We can recursively define linear orders <α on Xα, by letting <0 be
the natural order on ω, <α+1 be the lexicographic ordering on Xα+1 obtained from
<α and for limit α, x <α y iff, for β least such that x ∈ Xβ , either y /∈ Xβ or
x <β y. Then <ω1

is a definable linear order of Xω1
. Identifying the Rα-generics

with the surjections they induce, note that Ȧ is forced to be contained in Xω1 , and
by Fact 5, there is an S-name <̇ as required. □

Proposition 25. There is a class S-name Ḟ for an injection of the symmetric
extension into Ord×Ȧ<ω such that sym(Ḟ) = G. In particular, OP holds in our
symmetric extension.

Proof. Fix a global well-order ◁ of M and let G be P-generic over M. We will first
provide a definition of an injection F in the full P-generic extension M[G]. Then,
we will observe that all the parameters in this definition have symmetric names,
which will let us directly build an S-name for F .

For each α < ω1, a ∈ [ω]<ω and each enumeration h = ⟨ni : i < k⟩ of a, define

Ġα,a = {ġα,n : n ∈ a}•, and ṫα,h = ⟨ġα,ni
: i < k⟩•. Let Γ = Γ̇G, <= <̇

G
and

A = ȦG. Given x ∈ M[G]S , F (x) will be found as follows:
First, let (p̄, ż, α, a, h) ∈ M be ◁-minimal with the following properties:

(1) (in M) {α} × a is a minimal support for ż below p̄,

(2) (in M) h is an enumeration of a so that p̄ forces that ṫα,h enumerates Ġα,a

in the order of <̇,
(3) there is H ∈ Γ, with p̄ ∈ H and żH = x

Such a tuple certainly exists by Corollary 23 and since G ∈ Γ.

Claim 26. For any H,K ∈ Γ with p̄ ∈ H,K, the following are equivalent:

(a) (ṫα,h)
H = (ṫα,h)

K ,
(b) żH = żK .

Proof. Let H,K ∈ Γ, p̄ ∈ H,K. H is itself a P-generic filter over M and Γ̇H =
Γ̇G = Γ, as can be easily checked. Thus, there is π̄ ∈ G so that K = π̄(Ġ)H . By

THE ORDERING PRINCIPLE 15

Lemma 17, there is f so that K = τf (Ġ)H . Now note that τf (Ġ)H = τ−1
f [H] and

(ṫα,h)
K = (ṫα,h)

τ−1
f [H] = τf (ṫα,h)

H . Similarly, żK = τf (ż)
H .

Suppose that (ṫα,h)
H = (ṫα,h)

K . Then (ṫα,h)
H = τf (ṫα,h)

H . The only way this
is possible is if f(α)(n) = n for every n ∈ a. In other words, τf ∈ fix({α} × a).
Thus żH = τf (ż)

H = żK .
Now suppose that żH = żK = τf (ż)

H . We have that fix(f · ({α} × a)) =

τf fix({α} × a)τ−1
f ≤ sym(τf (ż)). Since {α} × a is a minimal support of ż below

p̄ ∈ H, it follows that a ⊆ f(α)[a] and by a cardinality argument, a = f(α)[a] . This

also means that Ġα,a = τf (Ġα,a). As p̄ forces that ṫα,h is the <̇-enumeration of

Ġα,a, we have that τf (p̄) forces that τf (ṫα,h) is the τf (<̇) enumeration of τf (Ġα,a).

