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Background

» Hilbert's programme (1920ies)

» Formalisation of mathematics
» Proof of consistency by finitary methods

» Godel's (2nd) incompleteness theorem (1931)
Theorem. For a (consistent, axiomatisable, and sufficiently
strong) first-order theory T, T ¥ Cont.

» Gentzen's approach (1936-): split consistency proof for T into:

1. A cut-elimination procedure (in weak theory)
2. A termination assumption (transcends theory)
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Cut-elimination and consistency

» Why is cut-elimination relevant for consistency?

> Definition. A theory T is inconsistent if there is some formula ¢
st. TEFyand T —gp.

» Suppose there are T-proofs 71 of ¢ and m of -, then

(m1)
(m2) =%
—  cut
=

is a proof of =. By cut-elimination, there is a cut-free proof 7* of
=. Contradiction.

5/ 70



» Gentzen’s consistency proof
v' Background
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Peano arithmetic

» The language L = {0,s,+,-,=}
» Basic arithmetic BA consists of the axioms:

VxVy (s(x) = s(y) = x=y)
Vx 0 # s(x)
Vxx+0=x

VxVy x +s(y) = s(x +y)
Vxx-0=0

VxVy x-s(y) =x-y+x

» Peano arithmetic PA consists of the axioms of BA together with,
for every formula ¢(x,Z), the induction axiom

vz ((0(0,2) Ay (e(y, 2) = @(s(y), 2)) = Vx o(x, 2)).
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A sequent calculus for PA

» A sequent calculus for FOL with equality in L plus inital sequents

s(t)=s(u)y=t=u
=0 # s(t)
=t+0=t
= t+s(u) =s(t+ u)
=t-0=0
=t-s(u)y=t-ut+t

and the induction rule

p(a),l = A, p(s(a))
©(0),T = A, p(t)

where « does not appear in p(0),I = A, p(t).
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Simple proofs

» Definition. A PA-proof is called simple if it consists of only of
initial sequents, atomic cuts, and structural inference.
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Simple proofs

» Definition. A PA-proof is called simple if it consists of only of
initial sequents, atomic cuts, and structural inference.

» Simple proof lemma. There is no simple proof of =.
Proof. Let w be a simple proof of =-.
» W.l.o.g. 7 is variable-free.
Every formula in 7 is of the form s = t with s, t variable-free.
Evaluate formulas and sequents to T or L “in N".
Every inital sequent evaluates to T.
Every rule preserves T.
= evaluates to L.

vV vy vy VvYy
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v' Background
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Interaction between induction and cut: example

O Tp(e) = o(s(a))
F='00)  Tho(0) = o)
= o(t)

ind
cut
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Interaction between induction and cut: example

O Tp(e) = o(s(a))
F='00)  Tho(0) = o)
= o(t)

ind

—> eliminating cuts means eliminating inductions too
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Numerals and evaluation

» Definition. For n € N define the L-term 7 = s"(0).

» A term of the form s"(0) is called numeral.

» Evaluation lemma. Let t is a variable free [-term. Then

» thereisan n€ Ns.t. BA-t=mn, and
» for any formula (x) there is an induction-free proof of

o(n) = ¢(t)
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Cut-elimination and induction

(m(a))
p(a),l = A, p(s(a)) -
©(0),T = A, p(t)
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Cut-elimination and induction

(m(a))
wmxﬁiAM@MDmd
©(0),T = A, p(t)

If t is variable-free, thereisn € Nst. BAt=n
7(0)) (m(1))

(
0(0),T = A,p(1) »(1),T = A, ¢(2)
©(0), = A, 0(2)

cut

o(0).T = A, o(R) o7 = 4(2)
(0.7 = B, (1)

cut
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Cut-elimination and induction

(m(a))
wmxﬁiAM@MDmd
©(0),T = A, p(t)

If t is variable-free, thereisn € Nst. BAt=n

(7(0)) @)
P(0).7 = A,p(1) o(1).F = A (2)

1
2(0).7 = A, 4(2) o
o(0).T = A, () o3 = o(1)

cut
©(0),T = A, ¢(t)

Under which conditions does this work?
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» Definition. A logical inference ¢ in a PA-proof 7 is called

» explicit if it is ancestor of the end-sequent, and
» implicit if it is ancestor of a cut formula.
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» explicit if it is ancestor of the end-sequent, and
» implicit if it is ancestor of a cut formula.
» Definition. The end-piece of a PA-proof m:
all sequents which are not above an implicit logical inference.

» Example.
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» Definition. A logical inference ¢ in a PA-proof 7 is called
» explicit if it is ancestor of the end-sequent, and
» implicit if it is ancestor of a cut formula.
» Definition. The end-piece of a PA-proof m:
all sequents which are not above an implicit logical inference.

» Example.
: (e, B) = 3y d(s(a),y)
=9(0.0) _ Fyi(ey) =y is(a)y) |
=3y 90.y) " yd0y) =y elty) O w(ta) =3y o(ty)
= Iy v(t.y) Y olty) =y elty) |
= Jy(t,y)

= 3Ix3Jy o(x, y)
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» Definition. A ¥ ;-sequent is a sequent of the form
vrl@la s ’VXTSOk = EIX/(-i-l Phk+ly-- - EIXinson

s.t. ¢1,..., s quantifier-free, ; contains only variables from X;.
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» Definition. A ¥ ;-sequent is a sequent of the form
VX101, VXkpk = X1 Phet1s - - -5 IXn en
s.t. v1,...,pn quantifier-free, ; contains only variables from Xx;.

» Lemma. Let 7 be a PA-proof of a ¥1-sequent [ = A and let

P(e).T = A pls(e))
P(0).T = Bl

be a lowermost induction in the end-piece of w. Then t is
variable-free.
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» Definition. A ¥ ;-sequent is a sequent of the form
VX101, VXkpk = X1 Phet1s - - -5 IXn en
s.t. v1,...,pn quantifier-free, ; contains only variables from Xx;.

