
NP-Completeness of the Smallest 1-Level Grammar Problem

Johanne Müller Vistisen (12340226)
TU Wien, Austria

e12340226@tuwien.ac.at

June 20, 2024

Abstract

The Smallest 1-Level Grammar Problem focuses on identifying the most compact
1-level grammar capable of generating a given string, a challenge which is relevant in many
research areas in need of space-efficient string compression. This specific variant of the
problem considers grammars where every nonterminal, except the starting symbol, has a
production rule that directly results in terminal strings. It was a long time open question
whether the Smallest Grammar Problem was NP-hard, and initial proofs were limited
to cases involving infinite alphabets. This paper examines the complexity of the Smallest
1-Level Grammar Problem for a finite alphabet. By reducing the well-known Vertex
Cover Problem to the Smallest 1-Level Grammar Problem, we demonstrate its NP-
hardness even for an alphabet of size five.

1 Introduction

Compressing a sequence of symbols, or a string, using a set of logical rules that allow for
the reconstruction of the original string has numerous applications, particularly in data storage,
transmission, and bioinformatics. This kind of compression can be seen as context-free grammar
that only produces a single word. Producing such a grammar can be done in many different ways
and this raises the question of whether it is possible to mathematically prove that a given set
of rules achieves optimal compression, formally known as the Smallest Grammar Problem
(SGP), which is the central focus of this seminar paper.

The Smallest Grammar Problem seeks to find the most compact context-free grammar
that generates a given string, where the size of a grammar is the sum of the sizes of its rules. This
problem is known to be NP-hard for unbounded alphabets, and it does not allow a polynomial-
time approximation scheme unless P = NP , [3]. However, many practical applications involve
finite alphabets, and it remained an open question whether the hardness results also apply to
this more realistic scenario. In 2016, this gap was closed when it was shown that the Smallest
Grammar Problem is indeed NP-hard even for grammars over finite alphabets [1].

This seminar paper shows a slightly different and maybe even surprising result by the same
authors [2], namely that even for a 1-level grammar with a finite alphabet, finding the smallest
grammar is NP-hard. This problem is known as the Smallest 1-Level Grammar Problem.
This problem was addressed by the same researches who answered the complexity question of
the Smallest Grammar Problem for finite alphabets, and this seminar paper follows and
elaborates on the proof from their paper from 2021, [2].

1

2 Preliminaries

In this section, we will introduce some notation of this paper, explain what a context-free (1-
level) grammar is, and introduce the Smallest 1-Level Grammar Problem. Most of the
notation comes from the aforementioned article from 2021 [2].

Notation In this paper N denotes the set of natural numbers, {0, 1, 2, . . . }. We measure the
size of a set, A, by |A|. The symbol Σ denotes a finite alphabet, where |Σ| is the size of this
alphabet. The empty word is represented by ε and has size 0. We can create words from our
finite alphabet, which are finite sequences of symbols from Σ. The set of non-empty words is
denoted Σ+, and we denote the set of all words Σ∗ = Σ+∪{ε}. The size of a word, w, is written
as |w|, and the notation |w|a is the number of times that the symbol a occurs in w.

Concatenating two words, w1 and w2, together (meaning creating the word w1w2) is done
by the · operator, such that we have w1 · w2 = w1w2, and wr

1 = w1 · w1 · . . . · w1︸ ︷︷ ︸
r times

= w1w1 . . . w1

for r ∈ N.

A context-free grammar, G is defined as G = (N,Σ, R, S). N denotes the nonterminals of
the grammar, Σ is the terminal alphabet, R is the set of rules of G. A rule is a pair (A,w) ∈ R
where given an occurrence of A in a word, we replace this with w. The rule can also be written
as A → w. Lastly, S is the starting symbol of the grammar; sometimes, instead of S, we write
the grammar’s axiom, ax. The axiom of the grammar is the right-hand side of the rule of S e.i.
S → ax.

