Logical Foundations of Inductive Theorem Proving

Stefan Hetzl

Institute of Discrete Mathematics and Geometry TU Wien, Austria

18th International Tbilisi Summer School in Logic and Language

Tbilisi, Georgia

September 12–15, 2024

• Induction: mathematics and computer science

- Induction: mathematics and computer science
- Automated inductive theorem proving: Algorithms for finding proofs by induction
- Induction: mathematics and computer science
- Automated inductive theorem proving: Algorithms for finding proofs by induction
- Applications in software verification, formal mathematics, . . .
- **•** History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- **•** Empirical evaluation of implementations
- Induction: mathematics and computer science
- Automated inductive theorem proving: Algorithms for finding proofs by induction
- Applications in software verification, formal mathematics, . . .
- **•** History in computer science dating back to the 1970ies
- Methods: recursion analysis, term rewriting, rippling, extensions of saturation-based provers, cyclic proofs, theory exploration, . . .
- **•** Empirical evaluation of implementations
- ▶ Logical foundations of automated inductive theorem proving \blacktriangleright E.g., given method *M*, which theorems can *M* prove?

Outline

1 [Straightforward induction proofs](#page-5-0)

- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- **Open** induction
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

A first example: the Gauss sum

Theorem

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case $n = 1$:

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case *n* = 1: 1 =
$$
\frac{1 \cdot 2}{2}
$$
. √

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
$$

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
$$

Claim:
$$
\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}.
$$

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
.
Claim: $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

.

$$
\sum_{i=1}^{n+1} i =
$$

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.
$$

Claim:
$$
\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}.
$$

$$
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)
$$

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
.
Claim: $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

$$
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{|H \cdot n(n+1)|}{2} + \frac{2(n+1)}{2}
$$

For all
$$
n \ge 1
$$
: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof.

Base case
$$
n = 1
$$
: $1 = \frac{1 \cdot 2}{2}$.

Step case:

Induction hypothesis:
$$
\sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
.
Claim: $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$.

$$
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{|H \cdot n(n+1)|}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}.
$$

Theorem

The sum of the first n odd numbers is a square,

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case $n = 1$:

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case $n = 1$: $1 = 1^2$. \checkmark

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$. \checkmark

Step case:

Induction hypothesis: $\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

$$
\sum_{i=1}^{n+1}(2i-1)=
$$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$. \checkmark

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1)
$$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} k_0^2 + 2n + 1
$$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} k_0^2 + 2n + 1 = \cdots = k_1^2.
$$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i - 1) = k^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$. \checkmark

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i-1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i-1) = k_1^2$

Proof:

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} k_0^2 + 2n + 1 = \dots = k_1^2.
$$

We are stuck!

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i-1) = n^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:
$$
\exists k_0 \sum_{i=1}^n (2i - 1) = k_0^2
$$

Claim: $\exists k_1 \sum_{i=1}^{n+1} (2i - 1) = k_1^2$

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} k_0^2 + 2n + 1 = \dots = k_1^2.
$$

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i-1) = n^2$.

Proof.

Base case
$$
n = 1: 1 = 1^2
$$
.

Step case:

Induction hypothesis:

$$
\sum_{i=1}^{n} (2i - 1) = n^2
$$

$$
\sum_{i=1}^{n+1} (2i - 1) = (n + 1)^2
$$

Proof:

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} k_0^2 + 2n + 1 = \cdots = k_1^2.
$$

Claim:

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all
$$
n \ge 1
$$
 there is a $k \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} (2i-1) = n^2$.

Proof.

Base case
$$
n = 1
$$
: $1 = 1^2$.

Step case:

Induction hypothesis:

$$
\sum_{i=1}^{n} (2i - 1) = n^2
$$

$$
\sum_{i=1}^{n+1} (2i - 1) = (n + 1)^2
$$

Proof:

$$
\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + (2n+1) = \mathsf{H} \; n^2 + 2n + 1 = (n+1)^2. \; \checkmark
$$

Claim:

Definition

The language of arithmetic is $L_A = \{0, s, +, \cdot, \leq\}.$

Definition

The language of arithmetic is $L_A = \{0, s, +, \cdot, \leq\}.$

Definition

We define $L_f = L_A \cup \{f/1\}$ and:

$$
f(0) = 0
$$

\n
$$
\forall x f(s(x)) = f(x) + (2 \cdot x + 1)
$$

\n
$$
(D_f^+)
$$

\n
$$
(D_f^+)
$$

Definition

The language of arithmetic is $L_A = \{0, s, +, \cdot, \leq\}.$

Definition

We define $L_f = L_A \cup \{f/1\}$ and:

$$
f(0) = 0
$$

\n
$$
\forall x f(s(x)) = f(x) + (2 \cdot x + 1)
$$

\n
$$
(D_f^+)
$$

\n
$$
(D_f^+)
$$

Then, in \mathbb{N} , $f(n) = \sum_{i=1}^{n} (2i - 1)$.

Definition

$$
\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D^0_f, D^+_f\}
$$

Definition

$$
\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D^0_f, D^+_f\}
$$

Definition

Let $L \supseteq \{0, s\}$, let $\varphi(x, \overline{z})$ be an L formula, then: $I_x \varphi(x, \overline{z})$ is

$$
\forall \overline{z}(\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}))
$$

Definition

$$
\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D^0_f, D^+_f\}
$$

Definition

Let $L \supseteq \{0, s\}$, let $\varphi(x, \overline{z})$ be an L formula, then: $I_x\varphi(x, \overline{z})$ is

$$
\forall\overline{z}\big(\varphi(0,\overline{z})\wedge\forall x\,(\varphi(x,\overline{z})\rightarrow\varphi(s(x),\overline{z})\big)\rightarrow\forall x\,\varphi(x,\overline{z})\big)
$$

Definition

$$
\psi(x) \equiv \exists y \, f(x) = y \cdot y
$$

Definition

$$
\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D^0_f, D^+_f\}
$$

Definition

Let $L \supseteq \{0, s\}$, let $\varphi(x, \overline{z})$ be an L formula, then: $I_x \varphi(x, \overline{z})$ is

$$
\forall\overline{z}\big(\varphi(0,\overline{z})\wedge\forall x\,(\varphi(x,\overline{z})\rightarrow\varphi(s(x),\overline{z})\big)\rightarrow\forall x\,\varphi(x,\overline{z})\big)
$$

Definition

$$
\psi(x) \equiv \exists y \, f(x) = y \cdot y
$$

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ is satisfiable.
Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example

Let $L' = L_A \cup \{c\}$. Define

$$
\Gamma = \mathsf{Th}(\mathbb{N}) \cup \{c \geq 0, c \geq 1, c \geq 2, \ldots\}.
$$

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example

Let $L' = L_A \cup \{c\}$. Define

$$
\Gamma = \mathsf{Th}(\mathbb{N}) \cup \{c \geq 0, c \geq 1, c \geq 2, \ldots\}.
$$

Let $\Gamma_0 \subset \Gamma$ be finite. Let $m \in \mathbb{N}$ s.t. $c > i \in \Gamma_0$ implies $i < m$.

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example

Let $L' = L_A \cup \{c\}$. Define

$$
\Gamma = \mathsf{Th}(\mathbb{N}) \cup \{c \geq 0, c \geq 1, c \geq 2, \ldots\}.
$$

Let $\Gamma_0 \subset \Gamma$ be finite. Let $m \in \mathbb{N}$ s.t. $c > i \in \Gamma_0$ implies $i < m$. Define the L' structure \mathcal{M}_0 by $\mathcal{M}_0\!\!\restriction_{L_{\sf A}}=\mathbb{N}$ and $c^{\mathcal{M}_0}=m$. Then $\mathcal{M}_0\models\mathsf{\Gamma}_0.$

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ is satisfiable.

Example

Let $L' = L_A \cup \{c\}$. Define

$$
\Gamma = \mathsf{Th}(\mathbb{N}) \cup \{c \geq 0, c \geq 1, c \geq 2, \ldots\}.
$$

Let $\Gamma_0 \subset \Gamma$ be finite. Let $m \in \mathbb{N}$ s.t. $c \geq i \in \Gamma_0$ implies $i < m$. Define the L' structure \mathcal{M}_0 by $\mathcal{M}_0\!\!\restriction_{L_{\sf A}}=\mathbb{N}$ and $c^{\mathcal{M}_0}=m$. Then $\mathcal{M}_0\models\mathsf{\Gamma}_0.$ So, by the compactness theorem, there is an M with $M \models \Gamma$. Let $\mathcal{N} = \mathcal{M}\!\!\restriction_{L_{\mathsf{A}}},$ then $\mathcal{N} \models \mathsf{Th}(\mathbb{N}).$

 $\mathcal N$ is a nonstandard model of Th (N)

Standard and Nonstandard numbers

Let $\mathcal{M} \models \mathsf{Th}(\mathbb{N}).$

Standard and Nonstandard numbers

Let $\mathcal{M} \models \mathsf{Th}(\mathbb{N}).$

Definition

Then $m \in \mathcal{M}$ is called *standard* if there is an $n \in \mathbb{N}$ s.t. $s^n(0)^\mathcal{M} = m.$ Otherwise m is called non-standard.

Let $\mathcal{M} \models \mathsf{Th}(\mathbb{N}).$

Definition

Then $m \in \mathcal{M}$ is called *standard* if there is an $n \in \mathbb{N}$ s.t. $s^n(0)^\mathcal{M} = m.$ Otherwise m is called non-standard.

Observation

 $\mathcal{M} \models \forall x \forall y (x \leq y \lor y \leq x)$ $\mathcal{M} \models \forall x \, 0 \leq x$ For all $n \in \mathbb{N}$: $\mathcal{M} \models \forall x (x \leq n \rightarrow x = 0 \lor x = 1 \lor \dots \lor x = n - 1)$

So non-standard m are "after" the standard m.

