Proof Theory of Induction

Stefan Hetzl

Institute of Discrete Mathematics and Geometry Vienna University of Technology

Summer School for Proof Theory in First-Order Logic Funchal, Madeira

August 2017

Outline

- Gentzen's consistency proof
- ► The omega rule
- Cyclic proofs

Outline

- ► Gentzen's consistency proof
 - Background
 - ▶ Peano arithmetic
 - Reduction of cut and induction
 - Ordinals
 - ▶ The consistency proof
- ► The omega rule
- Cyclic proofs

Background

- ► Hilbert's programme (1920ies)
 - Formalisation of mathematics
 - Proof of consistency by finitary methods

Background

- ► Hilbert's programme (1920ies)
 - Formalisation of mathematics
 - Proof of consistency by finitary methods
- ► Gödel's (2nd) incompleteness theorem (1931)
 Theorem. For a (consistent, axiomatisable, and sufficiently strong) first-order theory T, T \(\nabla \) Con_T.

Background

- ► Hilbert's programme (1920ies)
 - Formalisation of mathematics
 - Proof of consistency by finitary methods
- ► Gödel's (2nd) incompleteness theorem (1931)
 Theorem. For a (consistent, axiomatisable, and sufficiently strong) first-order theory T, T \(\nabla \) Con_T.
- ► Gentzen's approach (1936-): split consistency proof for *T* into:
 - 1. A cut-elimination procedure (in weak theory)
 - 2. A termination assumption (transcends theory)

Cut-elimination and consistency

- Why is cut-elimination relevant for consistency?
- ▶ **Definition.** A theory T is inconsistent if there is some formula φ s.t. $T \vdash \varphi$ and $T \vdash \neg \varphi$.
- ▶ Suppose there are *T*-proofs π_1 of φ and π_2 of $\neg \varphi$, then

$$\pi = \frac{(\pi_2)}{\Rightarrow \neg \varphi} \xrightarrow{\begin{array}{c} (\pi_1) \\ \Rightarrow \varphi \\ \hline \neg \varphi \Rightarrow \end{array}} \neg \iota$$
 cut

is a proof of \Rightarrow . By cut-elimination, there is a cut-free proof π^* of \Rightarrow . Contradiction.

Outline

- ► Gentzen's consistency proof
 - √ Background
 - ► Peano arithmetic
 - ▶ Reduction of cut and induction
 - Ordinals
 - ▶ The consistency proof
- ► The omega rule
- Cyclic proofs

Peano arithmetic

- ▶ The language $L = \{0, s, +, \cdot, =\}$
- ▶ Basic arithmetic BA consists of the axioms:

$$\forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

$$\forall x \ 0 \neq s(x)$$

$$\forall x \ x + 0 = x$$

$$\forall x \forall y \ x + s(y) = s(x + y)$$

$$\forall x \ x \cdot 0 = 0$$

$$\forall x \forall y \ x \cdot s(y) = x \cdot y + x$$

▶ Peano arithmetic PA consists of the axioms of BA together with, for every formula $\varphi(x, \overline{z})$, the induction axiom

$$\forall \overline{z} ((\varphi(0,\overline{z}) \land \forall y(\varphi(y,z) \rightarrow \varphi(s(y),z)) \rightarrow \forall x \varphi(x,z)).$$

A sequent calculus for PA

▶ A sequent calculus for FOL with equality in *L* plus inital sequents

$$s(t) = s(u) \Rightarrow t = u$$

$$\Rightarrow 0 \neq s(t)$$

$$\Rightarrow t + 0 = t$$

$$\Rightarrow t + s(u) = s(t + u)$$

$$\Rightarrow t \cdot 0 = 0$$

$$\Rightarrow t \cdot s(u) = t \cdot u + t$$

and the induction rule

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)}$$

where α does not appear in $\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)$.

Simple proofs

▶ **Definition.** A PA-proof is called *simple* if it consists of only of initial sequents, atomic cuts, and structural inference.

Simple proofs

- ▶ **Definition.** A PA-proof is called *simple* if it consists of only of initial sequents, atomic cuts, and structural inference.
- ▶ **Simple proof lemma.** There is no simple proof of \Rightarrow . *Proof.* Let π be a simple proof of \Rightarrow .
 - W.l.o.g. π is variable-free.
 - Every formula in π is of the form s = t with s, t variable-free.
 - ▶ Evaluate formulas and sequents to \top or \bot "in \mathbb{N} ".
 - ► Every inital sequent evaluates to T.
 - ► Every rule preserves ⊤.
 - ightharpoonup \Rightarrow evaluates to \perp .

Outline

- ► Gentzen's consistency proof
 - √ Background
 - √ Peano arithmetic
 - ▶ Reduction of cut and induction
 - Ordinals
 - ▶ The consistency proof
- ► The omega rule
- Cyclic proofs

Interaction between induction and cut: example

$$\frac{\vdots}{\Gamma \Rightarrow \varphi(0)} \frac{\Gamma, \varphi(\alpha) \Rightarrow \varphi(s(\alpha))}{\Gamma, \varphi(0) \Rightarrow \varphi(t)} \text{ ind } \Gamma \Rightarrow \varphi(t)$$

Interaction between induction and cut: example

$$\frac{\vdots}{\Gamma \Rightarrow \varphi(0)} \frac{\Gamma, \varphi(\alpha) \Rightarrow \varphi(s(\alpha))}{\Gamma, \varphi(0) \Rightarrow \varphi(t)} \text{ ind } \Gamma \Rightarrow \varphi(t)$$

⇒ eliminating cuts means eliminating inductions too

Numerals and evaluation

- ▶ **Definition.** For $n \in \mathbb{N}$ define the *L*-term $\overline{n} = s^n(0)$.
- ▶ A term of the form $s^n(0)$ is called *numeral*.
- **Evaluation lemma.** Let t is a variable free L-term. Then
 - ▶ there is an $n \in \mathbb{N}$ s.t. BA $\vdash t = \overline{n}$, and
 - for any formula $\varphi(x)$ there is an induction-free proof of $\varphi(\overline{n})\Rightarrow \varphi(t)$

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind }$$

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind }$$

If t is variable-free, there is $n \in \mathbb{N}$ s.t. $\mathsf{BA} \vdash t = \overline{n}$

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind}$$

If t is variable-free, there is $n \in \mathbb{N}$ s.t. $\mathsf{BA} \vdash t = \overline{n}$

$$\begin{split} \frac{(\pi(0)) \qquad & (\pi(\overline{1}))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{1}) \qquad \varphi(\overline{1}), \Gamma \Rightarrow \Delta, \varphi(\overline{2})} \text{ cut} \\ \frac{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{2})}{\vdots \qquad \qquad \vdots \qquad \qquad \text{Eval. Lem.}} \\ \frac{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{n}) \qquad \qquad \varphi(\overline{n}) \Rightarrow \varphi(t)}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ cut} \end{split}$$

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind}$$

If t is variable-free, there is $n \in \mathbb{N}$ s.t. $\mathsf{BA} \vdash t = \overline{n}$

$$\begin{split} \frac{(\pi(0)) \qquad (\pi(\overline{1}))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{1}) \qquad \varphi(\overline{1}), \Gamma \Rightarrow \Delta, \varphi(\overline{2})} \text{ cut} \\ \frac{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{2})}{\vdots \qquad \qquad \vdots \qquad \qquad \text{Eval. Lem.}} \\ \frac{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(\overline{n}) \qquad \varphi(\overline{n}) \Rightarrow \varphi(t)}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ cut} \end{split}$$

Under which conditions does this work?

- **Definition.** A logical inference ι in a PA-proof π is called
 - explicit if it is ancestor of the end-sequent, and
 - implicit if it is ancestor of a cut formula.

- **Definition.** A logical inference ι in a PA-proof π is called
 - explicit if it is ancestor of the end-sequent, and
 - implicit if it is ancestor of a cut formula.
- **Definition.** The *end-piece* of a PA-proof π : all sequents which are not above an implicit logical inference.

- **Definition.** A logical inference ι in a PA-proof π is called
 - explicit if it is ancestor of the end-sequent, and
 - implicit if it is ancestor of a cut formula.
- **Definition.** The *end-piece* of a PA-proof π : all sequents which are not above an implicit logical inference.
- Example.

$$\frac{\vdots}{\Rightarrow \psi(0,0)} = \frac{\psi(\alpha,\beta) \Rightarrow \exists y \, \psi(s(\alpha),y)}{\exists y \, \psi(\alpha,y) \Rightarrow \exists y \, \psi(s(\alpha),y)} \exists_{l} \\
\Rightarrow \exists y \, \psi(0,y) \exists_{r} \frac{\exists y \, \psi(\alpha,y) \Rightarrow \exists y \, \psi(s(\alpha),y)}{\exists y \, \psi(0,y) \Rightarrow \exists y \, \psi(t,y)} \exists_{l} \\
\Rightarrow \exists y \, \psi(t,y) \quad \text{cut} \quad \frac{\psi(t,\alpha) \Rightarrow \exists y \, \varphi(t,y)}{\exists y \, \psi(t,y) \Rightarrow \exists y \, \varphi(t,y)} \exists_{l} \\
\Rightarrow \exists x \exists y \, \varphi(x,y) \quad \exists_{r}$$

- **Definition.** A logical inference ι in a PA-proof π is called
 - explicit if it is ancestor of the end-sequent, and
 - implicit if it is ancestor of a cut formula.
- **Definition.** The *end-piece* of a PA-proof π : all sequents which are not above an implicit logical inference.
- Example.

$$\frac{\vdots}{\Rightarrow \psi(0,0)} \Rightarrow \frac{\psi(\alpha,\beta) \Rightarrow \exists y \, \psi(s(\alpha),y)}{\exists y \, \psi(\alpha,y) \Rightarrow \exists y \, \psi(s(\alpha),y)} \exists_{l} \\
\Rightarrow \exists y \, \psi(0,y) \Rightarrow \exists y \, \psi(t,y) \text{ ind} \\
\Rightarrow \exists y \, \psi(t,y) \Rightarrow \exists y \, \varphi(t,y) \\
\Rightarrow \exists y \, \psi(t,y) \Rightarrow \exists y \, \varphi(t,y) \\
\Rightarrow \exists x \exists y \, \varphi(t,y) \\
\Rightarrow \exists x \exists y \, \varphi(x,y)} \exists_{r}$$

Σ_1 -sequents

Definition. A Σ_1 -sequent is a sequent of the form

$$\forall \overline{x_1} \varphi_1, \dots, \forall \overline{x_k} \varphi_k \Rightarrow \exists \overline{x_{k+1}} \varphi_{k+1}, \dots, \exists \overline{x_n} \varphi_n$$

s.t. $\varphi_1, \ldots, \varphi_n$ quantifier-free, φ_i contains only variables from $\overline{x_i}$.

Σ_1 -sequents

▶ **Definition.** A Σ_1 -sequent is a sequent of the form

$$\forall \overline{x_1} \varphi_1, \dots, \forall \overline{x_k} \varphi_k \Rightarrow \exists \overline{x_{k+1}} \varphi_{k+1}, \dots, \exists \overline{x_n} \varphi_n$$

s.t. $\varphi_1, \ldots, \varphi_n$ quantifier-free, φ_i contains only variables from $\overline{x_i}$.

