
Logical Foundations of Inductive Theorem Proving

Stefan Hetzl

Institute of Discrete Mathematics and Geometry
TU Wien, Austria

18th International Tbilisi Summer School in Logic and Language

Tbilisi, Georgia

September 12–15, 2024

S. Hetzl: Logical Foundations of Inductive Theorem Proving 1 / 58

Introduction

Induction: mathematics and computer science

Automated inductive theorem proving:
Algorithms for finding proofs by induction

Applications in software verification, formal mathematics, . . .

History in computer science dating back to the 1970ies

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Empirical evaluation of implementations

▶ Logical foundations of automated inductive theorem proving

▶ E.g., given method M, which theorems can M prove?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 2 / 58

Introduction

Induction: mathematics and computer science

Automated inductive theorem proving:
Algorithms for finding proofs by induction

Applications in software verification, formal mathematics, . . .

History in computer science dating back to the 1970ies

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Empirical evaluation of implementations

▶ Logical foundations of automated inductive theorem proving

▶ E.g., given method M, which theorems can M prove?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 2 / 58

Introduction

Induction: mathematics and computer science

Automated inductive theorem proving:
Algorithms for finding proofs by induction

Applications in software verification, formal mathematics, . . .

History in computer science dating back to the 1970ies

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Empirical evaluation of implementations

▶ Logical foundations of automated inductive theorem proving

▶ E.g., given method M, which theorems can M prove?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 2 / 58

Introduction

Induction: mathematics and computer science

Automated inductive theorem proving:
Algorithms for finding proofs by induction

Applications in software verification, formal mathematics, . . .

History in computer science dating back to the 1970ies

Methods: recursion analysis, term rewriting, rippling, extensions of
saturation-based provers, cyclic proofs, theory exploration, . . .

Empirical evaluation of implementations

▶ Logical foundations of automated inductive theorem proving

▶ E.g., given method M, which theorems can M prove?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 2 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 3 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1:

1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1)

=IH n(n+1)
2 + 2(n+1)

2 = (n+2)(n+1)
2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2

= (n+2)(n+1)
2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A first example: the Gauss sum

Theorem

For all n ≥ 1:
n∑

i=1

i =
n(n + 1)

2
.

Proof.

Base case n = 1: 1 = 1·2
2 . ✓

Step case:

Induction hypothesis:
∑n

i=1 i =
n(n+1)

2 .

Claim:
∑n+1

i=1 i = (n+1)(n+2)
2 .

Proof:∑n+1
i=1 i =

∑n
i=1 i + (n + 1) =IH n(n+1)

2 + 2(n+1)
2 = (n+2)(n+1)

2 .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 4 / 58

A second example

Theorem

The sum of the first n odd numbers is a square,

i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1:

1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21

Proof:∑n+1
i=1 (2i − 1) =

∑n
i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =

∑n
i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1)

=IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1 =
?· · · = k21 .

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = k2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1 =
?· · · = k21 . ✗

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = n2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis: ∃k0

∑n
i=1(2i − 1) = k20

Claim: ∃k1
∑n+1

i=1 (2i − 1) = k21
Proof:∑n+1

i=1 (2i − 1) =
∑n

i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1 =
?· · · = k21 . ✗

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = n2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis:

∃k0

∑n
i=1(2i − 1) = n2

Claim:

∃k1

∑n+1
i=1 (2i − 1) = (n + 1)2

Proof:∑n+1
i=1 (2i − 1) =

∑n
i=1(2i − 1) + (2n + 1) =IH k20 + 2n + 1 =

?· · · = k21 . ✗

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

A second example

Theorem

The sum of the first n odd numbers is a square, i.e.,

for all n ≥ 1 there is a k ∈ N s.t.
n∑

i=1

(2i − 1) = n2.

Proof.

Base case n = 1: 1 = 12. ✓

Step case:
Induction hypothesis:

∃k0

∑n
i=1(2i − 1) = n2

Claim:

∃k1

∑n+1
i=1 (2i − 1) = (n + 1)2

Proof:∑n+1
i=1 (2i − 1) =

∑n
i=1(2i − 1) + (2n+ 1) =IH n2 + 2n+ 1 = (n + 1)2. ✓

We are stuck!

S. Hetzl: Logical Foundations of Inductive Theorem Proving 5 / 58

Formulating failure (1/2)

Definition

The language of arithmetic is LA = {0, s,+, ·,≤}.

Definition

We define Lf = LA ∪ {f /1} and:

f (0) = 0 (D0
f)

∀x f (s(x)) = f (x) + (2 · x + 1) (D+
f)

Then, in N, f (n) =
∑n

i=1(2i − 1).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 6 / 58

Formulating failure (1/2)

Definition

The language of arithmetic is LA = {0, s,+, ·,≤}.

Definition

We define Lf = LA ∪ {f /1} and:

f (0) = 0 (D0
f)

∀x f (s(x)) = f (x) + (2 · x + 1) (D+
f)

Then, in N, f (n) =
∑n

i=1(2i − 1).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 6 / 58

Formulating failure (1/2)

Definition

The language of arithmetic is LA = {0, s,+, ·,≤}.

Definition

We define Lf = LA ∪ {f /1} and:

f (0) = 0 (D0
f)

∀x f (s(x)) = f (x) + (2 · x + 1) (D+
f)

Then, in N, f (n) =
∑n

i=1(2i − 1).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 6 / 58

Formulating failure (2/2)

Definition

T = Th(N) ∪ {D0
f ,D

+
f }

Definition

Let L ⊇ {0, s}, let φ(x , z) be an L formula, then: Ixφ(x , z) is

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
Definition

ψ(x) ≡ ∃y f (x) = y · y

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 7 / 58

Formulating failure (2/2)

Definition

T = Th(N) ∪ {D0
f ,D

+
f }

Definition

Let L ⊇ {0, s}, let φ(x , z) be an L formula, then: Ixφ(x , z) is

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)

Definition

ψ(x) ≡ ∃y f (x) = y · y

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 7 / 58

Formulating failure (2/2)

Definition

T = Th(N) ∪ {D0
f ,D

+
f }

Definition

Let L ⊇ {0, s}, let φ(x , z) be an L formula, then: Ixφ(x , z) is

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
Definition

ψ(x) ≡ ∃y f (x) = y · y

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 7 / 58

Formulating failure (2/2)

Definition

T = Th(N) ∪ {D0
f ,D

+
f }

Definition

Let L ⊇ {0, s}, let φ(x , z) be an L formula, then: Ixφ(x , z) is

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
Definition

ψ(x) ≡ ∃y f (x) = y · y

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 7 / 58

The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 8 / 58

The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 8 / 58

The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 8 / 58

The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 8 / 58

The compactness theorem

Theorem (Compactness theorem)

Let Γ be a set of sentences. If every finite subset of Γ is satisfiable, then Γ
is satisfiable.

Example

Let L′ = LA ∪ {c}. Define

Γ = Th(N) ∪ {c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Let Γ0 ⊆ Γ be finite. Let m ∈ N s.t. c ≥ i ∈ Γ0 implies i < m.