» Lemma. Let 7 be a PA-proof of a ¥1-sequent [ = A and let

P(e).T = A pls(e))
P(0).T = Bl

be a lowermost induction in the end-piece of w. Then t is
variable-free.

Proof. W.l.o0.g. all variables in 7 are eigenvariables.

End-piece does not contain V,, 3.

= End-piece contains only eigenvariables of inductions.

= The term of a lowermost induction is variable-free. O
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Termination

> Let m be a proof of a X1-sequent [ = A.

» If end-piece of 7 contains ind:
= reduce lowermost ind

» If end-piece of 7 contains non-atomic cut:
= reduce suitable non-atomic cut

» Otherwise: 7 contains only atomic cuts
(Then ' = A = ) implies that 7 is simple)
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> Let m be a proof of a X1-sequent [ = A.

» If end-piece of 7 contains ind:
= reduce lowermost ind

» If end-piece of 7 contains non-atomic cut:
= reduce suitable non-atomic cut

» Otherwise: 7 contains only atomic cuts
(Then ' = A = ) implies that 7 is simple)

> Have:
1 — T — T3 —

Do we ever enter the “Otherwise”-case?
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Termination

> Let m be a proof of a X1-sequent [ = A.

» If end-piece of 7 contains ind:
= reduce lowermost ind

» If end-piece of 7 contains non-atomic cut:
= reduce suitable non-atomic cut

» Otherwise: 7 contains only atomic cuts
(Then I = A = ) implies that 7 is simple)

> Have:
1 — T — T3 —

Do we ever enter the “Otherwise”-case?

» Want: well-founded (X, <) and mapping o s.t.

0(71'1) > 0(7T2) > 0(71'3) >

16/ 70



» Gentzen’s consistency proof
v' Background
v" Peano arithmetic
v Reduction of cut and induction
» Ordinals

» The consistency proof

» The omega rule

» Cyclic proofs
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Ordinals, informally

» The order of the natural numbers

.0 .1 .2 c ..
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Ordinals, informally

» Add limit element w, ie., VNEN:n < w

o) O] &> --- O,
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Ordinals, informally

» Add another successor element after that

o) ©1 & - O, &,41
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Ordinals, informally

» and so on

o) ©] &) --- O, 0,1 O,42
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Ordinals, informally

» Add a new limit element again

®) O] &) - O, O,1]1 O,i{2 " €,2
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Ordinals, informally

» The ordinals < w -2
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Ordinals, informally

» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» Repeat the above

.0 PPN .UJ e .(.()'2 e .(.4)'3 ......
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Ordinals, informally
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» And add a new limit element again

®) - @, - @, - @,3 - .w~w:w2
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Ordinals, informally

» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» The ordinals < w?

o) - @, - @, - @, 3 - .w~w:w2

18/ 70



Ordinals, informally

» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» The ordinals < w?

o) - @, - @, - @, 3 - .w.w:w2
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.0 e .UJ e @
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» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» The ordinals < w?

o) - @, - @, - @, 3 - .w.w:w2

» The ordinals < w*

o) - O, - @ ® 3 it o, w
» lterate one more time
o) - @O, - O w - .www ......
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Ordinals, informally

» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» The ordinals < w?

o) - @, - @, - @, 3 - .w.w:w2

» The ordinals < w*

oy ‘- O, - .wz .w3 ...... o w
» And add a new limit element
) - @, - O w - .www ...... .80
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Ordinals, informally

» The ordinals < w -2

o) O] &) - O, 0,11 O,4{2 " €,2

» The ordinals < w?

o) - @, - @, - @, 3 - .w.w:w2

» The ordinals < w*

oy ‘- O, - .wz .w3 ...... o w
» The ordinals < ¢g
®) - O, - O w - .www ...... .80
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The ordinals < g

» Ordinal arithmetic
» addition +, multiplication -, exponentiation
> less-than <
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The ordinals < ¢

» Ordinal arithmetic
» addition +, multiplication -, exponentiation
> less-than <

» Cantor normal form: if 0 < a < gp, then « can be written as
a=wr 4. 4w

where a1 > - -+ > a,, 0 < f < €9, «; in normal form.
This normal form is unique.

19/ 70



The ordinals < ¢

» Ordinal arithmetic
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» Cantor normal form: if 0 < a < gp, then « can be written as
a=wr 4. 4w

where a1 > - -+ > a,, 0 < f < €9, «; in normal form.
This normal form is unique.

» The natural sum: for @ = w® 4+ 4w, B = WP ... 4 whn let
a#ﬂzwkl,“wkmﬂ
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The ordinals < ¢

» Ordinal arithmetic
» addition +, multiplication -, exponentiation
> less-than <

» Cantor normal form: if 0 < a < gp, then « can be written as
a=wr 4. 4w

where a1 > - -+ > a,, 0 < f < €9, «; in normal form.
This normal form is unique.

» The natural sum: for @ = w® 4+ 4w, B = WP ... 4 whn let
a#ﬂzwkl,“wkmﬂ

)\1 Z 2 )\m—i—nr {)\1a-~ . a)\m—i—n} - {alw . 'aanvﬂla"' aﬁm}-
» Formalisation
» Term signature O = {0/0,w/1,+/2}
» Modulo equality
» Operations +, -, exp, # and relation <
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» Gentzen’s consistency proof
v' Background
v Peano arithmetic
v Reduction of cut and induction
v Ordinals
» The consistency proof

» The omega rule

» Cyclic proofs
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The height of a sequent

» Definition. Logical complexity of a formula, cut, induction.
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» Definition. Logical complexity of a formula, cut, induction.

» Definition. Height of a sequent S in a proof 7, h(S, ), is
maximum of log. complexities of cut or induction below S in 7.