▶ **Lemma.** Let π be a PA-proof of a Σ_1 -sequent $\Gamma \Rightarrow \Delta$ and let

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind }$$

be a lowermost induction in the end-piece of π . Then t is variable-free.

Σ_1 -sequents

Definition. A Σ_1 -sequent is a sequent of the form

$$\forall \overline{x_1} \varphi_1, \dots, \forall \overline{x_k} \varphi_k \Rightarrow \exists \overline{x_{k+1}} \varphi_{k+1}, \dots, \exists \overline{x_n} \varphi_n$$

s.t. $\varphi_1, \ldots, \varphi_n$ quantifier-free, φ_i contains only variables from $\overline{x_i}$.

▶ **Lemma.** Let π be a PA-proof of a Σ_1 -sequent $\Gamma \Rightarrow \Delta$ and let

$$\frac{\varphi(\alpha), \Gamma \Rightarrow \Delta, \varphi(s(\alpha))}{\varphi(0), \Gamma \Rightarrow \Delta, \varphi(t)} \text{ ind }$$

be a lowermost induction in the end-piece of π . Then t is variable-free.

Proof. W.l.o.g. all variables in π are eigenvariables.

End-piece does not contain \forall_r , \exists_l .

- ⇒ End-piece contains only eigenvariables of inductions.
- ⇒ The term of a lowermost induction is variable-free.

Termination

- ▶ Let π be a proof of a Σ_1 -sequent $\Gamma \Rightarrow \Delta$.
 - If end-piece of π contains ind: \implies reduce lowermost ind
 - If end-piece of π contains non-atomic cut: \implies reduce suitable non-atomic cut
 - Otherwise: π contains only atomic cuts (Then $\Gamma = \Delta = \emptyset$ implies that π is simple)

Termination

- ▶ Let π be a proof of a Σ_1 -sequent $\Gamma \Rightarrow \Delta$.
 - If end-piece of π contains ind: \implies reduce lowermost ind
 - If end-piece of π contains non-atomic cut: \Longrightarrow reduce suitable non-atomic cut
 - Otherwise: π contains only atomic cuts (Then $\Gamma = \Delta = \emptyset$ implies that π is simple)
- ► Have:

$$\pi_1 \quad \mapsto \quad \pi_2 \quad \mapsto \quad \pi_3 \quad \mapsto \quad \cdots$$

Do we ever enter the "Otherwise"-case?

Termination

- ▶ Let π be a proof of a Σ_1 -sequent $\Gamma \Rightarrow \Delta$.
 - ▶ If end-piece of π contains ind: ⇒ reduce lowermost ind
 - If end-piece of π contains non-atomic cut: \implies reduce suitable non-atomic cut
 - Otherwise: π contains only atomic cuts (Then $\Gamma = \Delta = \emptyset$ implies that π is simple)
- ► Have:

$$\pi_1 \quad \mapsto \quad \pi_2 \quad \mapsto \quad \pi_3 \quad \mapsto \quad \cdots$$

Do we ever enter the "Otherwise"-case?

▶ Want: well-founded (X, <) and mapping o s.t.

$$o(\pi_1) > o(\pi_2) > o(\pi_3) > \cdots$$

Outline

- ► Gentzen's consistency proof
 - √ Background
 - ✓ Peano arithmetic
 - √ Reduction of cut and induction
 - **▶** Ordinals
 - ▶ The consistency proof
- ► The omega rule
- Cyclic proofs

▶ The order of the natural numbers

 \bullet_0 \bullet_1 \bullet_2 ···

▶ Add limit element ω , i.e., $\forall n \in \mathbb{N} : n < \omega$

 \bullet_0 \bullet_1 \bullet_2 \cdots \bullet_{ι}

▶ Add another successor element after that

▶ and so on

 $\bullet_0 \bullet_1 \bullet_2 \cdots \bullet_{\omega} \bullet_{\omega+1} \bullet_{\omega+2} \cdots$

► Add a new limit element again

 $\bullet_0 \bullet_1 \bullet_2 \cdots \bullet_{\omega} \bullet_{\omega+1} \bullet_{\omega+2} \cdots \bullet_{\omega\cdot 2}$

▶ The ordinals $\leq \omega \cdot 2$

 $\bullet_0 \bullet_1 \bullet_2 \cdots \bullet_{\omega} \bullet_{\omega+1} \bullet_{\omega+2} \cdots \bullet_{\omega\cdot 2}$

▶ The ordinals $\leq \omega \cdot 2$

Repeat the above

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \cdots$$

▶ The ordinals $\leq \omega \cdot 2$

► And add a new limit element again

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

▶ The ordinals $\leq \omega \cdot 2$

- $\bullet_0 \bullet_1 \bullet_2 \cdots \bullet_{\omega} \bullet_{\omega+1} \bullet_{\omega+2} \cdots \bullet_{\omega\cdot 2}$
- ▶ The ordinals $\leq \omega^2$
 - $\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

► Repeat the repetition

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \cdots$$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

And add a new limit element again

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \bullet_{\omega^\omega}$$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

▶ The ordinals $\leq \omega^{\omega}$

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \bullet_{\omega^\omega}$$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

▶ The ordinals $\leq \omega^{\omega}$

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \cdots \bullet_{\omega^\omega}$$

▶ Iterate one more time

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^\omega} \cdots \bullet_{\omega^{\omega^\omega}} \cdots$$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

▶ The ordinals $\leq \omega^{\omega}$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \bullet_{\omega^{\omega}}$$

► And add a new limit element

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^\omega} \cdots \bullet_{\omega^{\omega^\omega}} \cdots \bullet_{\varepsilon_0}$$

▶ The ordinals $\leq \omega \cdot 2$

▶ The ordinals $\leq \omega^2$

$$\bullet_0 \cdots \bullet_{\omega} \cdots \bullet_{\omega \cdot 2} \cdots \bullet_{\omega \cdot 3} \cdots \bullet_{\omega \cdot \omega = \omega^2}$$

▶ The ordinals $\leq \omega^{\omega}$

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^2} \cdots \bullet_{\omega^3} \cdots \cdots \bullet_{\omega^\omega}$$

▶ The ordinals $\leq \varepsilon_0$

$$\bullet_0 \cdots \bullet_\omega \cdots \bullet_{\omega^\omega} \cdots \bullet_{\omega^{\omega^\omega}} \cdots \bullet_{\varepsilon_0}$$

- Ordinal arithmetic
 - ▶ addition +, multiplication ·, exponentiation
 - ▶ less-than <

- Ordinal arithmetic
 - ▶ addition +, multiplication ·, exponentiation
 - ▶ less-than <
- ▶ Cantor normal form: if $0 < \alpha < \varepsilon_0$, then α can be written as

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

where $\alpha_1 \ge \cdots \ge \alpha_n$, $0 < \alpha_i < \varepsilon_0$, α_i in normal form. This normal form is unique.

- Ordinal arithmetic
 - ▶ addition +, multiplication ·, exponentiation
 - ▶ less-than <
- ▶ Cantor normal form: if $0 < \alpha < \varepsilon_0$, then α can be written as

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

where $\alpha_1 \ge \cdots \ge \alpha_n$, $0 < \alpha_i < \varepsilon_0$, α_i in normal form.

This normal form is unique.

▶ The natural sum: for $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$, $\beta = \omega^{\beta_1} + \dots + \omega^{\beta_m}$ let

$$\alpha \# \beta = \omega^{\lambda_1} \cdots \omega^{\lambda_{m+n}}$$

$$\lambda_1 \geq \cdots \geq \lambda_{m+n}, \{\lambda_1, \ldots, \lambda_{m+n}\} = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\}.$$

- Ordinal arithmetic
 - ▶ addition +, multiplication ·, exponentiation
 - ▶ less-than <
- ▶ Cantor normal form: if $0 < \alpha < \varepsilon_0$, then α can be written as

$$\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$$

where $\alpha_1 \ge \cdots \ge \alpha_n$, $0 < \alpha_i < \varepsilon_0$, α_i in normal form.

This normal form is unique.

▶ The natural sum: for $\alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_n}$, $\beta = \omega^{\beta_1} + \cdots + \omega^{\beta_m}$ let

$$\alpha \# \beta = \omega^{\lambda_1} \cdots \omega^{\lambda_{m+n}}$$

$$\lambda_1 \geq \cdots \geq \lambda_{m+n}, \{\lambda_1, \ldots, \lambda_{m+n}\} = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\}.$$

- Formalisation
 - ▶ Term signature $O = \{0/0, \omega/1, +/2\}$
 - Modulo equality
 - ▶ Operations +, ·, exp, # and relation <</p>

Outline

- ► Gentzen's consistency proof
 - √ Background
 - √ Peano arithmetic
 - √ Reduction of cut and induction
 - ✓ Ordinals
 - ► The consistency proof
- ► The omega rule
- Cyclic proofs

▶ **Definition.** *Logical complexity* of a formula, cut, induction.

- ▶ **Definition.** Logical complexity of a formula, cut, induction.
- ▶ **Definition.** Height of a sequent S in a proof π , $h(S, \pi)$, is maximum of log. complexities of cut or induction below S in π .

- ▶ **Definition.** Logical complexity of a formula, cut, induction.
- ▶ **Definition.** Height of a sequent S in a proof π , $h(S, \pi)$, is maximum of log. complexities of cut or induction below S in π .
- ▶ **Observation.** If S_1 and S_2 are premises of a binary inference, then $h(S_1, \pi) = h(S_2, \pi)$.

- ▶ **Definition.** Logical complexity of a formula, cut, induction.
- ▶ **Definition.** Height of a sequent S in a proof π , $h(S, \pi)$, is maximum of log. complexities of cut or induction below S in π .
- ▶ **Observation.** If S_1 and S_2 are premises of a binary inference, then $h(S_1, \pi) = h(S_2, \pi)$.
- ▶ **Notation.** h(S) for $h(S, \pi)$ if π is clear

The ordinal assignment

- **Definition.** Let S be a sequent in a proof π . Define o(S):
 - ▶ Initial sequent S: o(S) = 1
 - ► Structural inference $\frac{S'}{S}$: o(S) = o(S')
 - ▶ Unary logical inference $\frac{S'}{S}$: o(S) = o(S') + 1
 - ▶ Binary logical inference $\frac{S_1 S_2}{S}$: o(S) = o(S₁) # o(S₂)

 - $\begin{array}{l} \displaystyle \stackrel{\displaystyle \mathcal{S}'}{\displaystyle S} \text{ ind } : \operatorname{o}(S) = \omega_{\operatorname{h}(S') \operatorname{h}(S) + 1}(\alpha_1 + 1) \\ \\ \text{where } \operatorname{o}(S') = \omega^{\alpha_1} + \cdots + \omega^{\alpha_n} \text{ with } \alpha_1 \geq \cdots \geq \alpha_n. \end{array}$

The ordinal assignment

- **Definition.** Let S be a sequent in a proof π . Define o(S):
 - ▶ Initial sequent S: o(S) = 1
 - ► Structural inference $\frac{S'}{S}$: o(S) = o(S')
 - ▶ Unary logical inference $\frac{S'}{S}$: o(S) = o(S') + 1
 - ▶ Binary logical inference $\frac{S_1 S_2}{S}$: o(S) = o(S₁) # o(S₂)

 - $\begin{array}{ll} \bullet & \frac{S'}{S} \text{ ind } : \mathsf{o}(S) = \omega_{\mathsf{h}(S') \mathsf{h}(S) + 1}(\alpha_1 + 1) \\ \\ \text{where } \mathsf{o}(S') = \omega^{\alpha_1} + \dots + \omega^{\alpha_n} \text{ with } \alpha_1 \geq \dots \geq \alpha_n. \end{array}$
- ▶ **Definition.** Let π be a proof of S, then $o(\pi) = o(S, \pi)$.