Define the L′ structure M0 by M0↾LA= N and cM0 = m. Then M0 |= Γ0.

So, by the compactness theorem, there is an M with M |= Γ. Let
N = M↾LA , then N |= Th(N).

N is a nonstandard model of Th(N)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 8 / 58

Standard and Nonstandard numbers

Let M |= Th(N).

Definition

Then m ∈ M is called standard if there is an n ∈ N s.t. sn(0)M = m.
Otherwise m is called non-standard.

Observation

M |= ∀x∀y (x ≤ y ∨ y ≤ x)
M |= ∀x 0 ≤ x
For all n ∈ N: M |= ∀x (x ≤ n → x = 0 ∨ x = 1 ∨ · · · ∨ x = n − 1)

So non-standard m are “after” the standard m.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 9 / 58

Standard and Nonstandard numbers

Let M |= Th(N).

Definition

Then m ∈ M is called standard if there is an n ∈ N s.t. sn(0)M = m.
Otherwise m is called non-standard.

Observation

M |= ∀x∀y (x ≤ y ∨ y ≤ x)
M |= ∀x 0 ≤ x
For all n ∈ N: M |= ∀x (x ≤ n → x = 0 ∨ x = 1 ∨ · · · ∨ x = n − 1)

So non-standard m are “after” the standard m.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 9 / 58

Standard and Nonstandard numbers

Let M |= Th(N).

Definition

Then m ∈ M is called standard if there is an n ∈ N s.t. sn(0)M = m.
Otherwise m is called non-standard.

Observation

M |= ∀x∀y (x ≤ y ∨ y ≤ x)
M |= ∀x 0 ≤ x
For all n ∈ N: M |= ∀x (x ≤ n → x = 0 ∨ x = 1 ∨ · · · ∨ x = n − 1)

So non-standard m are “after” the standard m.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 9 / 58

Proving Failure (1/3)

Definition

Define Lc = Lf ∪ {c} and

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Lemma

If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Proof.

For M |= Γ+c define N by N↾LA∪{c}= M↾LA∪{c} and

f N (x) =

{
x2 if x is standard

f M(x) otherwise

S. Hetzl: Logical Foundations of Inductive Theorem Proving 10 / 58

Proving Failure (1/3)

Definition

Define Lc = Lf ∪ {c} and

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Lemma

If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Proof.

For M |= Γ+c define N by N↾LA∪{c}= M↾LA∪{c} and

f N (x) =

{
x2 if x is standard

f M(x) otherwise

S. Hetzl: Logical Foundations of Inductive Theorem Proving 10 / 58

Proving Failure (1/3)

Definition

Define Lc = Lf ∪ {c} and

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}

Lemma

If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Proof.

For M |= Γ+c define N by N↾LA∪{c}= M↾LA∪{c} and

f N (x) =

{
x2 if x is standard

f M(x) otherwise

S. Hetzl: Logical Foundations of Inductive Theorem Proving 10 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.
Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.
Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.

Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.

Proof.

Let Γ0 ⊆ Γ+c be finite.

Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.

Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a.

Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.

Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.

So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (2/3)

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Lemma

Γ+c is satisfiable.

Definition

For m ∈ N define βm : N → N, n 7→ n2 + 2m + 1.

Then βm(m) = (m + 1)2 and βm(m + 1) is not a square because

(m+1)2 = m2+2m+1 < βm(m+1) = m2+4m+2 < m2+4m+4 = (m+2)2.

Proof.

Let Γ0 ⊆ Γ+c be finite. Let a ∈ N s.t. c ≥ i ∈ Γ0 implies i < a. Define the
Lc structure M0 by: M0↾LA= N, cM0 = a, f M0 = βa. Then M0 |= Γ0.
So, by compactness, Γ+c is satisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 11 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c .

Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf .

Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),

N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM,

N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM.

So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Proving Failure (3/3)

T = Th(N) ∪ {D0
f ,D

+
f }.

Γ+c = Th(N) ∪ {D+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2, . . .}.

Γ0,+c = Th(N) ∪ {D0
f ,D

+
f , ψ(c),¬ψ(s(c)), c ≥ 0, c ≥ 1, c ≥ 2,

Lemma. Γ+c is satisfiable.
Lemma. If Γ+c is satisfiable, then Γ0,+c is satisfiable.

Theorem (Lundstedt ’20)

T , Ixψ(x) ̸⊢ ∀x ψ(x).

Proof.

Let M |= Γ0,+c . Let N = M↾Lf . Then N |= T , N |= ψ(0),
N ̸|= ∀x (ψ(x) → ψ(s(x)) with counterexample cM, N ̸|= ∀x ψ(x) with
counterexample cM. So N |= Ixψ(x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 12 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .

Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula?

No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

Logical strength

Definition

A formula ∀x φ(x) has a straightforward induction proof in T if
T , Ixφ(x) ⊢ ∀x φ(x).

Proof of ψ(x) ≡ ∃y f (x) = y · y by induction on ψ′(x) ≡ f (x) = x · x .
Note that |= ψ′(x) → ψ(x).

Do we always / sometimes have to induct on a stronger formula? No!

Observation (H, Wong ’18)

T theory. If T , Ixφ(x) ⊢ σ then there is a ψ(x) s.t. T , Ixψ(x) ⊢ σ and
T ⊢ ∀x ψ(x) ↔ σ.

Proof Sketch.

Let ψ(x) ≡ φ(x) ∨ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 13 / 58

The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions?

No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 14 / 58

The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions? No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 14 / 58

The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions? No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 14 / 58

The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions? No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 14 / 58

The number of inductions

Can we strengthen the notion of straightforward induction proof?
Can we prove more with two inductions? No!

Theorem

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is a ψ(x) s.t.
T , Ixψ(x) ⊢ σ.

Proof Sketch.
1 Remove parameters by adding universal quantifiers.

2 Pull all inductions together as one.

Corollary

T theory. If T , Ixφ1(x , z1), . . . , Ixφn(x , zn) ⊢ σ, then there is φ(x) s.t.
T , Ixφ(x) ⊢ σ and T ⊢ ∀x φ(x) ↔ σ.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 14 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 15 / 58

Theory exploration

Automated theorem proving: goal-oriented
Given T and σ find out if T ⊢ σ

Theory exploration: bottom-up
Given T find “interesting” σ1, . . . , σn s.t. T ⊢ σ1, . . ., T ⊢ σn

▶ Equational theory exploration (σi are equations)

Simplified form of HipSpec
[Claessen, Johansson, Rosén, Smallbone ’13]

Allows to “iterate” straightforward induction proofs

S. Hetzl: Logical Foundations of Inductive Theorem Proving 16 / 58

Theory exploration

Automated theorem proving: goal-oriented
Given T and σ find out if T ⊢ σ

Theory exploration: bottom-up
Given T find “interesting” σ1, . . . , σn s.t. T ⊢ σ1, . . ., T ⊢ σn