» Observation. If 5; and S> are premises of a binary inference,
then h(51,7r) = h(52,71').
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The height of a sequent

>

Definition. Logical complexity of a formula, cut, induction.

v

Definition. Height of a sequent S in a proof 7, h(S, ), is
maximum of log. complexities of cut or induction below S in 7.

\4

Observation. If S; and S, are premises of a binary inference,
then h(51,7r) = h(52,71').

v

Notation. h(S) for h(S, ) if 7 is clear
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The ordinal assignment

» Definition. Let S be a sequent in a proof 7. Define o(S):

> Initial sequent S: o(S) =1
!

\4

Structural inference % 1 o(S) =0o(5)

Unary logical inference % co(S)=0o(5)+1

>

» Binary logical inference 21 552 1 0(S) = o(51) #0(52)
51552 cut : o(S) = wn(s,)—n(s)(0(S1) # o(52))

> %’ ind : o(S) = wh(s')—h(s)+1(a1 + 1)

where o(S') = w 4 -+ + w™ with ag > -+ > .
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The ordinal assignment

» Definition. Let S be a sequent in a proof 7. Define o(S):
> Initial sequent S: o(S) =1
!

Structural inference % 1 o(S) =0o(5)

\4

Unary logical inference % co(S)=0o(5)+1

>

» Binary logical inference 21 552 1 0(S) = o(51) #0(52)
51552 cut : o(S) = wn(s,)—n(s)(0(S1) # o(52))

> ‘% ind : o(S) = wh(s')—h(s)+1(a1 + 1)

where o(S') = w 4 -+ + w™ with ag > -+ > .

» Definition. Let 7 be a proof of S, then o(7m) = o(S, 7).
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The consistency proof

» Reduction Lemma. Let [ = A be a Xi-sequent, let m be a
proof of I = A that contains a non-atomic cut or an induction.
Then there is a proof 7’ of I = A with o(7’) < o(7).
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The consistency proof

» Reduction Lemma. Let [ = A be a Xi-sequent, let m be a
proof of I = A that contains a non-atomic cut or an induction.
Then there is a proof 7’ of I = A with o(7’) < o(7).

» Theorem. PA is consistent.
Proof. Suppose PA is inconsistent, then there is a proof 7 of =.
> = is a Xi-sequent
> o(m) < e
» Induction on o(7) (reduction lemma): obtain 7* of = s.t.
7* does not contain induction nor non-atomic cut
» 7* is a simple proof of =
» Contradiction.
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The consistency proof

» Reduction Lemma. Let [ = A be a Xi-sequent, let m be a
proof of I = A that contains a non-atomic cut or an induction.
Then there is a proof 7’ of I = A with o(7’) < o(7).

» Theorem. PA is consistent.
Proof. Suppose PA is inconsistent, then there is a proof 7 of =.
> = is a Xi-sequent
> o(m) < e
» Induction on o(7) (reduction lemma): obtain 7* of = s.t.
7* does not contain induction nor non-atomic cut
» 7* is a simple proof of =
» Contradiction.

» Remark. Formalisation in PRA:

» PRA + Tl(¢(x), <g,) I Conpa for quantifier-free ¢(x)
> In particular: PRA proves Reduction Lemma, Simple Proof Lemma
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More general end-sequents (1/2)

» Let Exp(x,y) be a representation of n+— 2", in particular:

PAF Exp(0,I)  PAF Exp(x,y) — Exp(s(x),y - 2)

» Then PA F Vx3y Exp(x, y):

Exp(83,7) = Exp(s(8),7 - 2)
Exp(8,7) = 3y Exp(s(5), y)

3y Exp(B,y) = 3y Exp(s(B), y)
) " 3y Exp(0,y) = 3y Exp(a, y) .
= 3y Exp(a, y)

= Vx3y Exp(x, y)

o
=

= Exp(
= dy Exp

ind

\<V

0,

~—~~

r
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More general end-sequents (1/2)

» Let Exp(x,y) be a representation of n+— 2", in particular:

PAF Exp(0,I)  PAF Exp(x,y) — Exp(s(x),y - 2)

» Then PA F Vx3y Exp(x, y):

Exp(83,7) = Exp(s(8),7 - 2)
Exp(8,7) = 3y Exp(s(5), y)

3y Exp(B,y) = 3y Exp(s(), y)
) " 3y Exp(0,y) = 3y Exp(a, y) .
= 3y Exp(a, y)

= Vx3y Exp(x, y)

o
=

= Exp(
= Jy Exp

ind

\<V

0,

—~~

r

» But cut-elimination procedure does not work
(Eigenvariable « in end-piece not introduced by induction)
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More general end-sequents (2/2)

» Proposition. Every PA-proof of ¥xJy Exp(x, y) contains an
induction inference.
Proof. Let 7 be a PA-proof of Vx3y Exp(x, y). Then w.l.o.g. ®
ends with V,. Suppose there is induction-free proof of
Jy Exp(a, y), then by cut-elimination / Herbrand's theorem, there
are ty,...,tp € LU{a} s.t.

BAF Exp(a, t1) V-V Exp(a, tp), ie.,
BA - Vo (Exp(a, t1) V- -+ V Exp(a, tn)).