Proving Failure $\overline{(1/3)}$

Definition

Define
$$
L_c = L_f \cup \{c\}
$$
 and
\n
$$
\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$
\n
$$
\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$

Definition

Define
$$
L_c = L_f \cup \{c\}
$$
 and
\n
$$
\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$
\n
$$
\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$

Lemma

If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Definition

Define
$$
L_c = L_f \cup \{c\}
$$
 and
\n
$$
\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$
\n
$$
\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...\}
$$

Lemma

If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

$$
\text{For } \mathcal{M} \models \Gamma_c^+ \text{ define } \mathcal{N} \text{ by } \mathcal{N} \!\!\upharpoonright_{L_A \cup \{c\}} = \mathcal{M} \!\!\upharpoonright_{L_A \cup \{c\}} \text{ and }
$$

$$
f^{\mathcal{N}}(x) = \begin{cases} x^2 & \text{if } x \text{ is standard} \\ f^{\mathcal{M}}(x) & \text{otherwise} \end{cases}
$$

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...$

Lemma

 Γ_c^+ is satisfiable.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...$

Lemma

 Γ_c^+ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, ...$

Lemma

 Γ_c^+ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

Then $\beta_m(m)=(m+1)^2$ and $\beta_m(m+1)$ is not a square because

 $(m+1)^2 = m^2 + 2m + 1 < \beta_m(m+1) = m^2 + 4m + 2 < m^2 + 4m + 4 = (m+2)^2$.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \ldots$ }.

Lemma

 $\mathsf{\Gamma}^+_c$ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

Then $\beta_m(m)=(m+1)^2$ and $\beta_m(m+1)$ is not a square <code>because</code>

 $(m+1)^2 = m^2 + 2m + 1 < \beta_m(m+1) = m^2 + 4m + 2 < m^2 + 4m + 4 = (m+2)^2$.

Proof.

Let $\Gamma_0 \subseteq \Gamma_c^+$ be finite.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \ldots$ }.

Lemma

 $\mathsf{\Gamma}^+_c$ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

Then $\beta_m(m)=(m+1)^2$ and $\beta_m(m+1)$ is not a square <code>because</code>

 $(m+1)^2 = m^2 + 2m + 1 < \beta_m(m+1) = m^2 + 4m + 2 < m^2 + 4m + 4 = (m+2)^2$.

Proof.

Let $\Gamma_0 \subseteq \Gamma_c^+$ be finite. Let $a \in \mathbb{N}$ s.t. $c \geq i \in \Gamma_0$ implies $i < a$.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \ldots$ }.

Lemma

 $\mathsf{\Gamma}^+_c$ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

Then $\beta_m(m)=(m+1)^2$ and $\beta_m(m+1)$ is not a square <code>because</code>

 $(m+1)^2 = m^2 + 2m + 1 < \beta_m(m+1) = m^2 + 4m + 2 < m^2 + 4m + 4 = (m+2)^2$.

Proof.

Let $\Gamma_0 \subseteq \Gamma_c^+$ be finite. Let $a \in \mathbb{N}$ s.t. $c \geq i \in \Gamma_0$ implies $i < a$. Define the L_c structure M_0 by: $M_0|_{L_0} = N$, $c^{\mathcal{M}_0} = a$, $f^{\mathcal{M}_0} = \beta_a$. Then $\mathcal{M}_0 \models \Gamma_0$.

$\Gamma_c^+ = \text{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \ldots$ }.

Lemma

 $\mathsf{\Gamma}^+_c$ is satisfiable.

Definition

For $m \in \mathbb{N}$ define $\beta_m : \mathbb{N} \to \mathbb{N}, n \mapsto n^2 + 2m + 1$.

Then $\beta_m(m)=(m+1)^2$ and $\beta_m(m+1)$ is not a square <code>because</code>

 $(m+1)^2 = m^2 + 2m + 1 < \beta_m(m+1) = m^2 + 4m + 2 < m^2 + 4m + 4 = (m+2)^2$.

Proof.

Let $\Gamma_0 \subseteq \Gamma_c^+$ be finite. Let $a \in \mathbb{N}$ s.t. $c \geq i \in \Gamma_0$ implies $i < a$. Define the L_c structure M_0 by: $M_0|_{L_0} = N$, $c^{\mathcal{M}_0} = a$, $f^{\mathcal{M}_0} = \beta_a$. Then $\mathcal{M}_0 \models \Gamma_0$. So, by compactness, $\mathsf{\Gamma}^+_c$ is satisfiable.

 $\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $\left\{ \begin{array}{c} + \\ f \end{array} \right\}.$ $\Gamma_{\mathcal{C}}^+ = \mathsf{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

 $T = Th(N) \cup \{D_f^0, D_f^+\}.$ $\Gamma_{c}^{+} = \text{Th}(\mathbb{N}) \cup \{D_{f}^{+}, \varphi_{f}^{+}\}$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

$$
\text{Let } \mathcal{M} \models \Gamma_c^{0,+}.
$$

 $T = Th(N) \cup \{D_f^0, D_f^+\}.$ $\Gamma_{c}^{+} = \text{Th}(\mathbb{N}) \cup \{D_{f}^{+}, \varphi_{f}^{+}\}$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Let
$$
\mathcal{M} \models \Gamma_c^{0,+}
$$
. Let $\mathcal{N} = \mathcal{M} \upharpoonright_{L_f}$.

 $\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $\left\{ \begin{array}{c} + \\ f \end{array} \right\}.$ $\Gamma_{\mathcal{C}}^+ = \mathsf{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Let
$$
\mathcal{M} \models \Gamma_c^{0,+}
$$
. Let $\mathcal{N} = \mathcal{M}\upharpoonright_{L_f}$. Then $\mathcal{N} \models \mathcal{T}, \mathcal{N} \models \psi(0)$,

 $\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $\left\{ \begin{array}{c} + \\ f \end{array} \right\}.$ $\Gamma_{\mathcal{C}}^+ = \mathsf{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Let
$$
M \models \Gamma_c^{0,+}
$$
. Let $\mathcal{N} = \mathcal{M}|_{L_f}$. Then $\mathcal{N} \models \mathcal{T}, \mathcal{N} \models \psi(0)$,
\n $\mathcal{N} \not\models \forall x (\psi(x) \rightarrow \psi(s(x))$ with counterexample $c^{\mathcal{M}}$,

 $\mathcal{T} = \mathsf{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $\left\{ \begin{array}{c} + \\ f \end{array} \right\}.$ $\Gamma_{\mathcal{C}}^+ = \mathsf{Th}(\mathbb{N}) \cup \{D_f^+$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Proof.

Let $\mathcal{M}\models\mathsf{\Gamma}_\mathsf{c}^{0,+}.$ Let $\mathcal{N}=\mathcal{M}\!\!\restriction_{L_\mathsf{f}}.$ Then $\mathcal{N}\models\mathcal{T},\,\mathcal{N}\models\psi(0),$ $\mathcal{N} \not\models \forall x (\psi(x) \rightarrow \psi(s(x))$ with counterexample $c^{\mathcal{M}}, \mathcal{N} \not\models \forall x \psi(x)$ with counterexample $c^{\mathcal{M}}$.

 $T = Th(N) \cup \{D_f^0, D_f^+\}.$ $\Gamma_{c}^{+} = \text{Th}(\mathbb{N}) \cup \{D_{f}^{+}, \varphi_{f}^{+}\}$ $\psi_{f}^{+}, \psi(c), \neg \psi(s(c)), c \geq 0, c \geq 1, c \geq 2, ...$ $\Gamma_c^{0,+} = \text{Th}(\mathbb{N}) \cup \{D_f^0, D_f^+$ $f^+_{f}, \psi(c), \neg \psi(s(c)), c \ge 0, c \ge 1, c \ge 2, \dots$ **Lemma.** Γ_c^+ is satisfiable. **Lemma.** If Γ_c^+ is satisfiable, then $\Gamma_c^{0,+}$ is satisfiable.

Theorem (Lundstedt '20)

 $T, I_x\psi(x) \not\vdash \forall x \psi(x)$.

Proof.

Let $\mathcal{M}\models\mathsf{\Gamma}_\mathsf{c}^{0,+}.$ Let $\mathcal{N}=\mathcal{M}\!\!\restriction_{L_\mathsf{f}}.$ Then $\mathcal{N}\models\mathcal{T},\,\mathcal{N}\models\psi(0),$ $\mathcal{N} \not\models \forall x (\psi(x) \rightarrow \psi(s(x))$ with counterexample $c^{\mathcal{M}}, \mathcal{N} \not\models \forall x \psi(x)$ with counterexample $c^{\mathcal{M}}$. So $\mathcal{N} \models I_x \psi(x)$.

Logical strength

Definition

A formula $\forall x \varphi(x)$ has a straightforward induction proof in T if $T, I_x\varphi(x) \vdash \forall x \varphi(x).$

Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.

Logical strength

Definition

- Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.
- Note that $\models \psi'(x) \rightarrow \psi(x)$.

- Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.
- Note that $\models \psi'(x) \rightarrow \psi(x)$.
- Do we always / sometimes have to induct on a stronger formula?

- Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.
- Note that $\models \psi'(x) \rightarrow \psi(x)$.
- \bullet Do we always / sometimes have to induct on a stronger formula? No!

A formula $\forall x \varphi(x)$ has a straightforward induction proof in T if $T, I_x\varphi(x) \vdash \forall x \varphi(x).$

- Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.
- Note that $\models \psi'(x) \rightarrow \psi(x)$.
- Do we always / sometimes have to induct on a stronger formula? **No!**

Observation (H, Wong '18)

T theory. If $T, I_x\varphi(x) \vdash \sigma$ then there is a $\psi(x)$ s.t. $T, I_x\psi(x) \vdash \sigma$ and $T \vdash \forall x \psi(x) \leftrightarrow \sigma.$

A formula $\forall x \varphi(x)$ has a straightforward induction proof in T if $T, I_x\varphi(x) \vdash \forall x \varphi(x).$

Proof of $\psi(x) \equiv \exists y f(x) = y \cdot y$ by induction on $\psi'(x) \equiv f(x) = x \cdot x$.

• Note that
$$
\models \psi'(x) \rightarrow \psi(x)
$$
.

• Do we always / sometimes have to induct on a stronger formula? **No!**

Observation (H, Wong '18)

T theory. If $T, I_x\varphi(x) \vdash \sigma$ then there is a $\psi(x)$ s.t. $T, I_x\psi(x) \vdash \sigma$ and \overline{T} $\vdash \forall x \psi(x) \leftrightarrow \sigma$.

Proof Sketch.

Let
$$
\psi(x) \equiv \varphi(x) \vee \sigma
$$
.

Can we strengthen the notion of straightforward induction proof? Can we prove more with two inductions?

Can we strengthen the notion of straightforward induction proof? Can we prove more with two inductions? No!

Can we strengthen the notion of straightforward induction proof? Can we prove more with two inductions? No!