▶ Equational theory exploration (σi are equations)

Simplified form of HipSpec
[Claessen, Johansson, Rosén, Smallbone ’13]

Allows to “iterate” straightforward induction proofs

S. Hetzl: Logical Foundations of Inductive Theorem Proving 16 / 58

Theory exploration

Automated theorem proving: goal-oriented
Given T and σ find out if T ⊢ σ

Theory exploration: bottom-up
Given T find “interesting” σ1, . . . , σn s.t. T ⊢ σ1, . . ., T ⊢ σn

▶ Equational theory exploration (σi are equations)

Simplified form of HipSpec
[Claessen, Johansson, Rosén, Smallbone ’13]

Allows to “iterate” straightforward induction proofs

S. Hetzl: Logical Foundations of Inductive Theorem Proving 16 / 58

Inductive data types

Definition

Work in many-sorted first-order logic with sorts D,T1, . . . ,Tn. D is
defined as inductive data type by constructors c1, . . . , ck where
ci : τ

1
i × · · · × τmi

i → D with τ li ∈ {D,T1, . . . ,Tn}.

Example

D = Nat, n = 0, c1 = 0 : Nat, c2 = s : Nat → Nat.

Example

D = NatList, T1 = Nat, n = 1, c1 = nil : NatList,
c2 = cons : Nat× NatList → NatList.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 17 / 58

Inductive data types

Definition

Work in many-sorted first-order logic with sorts D,T1, . . . ,Tn. D is
defined as inductive data type by constructors c1, . . . , ck where
ci : τ

1
i × · · · × τmi

i → D with τ li ∈ {D,T1, . . . ,Tn}.

Example

D = Nat, n = 0, c1 = 0 : Nat, c2 = s : Nat → Nat.

Example

D = NatList, T1 = Nat, n = 1, c1 = nil : NatList,
c2 = cons : Nat× NatList → NatList.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 17 / 58

Inductive data types

Definition

Work in many-sorted first-order logic with sorts D,T1, . . . ,Tn. D is
defined as inductive data type by constructors c1, . . . , ck where
ci : τ

1
i × · · · × τmi

i → D with τ li ∈ {D,T1, . . . ,Tn}.

Example

D = Nat, n = 0, c1 = 0 : Nat, c2 = s : Nat → Nat.

Example

D = NatList, T1 = Nat, n = 1, c1 = nil : NatList,
c2 = cons : Nat× NatList → NatList.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 17 / 58

Primitive recursion and induction

Example

Primitive recursion over lists:

h(nil, z) = t(z)

h(cons(x , L), z) = u(x , L, h(L, z), z)

Definition

Let L = {c1, . . . , ck}. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Example

The induction axiom for lists: φ(X , z) formula:

∀z
(
φ(nil, z) ∧ ∀X ∀u (φ(X , z) → φ(cons(u,X), z)) → ∀X φ(X , z)

)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 18 / 58

Primitive recursion and induction

Example

Primitive recursion over lists:

h(nil, z) = t(z)

h(cons(x , L), z) = u(x , L, h(L, z), z)

Definition

Let L = {c1, . . . , ck}. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Example

The induction axiom for lists: φ(X , z) formula:

∀z
(
φ(nil, z) ∧ ∀X ∀u (φ(X , z) → φ(cons(u,X), z)) → ∀X φ(X , z)

)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 18 / 58

Primitive recursion and induction

Example

Primitive recursion over lists:

h(nil, z) = t(z)

h(cons(x , L), z) = u(x , L, h(L, z), z)

Definition

Let L = {c1, . . . , ck}. Then a ground L term is called value.

Functions defined by primitive recursion evaluate to values.

Example

The induction axiom for lists: φ(X , z) formula:

∀z
(
φ(nil, z) ∧ ∀X ∀u (φ(X , z) → φ(cons(u,X), z)) → ∀X φ(X , z)

)
S. Hetzl: Logical Foundations of Inductive Theorem Proving 18 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0

app(nil, L2) = L2

len(cons(x , L)) = s(len(L))

app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Example

Datatypes: Nat (0, s), NatList (nil, cons)

Defined functions

x + 0 = x

x + s(y) = s(x + y)

len(nil) = 0 app(nil, L2) = L2

len(cons(x , L)) = s(len(L)) app(cons(x , L1), L2) = cons(x , app(L1, L2))

L1 : 0 + x = x has straightforward (sf) induction proof

L2 : s(x) + y = s(x + y) has sf induction proof

L3 : x + y = y + x has sf induction proof using L1 and L2.

L4 : len(app(L1, L2)) = len(L1) + len(L2) has sf induction proof
using L1 and L2.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 19 / 58

Generating equational conjectures

procedure Conjecture(k , x , n)
T := {t term | |t| ≤ k ,Var(t) ⊆ {x}}
E := {(t1, t2) | t1, t2 ∈ T}

for i := 1, . . . , n do
a := GenerateRandomTuple(x)
for each equivalence class C of E do

E ′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E ′ in E

end for
end for

return {t1 = t2 | (t1, t2) ∈ E}
end procedure

▶ t1 = t2 is returned iff t1 = t2 withstood n tests

S. Hetzl: Logical Foundations of Inductive Theorem Proving 20 / 58

Generating equational conjectures

procedure Conjecture(k , x , n)
T := {t term | |t| ≤ k ,Var(t) ⊆ {x}}
E := {(t1, t2) | t1, t2 ∈ T}
for i := 1, . . . , n do

a := GenerateRandomTuple(x)

for each equivalence class C of E do
E ′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E ′ in E

end for

end for
return {t1 = t2 | (t1, t2) ∈ E}

end procedure

▶ t1 = t2 is returned iff t1 = t2 withstood n tests

S. Hetzl: Logical Foundations of Inductive Theorem Proving 20 / 58

Generating equational conjectures

procedure Conjecture(k , x , n)
T := {t term | |t| ≤ k ,Var(t) ⊆ {x}}
E := {(t1, t2) | t1, t2 ∈ T}
for i := 1, . . . , n do

a := GenerateRandomTuple(x)
for each equivalence class C of E do

E ′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E ′ in E

end for
end for
return {t1 = t2 | (t1, t2) ∈ E}

end procedure

▶ t1 = t2 is returned iff t1 = t2 withstood n tests

S. Hetzl: Logical Foundations of Inductive Theorem Proving 20 / 58

Generating equational conjectures

procedure Conjecture(k , x , n)
T := {t term | |t| ≤ k ,Var(t) ⊆ {x}}
E := {(t1, t2) | t1, t2 ∈ T}
for i := 1, . . . , n do

a := GenerateRandomTuple(x)
for each equivalence class C of E do

E ′ := {(t1, t2) ∈ C | Value(t1[x\a]) = Value(t2[x\a])}
Replace C by E ′ in E

end for
end for
return {t1 = t2 | (t1, t2) ∈ E}

end procedure

▶ t1 = t2 is returned iff t1 = t2 withstood n tests

S. Hetzl: Logical Foundations of Inductive Theorem Proving 20 / 58

Equational theory exploration

procedure Explore(A, k , x , n, t)
L := ∅
C := Conjecture(k , x , n)

while C ̸= ∅ do
Pick φ(x1, . . . , xm) ∈ C
C := C \ {φ(x)}
if A, L ̸⊢t ∀x φ(x) then

if ∃i ∈ {1, . . . ,m} s.t. A, L, Ixiφ(x) ⊢t ∀x φ(x) then
L := L ∪ {∀x φ(x)}

end if
end if

end while

return L
end procedure

S. Hetzl: Logical Foundations of Inductive Theorem Proving 21 / 58

Equational theory exploration

procedure Explore(A, k , x , n, t)
L := ∅
C := Conjecture(k , x , n)
while C ̸= ∅ do