The consistency proof

▶ **Reduction Lemma.** Let $\Gamma \Rightarrow \Delta$ be a Σ_1 -sequent, let π be a proof of $\Gamma \Rightarrow \Delta$ that contains a non-atomic cut or an induction. Then there is a proof π' of $\Gamma \Rightarrow \Delta$ with o(π') < o(π).

The consistency proof

- ▶ **Reduction Lemma.** Let $\Gamma \Rightarrow \Delta$ be a Σ_1 -sequent, let π be a proof of $\Gamma \Rightarrow \Delta$ that contains a non-atomic cut or an induction. Then there is a proof π' of $\Gamma \Rightarrow \Delta$ with o(π') < o(π).
- ▶ **Theorem.** PA is consistent. *Proof.* Suppose PA is inconsistent, then there is a proof π of \Rightarrow .
 - $\blacktriangleright \ \Rightarrow \text{ is a } \Sigma_1\text{-sequent}$
 - $o(\pi) < \varepsilon_0$
 - Induction on $o(\pi)$ (reduction lemma): obtain π^* of \Rightarrow s.t. π^* does not contain induction nor non-atomic cut
 - π^* is a simple proof of \Rightarrow
 - Contradiction.

The consistency proof

- ▶ **Reduction Lemma.** Let $\Gamma \Rightarrow \Delta$ be a Σ_1 -sequent, let π be a proof of $\Gamma \Rightarrow \Delta$ that contains a non-atomic cut or an induction. Then there is a proof π' of $\Gamma \Rightarrow \Delta$ with o(π') < o(π).
- ▶ **Theorem.** PA is consistent. *Proof.* Suppose PA is inconsistent, then there is a proof π of \Rightarrow .
 - $\blacktriangleright \ \Rightarrow \text{ is a } \Sigma_1\text{-sequent}$
 - $o(\pi) < \varepsilon_0$
 - Induction on $o(\pi)$ (reduction lemma): obtain π^* of \Rightarrow s.t. π^* does not contain induction nor non-atomic cut
 - π^* is a simple proof of \Rightarrow
 - Contradiction.
- Remark. Formalisation in PRA:
 - ▶ PRA + TI($\varphi(x)$, $<_{\varepsilon_0}$) \vdash Con_{PA} for quantifier-free $\varphi(x)$
 - ▶ In particular: PRA proves Reduction Lemma, Simple Proof Lemma

More general end-sequents (1/2)

▶ Let Exp(x, y) be a representation of $n \mapsto 2^n$, in particular:

$$\mathsf{PA} \vdash \mathsf{Exp}(0,\overline{1}) \qquad \mathsf{PA} \vdash \mathsf{Exp}(x,y) \to \mathsf{Exp}(s(x),y\cdot\overline{2})$$

▶ Then PA $\vdash \forall x \exists y \, \mathsf{Exp}(x,y)$:

$$\frac{\vdots}{\exists xp(\beta,\gamma) \Rightarrow \mathsf{Exp}(s(\beta),\gamma \cdot 2)} \exists_{\mathsf{r}} \\
\frac{\exists xp(\beta,\gamma) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y)}{\exists y \, \mathsf{Exp}(s(\beta),y)} \exists_{\mathsf{r}} \\
\frac{\exists y \, \mathsf{Exp}(\beta,\gamma) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y)}{\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y)} \exists_{\mathsf{l}} \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(s(\beta),y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists y \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists y \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,y) \Rightarrow \exists z \, \mathsf{Exp}(\beta,y) \\
\exists z \, \mathsf{Exp}(\beta,$$

More general end-sequents (1/2)

▶ Let Exp(x, y) be a representation of $n \mapsto 2^n$, in particular:

$$\mathsf{PA} \vdash \mathsf{Exp}(0,\overline{1}) \qquad \mathsf{PA} \vdash \mathsf{Exp}(x,y) \to \mathsf{Exp}(s(x),y\cdot\overline{2})$$

▶ Then PA $\vdash \forall x \exists y \, \mathsf{Exp}(x, y)$:

$$\frac{\vdots}{\Rightarrow \operatorname{Exp}(0,\overline{1})} \Rightarrow \exists_{r} \frac{\operatorname{Exp}(\beta,\gamma) \Rightarrow \operatorname{Exp}(s(\beta),\gamma \cdot 2)}{\operatorname{Exp}(\beta,\gamma) \Rightarrow \exists_{y} \operatorname{Exp}(s(\beta),y)} \exists_{r} \\
\frac{\Rightarrow \operatorname{Exp}(0,\overline{1})}{\Rightarrow \exists_{y} \operatorname{Exp}(0,y)} \exists_{r} \frac{\exists_{y} \operatorname{Exp}(\beta,y) \Rightarrow \exists_{y} \operatorname{Exp}(s(\beta),y)}{\exists_{y} \operatorname{Exp}(0,y) \Rightarrow \exists_{y} \operatorname{Exp}(\alpha,y)} \inf_{\text{out}} \\
\frac{\Rightarrow \exists_{y} \operatorname{Exp}(\alpha,y)}{\Rightarrow \forall_{x} \exists_{y} \operatorname{Exp}(x,y)} \forall_{r}$$

▶ But cut-elimination procedure does not work (Eigenvariable α in end-piece not introduced by induction)

More general end-sequents (2/2)

▶ **Proposition.** Every PA-proof of $\forall x \exists y \, \mathsf{Exp}(x,y)$ contains an induction inference.

Proof. Let π be a PA-proof of $\forall x\exists y \, \mathsf{Exp}(x,y)$. Then w.l.o.g. π ends with \forall_r . Suppose there is induction-free proof of $\exists y \, \mathsf{Exp}(\alpha,y)$, then by cut-elimination / Herbrand's theorem, there are $t_1,\ldots,t_n\in L\cup\{\alpha\}$ s.t.

BA
$$\vdash \mathsf{Exp}(\alpha, t_1) \lor \cdots \lor \mathsf{Exp}(\alpha, t_n)$$
, i.e.,
BA $\vdash \forall \alpha (\mathsf{Exp}(\alpha, t_1) \lor \cdots \lor \mathsf{Exp}(\alpha, t_n))$.

Contradiction.

Summary of 1st part

Gentzen's consistency proof of PA

- ► Sequent calculus with induction rule
- ► Cut- and induction-elimination
- Except termination formalisable in PRA
- ▶ Ordinals (up to ε_0 in Cantor normal form)
- ▶ Proof of Σ_1 -sequent: lowermost induction has variable-free term.
- ▶ Impossible for Π_2 -sequents

Outline

- √ Gentzen's consistency proof
- ► The omega rule
 - ► Infinitary propositional logic
 - Infinitary proofs
 - ► The consistency proof
- Cyclic proofs

Infinitary propositional logic

Observation: $\mathbb{N} \models \forall x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigwedge_{n \in \mathbb{N}} \varphi(\overline{n})$ $\mathbb{N} \models \exists x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigvee_{n \in \mathbb{N}} \varphi(\overline{n})$

Infinitary propositional logic

- ▶ Observation: $\mathbb{N} \models \forall x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigwedge_{n \in \mathbb{N}} \varphi(\overline{n})$ $\mathbb{N} \models \exists x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigvee_{n \in \mathbb{N}} \varphi(\overline{n})$
- ▶ The ω -rule

$$\frac{\Gamma, \varphi(0) \quad \Gamma, \varphi(\overline{1}) \quad \Gamma, \varphi(\overline{2}) \quad \cdots}{\Gamma, \bigwedge_{n \in \mathbb{N}} \varphi(n)}$$

Infinitary propositional logic

- ▶ Observation: $\mathbb{N} \models \forall x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigwedge_{n \in \mathbb{N}} \varphi(\overline{n})$ $\mathbb{N} \models \exists x \, \varphi(x) \text{ iff } \mathbb{N} \models \bigvee_{n \in \mathbb{N}} \varphi(\overline{n})$
- ▶ The ω -rule

$$\frac{\Gamma, \varphi(0) \quad \Gamma, \varphi(\overline{1}) \quad \Gamma, \varphi(\overline{2}) \quad \cdots}{\Gamma, \bigwedge_{n \in \mathbb{N}} \varphi(n)}$$

- ▶ **Definition.** The formulas of infinitary propositional logic:
 - ▶ Variable-free atoms (in $L = \{0, s, +, \cdot, =\}$)
 - ► Negated variable-free atoms (in *L*)
 - ▶ If, for $i \in I$, φ_i is a formula, then $\bigwedge_{i \in I} \varphi_i$ is a formula
 - ▶ If, for $i \in I$, φ_i is a formula, then $\bigvee_{i \in I} \varphi_i$ is a formula

Here: I countable

Translation of first-order *L*-sentences

▶ **Definition.** Translation of first-order L-sentences:

$$A^{\infty} = A \text{ for an atom } A$$

$$[\forall x \, \varphi(x)]^{\infty} = \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \qquad [\exists x \, \varphi(x)]^{\infty} = \bigvee_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})$$

$$[\varphi \wedge \psi]^{\infty} = \varphi^{\infty} \wedge \psi^{\infty} \qquad [\varphi \vee \psi]^{\infty} = \varphi^{\infty} \vee \psi^{\infty}$$

$$[\varphi \to \psi]^{\infty} = \overline{\varphi^{\infty}} \vee \psi^{\infty} \qquad [\neg \varphi]^{\infty} = \overline{\varphi^{\infty}}$$

Translation of first-order *L*-sentences

▶ **Definition.** Translation of first-order L-sentences:

$$A^{\infty} = A \text{ for an atom } A$$

$$[\forall x \, \varphi(x)]^{\infty} = \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \qquad [\exists x \, \varphi(x)]^{\infty} = \bigvee_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})$$

$$[\varphi \wedge \psi]^{\infty} = \varphi^{\infty} \wedge \psi^{\infty} \qquad [\varphi \vee \psi]^{\infty} = \varphi^{\infty} \vee \psi^{\infty}$$

$$[\varphi \to \psi]^{\infty} = \overline{\varphi^{\infty}} \vee \psi^{\infty} \qquad [\neg \varphi]^{\infty} = \overline{\varphi^{\infty}}$$

▶ Where dualisation — is defined as:

$$\overline{\overline{A}} = \neg A \qquad \overline{\overline{A}} = A \qquad \text{for an atom } A$$

$$\overline{\bigwedge_{i \in I} \varphi_i} = \bigvee_{i \in I} \overline{\varphi_i} \qquad \overline{\bigvee_{i \in I} \varphi_i} = \bigwedge_{i \in I} \overline{\varphi_i} \qquad \text{for a formula } \varphi$$

Example: induction axiom

The translation of the induction axiom

$$[\mathsf{I}_{x}\varphi]^{\infty} = \big[\varphi(\mathsf{0}) \land \forall y \, (\varphi(y) \to \varphi(s(y))) \to \forall x \, \varphi(x)\big]^{\infty}$$