We have that p̄ ∈ K = τ−1
f [H], so τf (p̄) ∈ H and indeed (ṫα,h)

K = τf (ṫα,h)
H is the

enumeration of τf (Ġα,a)
H = ĠH

α,a according to τf (<̇)H =<, which is exactly what

(ṫα,h)
H is. □

By the claim, there is a unique t ∈ A<ω so that t = (ṫα,h)
H , for some, or

equivalently all, H ∈ Γ with p̄ ∈ H and żH = x. We let F (x) = (ξ, t), where
(p̄, ż, α, a, h) is the ξth element of M according to ◁. To see that this is an injection,
assume that x and y both yield the same (p̄, ż, α, a, h) and t. Let H,K ∈ Γ with
p̄ ∈ H,K, and with żH = x, żK = y. By definition t = (ṫα,h)

H = (ṫα,h)
K and

according to the claim x = żH = żK = y. This finishes the definition of F .
The definition we have just given can be rephrased as

F (x) = y iff φ(x, y,Γ, <),

where φ is a first order formula using the class parameters Γ and <, and the only
parameters that are not shown are parameters from M, such as the class ◁ or the
class of (p̄, ż, α, a, h) so that (1) and (2) hold. Simply let

Ḟ = {(p̄, (ẋ, ẏ)•) : ẋ, ẏ ∈ HS ∧ p̄ ⊩P φ(ẋ, ẏ, Γ̇, <̇)},

where the parameters from M in φ are replaced by their check-names. Then,
Ḟ ⊆ P×HS, and sym(Ḟ) = G, so Ḟ is a class S-name, as desired. □

7. The axiom of dependent choice

In this section, we will show that the axiom of dependent choice DC holds in our
above symmetric extension. We will use the well-known (and easy to verify) fact
that DC holds if and only if any tree without maximal nodes contains an increasing
chain of length ω.

Lemma 27. For each α < ω1, ⊩Pα
Q̇α is countable. In particular, P is ccc.

Proof. If G is Pα-generic, Ȧ
G
α = {ġGβ,n : (β, n) ∈ α × ω} is clearly countable in

M[G]. In particular, Coll(ω, ȦG
α) and Q̇G

α are countable forcing notions.
By Lemma 10, Item (10), P is just a dense subposet of the usual finite support

iteration of the Q̇α, and must be ccc. □

Proposition 28. Let G be P-generic over M. Then σ-covering holds between
M[G]S and M[G]. That is, whenever x ∈ M[G] is so that M[G] |= |x| = ω and
x ⊆ M[G]S , there is y ∈ M[G]S so that M[G]S |= |y| = ω and x ⊆ y.

16 PETER HOLY AND JONATHAN SCHILHAN

Proof. Let x = ẋG for some P-name ẋ ∈ M. For some p ∈ G and large γ,
p ⊩ ẋ ⊆ HS•γ ∧ ẋ is countable. Using the ccc of P, we can find a countable set
c ⊆ HSγ so that p ⊩ ẋ ⊆ c•. Moreover, using Lemma 15, we can assume that for
each ż ∈ c, there is e ∈ [ω1 × ω]<ω so that fix(e) ≤ sym(ż). Let α < ω1 be large
enough so that for each ż ∈ c there is such e in [α× ω]<ω.

Recall Lemma 19 and its proof: If fix(e) ≤ sym(ż), and ⟨(βi, ni) : i < k⟩ enu-
merates e, then y ∈ żG iff

M[G] |= φ(y, ż, ⟨ġβi,ni : i < k⟩, Γ̇G, ⟨ġGβi,ni
: i < k⟩),

for the formula φ expressing that y ∈ żH for some H ∈ Γ̇G satisfying ġHβi,ni
= ġGβi,ni

for all i < k. Since ġGα,0 enumerates ȦG
α , there is a sequence ⟨mi : i < k⟩ so that

⟨ġGβi,ni
: i < k⟩ = ⟨ġGα,0(mi) : i < k⟩.

For any ż ∈ c, any s ∈ (α × ω)<ω, and any t ∈ ω<ω of the same length, define
ẋż,s,t to consist of all (p̄, ẏ) ∈ P×HSγ so that

p̄ ⊩ φ(ẏ, (ż)̌, ⟨ġs(i) : i < |s|⟩̌, Γ̇, ⟨ġα,0(t(i)) : i < |t|⟩•)
Then ẋż,s,t is an S-name with fix({(α, 0)}) ≤ sym(ẋż,s,t). Letting h ∈ M be a
surjection from ω to

⋃
k∈ω c× (α× ω)k × ωk, we find that

ḋ = {(n, ẋh(n))
• : n ∈ ω}

is an S-name for a function with domain ω and with x ⊆ ran(ḋG), as desired □

Corollary 29. [4] ⊩S DC.

