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A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .
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A second example

Theorem

The sum of the first n odd numbers is a square,

i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!
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Formulating failure (1/2)

Definition

The language of arithmetic is LA = {0, s,+, ·,≤}.

Definition

We define Lf = LA ∪ {f /1} and:

f (0) = 0 (D0
f )

∀x f (s(x)) = f (x) + (2 · x + 1) (D+
f )

Then, in N, f (n) =
∑n

i=1(2i − 1).
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Formulating failure (2/2)

Definition

T = Th(N) ∪ {D0
f ,D

+
f }

Definition

Let L ⊇ {0, s}, let φ(x , z) be an L formula, then: Ixφ(x , z) is

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
Definition

ψ(x) ≡ ∃y f (x) = y · y

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).
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The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)
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Standard and Nonstandard numbers

Let M |= Th(N).

Definition

Then m ∈ M is called standard if there is an n ∈ N s.t. sn(0)M = m.
Otherwise m is called non-standard.

Observation

M |= ∀x∀y (x ≤ y ∨ y ≤ x)
M |= ∀x 0 ≤ x
For all n ∈ N: M |= ∀x (x ≤ n → x = 0 ∨ x = 1 ∨ · · · ∨ x = n − 1)

So non-standard m are “after” the standard m.
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Proving Failure (1/3)

Definition

Define Lc = Lf ∪ {c} and

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Lemma

If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Proof.

For M |= Γ+c define N by N↾LA∪{c}= M↾LA∪{c} and

f N (x) =

{
x2 if x is standard

f M(x) otherwise
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Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.
Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.
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Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . ..

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).
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Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.
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The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions?

No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.
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Theory exploration

Automated theorem proving: goal-oriented
Given T and σ find out if T ⊢ σ

Theory exploration: bottom-up
Given T find “interesting” σ1, . . . , σn s.t. T ⊢ σ1, . . ., T ⊢ σn

▶ Equational theory exploration (σi are equations)

Simplified form of HipSpec
[Claessen, Johansson, Rosén, Smallbone ’13]

Allows to “iterate” straightforward induction proofs
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Inductive data types

Definition

Work in many-sorted first-order logic with sorts D,T1, . . . ,Tn. D is
defined as inductive data type by constructors c1, . . . , ck where
ci : τ

1
i × · · · × τmi

i → D with τ li ∈ {D,T1, . . . ,Tn}.

Example

D = Nat, n = 0, c1 = 0 : Nat, c2 = s : Nat → Nat.

Example

D = NatList, T1 = Nat, n = 1, c1 = nil : NatList,
c2 = cons : Nat× NatList → NatList.
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Primitive recursion and induction

Example

Primitive recursion over lists:

h(nil, z) = t(z)

h(cons(x , L), z) = u(x , L, h(L, z), z)

Definition

Let L = {c1, . . . , ck}. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Example

The induction axiom for lists: φ(X , z) formula:

∀z
(
φ(nil, z) ∧ ∀X ∀u (φ(X , z) → φ(cons(u,X ), z)) → ∀X φ(X , z)

)
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Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.
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Generating equational conjectures

procedure Conjecture(k , x , n)
T := {t term | |t| ≤ k ,Var(t) ⊆ {x}}
E := {(t1, t2) | t1, t2 ∈ T}

for i := 1, . . . , n do
a := GenerateRandomTuple(x)
for each equivalence class C of E do

E ′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E ′ in E

end for
end for

return {t1 = t2 | (t1, t2) ∈ E}
end procedure

▶ t1 = t2 is returned iff t1 = t2 withstood n tests
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Equational theory exploration

procedure Explore(A, k , x , n, t)
L := ∅
C := Conjecture(k , x , n)

while C ̸= ∅ do
Pick φ(x1, . . . , xm) ∈ C
C := C \ {φ(x)}
if A, L ̸⊢t ∀x φ(x) then

if ∃i ∈ {1, . . . ,m} s.t. A, L, Ixiφ(x) ⊢t ∀x φ(x) then
L := L ∪ {∀x φ(x)}

end if
end if

end while

return L
end procedure
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Evaluation

Simple algorithm

Useful in practice
inductive data types and simple primitive recursive functions

Finds commutation properties, simple lemmas, . . .