Example: induction axiom

The translation of the induction axiom

$$[\mathsf{I}_{x}\varphi]^{\infty} = \frac{\left[\varphi(0) \land \forall y \left(\varphi(y) \to \varphi(s(y))\right) \to \forall x \varphi(x)\right]^{\infty}}{\left[\varphi(0) \land \forall y \left(\varphi(y) \to \varphi(s(y))\right)\right]^{\infty}} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})$$

Example: induction axiom

The translation of the induction axiom

$$\begin{aligned} [\mathsf{I}_{x}\varphi]^{\infty} &= \left[\varphi(0) \land \forall y \left(\varphi(y) \to \varphi(s(y))\right) \to \forall x \, \varphi(x)\right]^{\infty} \\ &= \left[\varphi(0) \land \forall y \left(\varphi(y) \to \varphi(s(y))\right)\right]^{\infty} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \\ &= \overline{\varphi^{\infty}}(0) \lor \overline{\bigwedge_{n \in \mathbb{N}} \overline{\varphi^{\infty}(\overline{n})} \lor \varphi^{\infty}(\overline{n+1})} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \end{aligned}$$

Example: induction axiom

The translation of the induction axiom

$$\begin{split} [\mathsf{I}_{x}\varphi]^{\infty} &= \left[\varphi(0) \land \forall y \left(\varphi(y) \to \varphi(s(y))\right) \to \forall x \, \varphi(x)\right]^{\infty} \\ &= \left[\overline{\varphi(0)} \land \forall y \left(\varphi(y) \to \varphi(s(y))\right)\right]^{\infty} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \\ &= \overline{\varphi^{\infty}}(0) \lor \overline{\bigwedge_{n \in \mathbb{N}} \overline{\varphi^{\infty}(\overline{n})} \lor \varphi^{\infty}(\overline{n+1})} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \\ &= \overline{\varphi^{\infty}}(0) \lor \bigvee_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \lor \overline{\varphi^{\infty}(\overline{n+1})} \lor \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n}) \end{split}$$

Outline

- √ Gentzen's consistency proof
- ▶ The omega rule
 - √ Infinitary propositional logic
 - Infinitary proofs
 - ► The consistency proof
- Cyclic proofs

Sequent calculus LK^{∞}

- ▶ **Definition.** The set of axioms is the smallest set which contains
 - ▶ A, \overline{A} for any atom A,
 - ▶ S^{∞} if S is an axiom of BA (as a sequent).

and is closed under atomic cut, i.e.,

▶ If Γ , A and Δ , \overline{A} are axioms, then so is a subset of Γ , Δ .

Sequent calculus \mathbf{LK}^{∞}

- ▶ **Definition.** The set of axioms is the smallest set which contains
 - $ightharpoonup A, \overline{A}$ for any atom A,
 - ▶ S^{∞} if S is an axiom of BA (as a sequent).

and is closed under atomic cut, i.e.,

- ▶ If Γ , A and Δ , \overline{A} are axioms, then so is a subset of Γ , Δ .
- ▶ Definition. LK[∞] works on sequents of inf. prop. logic.

$$\begin{array}{ccc} \overline{\Gamma,\Delta} & \text{if } \Delta \text{ is an axiom} \\ \\ \underline{\Gamma,\varphi_j} & \text{for a } j \in I \\ \overline{\Gamma,\bigvee_{i \in I} \varphi_i} & \underline{\Gamma,\varphi_j} & \text{for all } j \in I \\ \\ \underline{\Gamma,\bigwedge_{i \in I} \varphi_i} \\ \hline \end{array}$$

Proofs of infinite width but finite height

Translation of BA-proofs

- ▶ **Def.** Translation of BA-proof of $\Gamma \Rightarrow \Delta$ to **LK**^{\infty}-proof of $\overline{\Gamma^{\infty}}, \Delta^{\infty}$
 - ► Axioms √
 - $ightharpoonup \wedge_{\mathsf{r}}$

$$\frac{(\pi_{1})}{\Gamma \Rightarrow \Delta, \varphi} \xrightarrow{(\pi_{2})} (\pi_{2}) \\ \frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma, \Pi \Rightarrow \Delta, \Lambda, \varphi \wedge \psi} \wedge_{r} \qquad \mapsto \qquad \frac{(\pi_{1}^{\infty})}{\overline{\Gamma^{\infty}}, \Delta^{\infty}, \varphi^{\infty}} \xrightarrow{\overline{\Pi^{\infty}}, \Lambda^{\infty}, \psi^{\infty}} \\ \frac{\overline{\Gamma^{\infty}}, \overline{\Lambda^{\infty}}, \varphi^{\infty}}{\overline{\Gamma^{\infty}}, \overline{\Lambda^{\infty}}, \varphi^{\infty} \wedge \psi^{\infty}}$$

 $ightharpoonup \forall_r$

$$\frac{(\pi(\alpha))}{\Gamma \Rightarrow \Delta, \varphi(\alpha)} \underset{\forall_{\mathbf{r}}}{\forall_{\mathbf{r}}} \mapsto \frac{(\pi(\overline{n})^{\infty})}{\overline{\Gamma^{\infty}}, \Delta^{\infty}, \varphi^{\infty}(\overline{n})} \text{ for all } \underline{n} \in \mathbb{N}}{\overline{\Gamma^{\infty}}, \Delta^{\infty}, \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})}$$

Similarily for other rules

Translation of BA-proofs

- ▶ **Def.** Translation of BA-proof of $\Gamma \Rightarrow \Delta$ to **LK**^{\infty}-proof of $\overline{\Gamma^{\infty}}, \Delta^{\infty}$
 - ► Axioms √
 - $ightharpoonup \wedge_{\mathsf{r}}$

$$\frac{(\pi_1) \qquad (\pi_2)}{\Gamma \Rightarrow \Delta, \varphi \quad \Pi \Rightarrow \Lambda, \psi} \wedge_{\mathsf{r}} \qquad \mapsto \qquad \frac{(\pi_1^{\infty}) \qquad (\pi_2^{\infty})}{\overline{\Gamma^{\infty}, \Delta^{\infty}, \varphi^{\infty}} \quad \overline{\Pi^{\infty}, \Lambda^{\infty}, \psi^{\infty}}} \\ \frac{\overline{\Gamma^{\infty}, \Delta^{\infty}, \varphi^{\infty}} \quad \overline{\Pi^{\infty}, \Lambda^{\infty}, \psi^{\infty}}}{\overline{\Gamma^{\infty}, \overline{\Pi^{\infty}}, \Delta^{\infty}, \Lambda^{\infty}, \varphi^{\infty} \wedge \psi^{\infty}}}$$

 $ightharpoonup \forall_{\mathsf{r}}$

$$\frac{(\pi(\alpha))}{\Gamma \Rightarrow \Delta, \varphi(\alpha)} \underset{\forall_{\mathsf{r}}}{\forall_{\mathsf{r}}} \; \mapsto \; \frac{(\pi(\overline{n})^{\infty})}{\overline{\Gamma^{\infty}}, \Delta^{\infty}, \varphi^{\infty}(\overline{n})} \; \text{ for all } n \in \mathbb{N}}{\overline{\Gamma^{\infty}}, \Delta^{\infty}, \bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})}$$

- ► Similarily for other rules
- ▶ Formalisation: primitive recursive function

LK^{∞} proves induction

▶ Informally: Assume $\varphi(0)$ and $\varphi(\overline{n}) \to \varphi(\overline{n+1})$, then

LK^{∞} proves induction

▶ Informally: Assume $\varphi(0)$ and $\varphi(\overline{n}) \to \varphi(\overline{n+1})$, then

$$\frac{\varphi(0) \quad \varphi(0) \rightarrow \varphi(1)}{\varphi(0)} \quad \frac{\frac{\varphi(\overline{0}) \quad \varphi(\overline{0}) \rightarrow \varphi(\overline{1})}{\varphi(\overline{1})} \quad \varphi(\overline{1}) \rightarrow \varphi(\overline{2})}{\varphi(\overline{2})} \quad \cdots }{\bigwedge_{n \in \mathbb{N}} \varphi(\overline{n})}$$

▶ Hence **LK**^{∞} \vdash [I_x $\varphi(x)$] $^{\infty}$

LK^{∞} proves induction

▶ Informally: Assume $\varphi(0)$ and $\varphi(\overline{n}) \to \varphi(\overline{n+1})$, then

- ▶ Hence **LK**^{∞} \vdash [I_x $\varphi(x)$] $^{\infty}$
 - One application of the ω -rule
 - ▶ Formalisation: prim. rec. function mapping $I_x \varphi(x)$ to \mathbf{LK}^{∞} -proof

Completeness of \mathbf{LK}^{∞}

▶ **Obs.** For a first-order *L*-sentence σ : if $\mathbb{N} \models \sigma$, then $\mathbf{LK}^{\infty} \vdash \sigma^{\infty}$.

Completeness of LK^∞

- ▶ **Obs.** For a first-order *L*-sentence σ : if $\mathbb{N} \models \sigma$, then $\mathbf{LK}^{\infty} \vdash \sigma^{\infty}$. *Proof.* Induction on the logical complexity of σ :
 - ▶ If σ is atom, then BA $\vdash \sigma$ with atomic cuts, so $\{\sigma\}$ is axiom.

Completeness of LK^∞

- ▶ **Obs.** For a first-order *L*-sentence σ : if $\mathbb{N} \models \sigma$, then $\mathsf{LK}^{\infty} \vdash \sigma^{\infty}$. *Proof.* Induction on the logical complexity of σ :
 - ▶ If σ is atom, then BA $\vdash \sigma$ with atomic cuts, so $\{\sigma\}$ is axiom.
 - ▶ If $\sigma = \forall x \varphi(x)$, then $\mathbb{N} \models \varphi(\overline{n})$ for all $n \in \mathbb{N}$, so

$$\frac{\varphi^{\infty}(0) \quad \varphi^{\infty}(1) \quad \varphi^{\infty}(2) \quad \cdots}{\bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})}$$

by IH.

Completeness of \mathbf{LK}^{∞}

- ▶ **Obs.** For a first-order *L*-sentence σ : if $\mathbb{N} \models \sigma$, then $\mathsf{LK}^{\infty} \vdash \sigma^{\infty}$. *Proof.* Induction on the logical complexity of σ :
 - ▶ If σ is atom, then BA $\vdash \sigma$ with atomic cuts, so $\{\sigma\}$ is axiom.
 - ▶ If $\sigma = \forall x \varphi(x)$, then $\mathbb{N} \models \varphi(\overline{n})$ for all $n \in \mathbb{N}$, so

$$\frac{\varphi^{\infty}(0) \quad \varphi^{\infty}(1) \quad \varphi^{\infty}(2) \quad \cdots}{\bigwedge_{n \in \mathbb{N}} \varphi^{\infty}(\overline{n})}$$

by IH.

▶ If $\sigma = \exists x \, \varphi(x)$, then there is a $k \in \mathbb{N}$ s.t. $\mathbb{N} \models \varphi(\overline{k})$, so

$$\frac{\varphi^{\infty}(\overline{k})}{\bigvee_{n\in\mathbb{N}}\varphi^{\infty}(\overline{n})}$$

by IH.

. . . .