Proof. Consider a generic G and let T ∈ M[G]S be a tree without maximal nodes.
Since M[G] |= AC, there is an increasing chain ⟨tn : n ∈ ω⟩ of T in M[G]. By the
previous proposition, there is a countable Y in M[G]S so that {tn : n ∈ ω} ⊆ Y .
We may assume that Y ⊆ T . Recursively applying a pruning derivative to Y ,
whereby we remove all maximal elements in each step, we obtain a subtree T ′ ⊆ Y
without maximal elements. None of the tn could ever have been removed, so T ′ is
non-empty as e.g. t0 ∈ T ′. As T ′ is countable, and thus well-ordered, we do find
an increasing chain ⟨sn : n ∈ ω⟩ of T ′, and thus also of T , in M[G]S . □

Proposition 30. ⊩S ¬DCω1
, and thus in particular ⊩S ¬AC.

Proof. This is essentially the same argument that is used to show that AC fails in the
basic Cohen model (see for example [1, Lemma 5.15]). Assume for a contradiction

that there is Ḟ ∈ HS such that p̄ ∈ P forces that Ḟ is an injection from ω1 into
{ġα,n | (α, n) ∈ ω1×ω}• (clearly, one can construct such an injection under DCω1).

By Lemma 15 we can assume that fix(e) ≤ sym(Ḟ) for some e ∈ [ω1 × ω]<ω. Pick

γ < ω1, q̄ ≤ p̄ and α > max(dom(e)) such that q̄⊩ Ḟ (γ̌) = ġα,0. By Lemma 18, this

is already forced by q̄′ = q̄ ↾ (α + 1)⌢⟨1̇β : β ∈ [α + 1, ω1)⟩. Let π̇(β) be a name
for the identity for each β ∈ ω1 \ {α} and let π̇(α) be a name for the permutation
of ω switching 0 with the minimal n > 0 outside of the domain of q̇(α). It suffices
to note three things:

(1) π̄ ∈ fix(e),
(2) ⊩ π̄(ġα,0) ̸= ġα,0, and
(3) π̄(q̄′) ∥ q̄′.

This clearly poses a contradiction, as π̄(q̄′) ⊩ Ḟ (γ̌) ̸= ġα,0 while a compatible
condition, q̄′, forces the opposite. □

THE ORDERING PRINCIPLE 17

References

[1] Thomas Jech. The axiom of choice. Dover books on mathematics. Dover publications, 1973.
[2] Asaf Karagila. Iterating symmetric extensions. The Journal of Symbolic Logic, 84(1):123–159,

2019.

[3] Asaf Karagila and Jonathan Schilhan. Towards a theory of symmetric extensions. Draft, 2024.
[4] Asaf Karagila and Jonathan Schilhan. Dependent Choice in the Bristol model. Draft, 2025.

[5] David Pincus. Adding dependent choice. Ann. Math. Logic, 11(1):105–145, 1977.

[6] J. R. Shoenfield. Unramified forcing. In Axiomatic Set Theory (Proc. Sympos. Pure Math.,
Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), volume XIII, Part I of Proc.

Sympos. Pure Math., pages 357–381. Amer. Math. Soc., Providence, RI, 1971.

Institut für diskrete Mathematik und Geometrie, TU Wien, Wiedner Hauptstrasse
8-10/104, 1040 Vienna, Austria

Email address: peter.holy@tuwien.ac.at

University of Vienna, Institute of Mathematics, Kurt Gödel Research Center, Kolin-

gasse 14-16, 1090 Vienna, Austria

Email address: jonathan.schilhan@univie.ac.at

	1. Introduction
	2. Preliminaries
	3. Symmetric extensions as second order models
	4. Finite support iterations of symmetric systems
	5. The symmetric extension
	6. The ordering principle
	7. The axiom of dependent choice
	References