Pick φ(x1, . . . , xm) ∈ C
C := C \ {φ(x)}

if A, L ̸⊢t ∀x φ(x) then
if ∃i ∈ {1, . . . ,m} s.t. A, L, Ixiφ(x) ⊢t ∀x φ(x) then

L := L ∪ {∀x φ(x)}
end if

end if

end while
return L

end procedure

S. Hetzl: Logical Foundations of Inductive Theorem Proving 21 / 58

Equational theory exploration

procedure Explore(A, k , x , n, t)
L := ∅
C := Conjecture(k , x , n)
while C ̸= ∅ do

Pick φ(x1, . . . , xm) ∈ C
C := C \ {φ(x)}
if A, L ̸⊢t ∀x φ(x) then

if ∃i ∈ {1, . . . ,m} s.t. A, L, Ixiφ(x) ⊢t ∀x φ(x) then
L := L ∪ {∀x φ(x)}

end if

end if
end while
return L

end procedure

S. Hetzl: Logical Foundations of Inductive Theorem Proving 21 / 58

Equational theory exploration

procedure Explore(A, k , x , n, t)
L := ∅
C := Conjecture(k , x , n)
while C ̸= ∅ do

Pick φ(x1, . . . , xm) ∈ C
C := C \ {φ(x)}
if A, L ̸⊢t ∀x φ(x) then

if ∃i ∈ {1, . . . ,m} s.t. A, L, Ixiφ(x) ⊢t ∀x φ(x) then
L := L ∪ {∀x φ(x)}

end if
end if

end while
return L

end procedure

S. Hetzl: Logical Foundations of Inductive Theorem Proving 21 / 58

Evaluation

Simple algorithm

Useful in practice
inductive data types and simple primitive recursive functions

Finds commutation properties, simple lemmas, . . .

Main weakness: limited to equations (atoms)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 22 / 58

Evaluation

Simple algorithm

Useful in practice
inductive data types and simple primitive recursive functions

Finds commutation properties, simple lemmas, . . .

Main weakness: limited to equations (atoms)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 22 / 58

Evaluation

Simple algorithm

Useful in practice
inductive data types and simple primitive recursive functions

Finds commutation properties, simple lemmas, . . .

Main weakness: limited to equations (atoms)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 22 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 23 / 58

Atomic induction

Definition

For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}.

Remark

Γ-IND goes beyond straightforward induction proofs.

Example

Atom-IND are all induction axioms with atoms as induction formula.

Observation

Everything provable by equational theory exploration is provable by atomic
induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 24 / 58

Atomic induction

Definition

For a set of formulas Γ define

Γ-IND = {Ixφ(x , z) | φ(x , z) ∈ Γ}.

Remark

Γ-IND goes beyond straightforward induction proofs.

Example

Atom-IND are all induction axioms with atoms as induction formula.

Observation

Everything provable by equational theory exploration is provable by atomic
induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 24 / 58

What does atomic induction prove?

Example

Let LLA = {0, s, p,+} and B =

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

Then B,Atom-IND ⊢ ∀x∀y x + y = y + x

B,Atom-IND ⊢ ∀x∀y∀z x + (y + z) = (x + y) + z .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 25 / 58

What does atomic induction prove?

Example

Let LLA = {0, s, p,+} and B =

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

Then B,Atom-IND ⊢ ∀x∀y x + y = y + x

B,Atom-IND ⊢ ∀x∀y∀z x + (y + z) = (x + y) + z .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 25 / 58

What does atomic induction prove?

Example

Let LLA = {0, s, p,+} and B =

s(x) ̸= 0 x + 0 = x

p(0) = 0 x + s(y) = s(x + y)

p(s(x)) = x

Then B,Atom-IND ⊢ ∀x∀y x + y = y + x

B,Atom-IND ⊢ ∀x∀y∀z x + (y + z) = (x + y) + z .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 25 / 58

A nonstandard model of atomic induction (1/2)

Definition

Define the LLA-structure M with domain N ∪ {∞} by interpreting
0, s, p,+ on N in the standard way and

sM(∞) = ∞ = pM(∞) and n +M ∞ = ∞+M n = ∞+M ∞ = ∞.

Observation

M |= B.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 26 / 58

A nonstandard model of atomic induction (1/2)

Definition

Define the LLA-structure M with domain N ∪ {∞} by interpreting
0, s, p,+ on N in the standard way and

sM(∞) = ∞ = pM(∞) and n +M ∞ = ∞+M n = ∞+M ∞ = ∞.

Observation

M |= B.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 26 / 58

A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58

A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom,

a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58

A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.

1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58

A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58

A nonstandard model of atomic induction (2/2)

Observation

M |= Atomic-IND.

Proof.

Let z = z1, . . . , zk , t1(x , z) = t2(x , z) atom, a ∈ (N ∪ {∞})k . Assume

(I) M |= t1(0, a) = t2(0, a) and

(II) M |= ∀x (t1(x , a) = t2(x , a) → t1(s(x), a) = t2(s(x), a))

Claim. M |= t1(b, a) = t2(b, a) for all b ∈ N ∪ {∞}.
1. ∞ ∈ {a1, . . . , ak , b}: M |= t1(b, a) = ∞ = t2(b, a).

2. a1, . . . , ak , b ∈ N: obtain M |= t1(b, a) = t2(b, a) by (I) and
b instances of (II).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 27 / 58

Independence results for atomic induction

Observation

M ̸|= ∀x s(x) ̸= x.

Observation

M ̸|= ∀x∀y∀z (x + y = x + z → y = z)

Proof.

∞+ 1 = ∞+ 2 but 1 ̸= 2.

Corollary

B + Atomic-IND ̸⊢ ∀x s(x) ̸= x and
B + Atomic-IND ̸⊢ ∀x∀y∀z (x + y = x + z → y = z).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 28 / 58

Independence results for atomic induction

Observation

M ̸|= ∀x s(x) ̸= x.

Observation

M ̸|= ∀x∀y∀z (x + y = x + z → y = z)

Proof.

∞+ 1 = ∞+ 2 but 1 ̸= 2.

Corollary

B + Atomic-IND ̸⊢ ∀x s(x) ̸= x and
B + Atomic-IND ̸⊢ ∀x∀y∀z (x + y = x + z → y = z).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 28 / 58

Independence results for atomic induction

Observation

M ̸|= ∀x s(x) ̸= x.