We will look mostly at singleton grammars, which are context-free grammars where every
nonterminal has precisely one production rule. If we draw a directed graph every time a pro-
duction rule A goes to another nonterminal B, then this graph has no cycles. Said in another
way; the relation {(A,B)|(A,w) ∈ R, |w|B ≥ 1} is acyclic.

The size of a grammar is the size of the axiom of the grammar and the sum of the sizes of
all the right sides of the grammar rules:

|G| = |ax|+
∑
A∈R

|D(A)|.

When we have a word w and a grammar that can produce this word from a set of rules and
an axiom, then we say that the derivative of the grammar is w, or more formally, D(G) = w.
Taking D(E) of some word E (regarding some grammar G), which can consist of both terminals
and nonterminals, means using the rules of the nonterminals in E until everything that remains
are terminal symbols. Taking D(G) means taking D(ax), which should always lead to the word
w in our singleton grammars. A way to visualise D(ax) is to build a tree where each level of
the tree is one evaluation of a rule. All the leaves are then terminal characters, and we find the
word w by concatenating the leaves from left to right. In a 1-level singleton grammar, every
nonterminal, except for the starting symbol, has a rule that leads to a word for terminals. Said
in another way, the derivation tree of G only has one level.

The smallest (1-level) grammar problem is, as mentioned in the introduction, finding
out whether, for a given word w, there exists a 1-level grammar G of size k or smaller for some
k ∈ N. We can formulate the problem a bit more formally as:

2

Smallest 1-Level Grammar Problem (1-SGP)

Input: A word w and a k ∈ N
Question: Does there exist a level-1 grammar G with D(G) = w and |G| ≤ k?

We can easily observe that this problem is in NP, since just guessing a grammar G and checking
if D(G) = w and |G| ≤ k can be done in polynomial time.

3 NP-hardness of 1-SGP

We will show that 1-SGP is NP-hard by reducing the well-known NP-hard Vertex Cover
Problem to 1-SGP. Vertex Cover Problem is defined as follows

Vertex Cover Problem (VC)

Input: A graph G = (V,E), where and a k ∈ N
Question: Does there exist a C ⊆ V , such that for every (u, v) ∈ E it holds that {u, v}∩C ̸= ∅

and |C| ≤ k?

The reduction goes as follows; given a graph G = (V,E), where n := |V | and m := |E|,
we wish to solve the Vertex Cover Problem for k. To do so we make the following con-
structions1. We define an alphabet of five symbols, Σ = {a, b, ⋄, ⋆,#} and the abbreviation
[⋄] = ⋄n3 . Then for each vertex vi ∈ V we create a word vi ∈ {a, b}⌈logn⌉ such that no two
vertices corresponds to the same word (vi = vj if and only if i = j)2. Finally, we construct a
word, w:

w =
n∏

i=1

(#vi[⋄]vi#[⋄])2⌈log(n)⌉+3
n∏

i=1

(#vi#[⋄])⌈log(n)⌉+1 (1)

m∏
i=1

(
#vj2i−1#vj2i#[⋄]

)2
⋆ [⋄]n3

.

Now, to show that the reduction from VC to 1-SGP works, we will show that we can find a
vertex cover of size at most k if and only if we can find the smallest 1-level grammar of size at
most k′ = 13n⌈log(n)⌉17n+ k + 6m+ 1 + 2n3, where n is the number of vertices and m is the
number of edges in G.

If there exists a vertex cover of size k, then there exists a 1-level grammar of size
at most k′

Lemma 1. If there exists a vertex cover of G of size k then there exists a grammar G with
D(G) = w and |G| = k′ = 13n⌈log(n)⌉17n+ k + 6m+ 1 + 2n3.

Proof. We are given a vertex cover Γ ⊆ V of the graph G. Now we construct the following
grammar, G = (n,Σ, R, ax);

1We will, without loss of generality, assume through this that n := |V | ≥ 40. This can be done since we can
just assume that we have stored all the answers to the finite number of problems where n < 40.

2This can be done in different ways, e.g., by taking the binary representation of i using a and b as the binary
alphabet.

