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Introduction

In the year 1934, Gerhard Gentzen introduced his sequent calculus LK, a refinement of his
earlier calculus of natural deduction (cf. [Gen34]). His aim was to prove the consistency
of arithmetic, and to this end he formulated and proved the cut elimination theorem
(“Gentzen’s Hauptsatz”). Briefly, the cut elimination theorem shows that any sequent
proof can be algorithmically transformed into a proof that does not use the cut rule; proofs
with this property are called cut-free or analytic. The only formulas that can occur in a
cut-free proof are instances of subformulas of the end sequent. This so-called subformula
property significantly simplifies the structure of possible proofs of a given sequent, making
cut-free proofs very convenient as theoretical objects. Gentzen himself did not originally
intend cut elimination to be applied to actual mathematical proofs; it was Georg Kreisel
who advocated using it to extract constructive content from nonconstructive proofs, cf.
[Kre51], [Kre52]. Luckhardt used Kreisel’s method to obtain a polynomial bound on the
number of exceptionally good rational approximations in the Thue-Siegel-Roth theorem
(see [Luc89]); a similar bound was found independently by Bombieri and van der Poorten
using number-theoretical methods, see [Bom88]. Kohlenbach carries on Kreisel’s ideas
under the name “Applied Proof Theory”, cf. [Koh08].

One way to formalize the “constructive content” of a proof is Herbrand’s Theorem:
In a simple formulation, a formula ∃�̄�𝐴 where 𝐴 is quantifier-free is valid iff there is a
tautological disjunction

⋁︀𝑛
𝑖=1𝐴[�̄�∖𝑡𝑖] of instances of 𝐴, a so-called Herbrand disjunction.

Given a cut-free proof 𝜋* of ∃�̄�𝐴, we can obtain this disjunction by collecting all the
quantifier inferences in 𝜋*. Essentially, the Herbrand disjunction contains all the witness
terms that we use to prove an existential formula valid. We can also write this disjunction
over instances as a set of instances and call it an Herbrand set.

In formalizing actual mathematical proofs, one will inevitably have to use the cut rule.
How should we treat such formalized proofs that contain cuts? By the cut elimination
theorem, we could certainly transform a given proof into a cut-free one and proceed
from there. But cut elimination is a tedious process, and as shown (independently) by
Statman and Orevkov, cut-free proofs can be nonelementarily large compared to their
counterparts with cuts (see [Sta79], [Ore79], [Pud98]), so one would prefer a method
that circumvents cut elimination and extracts an Herbrand set directly from the original
proof. The approach that we discuss in this thesis is to extract from a proof 𝜋 a tree
grammar 𝐺(𝜋) such that the language of 𝐺(𝜋) is a tautological set of instances. This is
accomplished by carrying out cut elimination on 𝜋 according to a certain strategy. Stefan
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2 Contents

Hetzl proved this result in [Het12a] for proofs whose end sequents consist of a single
prenex formula and which only contain cuts with at most one quantifier using totally
rigid tree grammars, as defined in [Jac11]; in this sense, this thesis generalizes [Het12a].

In [Het12b], Hetzl and Straßburger presented the stronger result that if 𝜋 can be
transformed by cut elimination into a cut-free proof 𝜋*, then the language of 𝐺(𝜋) is an
upper bound for the Herbrand set we would obtain from 𝜋*.

The notion of a Herbrand disjunction can be extended to more complicated formulas:
it is well-known that an arbitrary formula is valid iff it has an expansion proof, which is
a tree that combines constructive information of an Herbrand disjunction with a more
complex propositional structure. Expansion trees were first proposed by Dale Miller in
[Mil87]. In analogy to the simple prenex case, we can extract an expansion proof of a
valid formula from a given cut-free sequent proof of that formula. Moreover, the tree can
then be “flattened” in order to obtain a set of instances that is tautological.

The principal result of this thesis is the development of a new type of tree grammar,
the so-called constrained grammars. A constrained grammar is a tree grammar together
with a propositional formula that determines which combinations of productions can and
cannot occur in derivations, which is an essential feature if one is dealing with nested
quantifiers and logical connectives. It turns out that constrained grammars generalize
totally rigid tree grammars, and in fact the constrained grammar 𝐺(𝜋) associated with a
proof 𝜋 is always totally rigid.

Using constrained grammars, we have managed to extend the results of [Het12a] to
proofs whose end sequent consists of arbitrarily many Boolean combinations of prenex
formulas and whose cut formulas may not contain quantifier alternations, but are not
otherwise restricted. The proof strategy is inspired by [Het12b] in that we work with a
local cut reduction procedure.



CHAPTER 1
Proofs

1.1 Basic definitions
Definition 1.1 (Sequent). A sequent is an ordered pair of finite multisets of formulas
({𝐴1, . . . ,𝐴𝑚},{𝐵1, . . . ,𝐵𝑛}), written as 𝐴1, . . . ,𝐴𝑚 ⊢ 𝐵1, . . . ,𝐵𝑛. The first component
of a sequent is called the antecedent, the second is called the succedent and both are
referred to as cedents. Note that while cedents are usually written as lists, they are
actually multisets and hence the order in which their elements appear is irrelevant.