Observation

M ̸|= ∀x∀y∀z (x + y = x + z → y = z)

Proof.

∞+ 1 = ∞+ 2 but 1 ̸= 2.

Corollary

B + Atomic-IND ̸⊢ ∀x s(x) ̸= x and
B + Atomic-IND ̸⊢ ∀x∀y∀z (x + y = x + z → y = z).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 28 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 29 / 58

Literal induction

Definition

A literal is an atom or a negated atom.

Definition

Literal-IND is the set of induction axioms for literals als induction formulas.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 30 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Proof.

Work in B:

If s(u) = s(v) then

u =

p(s(u)) = p(s(v))

= v

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Proof.

Work in B: If s(u) = s(v) then

u =

p(s(u)) = p(s(v))

= v

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Proof.

Work in B: If s(u) = s(v) then u = p(s(u)) = p(s(v)) = v .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Proof.

Induction on x in s(x) ̸= x . Work in B:

1 s(0) ̸= 0 because ∀x s(x) ̸= 0

2 s(x) ̸= x → s(s(x)) ̸= s(x) because s(s(x)) = s(x) → s(x) = x .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Proof.

Induction on x in s(x) ̸= x . Work in B:

1 s(0) ̸= 0 because ∀x s(x) ̸= 0

2 s(x) ̸= x → s(s(x)) ̸= s(x) because s(s(x)) = s(x) → s(x) = x .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Proof.

Induction on x in s(x) ̸= x . Work in B:

1 s(0) ̸= 0 because ∀x s(x) ̸= 0

2 s(x) ̸= x → s(s(x)) ̸= s(x) because s(s(x)) = s(x) → s(x) = x .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

Proof.

Assume y ̸= z . Induction on x in x + y ̸= x + z . Work in B:

1

0 + y =

y ̸= z

= 0 + z

.

2 If x + y ̸= x + z , then

s(x)+ y =

s(x + y) ̸= s(x + z)

= s(x)+ z

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

Proof.

Assume y ̸= z . Induction on x in x + y ̸= x + z . Work in B:

1

0 + y =

y ̸= z

= 0 + z

.

2 If x + y ̸= x + z , then

s(x)+ y =

s(x + y) ̸= s(x + z)

= s(x)+ z

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

Proof.

Assume y ̸= z . Induction on x in x + y ̸= x + z . Work in B:

1 0 + y = y ̸= z = 0 + z .

2 If x + y ̸= x + z , then

s(x)+ y =

s(x + y) ̸= s(x + z)

= s(x)+ z

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

Proof.

Assume y ̸= z . Induction on x in x + y ̸= x + z . Work in B:

1 0 + y = y ̸= z = 0 + z .

2 If x + y ̸= x + z , then

s(x)+ y =

s(x + y) ̸= s(x + z)

= s(x)+ z

.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

What does literal induction prove?

Lemma

B ⊢ s(u) = s(v) → u = v.

Theorem

B, Literal-IND ⊢ ∀x s(x) ̸= x.

Theorem

B, Literal-IND ⊢ ∀x∀y∀z (x + y = x + z → y = z).

Proof.

Assume y ̸= z . Induction on x in x + y ̸= x + z . Work in B:

1 0 + y = y ̸= z = 0 + z .

2 If x + y ̸= x + z , then s(x)+ y = s(x + y) ̸= s(x + z) = s(x)+ z .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 31 / 58

Independence result for literal induction

Definition

Let TEO = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)) }.

Observation

∀x (E (x) ∨ O(x)) has straightforward induction proof in TEO.

Theorem

TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Proof Sketch.

Model M with domain ({0} × N) ∪ ({1} × Z) and

0M = (0, 0) EM = {(0, n) | n is even}
sM(b, n) = (b, n + 1) OM = {(0, n) | n is odd}

S. Hetzl: Logical Foundations of Inductive Theorem Proving 32 / 58

Independence result for literal induction

Definition

Let TEO = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)) }.

Observation

∀x (E (x) ∨ O(x)) has straightforward induction proof in TEO.

Theorem

TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Proof Sketch.

Model M with domain ({0} × N) ∪ ({1} × Z) and

0M = (0, 0) EM = {(0, n) | n is even}
sM(b, n) = (b, n + 1) OM = {(0, n) | n is odd}

S. Hetzl: Logical Foundations of Inductive Theorem Proving 32 / 58

Independence result for literal induction

Definition

Let TEO = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)) }.

Observation

∀x (E (x) ∨ O(x)) has straightforward induction proof in TEO.

Theorem

TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Proof Sketch.

Model M with domain ({0} × N) ∪ ({1} × Z) and

0M = (0, 0) EM = {(0, n) | n is even}
sM(b, n) = (b, n + 1) OM = {(0, n) | n is odd}

S. Hetzl: Logical Foundations of Inductive Theorem Proving 32 / 58

Independence result for literal induction

Definition

Let TEO = { 0 ̸= s(x), s(x) = s(y) → x = y ,
E (0),E (x) → O(s(x)),O(x) → E (s(x)) }.

Observation

∀x (E (x) ∨ O(x)) has straightforward induction proof in TEO.

Theorem

TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Proof Sketch.

Model M with domain ({0} × N) ∪ ({1} × Z) and

0M = (0, 0) EM = {(0, n) | n is even}
sM(b, n) = (b, n + 1) OM = {(0, n) | n is odd}

S. Hetzl: Logical Foundations of Inductive Theorem Proving 32 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 33 / 58

Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A clause is a formula
∨k

j=1 Lj where Lj literal. A conjunctive normal form

is a formula ∀x
∧n

i=1

∨ki
i=j Li ,j where Li ,j literal.

We identify a clause set with a conjunctive normal form.

Definition

Clause form transformation: given a FOL formula φ we compute

¬φ 7→ sk∃(¬φ) 7→ CNF(sk∃(¬φ)).

Then φ is valid iff CNF(sk(¬φ)) is unsatisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 34 / 58

Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A clause is a formula
∨k

j=1 Lj where Lj literal. A conjunctive normal form

is a formula ∀x
∧n

i=1

∨ki
i=j Li ,j where Li ,j literal.

We identify a clause set with a conjunctive normal form.

Definition

Clause form transformation: given a FOL formula φ we compute

¬φ 7→ sk∃(¬φ) 7→ CNF(sk∃(¬φ)).

Then φ is valid iff CNF(sk(¬φ)) is unsatisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 34 / 58

Clause logic

Standard setting for automated theorem proving in first-order logic.

Definition

A clause is a formula
∨k

j=1 Lj where Lj literal. A conjunctive normal form

is a formula ∀x
∧n

i=1

∨ki
i=j Li ,j where Li ,j literal.

We identify a clause set with a conjunctive normal form.

Definition

Clause form transformation: given a FOL formula φ we compute

¬φ 7→ sk∃(¬φ) 7→ CNF(sk∃(¬φ)).