3

N =
{
D,
←−
Vi,
−→
Vi,
←→
Vj , | 1 ≤ i ≤ n, vj ∈ Γ

}
R = {S → u,D → [⋄]} ∪

{←−
V i → #vi,

−→
V i → vi# | 1 ≤ i ≤ n

}
∪{←→

Vj → #vj# | vj ∈ Γ
}

ax =
n∏

i=1

(←−
ViD

−→
ViD

)2⌈log(n)⌉+3
n∏

i=1

(yiD)⌈log(n)⌉+1
m∏
i=1

(ziD)2 ⋆ Dn3

where for every i ∈ {1, 2, . . . , n} we have yi =
←→
Vi if vi ∈ Γ and yi =

←−
Vi# otherwise. Furthermore

for every i ∈ {1, 2, . . . ,m}, zi =
←→
V j2i−1

−→
V j2i−1 if vj2i−1 ∈ Γ and zi =

←−
V j2i−1

←→
V j2i if vj2i−1 ̸∈ Γ.

Since the pair of vertices (vj2i−1 , vj2i) are connected by an edge, at least one of them has to be in
the vertex cover Γ, since otherwise the edge (vj2i−1 , vj2i) is uncovered. It is easy to see that this
grammar is a 1-level grammar since all the nonterminals of N have rules that end in terminal
characters.

Now, we move on to checking whether D(G) = w. Replacing all the nonterminals in the
axiom with the corresponding rules results in

n∏
i=1

(#vi[⋄]vi#[⋄])2⌈log(n)⌉+3
n∏

i=1

(yi[⋄])⌈log(n)⌉+1
m∏
i=1

(zi[⋄])2 ⋆ [⋄]n
3
.

The only thing left to look at is the yis and zis. But since yi is either
←→
Vi which goes to #vi#

or
←−
Vi# which goes to #vi#, yi is going to be replaced by the same word either way. It is quite

similar to zi, which is either
←→
V j2i−1

−→
V j2i or

←−
V j2i−1

←→
V j2i , both resulting in #vj2i−1#.

The only thing left to assert is whether |G| has the size we claimed it had. First, we look at
the size of the rules. The rule

←−
V i → #vi has size ⌈log(n)⌉+ 1 (because of the way vi previously

were defined), and it is the same for the rule
−→
V i → vi#, which also has size ⌈log(n)⌉+ 1. Since

we have one of each of these two rule types for each vertex, vi ∈ V , those two rules (for all
vertices combined) in total have size 2n (⌈log(n)⌉+ 1) = 2n⌈log(n)⌉ + 2n. For each vertex, vj ,
in the vertex cover there is also a rule

←→
V j that goes to #vj#, since the vertex cover has size

|Γ| = k and the rule has size ⌈log(n)⌉, this contributes with k(⌈log(n)⌉ + 2) = k⌈log(n)⌉ + 2k.
The rule D → [⋄] has size n3. Hence, the rules, when all added together, have size

2n⌈log(n)⌉+ 2n+ k⌈log(n)⌉+ 2k + n3.

We find the size of the axiom by counting the number of symbols (terminals and nonterminals)
that occur in the axiom. From the first product of ax we get n · 4(2⌈log(n)⌉+3) symbols. From
the next product we get (3n− k)(⌈log(n)⌉+1) symbols because yi uses 3 symbols unless vi ∈ Γ
in that case yi only consists of 2 symbols. The last product has m(3 · 2) = 6m symbols, the ⋆ is
a single symbol and Dn3 consists of n3 symbols. Thus, the size of the axiom is

4n(2⌈log(n)⌉+ 3) + (3n− k)(⌈log(n)⌉+ 1) + 6m+ 1 + n3.

Abbreviated a bit and added to the size of the rules, we end up with a grammar of the wished

4

size,

4n(2⌈log(n)⌉+ 3) + (3n− k)(⌈log(n)⌉+ 1) + 6m+ 1 + n3

+ 2n⌈log(n)⌉+ 2n+ k⌈log(n)⌉+ 2k + n3

= 11n⌈log(n)⌉ − k⌈log(n)⌉+ 15n− k + 6m+ 1 + n3.