Theorem

T theory. If T , $I_x\varphi_1(x,\overline{z_1}),\ldots,I_x\varphi_n(x,\overline{z_n}) \vdash \sigma$, then there is a $\psi(x)$ s.t. $T, I_x\psi(x) \vdash \sigma.$

Can we strengthen the notion of straightforward induction proof? Can we prove more with two inductions? No!

Theorem

T theory. If T , $I_x\varphi_1(x,\overline{z_1}),\ldots,I_x\varphi_n(x,\overline{z_n}) \vdash \sigma$, then there is a $\psi(x)$ s.t. $T, I_x\psi(x) \vdash \sigma.$

Proof Sketch.

- **1** Remove parameters by adding universal quantifiers.
- 2 Pull all inductions together as one.

Can we strengthen the notion of straightforward induction proof? Can we prove more with two inductions? No!

Theorem

T theory. If T , $I_x\varphi_1(x,\overline{z_1}),\ldots,I_x\varphi_n(x,\overline{z_n}) \vdash \sigma$, then there is a $\psi(x)$ s.t. $T, I_x\psi(x) \vdash \sigma.$

Proof Sketch.

- **1** Remove parameters by adding universal quantifiers.
- 2 Pull all inductions together as one.

Corollary

T theory. If T , $I_x\varphi_1(x,\overline{z_1}),\ldots,I_x\varphi_n(x,\overline{z_n}) \vdash \sigma$, then there is $\varphi(x)$ s.t. $T, I_x\varphi(x) \vdash \sigma$ and $T \vdash \forall x \varphi(x) \leftrightarrow \sigma$.
Outline

1 [Straightforward induction proofs](#page-5-0)

- 2 [Equational theory exploration](#page-72-0)
	- [Atomic induction](#page-101-0)
	- **[Literal induction](#page-117-0)**
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- **Open** induction
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

Automated theorem proving: goal-oriented Given T and σ find out if $T \vdash \sigma$

- Automated theorem proving: goal-oriented Given T and σ find out if $T \vdash \sigma$
- Theory exploration: bottom-up Given T find "interesting" $\sigma_1, \ldots, \sigma_n$ s.t. $T \vdash \sigma_1, \ldots, T \vdash \sigma_n$
- Automated theorem proving: goal-oriented Given T and σ find out if $T \vdash \sigma$
- Theory exploration: bottom-up Given T find "interesting" $\sigma_1, \ldots, \sigma_n$ s.t. $T \vdash \sigma_1, \ldots, T \vdash \sigma_n$
- **Equational theory exploration (** σ_i are equations)
	- Simplified form of HipSpec [Claessen, Johansson, Rosén, Smallbone '13]
	- Allows to "iterate" straightforward induction proofs

Work in many-sorted first-order logic with sorts D, T_1, \ldots, T_n . D is defined as *inductive data type* by *constructors* c_1, \ldots, c_k where $c_i: \tau_i^1 \times \cdots \times \tau_i^{m_i} \to D$ with $\tau_i^l \in \{D, T_1, \ldots, T_n\}.$

Work in many-sorted first-order logic with sorts D, T_1, \ldots, T_n . D is defined as *inductive data type* by *constructors* c_1, \ldots, c_k where $c_i: \tau_i^1 \times \cdots \times \tau_i^{m_i} \to D$ with $\tau_i^l \in \{D, T_1, \ldots, T_n\}.$

$$
D = \mathsf{Nat},\ n = 0,\ c_1 = 0:\mathsf{Nat},\ c_2 = s:\mathsf{Nat} \to \mathsf{Nat}.
$$

Work in many-sorted first-order logic with sorts D, T_1, \ldots, T_n . D is defined as *inductive data type* by *constructors* c_1, \ldots, c_k where $c_i: \tau_i^1 \times \cdots \times \tau_i^{m_i} \to D$ with $\tau_i^l \in \{D, T_1, \ldots, T_n\}.$

Example

$$
D = \mathsf{Nat},\ n = 0,\ c_1 = 0:\mathsf{Nat},\ c_2 = s:\mathsf{Nat} \to \mathsf{Nat}.
$$

Example

 $D =$ NatList, $T_1 =$ Nat, $n = 1$, $c_1 =$ nil : NatList, c_2 = cons : Nat \times NatList \rightarrow NatList.

Primitive recursion over lists:

$$
h(nil, \overline{z}) = t(\overline{z})
$$

$$
h(\text{cons}(x, L), \overline{z}) = u(x, L, h(L, \overline{z}), \overline{z})
$$

Primitive recursion over lists:

$$
h(nil, \overline{z}) = t(\overline{z})
$$

$$
h(\text{cons}(x, L), \overline{z}) = u(x, L, h(L, \overline{z}), \overline{z})
$$

Definition

Let $L = \{c_1, \ldots, c_k\}$. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Primitive recursion over lists:

$$
h(nil, \overline{z}) = t(\overline{z})
$$

$$
h(\text{cons}(x, L), \overline{z}) = u(x, L, h(L, \overline{z}), \overline{z})
$$

Definition

Let $L = \{c_1, \ldots, c_k\}$. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Example

The induction axiom for lists: $\varphi(X,\overline{z})$ formula:

 $\forall \overline{z}(\varphi(\mathsf{nil},\overline{z}) \land \forall X \forall u (\varphi(X,\overline{z}) \to \varphi(\mathsf{cons}(u,X),\overline{z})) \to \forall X \varphi(X,\overline{z}))$

 \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

$$
x + s(y) = s(x + y)
$$

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(\text{nil}) = 0
$$

\n
$$
len(\text{cons}(x, L)) = s(\text{len}(L))
$$

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(nil) = 0
$$

\n
$$
ap(nil, L2) = L2
$$

\n
$$
len(cos(x, L)) = s(len(L)) \quad app(cos(x, L1), L2) = cons(x, app(L1, L2))
$$

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(nil) = 0
$$

\n
$$
ap(nil, L2) = L2
$$

\n
$$
len(cos(x, L)) = s(len(L)) \quad app(cos(x, L1), L2) = cons(x, app(L1, L2))
$$

• L_1 : $0 + x = x$ has straightforward (sf) induction proof

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(nil) = 0
$$

\n
$$
ap(nil, L2) = L2
$$

\n
$$
len(cos(x, L)) = s(len(L)) \quad app(cos(x, L1), L2) = cons(x, app(L1, L2))
$$

- $L_1: 0 + x = x$ has straightforward (sf) induction proof
- L_2 : $s(x) + y = s(x + y)$ has sf induction proof

 \bullet

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(nil) = 0
$$

\n
$$
ap(nil, L2) = L2
$$

\n
$$
len(cons(x, L)) = s(len(L)) \quad app(cons(x, L1), L2) = cons(x, app(L1, L2))
$$

\n
$$
L1: 0 + x = x has straightforward (sf) induction proof
$$

- L_2 : $s(x) + y = s(x + y)$ has sf induction proof
- L_3 : $x + y = y + x$ has sf induction proof using L_1 and L_2 .

- \bullet Datatypes: Nat $(0, s)$, NatList (nil, cons)
- Defined functions \bullet

$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
len(nil) = 0
$$

\n
$$
ap(nil, L2) = L2
$$

\n
$$
len(cos(x, L)) = s(len(L)) \quad app(cos(x, L1), L2) = cons(x, app(L1, L2))
$$

- L_1 : $0 + x = x$ has straightforward (sf) induction proof
- L_2 : $s(x) + y = s(x + y)$ has sf induction proof
- L_3 : $x + y = y + x$ has sf induction proof using L_1 and L_2 .
- L_4 : len(app(L_1, L_2)) = len(L_1) + len(L_2) has sf induction proof using L_1 and L_2 .

procedure CONJECTURE(
$$
k, \overline{x}, n
$$
)
\n $T := \{ t \text{ term} \mid |t| \leq k, \text{Var}(t) \subseteq \{ \overline{x} \} \}$
\n $E := \{ (t_1, t_2) \mid t_1, t_2 \in T \}$

$$
\text{return } \{t_1 = t_2 \mid (t_1, t_2) \in E\}
$$
\nend procedure

$$
t_1 = t_2
$$
 is returned iff $t_1 = t_2$ withstood *n* tests

procedure CONJECTURE(
$$
k, \overline{x}, n
$$
)
\n $T := \{t \text{ term} \mid |t| \leq k, \text{Var}(t) \subseteq \{\overline{x}\}\}$
\n $E := \{(t_1, t_2) \mid t_1, t_2 \in T\}$
\n**for** $i := 1, ..., n$ **do**
\n $\overline{a} := \text{GENERALERANDOMTUPLE}(\overline{x})$

end for return $\{t_1 = t_2 \mid (t_1, t_2) \in E\}$ end procedure

$$
t_1 = t_2
$$
 is returned iff $t_1 = t_2$ withstood *n* tests

procedure CONJECTURE (k, \overline{x}, n) $T := \{ t \text{ term } | |t| \leq k, \text{Var}(t) \subseteq \{ \overline{x} \} \}$ $E := \{(t_1, t_2) \mid t_1, t_2 \in \mathcal{T}\}\$ for $i := 1, ..., n$ do \overline{a} := GENERATERANDOMTUPLE(\overline{x}) for each equivalence class C of E do

end for end for return $\{t_1 = t_2 \mid (t_1, t_2) \in E\}$ end procedure

$$
t_1 = t_2
$$
 is returned iff $t_1 = t_2$ withstood *n* tests

```
procedure CONJECTURE(k, \overline{x}, n)T := \{ t \text{ term } | |t| \leq k, \text{Var}(t) \subseteq \{ \overline{x} \} \}E := \{(t_1, t_2) \mid t_1, t_2 \in \mathcal{T}\}\for i := 1, \ldots, n do
           \overline{a} := GENERATERANDOMTUPLE(\overline{x})
           for each equivalence class C of E do
                 E' := \{(t_1, t_2) \in C \mid \text{VALUE}(t_1[\overline{x}\backslash \overline{a}]) = \text{VALUE}(t_2[\overline{x}\backslash \overline{a}])\}Replace C by E' in Eend for
      end for
      return \{t_1 = t_2 \mid (t_1, t_2) \in E\}end procedure
\blacktriangleright t_1 = t_2 is returned iff t_1 = t_2 withstood n tests
```
procedure $\text{EXPLORE}(A, k, \overline{x}, n, t)$ $L := \emptyset$ $C := \text{CONJECTURE}(k, \overline{x}, n)$

return L end procedure

```
procedure \text{EXPLORE}(A, k, \overline{x}, n, t)L := \emptysetC := \text{CONJECTURE}(k, \overline{x}, n)while C \neq \emptyset do
           Pick \varphi(x_1, \ldots, x_m) \in CC := C \setminus {\{\varphi(\overline{x})\}}
```
end while return L end procedure

```
procedure EXPLORE(A, k, \overline{x}, n, t)L := \emptysetC := \text{ConvURE}(k, \overline{x}, n)while C \neq \emptyset do
            Pick \varphi(x_1, \ldots, x_m) \in CC := C \setminus {\{\varphi(\overline{x})\}}if A, L \not\vdash^t \forall \overline{x} \, \varphi(\overline{x}) then
```
end if end while return / end procedure

```
procedure \text{EXPLORE}(A, k, \overline{x}, n, t)L := \emptysetC := \text{CONJECTURE}(k, \overline{x}, n)while C \neq \emptyset do
             Pick \varphi(x_1, \ldots, x_m) \in CC := C \setminus {\{\varphi(\overline{x})\}}if A, L \not\vdash^t \forall \overline{x} \, \varphi(\overline{x}) then
                     if \exists i \in \{1,\ldots,m\} s.t. A, L, I_{x_i}\varphi(\overline{x}) \vdash^t \forall \overline{x} \varphi(\overline{x}) then
                           L := L \cup \{ \forall \overline{x} \varphi(\overline{x}) \}end if
             end if
      end while
      return /
end procedure
```
• Simple algorithm