Outline

- √ Gentzen's consistency proof
- ► The omega rule
 - √ Infinitary propositional logic
 - ✓ Infinitary proofs
 - ► The consistency proof
- Cyclic proofs

The height of a proof

Proof height in a finite system, example:

$$\pi = \frac{\begin{pmatrix} (\pi_1) & (\pi_2) \\ \Gamma \Rightarrow \Delta, A & \Pi \Rightarrow \Lambda, B \\ \Gamma, \Pi \Rightarrow \Delta, \Lambda, A \wedge B \end{pmatrix} \wedge_{\mathsf{r}}$$

Then $h(\pi) = 1 + \max\{h(\pi_1), h(\pi_2)\} = \sup\{h(\pi_i) + 1 \mid i \in \{1, 2\}\}.$

The height of a proof

▶ Proof height in a finite system, example:

$$\pi = \frac{\begin{pmatrix} (\pi_1) & (\pi_2) \\ \Gamma \Rightarrow \Delta, A & \Pi \Rightarrow \Lambda, B \\ \Gamma, \Pi \Rightarrow \Delta, \Lambda, A \wedge B \end{pmatrix} \wedge_{\mathsf{r}}$$

Then
$$h(\pi) = 1 + \max\{h(\pi_1), h(\pi_2)\} = \sup\{h(\pi_i) + 1 \mid i \in \{1, 2\}\}.$$

▶ **Definition.** For **LK**[∞]-proof π with direct subproofs π_i , $i \in I$ define $h(\pi) = \sup\{h(\pi_i) + 1 \mid i \in I\}$

The cut rank of a proof

- ▶ **Definition.** For a formula φ with direct subformulas φ_i , $i \in I$ define the *depth of* φ as $d(\varphi) = \sup\{d(\varphi_i) + 1 \mid i \in I\}$.
- ▶ **Observation.** The depth of σ^{∞} is \leq the depth of σ .

The cut rank of a proof

- ▶ **Definition.** For a formula φ with direct subformulas φ_i , $i \in I$ define the *depth of* φ as $d(\varphi) = \sup\{d(\varphi_i) + 1 \mid i \in I\}$.
- ▶ **Observation.** The depth of σ^{∞} is \leq the depth of σ .
- ▶ **Definition.** For **LK**[∞]-proof π with direct subproofs π_i , $i \in I$ and last inference ι define the *cut rank* of π :
 - ▶ If ι is cut on some φ , then $\rho(\pi) = \max\{d(\varphi), \rho(\pi_1), \rho(\pi_2)\}.$
 - ▶ Otherwise, $\rho(\pi) = \sup{\{\rho(\pi_i) \mid i \in I\}}$.

The cut rank of a proof

- ▶ **Definition.** For a formula φ with direct subformulas φ_i , $i \in I$ define the *depth of* φ as $d(\varphi) = \sup\{d(\varphi_i) + 1 \mid i \in I\}$.
- ▶ **Observation.** The depth of σ^{∞} is \leq the depth of σ .
- ▶ **Definition.** For **LK**[∞]-proof π with direct subproofs π_i , $i \in I$ and last inference ι define the *cut rank of* π :
 - ▶ If ι is cut on some φ , then $\rho(\pi) = \max\{d(\varphi), \rho(\pi_1), \rho(\pi_2)\}.$
 - ▶ Otherwise, $\rho(\pi) = \sup{\{\rho(\pi_i) \mid i \in I\}}$.
- ▶ **Notation.** $\mathsf{LK}^\infty \vdash^\rho_\alpha S$ if there is an LK^∞ -proof of S with cut rank $\leq \rho$ and height $\leq \alpha$.

The proof translation revisited

▶ **Lemma.** If PA $\vdash \sigma$, then there is an $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash_{\omega \cdot 2}^{r} \sigma^{\infty}$. *Proof.* If PA $\vdash \sigma$, then there is a BA-proof π of $I_1, \ldots, I_n \Rightarrow \sigma$.

The proof translation revisited

▶ **Lemma.** If PA $\vdash \sigma$, then there is an $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash_{\omega \cdot 2}^{r} \sigma^{\infty}$.

Proof. If PA $\vdash \sigma$, then there is a BA-proof π of $I_1, \ldots, I_n \Rightarrow \sigma$.

$$\psi = \begin{pmatrix} (\pi_1) & (\pi^{\infty}) \\ \frac{I_1^{\infty}}{I_1^{\infty}} & \overline{I_1^{\infty}}, \dots, \overline{I_n^{\infty}}, \sigma^{\infty} \\ \hline (\pi_n) & & \vdots \\ \frac{I_n^{\infty}}{I_n^{\infty}} & \frac{\overline{I_n^{\infty}}, \sigma^{\infty}}{\sigma^{\infty}} \text{ cut} \end{pmatrix}$$

$$h(\pi^{\infty}) < \omega$$
, $h(\pi_i) = \omega$ for $1 \le i \le n$

The proof translation revisited

▶ **Lemma.** If PA $\vdash \sigma$, then there is an $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash_{\omega \cdot 2}^{r} \sigma^{\infty}$. *Proof.* If PA $\vdash \sigma$, then there is a BA-proof π of $I_1, \ldots, I_n \Rightarrow \sigma$.

$$\psi = \begin{pmatrix} (\pi_1) & (\pi^{\infty}) \\ \frac{I_1^{\infty}}{I_1^{\infty}} & \overline{I_n^{\infty}}, \dots, \overline{I_n^{\infty}}, \sigma^{\infty} \\ \vdots & \vdots \\ (\pi_n) & \vdots \\ \frac{I_n^{\infty}}{\sigma^{\infty}} & \overline{I_n^{\infty}}, \sigma^{\infty} \text{ cut} \end{pmatrix}$$

$$h(\pi^{\infty}) < \omega$$
, $h(\pi_i) = \omega$ for $1 \le i \le n$
 $\Rightarrow h(\psi) = w + n < w \cdot 2$.

Cut-elimination in **LK**^{\infty}

▶ Theorem. If $r < \omega$ and $LK^{\infty} \vdash_{\alpha}^{r} S$, then $LK^{\infty} \vdash_{2r}^{0} S$.

Cut-elimination in \mathbf{LK}^{∞}

▶ **Theorem.** If $r < \omega$ and $\mathbf{LK}^{\infty} \vdash_{\alpha}^{r} S$, then $\mathbf{LK}^{\infty} \vdash_{2_{r}^{\alpha}}^{0} S$. *Proof Sketch.* "Standard" cut-elimination argument.

Cut-elimination in LK^{∞}

- ▶ **Theorem.** If $r < \omega$ and $\mathbf{LK}^{\infty} \vdash_{\alpha}^{r} S$, then $\mathbf{LK}^{\infty} \vdash_{2_{r}^{\alpha}}^{0} S$. *Proof Sketch.* "Standard" cut-elimination argument.
- ▶ Corollary. If PA $\vdash \sigma$, then $\mathbf{LK}^{\infty} \vdash_{\alpha}^{0} \sigma^{\infty}$ for some $\alpha < \varepsilon_{0}$.

Cut-elimination in LK^{∞}

- ▶ **Theorem.** If $r < \omega$ and $\mathbf{LK}^{\infty} \vdash_{\alpha}^{r} S$, then $\mathbf{LK}^{\infty} \vdash_{2_{r}^{\alpha}}^{0} S$. *Proof Sketch.* "Standard" cut-elimination argument.
- ▶ Corollary. If PA $\vdash \sigma$, then $\mathbf{LK}^{\infty} \vdash^{0}_{\alpha} \sigma^{\infty}$ for some $\alpha < \varepsilon_{0}$. Proof. If PA $\vdash \sigma$, then there is $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash^{r}_{\omega \cdot 2} \sigma^{\infty}$. By the cut-elimination theorem, $\mathbf{LK}^{\infty} \vdash^{0}_{2^{\omega \cdot 2}} \sigma^{\infty}$ and $2^{\omega \cdot 2}_{r} < \omega_{r+2} < \varepsilon_{0}$.

Cut-elimination in \mathbf{LK}^{∞}

- ▶ **Theorem.** If $r < \omega$ and $\mathbf{LK}^{\infty} \vdash_{\alpha}^{r} S$, then $\mathbf{LK}^{\infty} \vdash_{2r}^{0} S$. *Proof Sketch.* "Standard" cut-elimination argument.
- ▶ **Corollary.** If PA $\vdash \sigma$, then $\mathbf{LK}^{\infty} \vdash^{0}_{\alpha} \sigma^{\infty}$ for some $\alpha < \varepsilon_{0}$. Proof. If PA $\vdash \sigma$, then there is $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash^{r}_{\omega \cdot 2} \sigma^{\infty}$. By the cut-elimination theorem, $\mathbf{LK}^{\infty} \vdash^{0}_{2^{\omega \cdot 2}} \sigma^{\infty}$ and $2^{\omega \cdot 2}_{r} < \omega_{r+2} < \varepsilon_{0}$.
- ▶ Corollary. PA is consistent.

Cut-elimination in \mathbf{LK}^{∞}

- ▶ **Theorem.** If $r < \omega$ and $\mathbf{LK}^{\infty} \vdash_{\alpha}^{r} S$, then $\mathbf{LK}^{\infty} \vdash_{2_{r}^{\alpha}}^{0} S$. *Proof Sketch.* "Standard" cut-elimination argument.
- ▶ **Corollary.** If PA $\vdash \sigma$, then $\mathbf{LK}^{\infty} \vdash^{0}_{\alpha} \sigma^{\infty}$ for some $\alpha < \varepsilon_{0}$. Proof. If PA $\vdash \sigma$, then there is $r < \omega$ s.t. $\mathbf{LK}^{\infty} \vdash^{r}_{\omega \cdot 2} \sigma^{\infty}$. By the cut-elimination theorem, $\mathbf{LK}^{\infty} \vdash^{0}_{2^{\omega \cdot 2}} \sigma^{\infty}$ and $2^{\omega \cdot 2}_{r} < \omega_{r+2} < \varepsilon_{0}$.
- ▶ **Corollary.** PA is consistent. *Proof.* Suppose PA $\vdash \bot$, then $\mathbf{LK}^{\infty} \vdash^{0}_{\alpha} \emptyset$ for some $\alpha < \varepsilon_{0}$, but there is not cut-free proof of \emptyset in \mathbf{LK}^{∞} .

Summary of 2nd part

- ▶ The ω -rule
- ightharpoonup The calculus **LK** $^{\infty}$
- Proofs of infinite width, no infinite branches
- Depth measured by ordinals
- ► Cut-elimination
- Consistency proof

Outline

- √ Gentzen's consistency proof
- √ The omega rule
- Cyclic proofs
 - ▶ Infinite proofs
 - Cyclic proofs
 - Proof by induction
 - Cyclic proofs vs. proofs by induction

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- ▶ **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$,

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$,

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$,

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$,

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$, $4 \mid q^2$

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$, $4 \mid q^2$ So $2 \mid p, 2 \mid q$, let $p' = \frac{p}{2}$, $q' = \frac{q}{2}$.

- Fermat: descente infinie There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational. *Proof.* Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$. Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$, $4 \mid q^2$ So 2 | p, 2 | q, let $p' = \frac{p}{2}$, $q' = \frac{q}{2}$.

Then $p'^2 = \frac{p^2}{4} = 2\frac{q^2}{4} = 2q'^2$.

- ▶ Fermat: descente infinie

 There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational.

Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$.

Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$, $4 \mid q^2$

So 2 | p, 2 | q, let $p' = \frac{p}{2}$, $q' = \frac{q}{2}$.

Then $p'^2 = \frac{p^2}{4} = 2\frac{q^2}{4} = 2q'^2$.