Then φ is valid iff CNF(sk(¬φ)) is unsatisfiable.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 34 / 58

Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 35 / 58

Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 35 / 58

Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 35 / 58

Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 35 / 58

Skolemisation

Idea: ∀x∃y φ(x , y) 7→ ∀x φ(x , f (x)) where f new function symbol

Definition

The Skolem axiom for φ(x , y) is ∀x (∃y φ(x , y) → φ(x , f (x))).

Definition

Skolem closure of a language L is skω(L).

Definition

sk∃(φ) is the formula φ after removel of all (positive) existential (and
negative universal) quantifiers by Skolemisation.

Theorem

skω(L)-SA ⊢ φ↔ sk∃(φ).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 35 / 58

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the
current clause set.

Example

The resolution rule is
C ∨ L L′ ∨ D

(C ∨ D)σ

where σ is most general unifier of L and L′.

Example

P(a) ¬P(x) ∨ P(f (x))

P(f (a))

S. Hetzl: Logical Foundations of Inductive Theorem Proving 36 / 58

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the
current clause set.

Example

The resolution rule is
C ∨ L L′ ∨ D

(C ∨ D)σ

where σ is most general unifier of L and L′.

Example

P(a) ¬P(x) ∨ P(f (x))

P(f (a))

S. Hetzl: Logical Foundations of Inductive Theorem Proving 36 / 58

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the
current clause set.

Example

The resolution rule is
C ∨ L L′ ∨ D

(C ∨ D)σ

where σ is most general unifier of L and L′.

Example

P(a) ¬P(x) ∨ P(f (x))

P(f (a))

S. Hetzl: Logical Foundations of Inductive Theorem Proving 36 / 58

Saturation theorem proving

Standard technique for automated theorem proving in FOL

Definition

Saturation system S is a set of rules for deriving new clauses from the
current clause set.

Example

The resolution rule is
C ∨ L L′ ∨ D

(C ∨ D)σ

where σ is most general unifier of L and L′.

Example

P(a) ¬P(x) ∨ P(f (x))

P(f (a))

S. Hetzl: Logical Foundations of Inductive Theorem Proving 36 / 58

Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58

Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58

Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58

Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58

Soundness and refutational completeness

Definition

Clause set C closed under S if for all n-ary rules ρ ∈ S:

C1, . . . ,Cn ∈ C implies ρ(C1, . . . ,Cn) ∈ C

Given C, compute closure by C0 = C, C1, C2, . . . −→ Cω.

Definition

S sound if C ∈ Cω implies C |= C

Definition

S refutationally complete if C |= ⊥ implies ⊥ ∈ Cω

Sound and refutationally complete saturation systems for ATP in FOL.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 37 / 58

Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated. Difficult to describe in terms of the original language.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 38 / 58

Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)

Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated. Difficult to describe in terms of the original language.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 38 / 58

Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.

This is iterated. Difficult to describe in terms of the original language.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 38 / 58

Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated.

Difficult to describe in terms of the original language.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 38 / 58

Adding explicit induction axioms

Definition

The general induction rule is

CNF(sk∃(Ixφ(x , z)))

Example

∀z
(
φ(0, z) ∧ ∀x (φ(x , z) → φ(s(x), z)) → ∀x φ(x , z)

)
is mapped by sk∃ to:

∀z
(
sk∀(φ(0, z)) ∧

(
sk∃(φ(f (z), z)) → sk∀(φ(s(f (z)), z))

)
→ ∀x sk∃(φ(x , z))

)
Remark

The general induction rule adds new (Skolem) symbols to the language.
This is iterated. Difficult to describe in terms of the original language.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 38 / 58

Concrete realisation: Vampire

Definition

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, x only variable in L(x)

Example

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c} solved by
S + SCIND. Includes generalisation!

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀x L(x)
sk∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀x L(x)

Does not leave “ground induction”.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 39 / 58

Concrete realisation: Vampire

Definition

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, x only variable in L(x)

Example

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c} solved by
S + SCIND. Includes generalisation!

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀x L(x)
sk∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀x L(x)

Does not leave “ground induction”.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 39 / 58

Concrete realisation: Vampire

Definition

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, x only variable in L(x)

Example

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c} solved by
S + SCIND. Includes generalisation!

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀x L(x)
sk∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀x L(x)

Does not leave “ground induction”.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 39 / 58

Concrete realisation: Vampire

Definition

Vampire prover [Voronkov et al. ’20]: single clause induction

L(a) ∨ C

CNF(sk∃(IxL(x)))
SCIND

a constant symbol, L(x) literal, x only variable in L(x)

Example

{x + 0 = 0, x + s(y) = s(x + y), c + (c + c) ̸= (c + c) + c} solved by
S + SCIND. Includes generalisation!

IxL(x) ≡ L(0) ∧ ∀x (L(x) → L(s(x))) → ∀x L(x)
sk∃(IxL(x)) ≡ L(0) ∧ (L(c) → L(s(c))) → ∀x L(x)

Does not leave “ground induction”.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 39 / 58

Characterisation (1/2)

Definition

Φ set of formulas. The ground induction rule is

C1 · · · Cn

CNF(sk∃(Ixφ(x , t)))
Φ-GIND

where φ(x , z) ∈ Φ, t ground L({C1, . . . ,Cn}) terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If S +Φ-GIND
refutes CNF(sk∃(T)), then skω(L(T) ∪ L(Φ) ∪ {0, s})-SA + T +Φ-IND is
inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 40 / 58

Characterisation (1/2)

Definition

Φ set of formulas. The ground induction rule is

C1 · · · Cn

CNF(sk∃(Ixφ(x , t)))
Φ-GIND

where φ(x , z) ∈ Φ, t ground L({C1, . . . ,Cn}) terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If S +Φ-GIND
refutes CNF(sk∃(T)), then skω(L(T) ∪ L(Φ) ∪ {0, s})-SA + T +Φ-IND is
inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 40 / 58

Characterisation (1/2)

Definition

Φ set of formulas. The ground induction rule is

C1 · · · Cn

CNF(sk∃(Ixφ(x , t)))
Φ-GIND

where φ(x , z) ∈ Φ, t ground L({C1, . . . ,Cn}) terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If S +Φ-GIND
refutes CNF(sk∃(T)), then skω(L(T) ∪ L(Φ) ∪ {0, s})-SA + T +Φ-IND is
inconsistent.

Proof Sketch.

Translate S +Φ-GIND refutation line by line.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 40 / 58

Characterisation (1/2)

Definition

Φ set of formulas. The ground induction rule is

C1 · · · Cn

CNF(sk∃(Ixφ(x , t)))
Φ-GIND

where φ(x , z) ∈ Φ, t ground L({C1, . . . ,Cn}) terms

Lemma

S sound saturation system, T theory, Φ set of formulas. If S +Φ-GIND
refutes CNF(sk∃(T)), then skω(L(T) ∪ L(Φ) ∪ {0, s})-SA + T +Φ-IND is
inconsistent.