Contradiction. O
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Summary of 1st part

Gentzen's consistency proof of PA

v

Sequent calculus with induction rule

v

Cut- and induction-elimination

v

Except termination formalisable in PRA

v

Ordinals (up to g in Cantor normal form)

v

Proof of ¥ 1-sequent: lowermost induction has variable-free term.

v

Impossible for MNy-sequents
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v" Gentzen's consistency proof

» The omega rule
» Infinitary propositional logic
» Infinitary proofs

» The consistency proof

» Cyclic proofs

27/ 70



Infinitary propositional logic

» Observation: N = Vx ¢(x) iff N = A oy ()
N = 3xo(x) iff N = Voo ()
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Infinitary propositional logic

» Observation: N = Vx ¢(x) iff N = A oy ()
N = 3xo(x) iff N = Voo ()

» The w-rule

Fe(0) Te(1) T,e(2)
[, Anen ¢(n)
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Infinitary propositional logic

» Observation: N = Vx ¢(x) iff N = A oy ()
N = 3xo(x) iff N = Voo ()

» The w-rule

Fe(0) Te(1) T,e(2)
[, Anen ¢(n)

» Definition. The formulas of infinitary propositional logic:
» Variable-free atoms (in L = {0,s,+,-,=})
> Negated variable-free atoms (in L)
» If, for i € I, @i is a formula, then A, , ¢; is a formula
> If, for i € I, ; is a formula, then Viel ;i is a formula

Here: | countable
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Translation of first-order L-sentences

» Definition. Translation of first-order L-sentences:

A>® = A for an atom A

[Vx p(x)]™° = N\ ¢=(m) Bx ()™ =\/ ¢=(m)
neN neN
[p AY]Z = ™ A Y™ [ VY] =™ V™

[p = %] = p> V™ [—p]> = p>
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Translation of first-order L-sentences

» Definition. Translation of first-order L-sentences:

A>® = A for an atom A

[Vx p(x)]™° = N\ ¢=(m) Bx ()™ =\/ ¢=(m)
neN neN

[p A = @™ A [p V> == V™

[ = Y]> = > V™ [—p]> = p>

» Where dualisation — is defined as:
A=-A A=A for an atom A

/\(p;:\/@ \/cp,-:/\@ for a formula ¢
i€l icl icl iel
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Example: induction axiom

The translation of the induction axiom

[1k]™ = [¢(0) AVy (¢(y) = @(s(y))) = Vxo(x)] ™
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Example: induction axiom

The translation of the induction axiom

[1k]™ = [¢(0) AVy (¢(y) = @(s(y))) = Vxo(x)] ™

= [2(0) AWy (2(y) = e(s()))] ™V N\ #™(7)
neN

=p20)v \ e>@Vexn+I)v A ()

neN neN
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Example: induction axiom

The translation of the induction axiom

[l = [9(0) AV (p(y) = (s(x))) = ¥x p(x)] ™
= [2(0) AWy (2(y) = e(s()))] ™V N\ #™(7)

neN
)V A @ Vveem+I) v \ ¢
neN neN

== VvV ¢*@mve=(nr)v A ¢>(n)
neN neN

30/ 70



v' Gentzen's consistency proof

» The omega rule
v' Infinitary propositional logic
» Infinitary proofs

» The consistency proof

» Cyclic proofs
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Sequent calculus LK™

» Definition. The set of axioms is the smallest set which contains

» A, A for any atom A,
» S5 if S is an axiom of BA (as a sequent).

and is closed under atomic cut, i.e.,
» If[,Aand A, A are axioms, then so is a subset of I', A.
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Sequent calculus LK™

» Definition. The set of axioms is the smallest set which contains

» A, A for any atom A,
» S5 if S is an axiom of BA (as a sequent).

and is closed under atomic cut, i.e.,
» If[,Aand A, A are axioms, then so is a subset of I', A.

» Definition. LK™ works on sequents of inf. prop. logic.

LA if Aisan axiom
Mo forajel M foralljel
T Vier @i T Nier i

[, e F@C
r

ut

» Proofs of infinite width but finite height
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Translation of BA-proofs

» Def. Translation of BA-proof of I = A to LK*-proof of [, A

» Axioms v/

> A,
(1) (m2) () ()
r=48¢ N=Ay =~ = T24% 0% 0% A% 4%
NLO=ANeAY " T, 150, A, A, 0™ A ™
> v,

((0) )
M= A, p(x) v [, A® o>(n) forallneN

= AVxp(x) ' o0, A% Aoy 9> (R)

> Similarily for other rules
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Translation of BA-proofs

» Def. Translation of BA-proof of I = A to LK*-proof of [, A

» Axioms v/

> A,
(1) (m2) () ()
r=48¢ N=Ay =~ = T24% 0% 0% A% 4%
F,I'I:>A,/\,<p/\7,/1 ’ W,H?,AW,AOO,QDOOAzbOO
> v,
(7(a)) (=)
M= A, p(a) — [, A% p>(n) forallneN
AT vr =
= A,Vx QD(X) [oo, A, /\neN (poo(ﬁ)

> Similarily for other rules

» Formalisation: primitive recursive function
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LK proves induction

> Informally: Assume (0) and ¢(n) — ¢(n+ 1), then

©(0) ©(0) = ©(1) ©(1) (1) = ¢(2)
©(0) o(1) ©(2)
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LK proves induction

> Informally: Assume (0) and ¢(n) — ¢(n+ 1), then

©(0) ¢(0) = ¢(1)
©(0) ©(0) = ©(1) ©(1) (1) = ¢(2)
©(0) o(1) ©(2)

» Hence LK™ + [lp(x)]>°

» One application of the w-rule
» Formalisation: prim. rec. function mapping l,¢(x) to LK*-proof
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Completeness of LK™

» Obs. For a first-order L-sentence o: if N |= o, then LK™ I o°°.
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Proof. Induction on the logical complexity of o:

» If o is atom, then BA I o with atomic cuts, so {c} is axiom.

35/ 70



Completeness of LK™

» Obs. For a first-order L-sentence o: if N |= o, then LK™ I o°°.
Proof. Induction on the logical complexity of o:

» If o is atom, then BA I o with atomic cuts, so {c} is axiom.
» If 0 =Vxp(x), then N |= (7) for all n € N, so

p=(0) =) #>(2)
/\nENSDOO(ﬁ)

by IH.
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Completeness of LK™

» Obs. For a first-order L-sentence o: if N |= o, then LK™ I o°°.
Proof. Induction on the logical complexity of o:

» If o is atom, then BA I o with atomic cuts, so {c} is axiom.
» If 0 =Vxp(x), then N |= (7) for all n € N, so

p=(0) =) #>(2)

/\nEN Sooo(ﬁ)
by IH.
» If 0 = Ax ¢(x), then there is a k € N s.t. N |= ¢(k), so
> (k)
VnEN Sooo(ﬁ)

by IH.