- **•** Simple algorithm
- Useful in practice inductive data types and simple primitive recursive functions
- **•** Finds commutation properties, simple lemmas, ...
- **•** Simple algorithm
- Useful in practice inductive data types and simple primitive recursive functions
- **Finds commutation properties, simple lemmas, ...**
- Main weakness: limited to equations (atoms)

Outline

- **[Straightforward induction proofs](#page-5-0)**
- **[Equational theory exploration](#page-72-0)**
- 3 [Atomic induction](#page-101-0)
	- **[Literal induction](#page-117-0)**
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- **Open** induction
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**
- **[Conclusion](#page-219-0)**

For a set of formulas Γ define

$$
\Gamma\text{-IND}=\{I_x\varphi(x,\overline{z})\mid \varphi(x,\overline{z})\in\Gamma\}.
$$

Remark

Γ-IND goes beyond straightforward induction proofs.

For a set of formulas Γ define

$$
\Gamma\text{-IND}=\{I_x\varphi(x,\overline{z})\mid \varphi(x,\overline{z})\in\Gamma\}.
$$

Remark

Γ-IND goes beyond straightforward induction proofs.

Example

Atom-IND are all induction axioms with atoms as induction formula.

Observation

Everything provable by equational theory exploration is provable by atomic induction.

Let $L_{LA} = \{0, s, p, +\}$ and $B =$

$$
\begin{aligned} s(x) &\neq 0 \\ p(0) &= 0 \\ p(s(x)) &= x \end{aligned}
$$

 $x+0=x$ $x + s(y) = s(x + y)$

Let
$$
L_{LA} = \{0, s, p, +\}
$$
 and $B =$

$$
s(x) \neq 0
$$

\n
$$
p(0) = 0
$$

\n
$$
s(x) \neq 0
$$

\n
$$
x + 0 = x
$$

\n
$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
p(s(x)) = x
$$

Then B, Atom-IND $\vdash \forall x \forall y \ x + y = y + x$

Let
$$
L_{LA} = \{0, s, p, +\}
$$
 and $B =$

$$
s(x) \neq 0
$$

\n
$$
p(0) = 0
$$

\n
$$
s(x) \neq 0
$$

\n
$$
x + 0 = x
$$

\n
$$
x + 0 = x
$$

\n
$$
x + s(y) = s(x + y)
$$

\n
$$
p(s(x)) = x
$$

Then B, Atom-IND $\vdash \forall x \forall y \ x + y = y + x$ B, Atom-IND $\vdash \forall x \forall y \forall z \, x + (y + z) = (x + y) + z$.

Define the L_{LA}-structure M with domain $\mathbb{N} \cup \{\infty\}$ by interpreting $0, s, p, +$ on $\mathbb N$ in the standard way and

$$
s^{\mathcal{M}}(\infty)=\infty=p^{\mathcal{M}}(\infty) \text{ and } n+\mathcal{M} \infty=\infty+\mathcal{M} \text{ } n=\infty+\mathcal{M} \infty=\infty.
$$
Definition

Define the L_{LA}-structure M with domain $\mathbb{N} \cup \{\infty\}$ by interpreting $0, s, p, +$ on $\mathbb N$ in the standard way and

$$
s^{\mathcal{M}}(\infty)=\infty=p^{\mathcal{M}}(\infty) \text{ and } n+\mathcal{M} \infty=\infty+\mathcal{M} \text{ } n=\infty+\mathcal{M} \infty=\infty.
$$

Observation

 $\mathcal{M} \models B$.

Observation

 $\mathcal{M} \models$ Atomic-IND.

Observation

 $\mathcal{M} \models$ Atomic-IND.

Proof.

Let
$$
\overline{z} = z_1, \ldots, z_k, t_1(x, \overline{z}) = t_2(x, \overline{z})
$$
 atom,

Observation

 $\mathcal{M} \models$ Atomic-IND.

Proof.

Let $\overline{z} = z_1, \ldots, z_k$, $t_1(x, \overline{z}) = t_2(x, \overline{z})$ atom, $\overline{a} \in (\mathbb{N} \cup \{\infty\})^k$. Assume (1) $\mathcal{M} \models t_1(0, \overline{a}) = t_2(0, \overline{a})$ and (II) $\mathcal{M} \models \forall x (t_1(x, \overline{a}) = t_2(x, \overline{a}) \rightarrow t_1(s(x), \overline{a}) = t_2(s(x), \overline{a}))$ **Claim.** $\mathcal{M} \models t_1(b, \overline{a}) = t_2(b, \overline{a})$ for all $b \in \mathbb{N} \cup \{\infty\}$.

Observation

 $\mathcal{M} \models$ Atomic-IND.

Proof.

Let $\overline{z} = z_1, \ldots, z_k$, $t_1(x, \overline{z}) = t_2(x, \overline{z})$ atom, $\overline{a} \in (\mathbb{N} \cup \{\infty\})^k$. Assume (1) $\mathcal{M} \models t_1(0, \overline{a}) = t_2(0, \overline{a})$ and (II) $\mathcal{M} \models \forall x (t_1(x, \overline{a}) = t_2(x, \overline{a}) \rightarrow t_1(s(x), \overline{a}) = t_2(s(x), \overline{a}))$ **Claim.** $M \models t_1(b, \overline{a}) = t_2(b, \overline{a})$ for all $b \in \mathbb{N} \cup \{\infty\}$. 1. $\infty \in \{a_1, \ldots, a_k, b\}$: $\mathcal{M} \models t_1(b, \overline{a}) = \infty = t_2(b, \overline{a})$.

Observation

 $\mathcal{M} \models$ Atomic-IND.

Proof.

Let $\overline{z} = z_1, \ldots, z_k$, $t_1(x, \overline{z}) = t_2(x, \overline{z})$ atom, $\overline{a} \in (\mathbb{N} \cup \{\infty\})^k$. Assume (1) $\mathcal{M} \models t_1(0, \overline{a}) = t_2(0, \overline{a})$ and (II) $\mathcal{M} \models \forall x (t_1(x, \overline{a}) = t_2(x, \overline{a}) \rightarrow t_1(s(x), \overline{a}) = t_2(s(x), \overline{a}))$ **Claim.** $M \models t_1(b, \overline{a}) = t_2(b, \overline{a})$ for all $b \in \mathbb{N} \cup \{\infty\}$. 1. $\infty \in \{a_1, \ldots, a_k, b\}$: $\mathcal{M} \models t_1(b, \overline{a}) = \infty = t_2(b, \overline{a})$. 2. $a_1, \ldots, a_k, b \in \mathbb{N}$: obtain $\mathcal{M} \models t_1(b, \overline{a}) = t_2(b, \overline{a})$ by (1) and b instances of (II). \square

Independence results for atomic induction

Observation

$$
\mathcal{M} \not\models \forall x \, s(x) \neq x.
$$

Independence results for atomic induction

Observation

$$
\mathcal{M} \not\models \forall x \, s(x) \neq x.
$$

Observation

$$
\mathcal{M} \not\models \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$

Proof.

 $\infty + 1 = \infty + 2$ but $1 \neq 2$.

Independence results for atomic induction

Observation

$$
\mathcal{M} \not\models \forall x \, s(x) \neq x.
$$

Observation

$$
\mathcal{M} \not\models \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$

Proof.

 $\infty + 1 = \infty + 2$ but $1 \neq 2$.

Corollary

B + Atomic-IND $\forall x s(x) \neq x$ and

$$
B + \text{Atomic-IND } \forall x \forall y \forall z (x + y = x + z \rightarrow y = z).
$$

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- **[Literal induction](#page-117-0)**
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- **Open** induction
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**
- **[Conclusion](#page-219-0)**

Definition

A literal is an atom or a negated atom.

Definition

Literal-IND is the set of induction axioms for literals als induction formulas.

What does literal induction prove?

Lemma

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

What does literal induction prove?

Lemma

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Proof.

Work in B :

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Proof.

Work in B: If $s(u) = s(v)$ then

$$
p(s(u))=p(s(v))
$$

.

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Proof.

Work in B: If $s(u) = s(v)$ then $u = p(s(u)) = p(s(v)) = v$.

What does literal induction prove?

Lemma

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND $\vdash \forall x s(x) \neq x$.

What does literal induction prove?

Lemma

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND $\vdash \forall x s(x) \neq x$.

Proof.

Induction on x in $s(x) \neq x$. Work in B:

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

```
B, Literal-IND \vdash \forall x s(x) \neq x.
```
Proof.

Induction on x in $s(x) \neq x$. Work in B:

```
■ s(0) \neq 0 because \forallx s(x) \neq 0
```

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND
$$
\forall x s(x) \neq x
$$
.

Proof.

Induction on x in $s(x) \neq x$. Work in B:

$$
\bullet \ \ s(0) \neq 0 \text{ because } \forall x \, s(x) \neq 0
$$

$$
\bullet \ \ s(x) \neq x \rightarrow s(s(x)) \neq s(x) \text{ because } s(s(x)) = s(x) \rightarrow s(x) = x. \qquad \Box
$$

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND $\vdash \forall x s(x) \neq x$.