+ 2n⌈log(n)⌉+ 2n+ k⌈log(n)⌉+ 2k + n3

= 13n⌈log(n)⌉+ 17n+ k + 6m+ 1 + 2n3

This concludes the proof.

If there exists a 1-level grammar of size k′, then there exists a vertex cover of size
at most k. The word w continues to be defined as previously and the same for the graph
G = (V,E). This part of the reduction will establish that there indeed exists a vertex cover of
size at most k if a grammar of size k′ = 13n⌈log(n)⌉+ 17n+ k + 6m+ 1 + 2n3 exists.

Lemma 2. Let G be a 1-level grammar, G = (N,Σ, R, ax). Then |G| ≥ 2
√

|D(G)|.

Proof. Let n := |D(G)| and let ax be the axiom of G. We then chose a rule A → u where |u| is
the biggest of all the rules in R. The number of symbols in the axioms times the size of u will
then always be bigger than or equal to |D(G)| since A → u is the rule of maximum length and
the size of D(G) comes from going through all symbols of the axiom and summing their sizes.
Hence we get

|ax||u| ≥ |D(G)|.

Now we use the small trick that x+ y ≥ 2
√
xy, for all y, x ≥ 0. Therefore

|ax|+ |u| ≥ 2
√
|ax||u|.

Now, we use the fact that |G| is the size of the axiom and the size of all the rules of G put
together. This means that |G| is greater or equal to the size of the axiom and just the size of a
single rule;

|G| ≥ |ax|+ |u| ≥ 2
√
|ax||u| ≥ 2

√
n = 2

√
|D(G)|.

We have now shown that the compression of G is at most quadratic.

Lemma 3. Let G = (N,Σ, R, ax) be a smallest 1-level grammar with D(G) = w and |G| = k′

then |G| < 5n3

2 .

Proof. We begin with a couple of observations. Since k is going to be the size of a vertex cover
of G = (V,E), then obviously |V | = n ≥ k. The number of edges in a simple graph can be upper
bounded by m ≤ n(n− 1) = n2 − n if we assume that there are no self-loops or double edges in
G, very specifically m+ 1 ≤ n2 − n+ 1 < n2. From our assumptions, we have

|G| ≤ 13n⌈log(n)⌉+ 17n+ k + 6m+ 1 + 2n3 (2)

Since we continue to assume that n ≥ 40, we then can establish the following (note that we have
not included 2n3 from |G|);

13n⌈log(n)⌉+ 17n+ k + 6m < 13n2 + 17n+ n+ 6n2 (3)

= 19n2 + 18n

< 20n2.

5

From 20n2 we can get to 40
2 n

2 ≤ n
2n

2 = n3

2 still by using the fact that n ≥ 40. If we add n3

2 to
the 2n3 we did not include in (3) we obtain a strict upper bound for the size of G namely,

|G| < n3

2
+ 2n3 =

5n3

2
. (4)

Lemma 4. Let G = (N,Σ, R, ax) be a smallest 1-level grammar of size k′ with D(G) = w then
2n3 ≤ |G|.

Proof. We begin with an observation: The symbol splits the axiom of G in two. This is because
⋆ only occurs once in w and therefore splits w into two parts with non-overlapping rules (because
it does not make sense to make a rule for a symbol only occurring once or include this symbol
in any other rules). Therefore we have that the axiom of G can actually be written as u ⋆ u′,
where D(u′) = [⋄]n3 .

We move on to the lower bound of |G|. As just mentioned the axiom of G has the form
u ⋆ u′ and D(u′) = [⋄]n3 . If we concern ourselves only with the grammar connected to u′,
let us denote it G′ then this grammar have D(u′) = [⋄]n3 which is a word of size n6 because
[⋄]n3

= (⋄n3
)n

3
= (⋄ ⋄ . . . ⋄︸ ︷︷ ︸

n3 times

)n
3 . Consequently D(u′) is going to be a word of n3 ·n3 = n6 symbols.