Main weakness: limited to equations (atoms)
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Atomic induction

Definition

For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}.

Remark

Γ-IND goes beyond straightforward induction proofs.

Example

Atom-IND are all induction axioms with atoms as induction formula.

Observation

Everything provable by equational theory exploration is provable by atomic
induction.
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What does atomic induction prove?

Example

Let LLA = {0, s, p,+} and B =

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

Then B,Atom-IND ⊢ ∀x∀y x + y = y + x

B,Atom-IND ⊢ ∀x∀y∀z x + (y + z) = (x + y) + z .
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A nonstandard model of atomic induction (1/2)

Definition

Define the LLA-structure M with domain N ∪ {∞} by interpreting
0, s, p,+ on N in the standard way and

sM(∞) = ∞ = pM(∞) and n +M ∞ = ∞+M n = ∞+M ∞ = ∞.

Observation

M |= B.
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A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58



A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom,

a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58



A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.

1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58



A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58



A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).
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Independence results for atomic induction

Observation

M ̸|= ∀x s(x) ̸= x.

Observation

M ̸|= ∀x∀y∀z (x + y = x + z → y = z)

Proof.

∞+ 1 = ∞+ 2 but 1 ̸= 2.

Corollary

B + Atomic-IND ̸⊢ ∀x s(x) ̸= x and
B + Atomic-IND ̸⊢ ∀x∀y∀z (x + y = x + z → y = z).
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3 Atomic induction

4 Literal induction
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6 Open induction
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Literal induction

Definition

A literal is an atom or a negated atom.

Definition

Literal-IND is the set of induction axioms for literals als induction formulas.
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What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.
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Work in B:

If s(u) = s(v) then

u =

p(s(u)) = p(s(v))

= v

.
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Independence result for literal induction

Definition

Let TEO = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)) }.

Observation

∀x (E (x) ∨ O(x)) has straightforward induction proof in TEO.

Theorem

TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Proof Sketch.

Model M with domain ({0} × N) ∪ ({1} × Z) and

0M = (0, 0) EM = {(0, n) | n is even}
sM(b, n) = (b, n + 1) OM = {(0, n) | n is odd}
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Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A clause is a formula
∨k

j=1 Lj where Lj literal. A conjunctive normal form

is a formula ∀x
∧n

i=1

∨ki
i=j Li ,j where Li ,j literal.

We identify a clause set with a conjunctive normal form.

Definition

Clause form transformation: given a FOL formula φ we compute

¬φ 7→ sk∃(¬φ) 7→ CNF(sk∃(¬φ)).

Then φ is valid iff CNF(sk(¬φ)) is unsatisfiable.
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Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).
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Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the
current clause set.

Example

The resolution rule is
C ∨ L L′ ∨ D

(C ∨ D)σ

where σ is most general unifier of L and L′.

Example

P(a) ¬P(x) ∨ P(f (x))

P(f (a))
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Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58



Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58



Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58



Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58



Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58



Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated. Difficult to describe in terms of the original language.
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)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated. Difficult to describe in terms of the original language.
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Concrete realisation: Vampire

Definition

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, x only variable in L(x)

Example

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c} solved by
S + SCIND. Includes generalisation!

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀x L(x)
sk∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀x L(x)

Does not leave “ground induction”.
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Characterisation (1/2)

Definition

Φ set of formulas. The ground induction rule is

C1 · · · Cn

CNF(sk∃(Ixφ(x , t)))
Φ-GIND

where φ(x , z) ∈ Φ, t ground L({C1, . . . ,Cn}) terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If S +Φ-GIND
refutes CNF(sk∃(T )), then skω(L(T ) ∪ L(Φ) ∪ {0, s})-SA + T +Φ-IND is
inconsistent.
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Proof Sketch.

Translate S +Φ-GIND refutation line by line.
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inconsistent.

Corollary

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T )) then T +Ψ-IND is inconsistent.
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Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T )) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T )) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T )))-GIND refutes CNF(sk∃(T )).

L(sk∃(T )) = L(T ) ∪ Σ with Σ constants , so
Literal(L(T ))-IND ⇔ Literal(L(sk∃(T ))-IND.