Theorem

B, Literal-IND $\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)$.

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND $\vdash \forall x s(x) \neq x$.

Theorem

B, Literal-IND
$$
\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$
.

Proof.

Assume $y \neq z$. Induction on x in $x + y \neq x + z$. Work in B:

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND
$$
\forall x s(x) \neq x
$$
.

Theorem

B, Literal-IND
$$
\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$
.

Proof.

Assume $y \neq z$. Induction on x in $x + y \neq x + z$. Work in B:

.

$$
y \neq z
$$

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND
$$
\forall x s(x) \neq x
$$
.

Theorem

B, Literal-IND
$$
\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$
.

Proof.

Assume $y \neq z$. Induction on x in $x + y \neq x + z$. Work in B:

0
$$
0 + y = y \neq z = 0 + z
$$
.

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND
$$
\forall x s(x) \neq x
$$
.

Theorem

B, Literal-IND
$$
\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$
.

Proof.

Assume $y \neq z$. Induction on x in $x + y \neq x + z$. Work in B:

0
$$
0 + y = y \neq z = 0 + z
$$
.

2 If $x + y \neq x + z$, then $s(x+y) \neq s(x+z)$.

$$
B\vdash s(u)=s(v)\rightarrow u=v.
$$

Theorem

B, Literal-IND
$$
\forall x s(x) \neq x
$$
.

Theorem

B, Literal-IND
$$
\vdash \forall x \forall y \forall z (x + y = x + z \rightarrow y = z)
$$
.

Proof.

Assume $y \neq z$. Induction on x in $x + y \neq x + z$. Work in B:

$$
0 + y = y \neq z = 0 + z.
$$

2 If $x + y \neq x + z$, then $s(x) + y = s(x + y) \neq s(x + z) = s(x) + z$. \Box

Definition

Let
$$
T_{\text{EO}} = \{ 0 \neq s(x), s(x) = s(y) \to x = y,
$$

 $E(0), E(x) \to O(s(x)), O(x) \to E(s(x)) \}.$

Definition

Let
$$
T_{\text{EO}} = \{ 0 \neq s(x), s(x) = s(y) \to x = y,
$$

 $E(0), E(x) \to O(s(x)), O(x) \to E(s(x)) \}.$

Observation

 $\forall x (E(x) \vee O(x))$ has straightforward induction proof in T_{EO} .

Definition

Let
$$
T_{\text{EO}} = \{ 0 \neq s(x), s(x) = s(y) \to x = y,
$$

 $E(0), E(x) \to O(s(x)), O(x) \to E(s(x)) \}.$

Observation

 $\forall x (E(x) \vee O(x))$ has straightforward induction proof in T_{EO} .

Theorem

 T_{EO} + Literal-IND \forall \forall x ($E(x) \vee O(x)$).

Definition

Let
$$
T_{\text{EO}} = \{ 0 \neq s(x), s(x) = s(y) \to x = y,
$$

 $E(0), E(x) \to O(s(x)), O(x) \to E(s(x)) \}.$

Observation

 $\forall x (E(x) \vee O(x))$ has straightforward induction proof in T_{FO} .

Theorem

$$
T_{\text{EO}} + \text{Literal-IND} \forall x (E(x) \vee O(x)).
$$

Proof Sketch.

Model M with domain $({0} \times \mathbb{N}) \cup ({1} \times \mathbb{Z})$ and

$$
0^{\mathcal{M}} = (0,0) \qquad E^{\mathcal{M}} = \{(0,n) \mid n \text{ is even}\}
$$

$$
s^{\mathcal{M}}(b,n) = (b,n+1) \qquad O^{\mathcal{M}} = \{(0,n) \mid n \text{ is odd}\}
$$

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)

5 [Saturation theorem proving with explicit induction axioms](#page-137-0)

- [Open induction](#page-178-0)
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

Clause logic

Standard setting for automated theorem proving in first-order logic.

Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A *clause* is a formula $\bigvee_{j=1}^k L_j$ where L_j literal. A *conjunctive normal form* is a formula $\forall \overline{\mathsf{x}} \bigwedge_{i=1}^n \bigvee_{i=j}^{k_i} L_{i,j}$ where $L_{i,j}$ literal.

We identify a clause set with a conjunctive normal form.

Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A *clause* is a formula $\bigvee_{j=1}^k L_j$ where L_j literal. A *conjunctive normal form* is a formula $\forall \overline{\mathsf{x}} \bigwedge_{i=1}^n \bigvee_{i=j}^{k_i} L_{i,j}$ where $L_{i,j}$ literal.

We identify a clause set with a conjunctive normal form.

Definition

Clause form transformation: given a FOL formula φ we compute

$$
\neg \varphi \quad \mapsto \quad \mathsf{sk}^{\exists}(\neg \varphi) \quad \mapsto \quad \mathsf{CNF}(\mathsf{sk}^{\exists}(\neg \varphi)).
$$

Then φ is valid iff CNF(sk($\neg \varphi$)) is unsatisfiable.

Skolemisation

Idea: $\forall x \exists y \varphi(x, y) \mapsto \forall x \varphi(x, f(x))$ where f new function symbol

Skolemisation

Idea: $\forall x \exists y \varphi(x, y) \mapsto \forall x \varphi(x, f(x))$ where f new function symbol

Definition

The Skolem axiom for $\varphi(\overline{x}, y)$ is $\forall \overline{x} (\exists y \varphi(\overline{x}, y) \rightarrow \varphi(\overline{x}, f(\overline{x}))).$

Skolemisation

Idea: $\forall x \exists y \varphi(x, y) \mapsto \forall x \varphi(x, f(x))$ where f new function symbol

Definition

The Skolem axiom for $\varphi(\overline{x}, y)$ is $\forall \overline{x} (\exists y \varphi(\overline{x}, y) \rightarrow \varphi(\overline{x}, f(\overline{x}))).$

Definition

Skolem closure of a language L is sk $\omega(L)$.
Skolemisation

Idea: $\forall x \exists y \varphi(x, y) \mapsto \forall x \varphi(x, f(x))$ where f new function symbol

Definition

The Skolem axiom for $\varphi(\overline{x}, y)$ is $\forall \overline{x} (\exists y \varphi(\overline{x}, y) \rightarrow \varphi(\overline{x}, f(\overline{x}))).$

Definition

Skolem closure of a language L is sk $\omega(L)$.

Definition

sk $^{\exists}(\varphi)$ is the formula φ after removel of all (positive) existential (and negative universal) quantifiers by Skolemisation.

Skolemisation

Idea: $\forall x \exists y \varphi(x, y) \mapsto \forall x \varphi(x, f(x))$ where f new function symbol

Definition

The Skolem axiom for $\varphi(\overline{x}, y)$ is $\forall \overline{x} (\exists y \varphi(\overline{x}, y) \rightarrow \varphi(\overline{x}, f(\overline{x}))).$

Definition

Skolem closure of a language L is sk $\omega(L)$.

Definition

sk $^{\exists}(\varphi)$ is the formula φ after removel of all (positive) existential (and negative universal) quantifiers by Skolemisation.

Theorem

$$
sk^{\omega}(L)\text{-}\mathsf{SA}\vdash \varphi \leftrightarrow sk^{\exists}(\varphi).
$$

Standard technique for automated theorem proving in FOL

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the current clause set.

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the current clause set.

Example

The *resolution rule* is

$$
\frac{C \vee L \quad L' \vee D}{(C \vee D)\sigma}
$$

where σ is most general unifier of L and $\overline{L^{\prime}}.$

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the current clause set.

Example

The *resolution rule* is

$$
\frac{C \vee L \quad L' \vee D}{(C \vee D)\sigma}
$$

where σ is most general unifier of L and $\overline{L^{\prime}}.$

Example

$$
\frac{P(a) \quad \neg P(x) \lor P(f(x))}{P(f(a))}
$$

Clause set C closed under S if for all n-ary rules $\rho \in \mathcal{S}$:

 $C_1, \ldots, C_n \in \mathcal{C}$ implies $\rho(C_1, \ldots, C_n) \in \mathcal{C}$

Clause set C closed under S if for all n-ary rules $\rho \in \mathcal{S}$:

$$
C_1, \ldots, C_n \in \mathcal{C} \text{ implies } \rho(C_1, \ldots, C_n) \in \mathcal{C}
$$

Given $\mathcal C$, compute closure by $\mathcal C^0=\mathcal C,\mathcal C^1,\mathcal C^2,\ldots\longrightarrow\mathcal C^\omega.$

Clause set C closed under S if for all n-ary rules $\rho \in \mathcal{S}$:

$$
C_1, \ldots, C_n \in \mathcal{C} \text{ implies } \rho(C_1, \ldots, C_n) \in \mathcal{C}
$$

Given $\mathcal C$, compute closure by $\mathcal C^0=\mathcal C,\mathcal C^1,\mathcal C^2,\ldots\longrightarrow\mathcal C^\omega.$

Definition

 $\mathcal S$ sound if $\mathcal C\in \mathcal C^\omega$ implies $\mathcal C\models\mathcal C$

Clause set C closed under S if for all *n*-ary rules $\rho \in S$:

$$
C_1, \ldots, C_n \in \mathcal{C} \text{ implies } \rho(C_1, \ldots, C_n) \in \mathcal{C}
$$

Given $\mathcal C$, compute closure by $\mathcal C^0=\mathcal C,\mathcal C^1,\mathcal C^2,\ldots\longrightarrow\mathcal C^\omega.$

Definition

 $\mathcal S$ sound if $\mathcal C\in \mathcal C^\omega$ implies $\mathcal C\models\mathcal C$

Definition

S refutationally complete if $C \models \bot$ implies $\bot \in C^{\omega}$

Clause set C closed under S if for all *n*-ary rules $\rho \in S$:

$$
C_1, \ldots, C_n \in \mathcal{C} \text{ implies } \rho(C_1, \ldots, C_n) \in \mathcal{C}
$$

Given $\mathcal C$, compute closure by $\mathcal C^0=\mathcal C,\mathcal C^1,\mathcal C^2,\ldots\longrightarrow\mathcal C^\omega.$

Definition

 $\mathcal S$ sound if $\mathcal C\in \mathcal C^\omega$ implies $\mathcal C\models\mathcal C$

Definition

S refutationally complete if $C \models \bot$ implies $\bot \in \mathcal{C}^{\omega}$

Sound and refutationally complete saturation systems for ATP in FOL.