Corollary

S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 40 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants , so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants , so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants , so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants

, so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants , so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Characterisation (2/2)

Lemma.
S sound saturation system, T Skolem-free theory, Φ set of formulas, Ψ
Skolem-free set of formulas with Φ-IND ⇔ Ψ-IND. If S +Φ-GIND refutes
CNF(sk∃(T)) then T +Ψ-IND is inconsistent.

Theorem

S sound saturation system, T Skolem-free ∃2 theory. If S +SCIND refutes
CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Proof.

S + Literal(L(sk∃(T)))-GIND refutes CNF(sk∃(T)).

L(sk∃(T)) = L(T) ∪ Σ with Σ constants , so
Literal(L(T))-IND ⇔ Literal(L(sk∃(T))-IND.

So, by Lemma, T + Literal(L(T))-IND is inconsistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 41 / 58

Independence result for single clause induction

Theorem. TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Theorem. S sound saturation system, T Skolem-free ∃2 theory. If
S + SCIND refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Theorem

S sound saturation system. S + SCIND does not refute
CNF(sk∃(TEO + ∃x (¬E (x) ∧ ¬O(x)))).

Proof.

TEO + ∃x (¬E (x) ∧ ¬O(x)) + Literal-IND is consistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 42 / 58

Independence result for single clause induction

Theorem. TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Theorem. S sound saturation system, T Skolem-free ∃2 theory. If
S + SCIND refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Theorem

S sound saturation system. S + SCIND does not refute
CNF(sk∃(TEO + ∃x (¬E (x) ∧ ¬O(x)))).

Proof.

TEO + ∃x (¬E (x) ∧ ¬O(x)) + Literal-IND is consistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 42 / 58

Independence result for single clause induction

Theorem. TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Theorem. S sound saturation system, T Skolem-free ∃2 theory. If
S + SCIND refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Theorem

S sound saturation system. S + SCIND does not refute
CNF(sk∃(TEO + ∃x (¬E (x) ∧ ¬O(x)))).

Proof.

TEO + ∃x (¬E (x) ∧ ¬O(x)) + Literal-IND is consistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 42 / 58

Independence result for single clause induction

Theorem. TEO + Literal-IND ̸⊢ ∀x (E (x) ∨ O(x)).

Theorem. S sound saturation system, T Skolem-free ∃2 theory. If
S + SCIND refutes CNF(sk∃(T)) then T + Literal-IND is inconsistent.

Theorem

S sound saturation system. S + SCIND does not refute
CNF(sk∃(TEO + ∃x (¬E (x) ∧ ¬O(x)))).

Proof.

TEO + ∃x (¬E (x) ∧ ¬O(x)) + Literal-IND is consistent.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 42 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 43 / 58

Open induction

Definition

A formula φ is called open if it does not contain quantifiers.

Definition

Open induction is Open-IND.

Theorem (Shoenfield ’58)

Over the LLA theory B = {s(x) ̸= 0, p(0) = 0, p(s(x)) = x , x + 0 = x ,
x + s(y) = s(x + y)}, open induction (in LLA) is equivalent to:

x + y = y + x x = 0 ∨ x = s(p(x))

(x + y) + z = x + (y + z) x + y = x + z → y = z

S. Hetzl: Logical Foundations of Inductive Theorem Proving 44 / 58

Open induction

Definition

A formula φ is called open if it does not contain quantifiers.

Definition

Open induction is Open-IND.

Theorem (Shoenfield ’58)

Over the LLA theory B = {s(x) ̸= 0, p(0) = 0, p(s(x)) = x , x + 0 = x ,
x + s(y) = s(x + y)}, open induction (in LLA) is equivalent to:

x + y = y + x x = 0 ∨ x = s(p(x))

(x + y) + z = x + (y + z) x + y = x + z → y = z

S. Hetzl: Logical Foundations of Inductive Theorem Proving 44 / 58

Literal induction vs. open induction

Theorem

B + Literal-IND ⇔ B +Open-IND.

Proof.

Show finite axiomatisation of B +Open-IND in B + Literal-IND.

Theorem (Weiser ’24)

For T natural base theory in L = {0, s, p,+, ·}:
T + Literal-IND ̸⇔ T +Open-IND.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 45 / 58

Literal induction vs. open induction

Theorem

B + Literal-IND ⇔ B +Open-IND.

Proof.

Show finite axiomatisation of B +Open-IND in B + Literal-IND.

Theorem (Weiser ’24)

For T natural base theory in L = {0, s, p,+, ·}:
T + Literal-IND ̸⇔ T +Open-IND.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 45 / 58

Literal induction vs. open induction

Theorem

B + Literal-IND ⇔ B +Open-IND.

Proof.

Show finite axiomatisation of B +Open-IND in B + Literal-IND.

Theorem (Weiser ’24)

For T natural base theory in L = {0, s, p,+, ·}:
T + Literal-IND ̸⇔ T +Open-IND.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 45 / 58

List cancellation

Sequences with concatenation operation ⌢

Observation

Finite sequences have the properties:

left cancellation: X ⌢ Y = X ⌢ Z → Y = Z

right cancellation: Y ⌢ X = Z ⌢ X → Y = Z

Observation

Infinite (ω-)sequences satisfy:

left cancellation

but not

right cancellation, e.g. aω = (a)⌢ aω = nil⌢ aω but (a) ̸= nil

S. Hetzl: Logical Foundations of Inductive Theorem Proving 46 / 58

List cancellation

Sequences with concatenation operation ⌢

Observation

Finite sequences have the properties:

left cancellation: X ⌢ Y = X ⌢ Z → Y = Z

right cancellation: Y ⌢ X = Z ⌢ X → Y = Z

Observation

Infinite (ω-)sequences satisfy:

left cancellation

but not

right cancellation, e.g. aω = (a)⌢ aω = nil⌢ aω but (a) ̸= nil

S. Hetzl: Logical Foundations of Inductive Theorem Proving 46 / 58

List cancellation

Sequences with concatenation operation ⌢

Observation

Finite sequences have the properties:

left cancellation: X ⌢ Y = X ⌢ Z → Y = Z

right cancellation: Y ⌢ X = Z ⌢ X → Y = Z

Observation

Infinite (ω-)sequences satisfy:

left cancellation

but not

right cancellation, e.g. aω = (a)⌢ aω = nil⌢ aω but (a) ̸= nil

S. Hetzl: Logical Foundations of Inductive Theorem Proving 46 / 58

A theory of lists with concatenation

Definition

L1 = {nil : list, cons : ι× list → list,⌢: list× list → list}, T1 =

nil ̸= cons(x ,X)

cons(x ,X) = cons(y ,Y) → x = y ∧ X = Y

nil⌢ Y = Y

cons(x ,X)⌢ Y = cons(x ,X ⌢ Y)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 47 / 58

Transfinite sequences

Definition

A sequence of length α is mapping from α to X where α ordinal (in this
talk: α < ω3), X any set.

Definition

Flattening ⌊l⌋ of a sequence of sequences, e.g.