So, by Lemma, T + Literal(L(T ))-IND is inconsistent.
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Independence result for single clause induction

Theorem. TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Theorem. S sound saturation system, T Skolem-free ∃2 theory. If
S + SCIND refutes CNF(sk∃(T )) then T + Literal-IND is inconsistent.

Theorem

S sound saturation system. S + SCIND does not refute
CNF(sk∃(TEO + ∃x (¬E (x) ∧ ¬O(x)))).

Proof.

TEO + ∃x (¬E (x) ∧ ¬O(x)) + Literal-IND is consistent.
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Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion
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Open induction

Definition

A formula φ is called open if it does not contain quantifiers.

Definition

Open induction is Open-IND.

Theorem (Shoenfield ’58)

Over the LLA theory B = {s(x) ̸= 0, p(0) = 0, p(s(x)) = x , x + 0 = x ,
x + s(y) = s(x + y)}, open induction (in LLA) is equivalent to:

x + y = y + x x = 0 ∨ x = s(p(x))

(x + y) + z = x + (y + z) x + y = x + z → y = z
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Literal induction vs. open induction

Theorem

B + Literal-IND ⇔ B +Open-IND.

Proof.

Show finite axiomatisation of B +Open-IND in B + Literal-IND.

Theorem (Weiser ’24)

For T natural base theory in L = {0, s, p,+, ·}:
T + Literal-IND ̸⇔ T +Open-IND.
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List cancellation

Sequences with concatenation operation ⌢

Observation

Finite sequences have the properties:

left cancellation: X ⌢ Y = X ⌢ Z → Y = Z

right cancellation: Y ⌢ X = Z ⌢ X → Y = Z

Observation

Infinite (ω-)sequences satisfy:

left cancellation

but not

right cancellation, e.g. aω = (a)⌢ aω = nil⌢ aω but (a) ̸= nil
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A theory of lists with concatenation

Definition

L1 = {nil : list, cons : ι× list → list,⌢: list× list → list}, T1 =

nil ̸= cons(x ,X )

cons(x ,X ) = cons(y ,Y ) → x = y ∧ X = Y

nil⌢ Y = Y

cons(x ,X )⌢ Y = cons(x ,X ⌢ Y )
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Transfinite sequences

Definition

A sequence of length α is mapping from α to X where α ordinal (in this
talk: α < ω3), X any set.

Definition

Flattening ⌊l⌋ of a sequence of sequences, e.g.

⌊((1 2 3 · · · )(2 3 5 · · · ))⌋ = (1 2 3 · · · 2 3 5 · · · )

Definition

For a ∈ Xα write aβ for ⌊(a)γ<β⌋, i.e., β times the sequence a.
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Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.
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Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.
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Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition

An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) |= C(η) and
C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if
D(η) |= C(η).

Many equivalent variants.

Example

CSC solves Even/Odd example.
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Logical Characterisation

Definition

Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition

T theory, R inference rule, define [T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem

D is refuted by a CSC iff D + [∅,∃1-INDR−
η ] ⊢ ⊥.

Proof Sketch.

Induction on clause set (∀1) in refutation becomes ∃1 induction.
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Unprovability result

Definition

Define the LLA theory T = B ∪{x + y = y + x , x +(y + z) = (x + y)+ z}.

Definition

Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k.

For example, E0,1,2 is x + 0 = x + x → x = 0.

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m

Corollary

Ek,n,m(η) is not refuted by an LLA clause set cycle.
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Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.
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Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i , n) = (i , n + 1) pM((i , n)) = (i , n − 1) if i > 0

(i , n) +M (j ,m) = (max(i , j), n +m)
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Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M ̸|= Ek,n,m.

We have

n · (1, k)+M (m − n)k
M

= (1, nk)+M (0, (m−n)k) = (1,mk) = m · (1, k)

but

(1, k) ̸= (0, k).
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Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= T .
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T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k
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T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58



Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.
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Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
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prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N.
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Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N. So M |= χI ((i , p)) for all
i ≥ 1, p ∈ P.
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Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N. So M |= χI ((i , p)) for all
i ≥ 1, p ∈ P. To prove φ((i , n)), use sufficiently small (i , p) as basis.
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Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)
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Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?
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