So there is an infinitely desceding sequence $p > p' > \dots$

Contradiction.

- ▶ Fermat: *descente infinie* There is no infinite descending chain $a_1 > a_2 > \cdots$ with $a_i \in \mathbb{N}$
- **Example.** $\sqrt{2}$ is irrational.

Proof. Suppose there are $p, q \ge 1$ s.t. $\sqrt{2} = \frac{p}{q}$, i.e., $p^2 = 2q^2$.

Then: $2 \mid p^2$, $4 \mid p^2$, $4 \mid 2q^2$, $2 \mid q^2$, $4 \mid q^2$

So 2 | p, 2 | q, let $p' = \frac{p}{2}$, $q' = \frac{q}{2}$.

Then $p'^2 = \frac{p^2}{4} = 2\frac{q^2}{4} = 2q'^2$.

So there is an infinitely desceding sequence $p>p'>\dots$

Contradiction.

▶ 3rd part: formalisation of cyclic proofs [Brotherston, Simpson '11]

Inductive definitions

- First-order signature Σ Inductive predicate symbols $\Sigma_I \subseteq \Sigma$
- ▶ For each $P \in \Sigma_I$ a finite set of productions of the form

$$\frac{Q_1(\mathbf{u_1}) \cdots Q_k(\mathbf{u_k})}{P(\mathbf{t})}$$

with $Q_1, \ldots, Q_k \in \Sigma$ and $\mathbf{t}, \mathbf{u_1}, \ldots, \mathbf{u_k}$ term vectors.

Example.

$$\frac{N(x)}{N(0)} \qquad \frac{N(x)}{N(s(x))} \qquad \frac{L(\text{nil})}{L(\text{nil})} \qquad \frac{N(x)}{L(\cos(x,z))}$$

$$\frac{E(x)}{O(s(x))} \qquad \frac{O(x)}{E(s(x))}$$

Case split rules

▶ For inductive predicate *P*, case split rule is:

$$rac{\mathsf{cases}}{P(\mathbf{u}), \Gamma \Rightarrow \Delta} \; \mathsf{case}_P$$

where each production

$$\frac{Q_1(\mathbf{u_1}[\mathbf{x}]) \cdots Q_k(\mathbf{u_k}[\mathbf{x}])}{P(\mathbf{t}[\mathbf{x}])}$$

of P gives rise to a case (premise)

$$\Gamma, \mathbf{u} = \mathbf{t}[\mathbf{x}], Q_1(\mathbf{u}_1[\mathbf{x}]), \dots, Q_k(\mathbf{u}_k[\mathbf{x}]) \Rightarrow \Delta$$

where \mathbf{x} is fresh in each case.

$$\frac{t=0,\Gamma\Rightarrow\Delta\quad t=s(x),N(x),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_{N}$$

$$\frac{t=0,\Gamma\Rightarrow\Delta\quad t=s(x),N(x),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_{\mathcal{N}}$$

$$\frac{t=0,\Gamma\Rightarrow\Delta\quad t=s(x),O(x),\Gamma\Rightarrow\Delta}{E(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_{\mathcal{E}}$$

$$\frac{t = 0, \Gamma \Rightarrow \Delta \quad t = s(x), N(x), \Gamma \Rightarrow \Delta}{N(t), \Gamma \Rightarrow \Delta} \operatorname{case}_{N}$$

$$\frac{t = 0, \Gamma \Rightarrow \Delta \quad t = s(x), O(x), \Gamma \Rightarrow \Delta}{E(t), \Gamma \Rightarrow \Delta} \operatorname{case}_{E}$$

$$\frac{t = s(x), E(x), \Gamma \Rightarrow \Delta}{O(t), \Gamma \Rightarrow \Delta} \operatorname{case}_{O}$$

$$\frac{t=0,\Gamma\Rightarrow\Delta\quad t=s(x),N(x),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_N$$

$$\frac{t=0,\Gamma\Rightarrow\Delta\quad t=s(x),O(x),\Gamma\Rightarrow\Delta}{E(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_E$$

$$\frac{t=s(x),E(x),\Gamma\Rightarrow\Delta}{O(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_O$$

$$\frac{t=\mathsf{nil},\Gamma\Rightarrow\Delta\quad t=\mathsf{cons}(x,z),N(x),L(z),\Gamma\Rightarrow\Delta}{L(t),\Gamma\Rightarrow\Delta}\;\mathsf{case}_L$$

Right-introduction rules

▶ **Definition.** Let *P* be inductive predicate and

$$\frac{Q_1(\mathbf{u_1}[\mathbf{x}]) \cdots Q_k(\mathbf{u_k}[\mathbf{x}])}{P(\mathbf{t}[\mathbf{x}])}$$

a production for P. Then

$$\frac{\Gamma \Rightarrow \Delta, Q_1(\mathbf{u_1}[\mathbf{v}]) \cdots \Gamma \Rightarrow \Delta, Q_k(\mathbf{u_k}[\mathbf{v}])}{\Gamma \Rightarrow \Delta, P(\mathbf{t}[\mathbf{v}])} P_r$$

is a right-introduction rule for P, where \mathbf{v} is a vector of terms.

Right-introduction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,\textit{N}(t)}{\Gamma\Rightarrow\Delta,\textit{N}(s(t))}\;\textit{N}_{r} \qquad \frac{\Gamma\Rightarrow\Delta,\textit{N}(t)}{\Gamma\Rightarrow\Delta,\textit{N}(s(t))}\;\textit{N}_{r}$$

Right-introduction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,\textit{N}(0)}{\Gamma\Rightarrow\Delta,\textit{N}(0)}~\textit{N}_{r}~~\frac{\Gamma\Rightarrow\Delta,\textit{N}(t)}{\Gamma\Rightarrow\Delta,\textit{N}(\textit{s}(t))}~\textit{N}_{r}$$

$$\frac{\Gamma\Rightarrow\Delta, \textit{E}(t)}{\Gamma\Rightarrow\Delta, \textit{E}(0)} \,\,\textit{E}_{r} \qquad \frac{\Gamma\Rightarrow\Delta, \textit{O}(t)}{\Gamma\Rightarrow\Delta, \textit{E}(s(t))} \,\,\textit{E}_{r} \qquad \frac{\Gamma\Rightarrow\Delta, \textit{E}(t)}{\Gamma\Rightarrow\Delta, \textit{O}(s(t))} \,\,\textit{O}_{r}$$

Right-introduction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,N(t)}{\Gamma\Rightarrow\Delta,N(0)}\ N_{r} \qquad \frac{\Gamma\Rightarrow\Delta,N(t)}{\Gamma\Rightarrow\Delta,N(s(t))}\ N_{r}$$

$$\frac{\Gamma\Rightarrow\Delta,E(0)}{\Gamma\Rightarrow\Delta,E(0)}\ E_{r} \qquad \frac{\Gamma\Rightarrow\Delta,O(t)}{\Gamma\Rightarrow\Delta,E(s(t))}\ E_{r} \qquad \frac{\Gamma\Rightarrow\Delta,E(t)}{\Gamma\Rightarrow\Delta,O(s(t))}\ O_{r}$$

$$\frac{\Gamma\Rightarrow\Delta,L(\text{nil})}{\Gamma\Rightarrow\Delta,L(\text{nil})}\ L_{r} \qquad \frac{\Gamma\Rightarrow\Delta,N(t)}{\Gamma\Rightarrow\Delta,L(\text{cons}(t,u))}\ L_{r}$$

- **Definition.** Set *D* of inductive definitions, *rules of D-LKID* $^{\omega}$ are:
 - usual LK for FOL with equality
 - the substitution rules

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma \sigma \Rightarrow \Delta \sigma} \text{ subst}$$

- ▶ The case split rules for ind. predicates of *D*
- ► The right-introduction rules for ind. predicates of *D*
- ▶ **Notation. LKID** $^{\omega}$ instead of D-**LKID** $^{\omega}$.

- **Definition.** Set *D* of inductive definitions, *rules of D-LKID* $^{\omega}$ are:
 - usual LK for FOL with equality
 - the substitution rules

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma \sigma \Rightarrow \Delta \sigma} \text{ subst}$$

- ▶ The case split rules for ind. predicates of *D*
- ► The right-introduction rules for ind. predicates of *D*
- ▶ **Notation. LKID** $^{\omega}$ instead of D-**LKID** $^{\omega}$.
- **Definition.** An **LKID** $^{\omega}$ *pre-proof* is a (possibly infinite) tree built from these rules.

- **Definition.** Set D of inductive definitions, rules of D-LKID $^{\omega}$ are:
 - usual LK for FOL with equality
 - the substitution rules

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma \sigma \Rightarrow \Delta \sigma} \text{ subst}$$

- ▶ The case split rules for ind. predicates of *D*
- ► The right-introduction rules for ind. predicates of *D*
- ▶ **Notation. LKID** $^{\omega}$ instead of D-**LKID** $^{\omega}$.
- **Definition.** An **LKID** $^{\omega}$ *pre-proof* is a (possibly infinite) tree built from these rules.
- **Remark. LKID** $^{\omega}$ pre-proofs are not sound.

▶ **Definition.** Path $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ of sequents (for some $\alpha \leq \omega$)

- ▶ **Definition.** Path $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ of sequents (for some $\alpha \leq \omega$)
- ▶ **Definition.** $(\tau_i)_{1 \leq i < \alpha}$ is a *trace* in $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ if
 - every τ_i is a P**t** in Γ_i for an inductive predicate P, and
 - ▶ τ_i is successor of τ_{i+1} .

- ▶ **Definition.** Path $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ of sequents (for some $\alpha \leq \omega$)
- ▶ **Definition.** $(\tau_i)_{1 \leq i < \alpha}$ is a *trace* in $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ if
 - every τ_i is a $P\mathbf{t}$ in Γ_i for an inductive predicate P, and
 - $ightharpoonup au_i$ is successor of au_{i+1} .
- ▶ **Definition.** *i* is a *progress point* in $(\tau_i)_{1 \le i < \alpha}$ if τ_{i+1} obtained from τ_i by case split.

- ▶ **Definition.** Path $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ of sequents (for some $\alpha \leq \omega$)
- ▶ **Definition.** $(\tau_i)_{1 \leq i < \alpha}$ is a *trace* in $(\Gamma_i \Rightarrow \Delta_i)_{1 \leq i < \alpha}$ if
 - every τ_i is a $P\mathbf{t}$ in Γ_i for an inductive predicate P, and
 - $ightharpoonup au_i$ is successor of au_{i+1} .
- ▶ **Definition.** *i* is a *progress point* in $(\tau_i)_{1 \le i < \alpha}$ if τ_{i+1} obtained from τ_i by case split.
- ▶ **Definition.** An **LKID**^{ω} proof is an **LKID**^{ω} pre-proof that satisfies the *global trace condition*: every infinite path contains a trace with infinitely many progress points.