The natural interpretation of the sequent 𝐴1, . . . ,𝐴𝑚 ⊢ 𝐵1, . . . ,𝐵𝑛 is “if all of the 𝐴𝑖
hold, then one of the 𝐵𝑗 holds” (or, more formally, this sequent can be interpreted as the
formula ¬𝐴1 ∨ . . . ∨ ¬𝐴𝑚 ∨𝐵1 ∨ . . . ∨𝐵𝑛). As a consequence, concepts such as models,
satisfiability and validity of sequents are well-defined. The special cases 𝐴1, . . . ,𝐴𝑚 ⊢ and
⊢ are interpreted as “𝐴1, . . . ,𝐴𝑚 lead to a contradiction” and “there is a contradiction”,
respectively. ⊢ is called the empty sequent and usually written as ⊥.
We generally use uppercase Greek letters 𝛤,𝛱,𝛥,𝛬, . . . to denote cedents. If we want to
emphasize one or more formulas in either cedent, we will use the notation 𝛤,𝐴,𝐵,𝐶, . . ..

The logical calculus we use in this thesis is a variant of the system that Gentzen
introduced in [Gen34] under the name LK, for “Logistikkalkül klassisch”. LK is a
sequent calculus, which means that it describes a method of deriving sequents from other
sequents via certain inference rules. Before we can list the inference rules of LK, we
need to define the substitution of terms in formulas.

Definition 1.2 (Substitution operator). Let 𝑠1, . . . ,𝑠𝑛, 𝑡1, . . . ,𝑡𝑛 be terms. The substitu-
tion operator [𝑠1∖𝑡1, . . . ,𝑠𝑛∖𝑡𝑛] acts on a formula 𝐴 by replacing every occurrence of each
𝑠𝑖 in 𝐴 with 𝑡𝑖. The result is written as 𝐴[𝑠1∖𝑡1, . . . ,𝑠𝑛∖𝑡𝑛], i.e. the operator is written
as a postfix. Note that 𝐴[𝑠1∖𝑡1, . . . ,𝑠𝑛∖𝑡𝑛] is only defined if the 𝑡𝑖 do not contain any
variables that would become bound in 𝐴.

Definition 1.3 (Inference rules). An inference rule is an expression of the form 𝛤 ′ ⊢ 𝛥′

𝛤 ⊢ 𝛥
𝑟

or 𝛤
′ ⊢ 𝛥′ 𝛤 ′′ ⊢ 𝛥′′

𝛤 ⊢ 𝛥
𝑟, where 𝑟 is the name of the rule. The inference rules of LK are:
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4 1 Proofs

1. Contraction:

𝐴,𝐴,𝛤 ⊢ 𝛥

𝐴,𝛤 ⊢ 𝛥
𝑐𝑙

𝛤 ⊢ 𝛥,𝐴,𝐴

𝛤 ⊢ 𝛥,𝐴
𝑐𝑟

2. Weakening:

𝛤 ⊢ 𝛥
𝐴,𝛤 ⊢ 𝛥

𝑤𝑙
𝛤 ⊢ 𝛥
𝛤 ⊢ 𝛥,𝐴

𝑤𝑟

3. Propositional rules:

𝐴,𝛤 ⊢ 𝛥 𝐵,𝛱 ⊢ 𝛬

𝐴 ∨𝐵,𝛤,𝛱 ⊢ 𝛥,𝛬
∨𝑙

𝛤 ⊢ 𝛥,𝐴,𝐵

𝛤 ⊢ 𝛥,𝐴 ∨𝐵
∨𝑟

𝐴,𝐵, 𝛤 ⊢ 𝛥

𝐴 ∧𝐵,𝛤 ⊢ 𝛥
∧𝑙

𝛤 ⊢ 𝛥,𝐴 𝛱 ⊢ 𝛬,𝐵

𝛤,𝛱 ⊢ 𝛥,𝛬,𝐴 ∧𝐵
∧𝑟

𝛤 ⊢ 𝛥,𝐴

¬𝐴,𝛤 ⊢ 𝛥
¬𝑙

𝐴,𝛤 ⊢ 𝛥

𝛤 ⊢ 𝛥,¬𝐴
¬𝑟

4. Quantifier rules:

𝐴[𝑥∖𝑡], 𝛤 ⊢ 𝛥

∀𝑥𝐴, 𝛤 ⊢ 𝛥
∀𝑙

𝛤 ⊢ 𝛥,𝐴[𝑥∖𝛼]
𝛤 ⊢ 𝛥,∀𝑥𝐴 ∀𝑟

𝐴[𝑥∖𝛼], 𝛤 ⊢ 𝛥

∃𝑥𝐴, 𝛤 ⊢ 𝛥
∃𝑙

𝛤 ⊢ 𝛥,𝐴[𝑥∖𝑡]
𝛤 ⊢ 𝛥,∀𝑥𝐴 ∃𝑟

Here, 𝑡 is any term, while 𝛼 is a variable that does not occur in 𝛤 , 𝛥 or 𝐴, called
an eigenvariable. The inferences that use eigenvariables are called strong quantifier
inferences, the others weak quantifier inferences.