> ..
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v' Gentzen's consistency proof

» The omega rule
v' Infinitary propositional logic
v' Infinitary proofs
» The consistency proof

» Cyclic proofs
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The height of a proof

» Proof height in a finite system, example:
(1) (m2)

o= r=AA N=AB
FN=ANMNAAB

Ar

Then h(7) = 14 max{h(m1), h(m2)} = sup{h(m;)+1|i € {1,2}}.
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The height of a proof

» Proof height in a finite system, example:

(m1) (m2)
r = r=AA MN=AB

LN=ANANAAB M

Then h(7) = 14 max{h(m1), h(m2)} = sup{h(m;)+1|i € {1,2}}.

» Definition. For LK*-proof 7 with direct subproofs 7;, i € /
define h(r) = sup{h(m;)+1|i€ I}
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The cut rank of a proof

» Definition. For a formula ¢ with direct subformulas ¢;, i € |
define the depth of ¢ as d(¢) = sup{d(p;)+1|i€l}.

» Observation. The depth of ¢°° is < the depth of o.
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The cut rank of a proof

» Definition. For a formula ¢ with direct subformulas ¢;, i € |
define the depth of ¢ as d(¢) = sup{d(p;)+1|i€l}.

» Observation. The depth of ¢°° is < the depth of o.

» Definition. For LK*°-proof 7 with direct subproofs ;, i € I and
last inference ¢ define the cut rank of r:

> If ¢ is cut on some ¢, then p(7) = max{d(p), p(71), p(72)}.
» Otherwise, p(7) = sup{p(m;) | i € I}.
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The cut rank of a proof

» Definition. For a formula ¢ with direct subformulas ¢;, i € |
define the depth of ¢ as d(¢) = sup{d(p;)+1|i€l}.

» Observation. The depth of ¢°° is < the depth of o.

» Definition. For LK*°-proof 7 with direct subproofs ;, i € I and
last inference ¢ define the cut rank of r:

> If ¢ is cut on some ¢, then p(7) = max{d(p), p(71), p(72)}.
» Otherwise, p(7) = sup{p(m;) | i € I}.

» Notation. LK™ 5 S if there is an LK*-proof of S with cut
rank < p and height < a.
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The proof translation revisited

» Lemma. If PAF o, then thereis an r < w s.t. LK™ [ , 0.

Proof. If PA | o, then there is a BA-proof 7 of I1,...,1, = 0.
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The proof translation revisited

» Lemma. If PAF o, then thereis an r < w s.t. LK™ [ , 0.

Proof. If PA | o, then there is a BA-proof 7 of I1,...,1, = 0.

(m) (@)
1o T2, ... 1°, 0™
N
w — 2 »in
(7n) o
1°° 100, 0> cut
O.OO

h(7*°) < w, h(mj)) =wfor1<i<n
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The proof translation revisited

» Lemma. If PAF o, then thereis an r < w s.t. LK™ [ , 0.

Proof. If PA | o, then there is a BA-proof 7 of I1,...,1, = 0.

() _ (™)
[ S P
= 7= g0 cut
w _ 2 7...,.n70'
(7n) o
1°° 100, 0> ;
cu
O.OO
h(7>) < w, h(mj) =w for 1 <i<n
=h(¥)=w+n<w-2. O
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Cut-elimination in LK

> Theorem. If r < w and LK™ ], S, then LK™ -3, S.
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Proof Sketch. “Standard” cut-elimination argument.
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Cut-elimination in LK

» Theorem. If r < w and LK*® I, S, then LK™ I3, S.
Proof Sketch. “Standard” cut-elimination argument.

» Corollary. If PAF o, then LK™ Fg o™ for some a < gg.

Proof. If PAt- o, then thereis r < w s.t. LK™ [ , 0°°. By the
cut-elimination theorem, LK™ l—gw o and 2‘;*2 < wrg2 < €0.
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Cut-elimination in LK

» Theorem. If r < w and LK*® I, S, then LK™ I3, S.
Proof Sketch. “Standard” cut-elimination argument.

» Corollary. If PAF o, then LK™ Fg o™ for some a < gg.
Proof. If PAt- o, then thereis r < w s.t. LK™ [ , 0°°. By the

cut-elimination theorem, LK™ l—gw o and 2‘;*2 < wrg2 < €0.

» Corollary. PA is consistent.
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Cut-elimination in LK

» Theorem. If r < w and LK*® I, S, then LK™ I3, S.
Proof Sketch. “Standard” cut-elimination argument.

» Corollary. If PAF o, then LK™ Fg o™ for some a < gg.
Proof. If PAt- o, then thereis r < w s.t. LK™ [ , 0°°. By the
cut-elimination theorem, LK™ l—gw o and 2‘;*2 < wrg2 < €0.

» Corollary. PA is consistent.

Proof. Suppose PA - L, then LK> 2 () for some a < g, but
there is not cut-free proof of () in LK™,
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Summary of 2nd part

The w-rule
The calculus LK*

Proofs of infinite width, no infinite branches

v

v

v

v

Depth measured by ordinals

Cut-elimination

v

v

Consistency proof
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v Gentzen's consistency proof
v" The omega rule

» Cyclic proofs
» Infinite proofs
» Cyclic proofs
» Proof by induction

» Cyclic proofs vs. proofs by induction
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,g > 1s.t. V2= 2 ie., p?> =2q%

q
Then: 2 | p?,
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» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2 | p?, 4 | p?,
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2| p2, 4|p% 4]24°
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2 | p?, 4 | p?, 4 | 2¢°%, 2 \ q°,
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2| p?, 4|p% 4]2¢% 2|q* 4|q?
So2|p 2|qletp =5 4q¢=3
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2| p?, 4|p% 4]2¢% 2|q* 4|q?
So2|p 2|q letp =5 ¢ =%
Then p' —p —2q =24
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2| p?, 4|p% 4]2¢% 2|q* 4|q?