But from Lemma 2 we have that

|G′| ≥ 2
√

D(u′) = 2
√
n6 = 2n3.

Since |G| ≥ |G′| we now have

2n3 ≤ |G|.

Lemma 5. Let G = (N,Σ, R, ax) be a smallest 1-level grammar with D(G) = w, then there is
a D ∈ N where D = [⋄] and for every other rule A → x in R, |x|⋄ = 0.

Proof. Earlier, we made the observation that the axiom of G must be of the form u⋆u′. We will
begin by looking at the subword u′ and how to optimally produce it. Let us first assume that
there is a rule A → ⋄l with l > n3. This rule can only be used on the suffix of w since all other
occurrences of ⋄ are strictly smaller than [⋄]n3 . The question is, then, what is the most optimal
rule to compress the subword [⋄]n3? If we pick A → [⋄], then the axiom of the grammar G then
becomes u ⋆ An3 (recall that we just showed that we could separate the axiom of G into u ⋆ u′).
Applying Lemma 2 on the sub-grammar G′ with derivative D(G′) we get that

|G′| ≥ 2
√
|D(G′)| = 2

√
|[⋄]n3 | = 2n3

And since the axiom |ax| + |right side of A| = |An3 | + |[⋄]| = 2n3 the rule A → [⋄] compresses
[⋄]n3 optimally because it results in |G′| = 2n3. This means that there at least does not exist a
rule A → ⋄l with l > n3.

We still do not know what a rule that deals with [⋄] looks like, but since the size of G is
strictly smaller than 3n3, we can only have at most two nonterminals that produce some factor
of [⋄]. The reason is that [⋄] occurs n3 times and, therefore, a rule, let us denote this rule δ, that
deals with some factor of [⋄] will take up some number of spaces in the axiom |δn3 | = |δ| · n3.
Which means that δ ≤ 2 in order to have |G| = |ax|+|rules of G| ≤ 3n3. But if two nonterminals
are used to construct [⋄], then one of these nonterminals must have a right side that is larger or
equal to |[⋄]|2 . Let us now construct such a rule and call it B → v with |v| ≥ |[⋄]|

2 = n3

2 . Now we
have the following claim:

6

Claim 1. There cannot be a rule in G that contains a symbol from Σ\{⋄} with a right-side that
has size more than or equal to n3

2 .

Proof of claim 1. To prove this claim, we begin by noticing that a rule, here denoted R1, with
a symbol Σ \ {⋄} will not be a rule in G′. This means that the size of G will at least be

|G| ≥ |G′|+ |R1| = 2n3 +
n3

2
=

5n3

2
.

But this is a contradiction to Lemma 3 which stated that |G| < 5n3

2 . This proves the claim.
(Claim 1) □

We will now show why we can replace every rule B → v occurrence in G′ with the rule
D → [⋄]. Let us assume that the |v| is the largest among all the right sides of the rules in G′.
Let us denote |v| = n3 − t. If we now look at u′ (from the axiom of G, ax = u ⋆ u′). The size of
u′ is

|u′| ≥ n6

n3 − t
>

n6 − t2

n3 − t
=

(n3 + t)(n3 − t)

n3 − t
= n3 + t.

but since the size of the axiom would be n3 if we used the rule D → [⋄] we can remove every
occurrence of B in u′ without increasing the grammar.

So we can replace the rule of B everywhere in u′, but it might have been the case that the
rule is used in u, which means that what is left of the proof is to show that D is actually the only
rule which is used to replace [⋄]. Let us assume that there is some other sequence of terminals
and nonterminals such that their rules produce [⋄] of u (that is, the occurrences of [⋄] on the left
side of ⋆). Theses symbols will be of the following form; E1C1 . . . CpE2, and have the derivative
D(E1C1 . . . CpE2) = x ⋄q y. With this notation, we have E1 → x⋄q with q ≥ 1 or E → ε, and
similarly E2 → ⋄ry, for y ≥ 1. Now the trick will be to exchange this long expression of symbols
E1C1 . . . CpE2 to E′1DE′2 and showing that this does not increase the size of the grammar. The
way E′1 and E′2 are defined is the following; E′1 → x if E1 → x⋄q and if E1 = ε then E′1 = ε, a
very similar definition applies to E′2; E′2 → y if E2 → ⋄ry and if E2 = ε then E′2 = ε.