⌊((1 2 3 · · ·)(2 3 5 · · ·))⌋ = (1 2 3 · · · 2 3 5 · · ·)

Definition

For a ∈ Xα write aβ for ⌊(a)γ<β⌋, i.e., β times the sequence a.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 48 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,

N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and

L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Unprovability of right cancellation

Theorem (H, Vierling ’24)

T1 +Open(L1)-IND ̸⊢ Y ⌢ X = Z ⌢ X → Y = Z

Proof.

It suffices to show that T1 +Open(L1)-IND ̸⊢ Y ⌢ X = X → Y = nil.

Define Nk = (k , k + 1, k + 2, . . .) infinite (ω−)sequence,
N = {w ⌢ Nk | w ∈ N∗, k ∈ N}, decomposition unique, and
L = {⌊l⌋⌢ w | w ∈ N∗, l ∈ N β, β < ω2}.

Define L1-structure M2 by M2(list) = L with nilM2 , consM2 , ⌢M2 having
natural interpretation

Then M2 |= T1 +Open(L1)-IND but
M2 ̸|= Y ⌢ X = X → Y = nil

Counterexample: N0 ∈ L, Nω
0 = ⌊(N0)α<ω⌋ ∈ L,

N0 ⌢ Nω
0 = Nω

0 but N0 ̸= nil.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 49 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 50 / 58

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition

An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) |= C(η) and
C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if
D(η) |= C(η).

Many equivalent variants.

Example

CSC solves Even/Odd example.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 51 / 58

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition

An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) |= C(η) and
C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if
D(η) |= C(η).

Many equivalent variants.

Example

CSC solves Even/Odd example.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 51 / 58

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition

An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) |= C(η) and
C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if
D(η) |= C(η).

Many equivalent variants.

Example

CSC solves Even/Odd example.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 51 / 58

Clause set cycles

Abstraction of n-clause calculus [Kersani, Peltier ’13; Kersani ’14]

Definition

An L ∪ {η} clause set C is a clause set cycle (CSC) if C(s(η)) |= C(η) and
C(0) |= ⊥. An L ∪ {η} clause set D(η) is refuted by a CSC C(η) if
D(η) |= C(η).

Many equivalent variants.

Example

CSC solves Even/Odd example.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 51 / 58

Logical Characterisation

Definition

Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition

T theory, R inference rule, define [T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem

D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

Proof Sketch.

Induction on clause set (∀1) in refutation becomes ∃1 induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 52 / 58

Logical Characterisation

Definition

Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition

T theory, R inference rule, define [T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem

D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

Proof Sketch.

Induction on clause set (∀1) in refutation becomes ∃1 induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 52 / 58

Logical Characterisation

Definition

Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition

T theory, R inference rule, define [T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem

D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

Proof Sketch.

Induction on clause set (∀1) in refutation becomes ∃1 induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 52 / 58

Logical Characterisation

Definition

Γ set of formulas, define

φ(0) φ(x) → φ(s(x))

φ(η)
Γ-INDR−

η

where φ(x) ∈ Γ.

Definition

T theory, R inference rule, define [T ,R] = T + {φ | T ⊢ Γ, Γ/φ ∈ R}.

Theorem

D is refuted by a CSC iff D + [∅,∃1-INDR−
η] ⊢ ⊥.

Proof Sketch.

Induction on clause set (∀1) in refutation becomes ∃1 induction.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 52 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 53 / 58

Unprovability result

Definition

Define the LLA theory T = B ∪{x + y = y + x , x +(y + z) = (x + y)+ z}.

Definition

Let k , n,m ∈ N with 0 < n < m, define Ek,n,m as:

n · x + (m − n)k = m · x → x = k.

For example, E0,1,2 is x + 0 = x + x → x = 0.

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m

Corollary

Ek,n,m(η) is not refuted by an LLA clause set cycle.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 54 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Countermodel M, domain {(i , n) ∈ N× Z | i = 0 implies n ∈ N}

0M = (0, 0) pM((0, n)) = (0, n .− 1)

sM(i , n) = (i , n + 1) pM((i , n)) = (i , n − 1) if i > 0

(i , n) +M (j ,m) = (max(i , j), n +m)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M ̸|= Ek,n,m.

We have

n · (1, k)+M (m − n)k
M

= (1, nk)+M (0, (m−n)k) = (1,mk) = m · (1, k)

but

(1, k) ̸= (0, k).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= T .

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N. So M |= χI ((i , p)) for all
i ≥ 1, p ∈ P.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Unprovability result: proof

Theorem (H, Vierling ’22)

T + ∃1-IND− ̸⊢ Ek,n,m, i.e., n · x + (m − n)k = m · x → x = k

Proof.

Claim: M |= ∃1-IND−.

Definition. Component ∃x⃗ (L1 ∧ · · · ∧ Ln)

Lemma. If φ(x) is ∃1 then ∃N ∈ N, 0, p-free components χ1, . . . , χl s.t.
M |= φ(sN(x)) ↔

∨l
i=1 χi (x).

Lemma. If 0, p-free component χ(x) has two solutions in N then ∃ arith.
prog. P ⊆ Z s.t. M |= χ(i , p) for all i ≥ 1, p ∈ P.

Assume M |= φ(0) and M |= φ(x) → φ(s(x)). Then M |= φ((0, n)).
So ∃I s.t. χI (x) has two solutions in N. So M |= χI ((i , p)) for all
i ≥ 1, p ∈ P. To prove φ((i , n)), use sufficiently small (i , p) as basis.

S. Hetzl: Logical Foundations of Inductive Theorem Proving 55 / 58

Outline

1 Straightforward induction proofs

2 Equational theory exploration

3 Atomic induction

4 Literal induction

5 Saturation theorem proving with explicit induction axioms

6 Open induction

7 Clause set cycles

8 Existential induction

9 Conclusion

S. Hetzl: Logical Foundations of Inductive Theorem Proving 56 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Conclusion

Classification of practical methods by means of mathematical logic

▶ Gauging strength of a method

▶ Independence results for unlimited time and memory

Overall:

▶ A general picture of methods starts to emerge
(sorted along increasing complexity of induction formulas)

▶ Techniques for analysing (new) practical methods

▶ Proof-theoretic (proof translations)

▶ Model-theoretic for independence results (model constructions)

S. Hetzl: Logical Foundations of Inductive Theorem Proving 57 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

Future Work

▶ Consolidate results

▶ Additional methods:
term rewriting, Cruanes’ calculus, rippling, recursion analysis, . . .

▶ Relationship to software verification

▶ Theories of inductive data types

▶ Deskolemisation: conservativity, complexity, . . .

▶ Analyticity

▶ Does theoretical understanding help to design better methods?

S. Hetzl: Logical Foundations of Inductive Theorem Proving 58 / 58

	Straightforward induction proofs
	Equational theory exploration
	Atomic induction
	Literal induction
	Saturation theorem proving with explicit induction axioms
	Open induction
	Clause set cycles
	Existential induction
	Conclusion