So2|p 2|qgletp =5 4q¢=3

Then p? = p = 2q =24

So there is an infinitely desceding sequence p > p’ > ...
Contradiction. ]
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Infinite descent

» Fermat: descente infinie
There is no infinite descending chain a; > a, > --- with a; € N

» Example. /2 is irrational.
Proof. Suppose there are p,q > 1s.t. /2 = g, ie., p?=2q°

Then: 2| p?, 4|p% 4]2¢% 2|q* 4|q?

So2|p 2|qgletp =5 4q¢=3

Then p? = p = 2q =24

So there is an infinitely desceding sequence p > p’ > ...
Contradiction. ]

» 3rd part: formalisation of cyclic proofs [Brotherston, Simpson '11]
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Inductive definitions

» First-order signature X
Inductive predicate symbols 2; C X

» For each P € ¥, a finite set of productions of the form

Qi(u1) - Qu(uk)
P(t)
with Q1,...,Qx € X and t,uy, ..., u term vectors.
» Example.
N(x) N(x) L(z)

N(0) N(s(x)) L(nil) L(cons(x, z))

E(x) O(x)
E(0)  O(s(x))  E(s(x))
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Case split rules

» For inductive predicate P, case split rule is:

cases

— =938 casep
P(u),l = A

where each production

Quurlx]) - Qu(ux[x])
P(t[x])

of P gives rise to a case (premise)
Mu=t[x], Q(ui[x]),..., Qu(uk[x]) = A

where x is fresh in each case.
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Case split rules: examples

t=0, = A t=s(x),Nx),=A
N(t),T = A

casey
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Case split rules: examples

t=0, = A t=s(x),Nx),=A
N(t),T = A

casey

t=0, = A t=s(x),0x),I=A
E(t),T = A

caseg
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Case split rules: examples

t=0, = A t=s(x),Nx),=A

casey
N(t),T = A
t=0, = A t=s(x),0x),I=A
caseg
E(t),T = A

t =s(x),E(x),l = A
o(t),l = A

casep
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Case split rules: examples

t=0, = A t=s(x),Nx),=A

casey
N(t),T = A
t=0, = A t=s(x),0x),I=A
caseg
E(t),T = A

t =s(x),E(x),l = A
o(t),l = A

casep

t=nil,l = A t=cons(x,z),N(x),L(z),l = A
L(t),T = A

case;
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Right-introduction rules

» Definition. Let P be inductive predicate and

Qu(urx]) - Qu(uk[x])
P(t[x])

a production for P. Then

M= A Quv]) - T= A, Quluv])
M= A, P(t]v])

P

is a right-introduction rule for P, where v is a vector of terms.
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Right-introduction rules: examples

M= A, N(t)
r=an0 " Toanse) M
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Right-introduction rules: examples

N M= A, N(t)
F=ANO) " T=AN(Sst) "

£ r= A, O0(t) £ M= A, E(t)
Fr=AE0) "~ T=AE®Sst) " T=A0(0s(t)

Or
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Right-introduction rules: examples

N M= A, N(t)
F=ANO) " T=AN(Sst) "

£ r= A, O0(t) £ M= A, E(t)
Fr=AE0) "~ T=AE®Sst) " T=A0(0s(t)

Or

r=ANE T=ALu
M= A, L(nil) [ = A, L(cons(t,u))
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LKID® pre-proofs

» Definition. Set D of inductive definitions, rules of D-LKIDY are:
» usual LK for FOL with equality
» the substitution rules

= A

o= Ao subst

» The case split rules for ind. predicates of D
» The right-introduction rules for ind. predicates of D

» Notation. LKID" instead of D-LKIDY.
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LKID® pre-proofs

» Definition. Set D of inductive definitions, rules of D-LKIDY are:

» usual LK for FOL with equality
» the substitution rules

= A

o= Ao subst

» The case split rules for ind. predicates of D
» The right-introduction rules for ind. predicates of D

» Notation. LKID" instead of D-LKIDY.

» Definition. An LKID® pre-proof is a (possibly infinite) tree built
from these rules.

» Remark. LKID® pre-proofs are not sound.
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LKID® proofs

» Definition. Path (I'; = Aj)i<i<q of sequents (for some o < w)
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> every 77 is a Pt in I; for an inductive predicate P, and
> 7 is successor of 7j41.
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» Definition. (7j)1<i<q is a trace in (I = Aj)i<icq if
> every 77 is a Pt in I; for an inductive predicate P, and
> 7 is successor of 7j41.
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LKID® proofs

» Definition. Path (I'; = Aj)i<i<q of sequents (for some o < w)

» Definition. (7j)1<i<q is a trace in (I = Aj)i<icq if
> every 77 is a Pt in I; for an inductive predicate P, and
> 7 is successor of 7j41.

» Definition. i is a progress point in (7;)i1<j<q if Tji+1 obtained
from 7; by case split.

» Definition. An LKID" proofis an LKID® pre-proof that satisfies
the global trace condition: every infinite path contains a trace
with infinitely many progress points.
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LKID”: example

N(x1) = E(x1), O(x1) Ca;e“’
. N(a) = 0(x), 0(s0)) -

= E(0) . N(x1) = E(s(x1)), O(s(x1)) " wi

xo = 0= E(0), O(xo) _ x= s(x1), N(x1) = E(s(x1)), O(s(x1)) _
x0 =0= E(xp), O(x0) x0 = s(x1), N(x1) = E(x0), O(x0)

N(xo) = E(x0), 0(x0) casen

51/ 70



Properties of LKID®

» Definition. Standard model ... inductive predicates are
interpreted as least fixed points (of semantics of their productions)
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Properties of LKID®

» Definition. Standard model ... inductive predicates are
interpreted as least fixed points (of semantics of their productions)

» Theorem. LKIDY is sound w.r.t. standard models.