LKID $^{\omega}$: example

$$\frac{\frac{\vdots}{N(x_1) \Rightarrow E(x_1), O(x_1)} \operatorname{case}_N}{\frac{N(x_1) \Rightarrow E(x_1), O(x_1)}{N(x_1) \Rightarrow O(x_1), O(s(x_1))}} \underbrace{\frac{\frac{\vdots}{N(x_1) \Rightarrow E(x_1), O(s(x_1))} O_r}{N(x_1) \Rightarrow E(s(x_1)), O(s(x_1))}}_{x_0 = 0 \Rightarrow E(x_0), O(x_0)} = \underbrace{\frac{\frac{\vdots}{N(x_1) \Rightarrow E(x_1), O(s(x_1))} O_r}{N(x_1) \Rightarrow E(s(x_1)), O(s(x_1))}}_{x_0 = s(x_1), N(x_1) \Rightarrow E(x_0), O(x_0)}_{case_N} \underbrace{\frac{\vdots}{N(x_1) \Rightarrow E(x_1), O(x_1)} O_r}_{case_N}$$

Properties of **LKID** $^{\omega}$

▶ **Definition.** Standard model ... inductive predicates are interpreted as least fixed points (of semantics of their productions)

Properties of **LKID** $^{\omega}$

- ▶ **Definition.** Standard model ... inductive predicates are interpreted as least fixed points (of semantics of their productions)
- **Theorem. LKID** $^{\omega}$ is sound w.r.t. standard models.

Properties of **LKID** $^{\omega}$

- ▶ **Definition.** Standard model ... inductive predicates are interpreted as least fixed points (of semantics of their productions)
- **Theorem. LKID** $^{\omega}$ is sound w.r.t. standard models.
- ▶ **Theorem.** Cut-free **LKID** $^{\omega}$ is complete w.r.t. standard models. *Proof Sketch.*
 - Construct proof search tree as \mathbf{LKID}^{ω} proof
 - \blacktriangleright If S not valid, search tree of S has infinite branch without progress

Outline

- √ Gentzen's consistency proof
- √ The omega rule
- Cyclic proofs
 - ✓ Infinite proofs
 - Cyclic proofs
 - Proof by induction
 - Cyclic proofs vs. proofs by induction

- ► Consider derivation trees built from \mathbf{LKID}^{ω} -rules. (derivation tree: branch may end with non-axiom)
- **Definition.** A bud in \mathcal{D} is a leaf which is not an axiom.

- ► Consider derivation trees built from \mathbf{LKID}^{ω} -rules. (derivation tree: branch may end with non-axiom)
- **Definition.** A bud in \mathcal{D} is a leaf which is not an axiom.
- ▶ **Definition.** For a bud S in \mathcal{D} an internal node S' in \mathcal{D} is called companion of S if S' = S.

- Consider derivation trees built from LKID^ω-rules.
 (derivation tree: branch may end with non-axiom)
- **Definition.** A bud in \mathcal{D} is a leaf which is not an axiom.
- ▶ **Definition.** For a bud S in \mathcal{D} an internal node S' in \mathcal{D} is called *companion* of S if S' = S.
- ▶ **Definition.** A **CLKID**^{ω} *pre-proof* is a pair (\mathcal{D}, γ) where
 - $ightharpoonup \mathcal{D}$ is a finite derivation tree, and
 - $ightharpoonup \gamma$ assigns a companion to each bud.

- Consider derivation trees built from LKID^ω-rules.
 (derivation tree: branch may end with non-axiom)
- **Definition.** A bud in \mathcal{D} is a leaf which is not an axiom.
- ▶ **Definition.** For a bud S in \mathcal{D} an internal node S' in \mathcal{D} is called companion of S if S' = S.
- ▶ **Definition.** A **CLKID**^{ω} *pre-proof* is a pair (\mathcal{D}, γ) where
 - $ightharpoonup \mathcal{D}$ is a finite derivation tree, and
 - $ightharpoonup \gamma$ assigns a companion to each bud.
- ▶ **CLKID** $^{\omega}$ pre-proof unfolds to **LKID** $^{\omega}$ -proof by identifying each bud with its companion.
- ▶ **Definition.** A **CLKID** $^{\omega}$ *proof* is a **CLKID** $^{\omega}$ pre-proof whose unfolding satisfies the global trace condition.

CLKID $^{\omega}$: Example

$$\frac{\frac{O(x)\Rightarrow N(x)}{O(x')\Rightarrow N(x')} \text{ subst}}{\frac{x=s(x'),O(x')\Rightarrow N(x')}{x=0\Rightarrow N(0)}} = \frac{\frac{\frac{O(x)\Rightarrow N(x)}{O(x')\Rightarrow N(x')}}{\frac{x=s(x'),O(x')\Rightarrow N(x')}{x=s(x'),O(x')\Rightarrow N(x')}}{\frac{x=s(x'),O(x')\Rightarrow N(x)}{x=s(x'),O(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x')}{x=s(x'),E(x')\Rightarrow N(x')}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x')}{x=s(x'),E(x')\Rightarrow N(x')}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x')}{x=s(x'),E(x')\Rightarrow N(x')}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{x=s(x'),E(x')\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x')}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}} = \frac{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}}{\frac{E(x)\Rightarrow N(x)}{x=s(x'),E(x')\Rightarrow N(x)}}$$

Decidability

▶ **Theorem.** The following problem is decidable: given CLKID^{ω} pre-proof (\mathcal{D}, γ) , is (\mathcal{D}, γ) a CLKID^{ω} proof?

Decidability

- ▶ **Theorem.** The following problem is decidable: given **CLKID** $^{\omega}$ pre-proof (\mathcal{D}, γ) , is (\mathcal{D}, γ) a **CLKID** $^{\omega}$ proof?
- ▶ **Definition.** Büchi automaton is NFA accepting an infinite word $w \in \Sigma^{\omega}$ if w has a path visiting an accepting state infinitely often.

Decidability

- ▶ **Theorem.** The following problem is decidable: given **CLKID**^{ω} pre-proof (\mathcal{D}, γ) , is (\mathcal{D}, γ) a **CLKID**^{ω} proof?
- ▶ **Definition.** Büchi automaton is NFA accepting an infinite word $w \in \Sigma^{\omega}$ if w has a path visiting an accepting state infinitely often.
- ▶ Proof Sketch. $P = (\mathcal{D}, \gamma)$ induces Büchi automata
 - $ightharpoonup B_{\text{all}}$ s.t. $L(B_{\text{all}})$ is set of all infinite paths, and
 - ▶ B_{acc} s.t. $L(B_{\text{acc}})$ is set of infinite paths satisfying prog. cond.

$$L(B_{all}) \subseteq L(B_{acc})$$
 is decidable.

Outline

- √ Gentzen's consistency proof
- √ The omega rule
- Cyclic proofs
 - √ Infinite proofs
 - √ Cyclic proofs
 - **▶** Proof by induction
 - Cyclic proofs vs. proofs by induction

Induction rules

Definition. Inductive predicate *P*, induction rule for *P*:

$$\frac{\text{minor premises}}{\Gamma, P(\mathbf{u}) \Rightarrow \Delta} \ \operatorname{ind}_P$$

where

- minor premises from productions of inductive predicates mutually dependent with P
- lacktriangle one induction formula $arphi_Q$ for each such predicate Q

Induction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,\varphi_N(0)\quad \varphi_N(x),\Gamma\Rightarrow\Delta,\varphi_N(s(x))\quad \varphi_N(t),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta}\ \ \mathrm{ind}_N$$

Induction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,\varphi_N(0)\quad \varphi_N(x),\Gamma\Rightarrow\Delta,\varphi_N(s(x))\quad \varphi_N(t),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta}\ \operatorname{ind}_N$$

$$\frac{\Gamma\Rightarrow\Delta,\varphi_{E}(0)\quad\varphi_{E}(x),\Gamma\Rightarrow\Delta,\varphi_{O}(s(x))\quad\varphi_{O}(x),\Gamma\Rightarrow\Delta,\varphi_{E}(s(x))\quad\varphi_{E}(t),\Gamma\Rightarrow\Delta}{E(t),\Gamma\Rightarrow\Delta}\ \ \mathrm{ind}_{E}$$

Induction rules: examples

$$\frac{\Gamma\Rightarrow\Delta,\varphi_N(0)\quad \varphi_N(x),\Gamma\Rightarrow\Delta,\varphi_N(s(x))\quad \varphi_N(t),\Gamma\Rightarrow\Delta}{N(t),\Gamma\Rightarrow\Delta} \ \mathrm{ind}_N$$

$$\frac{\Gamma\Rightarrow\Delta,\varphi_{E}(0)\quad\varphi_{E}(x),\Gamma\Rightarrow\Delta,\varphi_{O}(s(x))\quad\varphi_{O}(x),\Gamma\Rightarrow\Delta,\varphi_{E}(s(x))\quad\varphi_{E}(t),\Gamma\Rightarrow\Delta}{E(t),\Gamma\Rightarrow\Delta}\ \ \mathrm{ind}_{E}$$

$$\frac{\Gamma \Rightarrow \Delta, \varphi_L(\mathsf{nil}) \quad \mathcal{N}(x), \varphi_L(z), \Gamma \Rightarrow \Delta, \varphi_L(\mathsf{cons}(x,z)) \quad \varphi_L(t), \Gamma \Rightarrow \Delta}{L(t), \Gamma \Rightarrow \Delta} \ \mathsf{ind}_L$$

4D > 4B > 4B > 4B > B 990

▶ Henkin model ... least fixed points formed in subset of power set

- ▶ Henkin model . . . least fixed points formed in subset of power set
- ▶ **Theorem. LKID** is sound w.r.t. Henkin models.

- ► Henkin model ... least fixed points formed in subset of power set
- ▶ **Theorem. LKID** is sound w.r.t. Henkin models.
- ▶ **Theorem. LKID** without cut is complete w.r.t. Henkin models.

- ▶ Henkin model ... least fixed points formed in subset of power set
- ▶ **Theorem. LKID** is sound w.r.t. Henkin models.
- ▶ **Theorem. LKID** without cut is complete w.r.t. Henkin models.
- ▶ **Lemma.** PA can be interpreted in **LKID** plus BA-axioms.

- ▶ Henkin model ... least fixed points formed in subset of power set
- ▶ **Theorem. LKID** is sound w.r.t. Henkin models.
- ▶ **Theorem. LKID** without cut is complete w.r.t. Henkin models.
- ▶ **Lemma.** PA can be interpreted in **LKID** plus BA-axioms.
- ▶ Corollary. PA is consistent.

Outline

- √ Gentzen's consistency proof
- √ The omega rule
- Cyclic proofs
 - ✓ Infinite proofs
 - √ Cyclic proofs
 - ✓ Proof by induction
 - ► Cyclic proofs vs. proofs by induction

Translation from **LKID** to **CLKID** $^{\omega}$ (1/2)

▶ Theorem. If LKID $\vdash \Gamma \Rightarrow \Delta$ then CLKID $^{\omega} \vdash \Gamma \Rightarrow \Delta$.