First, we show that in E1C1 . . . CpE2 p must be greater or equal to 1. This is because if
p = 0 then D(E1E2) = x[⋄]y, but since there only are two rules, E1 and E2, that produce this
derivative, one of these rules must at least have size n3

2 because x[⋄]y ≥ n3

2 . In Claim 1, we
showed that it is impossible for a rule to have a size greater than n3

2 and contain any symbol
from Σ other than ⋄. Hence, we know that p ≥ 1. We now see that |E1| ≥ |E′1| and |E2| ≥ |E′2|
by their definitions, and since p ≥ 1 we have that |C1 . . . Cp| ≥ |D|, which means that we can
replace E1C1 . . . CpE2 with E′1DE′2 without increasing the size of the grammar. We can now
conclude that every occurrence of [⋄] in w is produced by the rule D, and even if there were
more rules that produced the symbol ⋄, they would be superfluous, and we could remove them.
This concludes the proof of the Lemma. □

Lemma 6. If there exists a 1-level grammar G with D(G) = w and |G| ≤ 13n⌈log(n)⌉+ 17n+
k + 6m+ 1 + 2n3, then there exists a size k vertex cover of G.

Proof. We can bound the size of G both from above and from below the following way because
of Lemma 3 and Lemma 4, which is

2n3 ≤ |G| < 5n3

2
< 3n3.

7

Having established the bounds of |G|, we establish the form that the axiom of G must eventually
take. Since G produce the word w as defined earlier, the axiom must have the form

ax =
n∏

i=1

(
αi[⋄]α′i[⋄]

)2⌈log(n)⌉+3
n∏

i=1

(βi[⋄])⌈log(n)⌉+1
m∏
i=1

(γi[⋄])2 ⋆ [⋄]n
3
. (5)

From Lemma 5 we know that all occurrence of [⋄] can be produced by D → [⋄] and therefore
the axiom becomes

ax =
n∏

i=1

(
αiDα′iD

)2⌈log(n)⌉+3
n∏

i=1

(βiD)⌈log(n)⌉+1
m∏
i=1

(γiD)2 ⋆ Dn3
.

In the following claims, we will show αi, α′i and βi (for 1 ≤ i ≤ n), and γi (for 1 ≤ i ≤ m) can
be replaced in the axiom by symbols that we have seen in Lemma 1 without increasing the size
of the grammar.
Claim 2. For every 1 ≤ i ≤ n we have αi =

←−
Vi and α′i =

−→
Vi, where

←−
Vi and

−→
Vi are nonterminals

with rules
←−
Vi → #vi and

−→
Vi → vi#.

Proof of claim 2. For every i, 1 ≤ i ≤ n, we know that D(αi) = #vi. If |αi| = 1, then αi

would have to be a single symbol, namely a nonterminal, with a rule that resulted in #vi. This
nonterminal could, for instance, be

←−
V i → #vi . If then for some reason |αi| ≥ 2 we could

substitute this αi by
←−
V i with rule

←−
V i → #vi . It would not increase the grammar to substitute

αi by
←−
V i because even though the new rule would increase the grammar by ⌈log(n)⌉+1, it would

also decrease the axiom by 2⌈log(n)⌉+3 because |
←−
V i| = 1. Hence, the grammar is not increased

by substituting all αi with size more than 1. One can use a similar argument to show that α′i
with a size more than 1 can be replaced by

−→
V i with rule

−→
V i → vi#. This shows the claim, and

we conclude that the grammar G has the two nonterminals
←−
V i and

−→
V i with corresponding rules

←−
V i → #vi and

−→
V i → vi# . (Claim 2) □

Claim 3. For every i, 1 ≤ i ≤ n, βi =
←−
V i# or βi =

←→
V i where

←−
V i and

←→
V i are nonterminals with

rules
←−
V i → #vi and

←→
V i → #vi#.