» Theorem. Cut-free LKID" is complete w.r.t. standard models.
Proof Sketch.

» Construct proof search tree as LKID® proof
» If S not valid, search tree of S has infinite branch without progress
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v Gentzen's consistency proof
v" The omega rule

» Cyclic proofs
V" Infinite proofs
» Cyclic proofs
» Proof by induction

» Cyclic proofs vs. proofs by induction
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CLKID"

» Consider derivation trees built from LKID“-rules.
(derivation tree: branch may end with non-axiom)

» Definition. A bud in D is a leaf which is not an axiom.
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» Consider derivation trees built from LKID“-rules.
(derivation tree: branch may end with non-axiom)

» Definition. A bud in D is a leaf which is not an axiom.

» Definition. For a bud S in D an internal node S’ in D is called
companion of S if S’ = S.
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CLKID"

Consider derivation trees built from LKID®-rules.
(derivation tree: branch may end with non-axiom)

v

v

Definition. A bud in D is a leaf which is not an axiom.

v

Definition. For a bud S in D an internal node S’ in D is called
companion of S if S’ = S.

v

Definition. A CLKID® pre-proofis a pair (D, ~y) where

» D is a finite derivation tree, and
> v assigns a companion to each bud.
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CLKID"

» Consider derivation trees built from LKID“-rules.
(derivation tree: branch may end with non-axiom)

» Definition. A bud in D is a leaf which is not an axiom.

» Definition. For a bud S in D an internal node S’ in D is called
companion of S if S’ = S.

» Definition. A CLKIDY pre-proof is a pair (D,~) where

» D is a finite derivation tree, and
> v assigns a companion to each bud.

» CLKIDY pre-proof unfolds to LKID“-proof by identifying each
bud with its companion.

» Definition. A CLKIDY proofis a CLKID® pre-proof whose
unfolding satisfies the global trace condition.
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CLKID": Example

O(x) = N(x) E(x) = N(x)
70()(,) =N subst 7E(x’) SN subst
SNE) |, x=s().0(<) = N ' x = s(x), E(x') = N(x)
x=0=N(O) " x=s(x), 06) > NG()) - x=s(x), E() = N(s(x)) _
x=0= N(x) x = s(x), O(x") = N(x) caseg 1= s(x'), E(x") = N(x) caseo
E(x) = N(x) 00) = NG

E(x) vV O(x) = N(x)
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Decidability

» Theorem. The following problem is decidable: given CLKID¥
pre-proof (D,~), is (D,~) a CLKID® proof?
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w € X% if w has a path visiting an accepting state infinitely often.
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Decidability

» Theorem. The following problem is decidable: given CLKID¥
pre-proof (D,~), is (D,~) a CLKID® proof?

» Definition. Biichi automaton is NFA accepting an infinite word
w € X% if w has a path visiting an accepting state infinitely often.

» Proof Sketch. P = (D,~) induces Biichi automata

» By s.t. L(Ban) is set of all infinite paths, and
» Bac s.t. L(Bacc) is set of infinite paths satisfying prog. cond.

L(Ban) C L(Bacc) is decidable. O
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v Gentzen's consistency proof
v" The omega rule

» Cyclic proofs
V" Infinite proofs
v Cyclic proofs
» Proof by induction
» Cyclic proofs vs. proofs by induction
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Induction rules

» Definition. Inductive predicate P, induction rule for P:

minor premises M ep(u)= A
M, P(u)=A

indp

where

» minor premises from productions of inductive predicates mutually
dependent with P
» one induction formula ¢g for each such predicate Q
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Induction rules: examples

M= A,0n(0) on(x),T = A pn(s(x) on(t),T = A
N(D).T = A

indN
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Induction rules: examples

M= A,0n(0) on(x),T = A pn(s(x) on(t),T = A
N(D).T = A

indN

M= A,0e(0) @e(x),T = A, p0(s(x)) wo(x),l = A, ¢e(s(x)) ¢e(t),l = A
E(t),l = A

indE
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Induction rules: examples

M= A,0n(0) on(x),T = A pn(s(x) on(t),T = A
N(D).T = A

indN

M= A,0e(0) @e(x),T = A, p0(s(x)) wo(x),l = A, ¢e(s(x)) ¢e(t),l = A
E(t),l = A

indE

M= Ao (nil) N(x),¢.(2),T = A, pr(cons(x,z)) or(t),T = A
L(t),T = A

ind;
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Properties of LKID

» Henkin model ... least fixed points formed in subset of power set
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Properties of LKID

Henkin model ... least fixed points formed in subset of power set

v

Theorem. LKID is sound w.r.t. Henkin models.

v

Theorem. LKID without cut is complete w.r.t. Henkin models.
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Properties of LKID

v

Henkin model ... least fixed points formed in subset of power set

Theorem. LKID is sound w.r.t. Henkin models.

v

v

Theorem. LKID without cut is complete w.r.t. Henkin models.

» Lemma. PA can be interpreted in LKID plus BA-axioms.

v

Corollary. PA is consistent.
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v Gentzen's consistency proof

v" The omega rule

» Cyclic proofs
V" Infinite proofs
v Cyclic proofs
v Proof by induction
» Cyclic proofs vs. proofs by induction
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Translation from LKID to CLKID® (1/2)

» Theorem. If LKID T = A then CLKID® T = A.