Definition

The general induction rule is

$$
\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x, \overline{z})))
$$

Definition

The general induction rule is

$$
\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x, \overline{z})))
$$

Example

$$
\forall \overline{z}(\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}))
$$

is mapped by sk $^{\exists}$ to:

 $\forall \overline{z}(\mathsf{sk}^\forall(\varphi(0, \overline{z})) \wedge (\mathsf{sk}^{\exists}(\varphi(f(\overline{z}), \overline{z})) \rightarrow \mathsf{sk}^\forall(\varphi(s(f(\overline{z})), \overline{z}))) \rightarrow \forall \mathsf{x}\, \mathsf{sk}^{\exists}(\varphi(\mathsf{x}, \overline{z})))$

Definition

The general induction rule is

$$
\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x, \overline{z})))
$$

Example

$$
\forall \overline{z}(\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}))
$$

is mapped by sk $^{\exists}$ to:

 $\forall \overline{z}(\mathsf{sk}^\forall(\varphi(0, \overline{z})) \wedge (\mathsf{sk}^{\exists}(\varphi(f(\overline{z}), \overline{z})) \rightarrow \mathsf{sk}^\forall(\varphi(s(f(\overline{z})), \overline{z}))) \rightarrow \forall \mathsf{x}\, \mathsf{sk}^{\exists}(\varphi(\mathsf{x}, \overline{z})))$

Remark

The general induction rule adds new (Skolem) symbols to the language.

Definition

The general induction rule is

$$
\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x, \overline{z})))
$$

Example

$$
\forall \overline{z}(\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}))
$$

is mapped by sk $^{\exists}$ to:

 $\forall \overline{z}(\mathsf{sk}^\forall(\varphi(0, \overline{z})) \wedge (\mathsf{sk}^{\exists}(\varphi(f(\overline{z}), \overline{z})) \rightarrow \mathsf{sk}^\forall(\varphi(s(f(\overline{z})), \overline{z}))) \rightarrow \forall \mathsf{x}\, \mathsf{sk}^{\exists}(\varphi(\mathsf{x}, \overline{z})))$

Remark

The general induction rule adds new (Skolem) symbols to the language. This is iterated.

Definition

The general induction rule is

$$
\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x, \overline{z})))
$$

Example

$$
\forall \overline{z}(\varphi(0,\overline{z}) \land \forall x (\varphi(x,\overline{z}) \to \varphi(s(x),\overline{z})) \to \forall x \varphi(x,\overline{z}))
$$

is mapped by sk $^{\exists}$ to:

 $\forall \overline{z}(\mathsf{sk}^\forall(\varphi(0, \overline{z})) \wedge (\mathsf{sk}^{\exists}(\varphi(f(\overline{z}), \overline{z})) \rightarrow \mathsf{sk}^\forall(\varphi(s(f(\overline{z})), \overline{z}))) \rightarrow \forall \mathsf{x}\, \mathsf{sk}^{\exists}(\varphi(\mathsf{x}, \overline{z})))$

Remark

The general induction rule adds new (Skolem) symbols to the language. This is iterated. Difficult to describe in terms of the original language.

Definition

Vampire prover [Voronkov et al. '20]: single clause induction

$$
\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}
$$

a constant symbol, $L(x)$ literal, x only variable in $L(x)$

Definition

Vampire prover [Voronkov et al. '20]: single clause induction

$$
\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}
$$

a constant symbol, $L(x)$ literal, x only variable in $L(x)$

Example

${x + 0 = 0, x + s(y) = s(x + y), c + (c + c) \neq (c + c) + c}$ solved by $S +$ SCIND. Includes generalisation!

Definition

Vampire prover [Voronkov et al. '20]: single clause induction

$$
\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}
$$

a constant symbol, $L(x)$ literal, x only variable in $L(x)$

Example

$$
\{x+0=0, x+s(y)=s(x+y), c+(c+c) \neq (c+c)+c\}
$$
 solved by
S + SCIND. *Includes generalisation!*

$$
I_{x}L(x) \equiv L(0) \land \forall x (L(x) \to L(s(x))) \to \forall x L(x)
$$

$$
\mathsf{sk}^{\exists}(I_{x}L(x)) \equiv L(0) \land (L(c) \to L(s(c))) \to \forall x L(x)
$$

Definition

Vampire prover [Voronkov et al. '20]: single clause induction

$$
\frac{\overline{L(a)} \vee C}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_{x}L(x)))} \mathsf{SCIND}
$$

a constant symbol, $L(x)$ literal, x only variable in $L(x)$

Example

 ${x + 0 = 0, x + s(y) = s(x + y), c + (c + c) \neq (c + c) + c}$ solved by $S +$ SCIND. Includes generalisation!

$$
I_{x}L(x) \equiv L(0) \land \forall x (L(x) \to L(s(x))) \to \forall x L(x)
$$

$$
\mathsf{sk}^{\exists}(I_{x}L(x)) \equiv L(0) \land (L(c) \to L(s(c))) \to \forall x L(x)
$$

Does not leave "ground induction".

Definition

Φ set of formulas. The ground induction rule is $C_1 \cdots C_n$ $\frac{1}{\text{CNF}(\text{sk}^{\exists}(I_{x}\varphi(x,\overline{t})))}$ Φ-GIND where $\varphi(x,\overline{z}) \in \Phi$, \overline{t} ground $L(\{C_1,\ldots,C_n\})$ terms

Definition

Φ set of formulas. The ground induction rule is

$$
\frac{C_1 \cdots C_n}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x,\overline{t})))} \Phi\text{-GIND}
$$

where $\varphi(x,\overline{z}) \in \Phi$, \overline{t} ground $L(\{C_1,\ldots,C_n\})$ terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If $S + \Phi$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T}))$, then $\mathsf{sk}^\omega(\mathsf{L}(\,\mathcal{T}) \cup \mathsf{L}(\Phi) \cup \{0,s\})\text{-}\mathsf{SA} + \mathcal{T} + \Phi\text{-}\mathsf{IND}$ is inconsistent.

Definition

Φ set of formulas. The ground induction rule is

$$
\frac{C_1 \cdots C_n}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x,\overline{t})))} \Phi\text{-GIND}
$$

where $\varphi(x,\overline{z}) \in \Phi$, \overline{t} ground $L(\{C_1,\ldots,C_n\})$ terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If $S + \Phi$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T}))$, then $\mathsf{sk}^\omega(\mathsf{L}(\,\mathcal{T}) \cup \mathsf{L}(\Phi) \cup \{0,s\})\text{-}\mathsf{SA} + \mathcal{T} + \Phi\text{-}\mathsf{IND}$ is inconsistent.

Proof Sketch.

Translate $S + \Phi$ -GIND refutation line by line.

Definition

Φ set of formulas. The ground induction rule is

$$
\frac{C_1 \cdots C_n}{\mathsf{CNF}(\mathsf{sk}^{\exists}(I_x \varphi(x,\overline{t})))} \Phi\text{-GIND}
$$

where $\varphi(x,\overline{z}) \in \Phi$, \overline{t} ground $L(\{C_1,\ldots,C_n\})$ terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If $S + \Phi$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T}))$, then $\mathsf{sk}^\omega(\mathsf{L}(\,\mathcal{T}) \cup \mathsf{L}(\Phi) \cup \{0,s\})\text{-}\mathsf{SA} + \mathcal{T} + \Phi\text{-}\mathsf{IND}$ is inconsistent.

Corollary

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND \Leftrightarrow Ψ-IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{\Psi}\text{-}\mathsf{IND}$ is inconsistent.

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND \Leftrightarrow Ψ-IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND $\Leftrightarrow \Psi$ -IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free \exists ₂ theory. If S + SCIND refutes $\mathsf{CNF}(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{L}$ iteral-IND is inconsistent.

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND $\Leftrightarrow \Psi$ -IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free \exists_2 theory. If S + SCIND refutes $\mathsf{CNF}(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{L}$ iteral-IND is inconsistent.

Proof.

 $\mathcal{S} + \mathsf{Literal}(\mathsf{L}(\mathsf{sk}^\exists(\,\mathcal{T})))$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T})).$

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND $\Leftrightarrow \Psi$ -IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free \exists_2 theory. If S + SCIND refutes $\mathsf{CNF}(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{L}$ iteral-IND is inconsistent.

Proof.

 $\mathcal{S} + \mathsf{Literal}(\mathsf{L}(\mathsf{sk}^\exists(\,\mathcal{T})))$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T})).$ $\mathsf{L}(\mathsf{sk}^\exists(\,\mathcal{T})) = \mathsf{L}(\,\mathcal{T}) \cup \Sigma$ with Σ constants

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND $\Leftrightarrow \Psi$ -IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free \exists ₂ theory. If S + SCIND refutes $\mathsf{CNF}(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{L}$ iteral-IND is inconsistent.

Proof.

 $\mathcal{S} + \mathsf{Literal}(\mathsf{L}(\mathsf{sk}^\exists(\,\mathcal{T})))$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T})).$ $\mathsf{L}(\mathsf{sk}^\exists(\, \mathcal{T})) = \mathsf{L}(\, \mathcal{T}) \cup \Sigma$ with Σ constants , so Literal $(L(T))$ -IND \Leftrightarrow Literal $(L(\mathsf{sk}^{\exists}(T))$ -IND.

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ Skolem-free set of formulas with Φ-IND $\Leftrightarrow \Psi$ -IND. If $S + \Phi$ -GIND refutes $CNF(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T} + \Psi$ -IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free \exists ₂ theory. If S + SCIND refutes $\mathsf{CNF}(\mathsf{sk}^{\exists}(\mathcal{T}))$ then $\mathcal{T}+\mathsf{L}$ iteral-IND is inconsistent.

Proof.

 $\mathcal{S} + \mathsf{Literal}(\mathsf{L}(\mathsf{sk}^\exists(\,\mathcal{T})))$ -GIND refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\,\mathcal{T})).$ $\mathsf{L}(\mathsf{sk}^\exists(\, \mathcal{T})) = \mathsf{L}(\, \mathcal{T}) \cup \Sigma$ with Σ constants , so Literal $(L(T))$ -IND \Leftrightarrow Literal $(L(\mathsf{sk}^{\exists}(T))$ -IND. So, by Lemma, $T +$ Literal($L(T)$)-IND is inconsistent. Theorem. T_{EO} + Literal-IND $\forall \forall x (E(x) \vee O(x))$.