Proof of claim 3. To prove this claim, we look at two different cases |βi| = 1 and |βi| ≥ 2 for
i, 1 ≤ i ≤ n. If |βi| = 1 then there is some rule with a nonterminal C → #vi#. We could
replace C with

←→
V i and then have the rule

←→
V i → #vi# . Otherwise if |βi| ≥ 2 for some i,

1 ≤ i ≤ n, then we could replace those βi with
←−
V i#. This would not increase the grammar,

since the |βi| ≥ |
←−
V i#| = 2 and the derivative of rule remains #vi# for every i, 1 ≤ i ≤ n. In

conclusion, for every i, 1 ≤ i ≤ n, either βi =
←→
V i or βi =

←−
V i#. (Claim 3) □

Now the last unknown symbols of the axiom are γi for every i for 1 ≤ i ≤ m. We recall that
D(γi) = #vj2i−1#vj2i# for every j, 1 ≤ j ≤ m. We will look at three distinct cases for the size
of γi; |γi| = 1, |γi| = 2, and |γi| ≥ 3.

With |γi| = 1, we must have a nonterminal with a rule of the following form E → #vj2i−1#vj2i#.
This rule has a right side of size 2⌈log(n)⌉+3, and it will add 2 to the size of the axiom (because
we have γ2i). If we instead look at

←−
V j2i−1

−→
V j2i#, the derivative of this will be of size 2⌈log(n)⌉+3

and it will add 6 to the axiom. But since #vj2i−1#vj2i# only occurs in w in γi, we can conclude
that removing the rule E → #vj2i−1#vj2i# will decrease the grammar by 2⌈log(n)⌉ + 3 and
since we already have introduced the nonterminals

←−
V j2i−1 ,

−→
V j2i , and their rules we only increase

the axiom with 4 by using these rules and since 4 ≤ 2⌈log(n)⌉ + 3 we still have not increased
the size of the grammar.

8

If |γi| = 2 then we know that there must be two nonterminals, E1 and E2 such that
D(E1E2) = #vj2i−1#vj2i#, and either E1 → #vj2i−1#x or E2 → x#vj2i#. Let us begin
by looking at the case of E1 → #vj2i−1#x then we can change the rule E1 so we remove the
x and the rule becomes E1 → #vj2i−1# which is equivalent to the rule

←→
V j2i−1 and to obtain

the rest of #vj2i−1#vj2i# we make E2 =
−→
V j2i . We do all this without increasing the grammar

since the size of the right-hand side of the rule remains the same, and the fact that we have
not introduced new rules. The case of E2 → x#vj2i# is very similar and there we end up with
replacing E2 with

←→
V j2i and E1 with

←−
V i

Finally if |γi| ≥ 3 we can replace every occurrence of γi with
←−
V j2i−1

←−
V j2i# without increasing

the size of the grammar, since the size of
←−
V j2i−1

←−
V j2i# is 3 and the derivative of γi remains

unchanged.
Based on the previous statements as well as Claim 2 and Claim 3, we can conclude that the

rules of G are the following: D → [⋄],
←−
V i → #vi and

−→
V i → vi# for 1 ≤ i ≤ n and lastly for

all i ∈ J for some J ⊆ {1, 2, . . . , n} we have the rule
←→
V i → #vi# . We denote |J| = l and the

corresponding vertex set is defined the following way V = {vi | i ∈ J}. Finally, we define t as
the number of edges covered by V. Now, the axiom looks the following way

ax =
n∏

i=1

(←−
ViD

−→
ViD

)2⌈log(n)⌉+3
n∏

i=1

(yiD)⌈log(n)⌉+1
m∏
i=1

(ziD)2 ⋆ Dn3

where (almost as in Lemma 1) for every i, 1 ≤ i ≤ n, we have yi =
←→
Vi if vi ∈ V and yi =