62/ 70



Translation from LKID to CLKID® (1/2)

» Theorem. If LKID - T = A then CLKIDY T = A.
Proof. Translate inductions into cycles. For example:
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Translation from LKID to CLKID® (1/2)

» Theorem. If LKID - T = A then CLKIDY T = A.
Proof. Translate inductions into cycles. For example:

(7b) (7s) (7c)
F=A00) ox),I=A0(s(x)) ), =A

N(t),T = A indy

Let A = {©(0), Vx (¢(x) — ¢(s(x)))}, translate to

N(z), A= ¢(2) (b, s (7¢)

Fr=AAA ot),l=A

N(t) = NA — o(t) MAA—= ()= A
N(t),T = A

—1

cut
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Translation from LKID to CLKID® (2/2)

» Proof (cont.) reminder: A = {((0),Vx (¢(x) = ¢(s(x)))}

where
N(z) = »(2) subst
NY) = o) ™7 po(s) = o(sy))
A, N(y), o(y) = ¢(s(y)) = »(s(y)) -
v A, N(y) = o(s(y)) ~w ’
z=0,A= ¢(2) z=5(y), A N(y) = ¢(2) casey
A, N(z) = ¢(2)

» What about the other direction?

63/ 70



Brotherston /Simpson conjecture

» Conjecture [Brotherston/Simpson '11].
If CLKID“ T = A then LKID T = A.
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Brotherston /Simpson conjecture

v

Conjecture [Brotherston/Simpson '11].
If CLKID“ T = A then LKID T = A.

v

Theorem [Simpson < '17]. True for PA.

v

Theorem [Berardi/Tatsuta '17]. False in general.

v

Theorem [Berardi/Tatsuta '17]. True for calculi containing PA.
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Cyclic arithmetic is equivalent to Peano arithmetic

» Let L={0,s,+,-, <}

» Definition. Cyclic arithmetic (CA) is set of first-order L-sentences
o s.t. 0 has CLKID® proof from basic arithmetic axioms where N
is the only inductive predicate.
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Cyclic arithmetic is equivalent to Peano arithmetic

» Let L={0,s,+,-, <}

» Definition. Cyclic arithmetic (CA) is set of first-order L-sentences
o s.t. 0 has CLKID® proof from basic arithmetic axioms where N
is the only inductive predicate.

» Theorem [Simpson <'17]. CA = PA.

Proof Sketch. PA C CA v

CA C PA:
» Formalisation of unfolding CLKID® — LKID® in ACA,

(incl. theory of Blichi automata)

» Formalisation of soundness of LKID® in ACA,
» Truth reflection principle for ¥ ,-sentences
» Conservativity of ACAg over PA
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Extended equivalence

» Definition. Given set of inductive definitions D:

» D-LKID + PA: add basic arithmetic axioms and ind. pred. N
» D-CLKID® + PA: add basic arithmetic axioms and ind. pred. N
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Extended equivalence

» Definition. Given set of inductive definitions D:

» D-LKID + PA: add basic arithmetic axioms and ind. pred. N
» D-CLKID® + PA: add basic arithmetic axioms and ind. pred. N

» Theorem [Berardi/Tatsuta '17].
D-LKID + PA = D-CLKID® + PA

Proof Sketch. D-LKID + PA C D-CLKID® + PA v
D-CLKID" + PA C D-LKID + PA:
1. Cut D-CLKID® + PA proof 7 into cycle-free parts

2. Prove induction principle on order <, in PA
3. Combine 1. and 2. to D-LKID + PA proof.
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CLKID" is not equivalent to LKID (1/2)

» "2-Hydra statement” provable in CLKID* but not in LKID

» Hydra: mythical monster: cut off one head, grows two new heads
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» "2-Hydra statement” provable in CLKID* but not in LKID
» Hydra: mythical monster: cut off one head, grows two new heads

» 2-Hydra: Let a, b € N, then
(a+1,b4+2) — (a,b), (0,b+2)— (b+1,b), (a+2,0)+— (a+1,a)

Terminate if none of these rules apply.
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CLKID" is not equivalent to LKID (1/2)

» "2-Hydra statement” provable in CLKID* but not in LKID
» Hydra: mythical monster: cut off one head, grows two new heads
» 2-Hydra: Let a, b € N, then

(a+1,b42) — (a,b), (0,b+2) — (b+1,b), (a+2,0)— (a+1,a)

Terminate if none of these rules apply.
» Formalisation: let L = {0/0,s/1,N/1,p/2}, N defined inductively

Hi A Ha AN H3 A Hy — Vx,y € Np(x,y)
P(0,0) A p(s(0),0) AVx € N p(x, s(0))
Vx,y € N (p(x,y) = p(s(x),s(s(¥))))
Yy € N (p(s(y),y) = p(0,5(s(y))))
Vx € N( (s(x),x) — (s(s(x)),O))

T
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CLKID" is not equivalent to LKID (2/2)

» Lemma. CLKID* - H
Proof. Short and straightforward cyclic proof.
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CLKID" is not equivalent to LKID (2/2)

» Lemma. CLKID* - H
Proof. Short and straightforward cyclic proof.

» Theorem [Berardi/Tatsuta '17]. LKID ¥ H
Proof Sketch. Counter-Henkin-structure:

» Domain N@ Z
» Suitable infinite sequence of pairs in Z.
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Summary of 3rd part

Inductive definitions

v

\4

Infinitely deep proofs LKID®
» Sound and complete w.r.t. standard models

Cyclic subsystem CLKID® of LKID®

» Finite proofs
» Sound and complete w.r.t. Henkin models

v

v

Proofs by induction LKID
LKID C CLKID"
CLKID® C LKID if PA is included

\4

v
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Three proof-theoretic approaches to induction:
» Induction rules
» The w-rule

» Cyclic proofs

What this talk did not contain:
» The incompleteness theorems

» Program extraction
(and consistency proofs based on that)

v

Bounded arithmetic
(and connections to computational complexity)

\4

Inductive theorem proving
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