Theorem. T_{FQ} + Literal-IND \forall \forall x ($E(x) \vee O(x)$).

Theorem. S sound saturation system, T Skolem-free \exists ₂ theory. If $\mathcal{S}+\mathsf{SCIND}$ refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\mathcal{T}))$ then $\mathcal{T}+\mathsf{Lateral-IND}$ is inconsistent. Theorem. T_{EO} + Literal-IND $\forall \forall x (E(x) \vee O(x))$.

Theorem. S sound saturation system, T Skolem-free \exists ₂ theory. If $\mathcal{S}+\mathsf{SCIND}$ refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\mathcal{T}))$ then $\mathcal{T}+\mathsf{Lateral-IND}$ is inconsistent.

Theorem

S sound saturation system. $S +$ SCIND does not refute $CNF(\mathsf{sk}^{\exists}(T_{\mathsf{EO}} + \exists x (\neg E(x) \land \neg O(x)))).$

Theorem. T_{FQ} + Literal-IND \forall \forall x ($E(x) \vee O(x)$).

Theorem. S sound saturation system, T Skolem-free \exists ₂ theory. If $\mathcal{S}+\mathsf{SCIND}$ refutes $\mathsf{CNF}(\mathsf{sk}^\exists(\mathcal{T}))$ then $\mathcal{T}+\mathsf{Lateral-IND}$ is inconsistent.

Theorem

S sound saturation system. $S +$ SCIND does not refute $CNF(\mathsf{sk}^{\exists}(T_{\mathsf{EO}} + \exists x (\neg E(x) \land \neg O(x)))).$

Proof.

$$
T_{\text{EO}} + \exists x (\neg E(x) \land \neg O(x)) + \text{Literal-IND is consistent.}
$$

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- 6 [Open induction](#page-178-0)
	- [Clause set cycles](#page-196-0)
	- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

A formula φ is called *open* if it does not contain quantifiers.

Definition

Open induction is Open-IND.
Definition

A formula φ is called *open* if it does not contain quantifiers.

Definition

Open induction is Open-IND.

Theorem (Shoenfield '58)

Over the L_{LA} theory $B = \{s(x) \neq 0, p(0) = 0, p(s(x)) = x, x + 0 = x,$ $x + s(y) = s(x + y)$, open induction (in L_{LA}) is equivalent to:

$$
x + y = y + x \qquad \qquad x = 0 \vee x = s(p(x))
$$

$$
(x+y)+z=x+(y+z) \qquad x+y=x+z \rightarrow y=z
$$

Theorem

 $B +$ Literal-IND $\Leftrightarrow B +$ Open-IND.

Theorem

 $B +$ Literal-IND $\Leftrightarrow B +$ Open-IND.

Proof.

Show finite axiomatisation of $B +$ Open-IND in $B +$ Literal-IND.

Theorem

 $B +$ Literal-IND $\Leftrightarrow B +$ Open-IND.

Proof.

Show finite axiomatisation of $B +$ Open-IND in $B +$ Literal-IND.

Theorem (Weiser '24)

For T natural base theory in $L = \{0, s, p, +, \cdot\}$: $T +$ Literal-IND $\Leftrightarrow T +$ Open-IND.

Sequences with concatenation operation \frown

Sequences with concatenation operation \frown

Observation

Finite sequences have the properties:

- left cancellation: $X \cap Y = X \cap Z \rightarrow Y = Z$
- right cancellation: $Y \cap X = Z \cap X \rightarrow Y = Z$

Sequences with concatenation operation \frown

Observation

Finite sequences have the properties:

- left cancellation: $X \cap Y = X \cap Z \rightarrow Y = Z$
- right cancellation: $Y \cap X = Z \cap X \rightarrow Y = Z$

Observation

Infinite (ω -)sequences satisfy:

e left cancellation

but not

right cancellation, e.g. $a^{\omega} = (a) \frown a^{\omega} = \text{nil} \frown a^{\omega}$ but $(a) \neq \text{nil}$

Definition

$$
\mathcal{L}_1 = \{ \text{nil} : \text{list}, \text{cons} : \iota \times \text{list} \to \text{list}, \frown: \text{list} \times \text{list} \to \text{list} \}, \ T_1 =
$$
\n
$$
\text{nil} \neq \text{cons}(x, X)
$$
\n
$$
\text{cons}(x, X) = \text{cons}(y, Y) \to x = y \land X = Y
$$
\n
$$
\text{nil} \frown Y = Y
$$
\n
$$
\text{cons}(x, X) \frown Y = \text{cons}(x, X \frown Y)
$$

Definition

A sequence of length α is mapping from α to X where α ordinal (in this talk: $\alpha < \omega^3)$, X any set.

Definition

Flattening $|I|$ of a sequence of sequences, e.g.

$$
\lfloor ((1\;2\;3\cdots)(2\;3\;5\cdots))\rfloor = (1\;2\;3\cdots2\;3\;5\cdots)
$$

Definition

For $a\in X^\alpha$ write a^β for $\lfloor (a)_{\gamma<\beta} \rfloor$, i.e., β times the sequence $a.$

Theorem (H, Vierling '24)

 T_1 + Open(\mathcal{L}_1)-IND $\forall Y \cap X = Z \cap X \rightarrow Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \land X = X \rightarrow Y = \text{nil}$.

Theorem (H, Vierling '24)

 T_1 + Open (\mathcal{L}_1) -IND $\nvdash Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \cap X = X \rightarrow Y = \text{nil}$.

Define $N_k = (k, k + 1, k + 2, ...)$ infinite $(\omega-)$ sequence,

Theorem (H, Vierling '24)

 T_1 + Open (\mathcal{L}_1) -IND $\nvdash Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \cap X = X \rightarrow Y = \text{nil}$.

Define $N_k = (k, k+1, k+2, ...)$ infinite $(\omega-)$ sequence, $\mathcal{N} = \{w \frown \mathcal{N}_k \mid w \in \mathbb{N}^*, k \in \mathbb{N}\}$, decomposition unique, and

Theorem (H, Vierling '24)

 T_1 + Open(\mathcal{L}_1)-IND $\forall Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \land X = X \rightarrow Y = \text{nil}$.

Define $N_k = (k, k+1, k+2, ...)$ infinite $(\omega-)$ sequence, $\mathcal{N} = \{w \frown \mathcal{N}_k \mid w \in \mathbb{N}^*, k \in \mathbb{N}\}$, decomposition unique, and $\mathfrak{L} = \{ \lfloor \mathfrak{l} \rfloor \frown \mathsf{w} \mid \mathsf{w} \in \mathbb{N}^*, \mathfrak{l} \in \mathcal{N}^{\beta}, \beta < \omega^2 \}.$

Theorem (H, Vierling '24)

 T_1 + Open (\mathcal{L}_1) -IND $\nvdash Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \cap X = X \rightarrow Y = \text{nil}$.

Define
$$
N_k = (k, k+1, k+2, ...)
$$
 infinite $(\omega -)$ sequence,
\n
$$
\mathcal{N} = \{w \cap N_k \mid w \in \mathbb{N}^*, k \in \mathbb{N}\}, \text{decomposition unique, and}
$$
\n
$$
\mathfrak{L} = \{[1] \cap w \mid w \in \mathbb{N}^*, l \in \mathcal{N}^{\beta}, \beta < \omega^2\}.
$$

Define \mathcal{L}_1 -structure M_2 by $M_2(\text{list}) = \mathfrak{L}$ with nil $^{M_2},\ \text{cons}^{M_2},\ \mathbin{\frown}^{M_2}$ having natural interpretation

Theorem (H, Vierling '24)

 T_1 + Open (\mathcal{L}_1) -IND $\nvdash Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \cap X = X \rightarrow Y = \text{nil}$.

Define
$$
N_k = (k, k+1, k+2, ...)
$$
 infinite $(\omega -)$ sequence,
\n
$$
\mathcal{N} = \{w \frown N_k \mid w \in \mathbb{N}^*, k \in \mathbb{N}\}, \text{decomposition unique, and}
$$
\n
$$
\mathfrak{L} = \{[1] \frown w \mid w \in \mathbb{N}^*, 1 \in \mathcal{N}^{\beta}, \beta < \omega^2\}.
$$

Define \mathcal{L}_1 -structure M_2 by $M_2(\text{list}) = \mathfrak{L}$ with nil $^{M_2},\ \text{cons}^{M_2},\ \mathbin{\frown}^{M_2}$ having natural interpretation

Then
$$
M_2 \models T_1 + \text{Open}(\mathcal{L}_1)
$$
-IND but
 $M_2 \not\models Y \frown X = X \rightarrow Y = \text{nil}$

Theorem (H, Vierling '24)

 T_1 + Open(\mathcal{L}_1)-IND $\forall Y \frown X = Z \frown X \to Y = Z$

Proof.

It suffices to show that $T_1 + \text{Open}(\mathcal{L}_1)$ -IND $\forall Y \cap X = X \rightarrow Y = \text{nil}$.

Define
$$
N_k = (k, k+1, k+2, ...)
$$
 infinite $(\omega -)$ sequence,
\n
$$
\mathcal{N} = \{w \cap N_k \mid w \in \mathbb{N}^*, k \in \mathbb{N}\}, \text{decomposition unique, and}
$$
\n
$$
\mathfrak{L} = \{[1] \cap w \mid w \in \mathbb{N}^*, 1 \in \mathcal{N}^{\beta}, \beta < \omega^2\}.
$$

Define \mathcal{L}_1 -structure M_2 by $M_2(\text{list}) = \mathfrak{L}$ with nil $^{M_2},\ \text{cons}^{M_2},\ \mathbin{\frown}^{M_2}$ having natural interpretation

Then
$$
M_2 \models T_1 + \text{Open}(\mathcal{L}_1)
$$
-IND but
 $M_2 \not\models Y \frown X = X \rightarrow Y = \text{nil}$

Counterexample: $N_0 \in \mathfrak{L}$, $N_0^{\omega} = \lfloor (N_0)_{\alpha < \omega} \rfloor \in \mathfrak{L}$, $N_0 \frown N_0^{\omega} = N_0^{\omega}$ but $N_0 \neq \text{nil}$.