←−
Vi#

otherwise. Furthermore for every i, 1 ≤ i ≤ m, zi =
←−
V j2i−1

←−
V j2i# if the edge (vj2i−1 , vj2i) is not

covered by V. If vj2i−1 ∈ V then zi =
←→
V j2i−1

←−
V j2i or zi =

←−
V j2i−1

←→
V j2i if vj2i ∈ V. Now, we want

to look at the size of G, which is equal to the size of the rules of G and the axiom. The size of
the rules is

n∑
i=1

|vi#|+ |#vi|+
l∑

i=1

|#vi#|+ |[⋄]| = n(2⌈log(n)⌉+ 2) + l(⌈log(n)⌉+ 2) + n3

= 2n⌈log(n)⌉+ 2n+ l⌈log(n)⌉+ 2l + n3.

Then, we will look at the size of the axiom;

|ax| = 4n(2⌈log(n)⌉+ 3) + (3n− l)(⌈log(n)⌉+ 1) + 6t+ (m− t)8 + 1 + n3

= 8n⌈log(n)⌉+ 12n+ 3n⌈log(n)⌉+ 3n− l⌈log(n)⌉ − l + 6t+ 8m− 8t+ 1 + n3

= 11n⌈log(n)⌉+ 15n− l⌈log(n)⌉ − l + 8m− 2t+ 1 + n3.

Now we have |G| it is

|G| = 2n⌈log(n)⌉+ 2n+ l⌈log(n)⌉+ 2l + n3︸ ︷︷ ︸
size of rules

+11n⌈log(n)⌉+ 15n− l⌈log(n)⌉ − l + 8m− 2t+ 1 + n3︸ ︷︷ ︸
|ax|

= 13n⌈log(n)⌉+ 17n+ l + 8m− 2t+ 1 + 2n3.

From the assumptions of the Lemma, we also have that |G| ≤ 13n⌈log(n)⌉+17n+k+6m+1+2n3.
This means that

13n⌈log(n)⌉+ 17n+ l + 8m− 2t+ 1 + 2n3 ≤ 13n⌈log(n)⌉+ 17n+ k + 6m+ 1 + 2n3

l + 8m− 2t ≤ k + 6m

l + 2m− 2t ≤ k

9

Since the total number of edges m is larger or equal to the number of edges covered by V, t,
we have that 2m − 2t ≥ 0, which leads to l ≤ k. It also leads m − k−l

2 ≤ t, meaning that at
least m − k−l

2 of the edges of G are covered by V. We denote the number of edges that are
still uncovered q. To make a complete vertex cover V ′, we must add at most q vertices. Since
q ≤ k−l

2 ≤ k− l, we get that adding q vertices to V will influence the size of the new vertex cover
the following way

|V ′| ≤ |V|+ q ≤ l + (k − l) = k.

This means that we can obtain a vertex cover, V ′, of the graph G that has size at most k. □

Theorem 1. Even for an alphabet of size 5, the Smallest 1-Level Grammar Problem is
NP-hard.

Proof. This follows directly from Lemma 1 and Lemma 6.

4 Conclusion

We have in this seminar paper shown that the Smallest 1-Level Grammar Problem is
NP-hard for even finite alphabets (in this case an alphabet of size 5). The results were first
shown in [1] and this seminar paper has recreated and elaborated on the proof from [2].

References

[1] K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid. On the complexity of grammar-
based compression over fixed alphabets. Leibniz International Proceedings in Informatics,
Lipics, 55:122, 2016. ISSN 18688969. doi: 10.4230/LIPIcs.ICALP.2016.122.

[2] K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid. On the complexity of the
smallest grammar problem over fixed alphabets. Theory of Computing Systems, 65(2):344–
409, 2021. ISSN 14330490, 14324350. doi: 10.1007/s00224-020-10013-w.

[3] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. Ieee Transactions on Information Theory, 51(7):2554–2576,
2005. ISSN 15579654, 00189448. doi: 10.1109/TIT.2005.850116.

10