Translation from **LKID** to **CLKID** $^{\omega}$ (1/2)

▶ **Theorem.** If **LKID** $\vdash \Gamma \Rightarrow \Delta$ then **CLKID** $^{\omega} \vdash \Gamma \Rightarrow \Delta$. *Proof.* Translate inductions into cycles. For example:

$$\frac{\Gamma \Rightarrow \Delta, \varphi(0) \quad \varphi(x), \Gamma \Rightarrow \Delta, \varphi(s(x)) \quad \varphi(t), \Gamma \Rightarrow \Delta}{N(t), \Gamma \Rightarrow \Delta} \text{ ind}_{N}$$

Translation from **LKID** to **CLKID** $^{\omega}$ (1/2)

▶ **Theorem.** If **LKID** $\vdash \Gamma \Rightarrow \Delta$ then **CLKID** $^{\omega} \vdash \Gamma \Rightarrow \Delta$. *Proof.* Translate inductions into cycles. For example:

$$\frac{\Gamma \Rightarrow \Delta, \varphi(0) \quad \varphi(x), \Gamma \Rightarrow \Delta, \varphi(s(x)) \quad \varphi(t), \Gamma \Rightarrow \Delta}{N(t), \Gamma \Rightarrow \Delta} \text{ ind}_{N}$$

Let
$$A = \{\varphi(0), \forall x (\varphi(x) \to \varphi(s(x)))\}$$
, translate to

$$\frac{\frac{\textit{N}(z), \mathcal{A} \Rightarrow \varphi(z)}{\textit{N}(t), \mathcal{A} \Rightarrow \varphi(t)} \text{ subst } \frac{(\pi_{\mathsf{b}}, \pi_{\mathsf{s}}) \quad (\pi_{\mathsf{c}})}{\Gamma \Rightarrow \bigwedge \mathcal{A}, \Delta \quad \varphi(t), \Gamma \Rightarrow \Delta}}{\textit{N}(t), \Gamma \Rightarrow \Delta} \rightarrow_{\mathsf{I}} \frac{\textit{N}(z), \mathcal{A} \Rightarrow \varphi(t)}{\textit{N}(z), \Gamma \Rightarrow \Delta} \xrightarrow{\mathsf{Cut}} \text{ cut}$$

Translation from **LKID** to **CLKID** $^{\omega}$ (2/2)

▶ *Proof (cont.)* reminder: $A = \{\varphi(0), \forall x (\varphi(x) \rightarrow \varphi(s(x)))\}$ where

$$z = 0, \stackrel{\mathcal{A}}{\mathcal{A}} \Rightarrow \varphi(z) \\ \frac{\frac{\mathcal{A}, N(z) \Rightarrow \varphi(z)}{\mathcal{A}, N(y) \Rightarrow \varphi(y)} \text{ subst }}{\frac{\mathcal{A}, N(y) \Rightarrow \varphi(s(y)) \Rightarrow \varphi(s(y))}{\mathcal{A}, N(y) \Rightarrow \varphi(s(y))}} \xrightarrow{c_1, \forall_1} \\ \frac{\frac{\mathcal{A}, N(y) \Rightarrow \varphi(s(y))}{\mathcal{A}, N(y) \Rightarrow \varphi(s(y))}}{z = s(y), \mathcal{A}, N(y) \Rightarrow \varphi(z)} \xrightarrow{c_1, \forall_1} \\ \frac{\mathcal{A}, N(z) \Rightarrow \varphi(z)}{case_N}$$

What about the other direction?

► Conjecture [Brotherston/Simpson '11].

If $CLKID^{\omega} \vdash \Gamma \Rightarrow \Delta$ then $LKID \vdash \Gamma \Rightarrow \Delta$.

► Conjecture [Brotherston/Simpson '11]. If $\mathbf{CLKID}^{\omega} \vdash \Gamma \Rightarrow \Delta$ then $\mathbf{LKID} \vdash \Gamma \Rightarrow \Delta$.

▶ **Theorem** [Simpson \leq '17]. True for PA.

► Conjecture [Brotherston/Simpson '11]. If $\mathbf{CLKID}^{\omega} \vdash \Gamma \Rightarrow \Delta$ then $\mathbf{LKID} \vdash \Gamma \Rightarrow \Delta$.

- ▶ **Theorem** [Simpson ≤ '17]. True for PA.
- ▶ **Theorem** [Berardi/Tatsuta '17]. False in general.

► Conjecture [Brotherston/Simpson '11].

If $\mathbf{CLKID}^{\omega} \vdash \Gamma \Rightarrow \Delta$ then $\mathbf{LKID} \vdash \Gamma \Rightarrow \Delta$.

- ▶ **Theorem** [Simpson ≤ '17]. True for PA.
- ▶ **Theorem** [Berardi/Tatsuta '17]. False in general.
- ▶ **Theorem** [Berardi/Tatsuta '17]. True for calculi containing PA.

- ▶ Let $L = \{0, s, +, \cdot, <\}$
- ▶ **Definition.** Cyclic arithmetic (CA) is set of first-order L-sentences σ s.t. σ has **CLKID** $^{\omega}$ proof from basic arithmetic axioms where N is the only inductive predicate.

- ▶ Let $L = \{0, s, +, \cdot, <\}$
- ▶ **Definition.** Cyclic arithmetic (CA) is set of first-order L-sentences σ s.t. σ has **CLKID** $^{\omega}$ proof from basic arithmetic axioms where N is the only inductive predicate.
- ▶ **Theorem** [Simpson \leq '17]. CA = PA.

- ▶ Let $L = \{0, s, +, \cdot, <\}$
- ▶ **Definition.** Cyclic arithmetic (CA) is set of first-order L-sentences σ s.t. σ has **CLKID** $^{\omega}$ proof from basic arithmetic axioms where N is the only inductive predicate.
- Theorem [Simpson ≤'17]. CA = PA. Proof Sketch. PA ⊆ CA ✓

- ▶ Let $L = \{0, s, +, \cdot, <\}$
- ▶ **Definition.** Cyclic arithmetic (CA) is set of first-order L-sentences σ s.t. σ has **CLKID** $^{\omega}$ proof from basic arithmetic axioms where N is the only inductive predicate.
- Theorem [Simpson ≤'17]. CA = PA. Proof Sketch. PA ⊆ CA ✓ CA ⊂ PA:
 - ► Formalisation of unfolding $\mathbf{CLKID}^{\omega} \to \mathbf{LKID}^{\omega}$ in ACA_0 (incl. theory of Büchi automata)
 - Formalisation of soundness of **LKID** $^{\omega}$ in ACA $_{0}$
 - ▶ Truth reflection principle for Σ_n -sentences
 - Conservativity of ACA₀ over PA

- **Definition.** Given set of inductive definitions *D*:
 - ► D-LKID + PA: add basic arithmetic axioms and ind. pred. N
 - ▶ D-**CLKID** $^{\omega}$ + PA: add basic arithmetic axioms and ind. pred. N

- **Definition.** Given set of inductive definitions *D*:
 - ► D-LKID + PA: add basic arithmetic axioms and ind. pred. N
 - ▶ D-**CLKID** $^{\omega}$ + PA: add basic arithmetic axioms and ind. pred. N
- ► **Theorem** [Berardi/Tatsuta '17].

$$D$$
-**LKID** + PA = D -**CLKID** $^{\omega}$ + PA

- **Definition.** Given set of inductive definitions *D*:
 - ► D-LKID + PA: add basic arithmetic axioms and ind. pred. N
 - ▶ D-**CLKID** $^{\omega}$ + PA: add basic arithmetic axioms and ind. pred. N
- ► **Theorem** [Berardi/Tatsuta '17].

$$D$$
-**LKID** + PA = D -**CLKID** $^{\omega}$ + PA

Proof Sketch.
$$D$$
-**LKID** + PA ⊆ D -**CLKID** $^{\omega}$ + PA \checkmark

- **Definition.** Given set of inductive definitions *D*:
 - ► D-LKID + PA: add basic arithmetic axioms and ind. pred. N
 - ▶ D-**CLKID** $^{\omega}$ + PA: add basic arithmetic axioms and ind. pred. N
- ► **Theorem** [Berardi/Tatsuta '17].

$$D$$
-**LKID** + PA = D -**CLKID** $^{\omega}$ + PA

Proof Sketch.
$$D$$
-LKID + PA $\subseteq D$ -CLKID $^{\omega}$ + PA \checkmark

- D-CLKID $^{\omega}$ + PA $\subseteq D$ -LKID + PA:
 - 1. Cut D-**CLKID** $^{\omega}$ + PA proof π into cycle-free parts
 - 2. Prove induction principle on order $<_{\pi}$ in PA
 - 3. Combine 1. and 2. to D-**LKID** + PA proof.

CLKID $^{\omega}$ is not equivalent to **LKID** (1/2)

- "2-Hydra statement" provable in CLKID^ω but not in LKID
- ► Hydra: mythical monster: cut off one head, grows two new heads

CLKID $^{\omega}$ is not equivalent to **LKID** (1/2)

- ▶ "2-Hydra statement" provable in **CLKID**^ω but not in **LKID**
- ▶ Hydra: mythical monster: cut off one head, grows two new heads
- ▶ 2-Hydra: Let $a, b \in \mathbb{N}$, then

$$(a+1,b+2)\mapsto (a,b),\quad (0,b+2)\mapsto (b+1,b),\quad (a+2,0)\mapsto (a+1,a)$$

Terminate if none of these rules apply.

CLKID $^{\omega}$ is not equivalent to **LKID** (1/2)

- ▶ "2-Hydra statement" provable in CLKID^ω but not in LKID
- Hydra: mythical monster: cut off one head, grows two new heads
- ▶ 2-Hydra: Let $a, b \in \mathbb{N}$, then

$$(a+1,b+2)\mapsto (a,b),\quad (0,b+2)\mapsto (b+1,b),\quad (a+2,0)\mapsto (a+1,a)$$

Terminate if none of these rules apply.

▶ Formalisation: let $L = \{0/0, s/1, N/1, p/2\}$, N defined inductively

(H)
$$H_1 \wedge H_2 \wedge H_3 \wedge H_4 \rightarrow \forall x, y \in N p(x, y)$$

$$(H_1)$$
 $p(0,0) \land p(s(0),0) \land \forall x \in N \ p(x,s(0))$

$$(H_2) \quad \forall x, y \in N \left(p(x, y) \rightarrow p(s(x), s(s(y))) \right)$$

$$(H_3) \quad \forall y \in N \left(p(s(y), y) \rightarrow p(0, s(s(y))) \right)$$

$$(H_4) \quad \forall x \in N \left(p(s(x), x) \to p(s(s(x)), 0) \right)$$

CLKID $^{\omega}$ is not equivalent to **LKID** (2/2)

▶ **Lemma. CLKID** $^{\omega}$ \vdash *H Proof.* Short and straightforward cyclic proof.

CLKID $^{\omega}$ is not equivalent to **LKID** (2/2)

- ▶ **Lemma. CLKID** $^{\omega} \vdash H$ *Proof.* Short and straightforward cyclic proof.
- ► **Theorem** [Berardi/Tatsuta '17]. **LKID** ⊬ *H Proof Sketch*. Counter-Henkin-structure:
 - ▶ Domain $\mathbb{N} \oplus \mathbb{Z}$
 - ▶ Suitable infinite sequence of pairs in \mathbb{Z} .

Summary of 3rd part

- Inductive definitions
- Infinitely deep proofs **LKID** $^{\omega}$
 - Sound and complete w.r.t. standard models
- ▶ Cyclic subsystem **CLKID** $^{\omega}$ of **LKID** $^{\omega}$
 - Finite proofs
 - Sound and complete w.r.t. Henkin models
- Proofs by induction LKID
- ▶ LKID \subseteq CLKID $^{\omega}$
- ▶ **CLKID** $^{\omega}$ ⊆ **LKID** if PA is included

Summary

Three proof-theoretic approaches to induction:

- Induction rules
- ▶ The ω -rule
- Cyclic proofs

What this talk did not contain:

- ▶ The incompleteness theorems
- Program extraction (and consistency proofs based on that)
- Bounded arithmetic (and connections to computational complexity)
- ▶ Inductive theorem proving
- **•** . . .