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- 6 [Open induction](#page-178-0)
- 7 [Clause set cycles](#page-196-0)
	- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

Definition

An $L \cup \{\eta\}$ clause set C is a clause set cycle (CSC) if $C(s(\eta)) \models C(\eta)$ and $C(0) \models \bot$. An $L \cup \{\eta\}$ clause set $\mathcal{D}(\eta)$ is refuted by a CSC $\mathcal{C}(\eta)$ if $\mathcal{D}(\eta) \models \mathcal{C}(\eta).$

Definition

An $L \cup \{\eta\}$ clause set C is a clause set cycle (CSC) if $C(s(\eta)) \models C(\eta)$ and $C(0) \models \bot$. An $L \cup \{\eta\}$ clause set $\mathcal{D}(\eta)$ is refuted by a CSC $\mathcal{C}(\eta)$ if $\mathcal{D}(\eta) \models \mathcal{C}(\eta).$

Many equivalent variants.

Definition

An $L \cup \{\eta\}$ clause set C is a *clause set cycle (CSC)* if $C(s(\eta)) \models C(\eta)$ and $C(0) \models \bot$. An $L \cup \{\eta\}$ clause set $\mathcal{D}(\eta)$ is refuted by a CSC $\mathcal{C}(\eta)$ if $\mathcal{D}(\eta) \models \mathcal{C}(\eta).$

Many equivalent variants.

Example

CSC solves Even/Odd example.

Definition

Γ set of formulas, define

$$
\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \quad \text{F-IND}_{\eta}^{\text{R}-}
$$

where $\varphi(x) \in \Gamma$.

Definition

Γ set of formulas, define

$$
\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \quad \text{F-IND}_{\eta}^{\text{R}-}
$$

where $\varphi(x) \in \Gamma$.

Definition

T theory, R inference rule, define $[T, R] = T + {\varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R}$.

Definition

Γ set of formulas, define

$$
\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \quad \text{F-IND}_{\eta}^{\text{R}-}
$$

where $\varphi(x) \in \Gamma$.

Definition

T theory, R inference rule, define $[T, R] = T + {\varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R}$.

Theorem

 ${\cal D}$ is refuted by a CSC iff ${\cal D} + [\emptyset, \exists_1\text{-IND}_\eta^{{\sf R}-}] \vdash \bot.$

Definition

Γ set of formulas, define

$$
\frac{\varphi(0) \quad \varphi(x) \to \varphi(s(x))}{\varphi(\eta)} \quad \text{F-IND}_{\eta}^{\text{R}-}
$$

where $\varphi(x) \in \Gamma$.

Definition

T theory, R inference rule, define $[T, R] = T + {\varphi \mid T \vdash \Gamma, \Gamma/\varphi \in R}$.

Theorem

$$
\mathcal{D} \text{ is refuted by a CSC iff } \mathcal{D} + [\emptyset, \exists_1\text{-IND}_\eta^{\mathsf{R}-}] \vdash \bot.
$$

Proof Sketch.

Induction on clause set (\forall_1) in refutation becomes \exists_1 induction.

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- 6 [Open induction](#page-178-0)
	- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

Unprovability result

Definition

Define the
$$
L_{LA}
$$
 theory $T = B \cup \{x + y = y + x, x + (y + z) = (x + y) + z\}$.

Definition

Let k, n, $m \in \mathbb{N}$ with $0 < n < m$, define $E_{k,n,m}$ as:

$$
n\cdot x+\overline{(m-n)k}=m\cdot x\rightarrow x=\overline{k}.
$$

For example, $E_{0,1,2}$ is $x + 0 = x + x \rightarrow x = 0$.

Theorem (H, Vierling '22)

 $T + \exists_1$ -IND⁻ \nvdash $E_{k,n,m}$

Corollary

 $\mathcal{E}_{k,n,m}(\eta)$ is not refuted by an L_{LR} clause set cycle.

$T + \exists_1$ -IND⁻ $\nvdash E_{k,n,m}$, i.e., $n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}$

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Countermodel M, domain $\{(i, n) \in \mathbb{N} \times \mathbb{Z} \mid i = 0 \text{ implies } n \in \mathbb{N}\}\$

$$
0^{\mathcal{M}} = (0,0) \qquad p^{\mathcal{M}}((0,n)) = (0, n - 1)
$$

\n
$$
s^{\mathcal{M}}(i,n) = (i, n + 1) \qquad p^{\mathcal{M}}((i,n)) = (i, n - 1) \text{ if } i > 0
$$

\n
$$
(i, n) +^{\mathcal{M}}(j,m) = (\max(i,j), n + m)
$$

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \not\models E_{k,n,m}$.

We have

$$
n \cdot (1, k) + M \overline{(m-n)k}^{\mathcal{M}} = (1, nk) + M (0, (m-n)k) = (1, mk) = m \cdot (1, k)
$$

but

$$
(1,k)\neq (0,k).
$$

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models T$.

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

Lemma. If 0, p-free component $\chi(x)$ has two solutions in $\mathbb N$ then \exists arith. prog. $P \subseteq \mathbb{Z}$ s.t. $M \models \chi(i, p)$ for all $i \geq 1, p \in P$.

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

Lemma. If 0, p-free component $\chi(x)$ has two solutions in $\mathbb N$ then \exists arith. prog. $P \subseteq \mathbb{Z}$ s.t. $M \models \chi(i, p)$ for all $i \geq 1, p \in P$.

Assume $M \models \varphi(0)$ and $M \models \varphi(x) \rightarrow \varphi(s(x))$. Then $M \models \varphi((0, n))$.
Theorem (H, Vierling '22)

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

Lemma. If 0, p-free component $\chi(x)$ has two solutions in $\mathbb N$ then \exists arith. prog. $P \subseteq \mathbb{Z}$ s.t. $M \models \chi(i, p)$ for all $i \geq 1, p \in P$. Assume $M \models \varphi(0)$ and $M \models \varphi(x) \rightarrow \varphi(s(x))$. Then $M \models \varphi((0, n))$.

So $\exists I$ s.t. $\chi_I(x)$ has two solutions in N.

Theorem (H, Vierling '22)

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

Lemma. If 0, p-free component $\chi(x)$ has two solutions in $\mathbb N$ then \exists arith. prog. $P \subseteq \mathbb{Z}$ s.t. $M \models \chi(i, p)$ for all $i \geq 1, p \in P$.

Assume $M \models \varphi(0)$ and $M \models \varphi(x) \rightarrow \varphi(s(x))$. Then $M \models \varphi((0, n))$. So $\exists l$ s.t. $\chi_l(x)$ has two solutions in N. So $\mathcal{M} \models \chi_l((i, p))$ for all $i > 1, p \in P$.

Theorem (H, Vierling '22)

$$
T + \exists_1 \text{-IND}^{-} \forall E_{k,n,m}, \ i.e., \ n \cdot x + \overline{(m-n)k} = m \cdot x \rightarrow x = \overline{k}
$$

Proof.

Claim: $M \models \exists_1$ -IND⁻.

Definition. Component $\exists \vec{x} (L_1 \wedge \cdots \wedge L_n)$

Lemma. If $\varphi(x)$ is \exists_1 then $\exists N \in \mathbb{N}$, 0, p-free components χ_1, \ldots, χ_l s.t. $\mathcal{M} \models \varphi(s^{\mathsf{N}}(x)) \leftrightarrow \bigvee_{i=1}^{l} \chi_{i}(x).$

Lemma. If 0, p-free component $\chi(x)$ has two solutions in $\mathbb N$ then \exists arith. prog. $P \subseteq \mathbb{Z}$ s.t. $M \models \chi(i, p)$ for all $i \geq 1, p \in P$.

Assume $M \models \varphi(0)$ and $M \models \varphi(x) \rightarrow \varphi(s(x))$. Then $M \models \varphi((0, n))$. So $\exists l$ s.t. $\chi_l(x)$ has two solutions in N. So $\mathcal{M} \models \chi_l((i, p))$ for all $i \geq 1, p \in P$. To prove $\varphi((i, n))$, use sufficiently small (i, p) as basis.

Outline

- **[Straightforward induction proofs](#page-5-0)**
- [Equational theory exploration](#page-72-0)
- [Atomic induction](#page-101-0)
- 4 [Literal induction](#page-117-0)
- 5 [Saturation theorem proving with explicit induction axioms](#page-137-0)
- 6 [Open induction](#page-178-0)
- [Clause set cycles](#page-196-0)
- **[Existential induction](#page-205-0)**

[Conclusion](#page-219-0)

▶ Gauging strength of a method

- ▶ Gauging strength of a method
- ▶ Independence results for unlimited time and memory

- ▶ Gauging strength of a method
- ▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge (sorted along increasing complexity of induction formulas)

- ▶ Gauging strength of a method
- ▶ Independence results for unlimited time and memory

Overall:

- ▶ A general picture of methods starts to emerge (sorted along increasing complexity of induction formulas)
- \blacktriangleright Techniques for analysing (new) practical methods

- ▶ Gauging strength of a method
- ▶ Independence results for unlimited time and memory

Overall:

- ▶ A general picture of methods starts to emerge (sorted along increasing complexity of induction formulas)
- \blacktriangleright Techniques for analysing (new) practical methods
	- ▶ Proof-theoretic (proof translations)

- ▶ Gauging strength of a method
- ▶ Independence results for unlimited time and memory

Overall:

- ▶ A general picture of methods starts to emerge (sorted along increasing complexity of induction formulas)
- \blacktriangleright Techniques for analysing (new) practical methods
	- ▶ Proof-theoretic (proof translations)
	- Model-theoretic for independence results (model constructions)

\blacktriangleright Consolidate results

- ▶ Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- \blacktriangleright Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- ▶ Relationship to software verification
- ▶ Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- ▶ Relationship to software verification
- \blacktriangleright Theories of inductive data types
- ▶ Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- ▶ Relationship to software verification
- \blacktriangleright Theories of inductive data types
- \triangleright Deskolemisation: conservativity, complexity, ...
- ▶ Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- ▶ Relationship to software verification
- \blacktriangleright Theories of inductive data types
- \triangleright Deskolemisation: conservativity, complexity, ...
- ▶ Analyticity
- ▶ Consolidate results
- ▶ Additional methods: term rewriting, Cruanes' calculus, rippling, recursion analysis, . . .
- ▶ Relationship to software verification
- \blacktriangleright Theories of inductive data types
- \triangleright Deskolemisation: conservativity, complexity, ...
- ▶ Analyticity
- ▶ Does theoretical understanding help to design better methods?