5. The cut rule:

𝛤 ⊢ 𝛥,𝐴 𝐴,𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡

The formula 𝐴 is called the cut formula of the inference.

In all of these cases, the sequents above the line are called premises and the sequent
below the line is called the conclusion. An inference is called unary or binary if it has
one or two premises, respectively. Moreover, in all of these cases except 𝑐𝑢𝑡, the formula
that is emphasized in the conclusion is called the main formula, while those that are
emphasized in the premises are called auxiliary formulas.

It is easy to verify that all of these rules are sound, i.e. if their premises are valid, then
so are their conclusions.

Strictly speaking, there is a difference between inference rules and inferences: An
inference rule is a template for generating inferences; an inference is a concrete instance
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of an inference rule. In practice we will mostly use the term “inference” and trust that
the meaning can be derived from context.

If 𝑐 is a cut in a proof 𝜋, i.e. a concrete instance of the cut rule, then we may assign
various attributes to 𝑐 according to the form of its cut formula 𝐴𝑐. For example, if 𝐴𝑐 is
quantifier-free, we call 𝑐 an unquantified cut.

Definition 1.4 (LK-proof). Let 𝛤 ⊢ 𝛥 be a sequent. An LK-proof of 𝛤 ⊢ 𝛥 is a finite
tree 𝜋 of sequents such that

1. The root of 𝜋 is 𝛤 ⊢ 𝛥.
2. The leaves of 𝜋 are sequents of the form 𝐴 ⊢ 𝐴 with 𝐴 atomic; such sequents are

called axioms.
3. Every inner node 𝛱 ⊢ 𝛬 of 𝜋 has one or two children 𝛱 ′ ⊢ 𝛬′ (and 𝛱 ′′ ⊢ 𝛬′′) such

that

𝛱 ′ ⊢ 𝛬′

𝛱 ⊢ 𝛬
or 𝛱 ′ ⊢ 𝛬′ 𝛱 ′′ ⊢ 𝛬′′

𝛱 ⊢ 𝛬

is an inference of LK.

𝛤 ⊢ 𝛥 is called provable if there is an LK-proof of 𝛤 ⊢ 𝛥. A subtree of 𝜋 that is itself a
proof is called a subproof of 𝜋.
A proof in which no two strong quantifier inferences use the same eigenvariable is said to
be regular ; from this point on we will always assume regularity without explicitly stating
it.

Proofs are visualized with the root at the bottom and the leaves at the top; as such,
the notions of “upward” and “downward” are well-defined. Note that any formula may
occur multiple times within a proof and even within a single inference, but it is often
necessary to refer to a concrete occurrence of a formula. Consequently, we use letters
𝜇,𝜈, . . ., possibly with subscripts, to refer to individual occurrences of formulas in a proof
or inference. We will denote such formulas by 𝐴[𝜇] etc. The same method will be used to
refer to concrete inferences within a proof.

Theorem 1.5. LK is sound, i.e. if 𝛤 ⊢ 𝛥 is LK-provable, it is valid.

Proof. By induction on the depth of proofs. Proofs of depth 1 consist of a single axiom,
which is certainly valid. If 𝜋 is a proof of depth 𝑛+ 1, then its final inference 𝜄 is either
unary or binary and the premises of 𝜄 have proofs of length at most 𝑛. It follows that
these premises are valid and because 𝜄 preserves validity, so is 𝛤 ⊢ 𝛥.

All inference rules of LK apart from 𝑐𝑢𝑡 obey the so-called subformula property: The
only formulas that appear in the premises of these inferences are subformulas (or instances,
in the case of quantifier inferences) of formulas in the conclusion. By extension, if a proof
does not contain cuts, the only formulas that occur anywhere within it are instances
of subformulas of the end sequent. In other words, 𝑐𝑢𝑡 is the only rule that completely
erases a formula (when reading top-down) or introduces it from nowhere (when reading
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bottom-up). For this reason, cut-free proofs, i.e. proofs that do not contain any cuts, are
of particular interest. The question naturally arises whether LK loses any of its strength
when the 𝑐𝑢𝑡 rule is removed. It turns out that LK is complete even without 𝑐𝑢𝑡.

Theorem 1.6. LK without 𝑐𝑢𝑡 is complete, i.e. if 𝛤 ⊢ 𝛥 is valid, then there is a cut-free
LK-proof of 𝛤 ⊢ 𝛥. As a consequence, LK is complete as well.

Sketch of proof. We show the following equivalent theorem: If 𝛤 ⊢ 𝛥 is any sequent,
then either 𝛤 ⊢ 𝛥 has a countermodel or it is provable without cut. The proof proceeds
by taking 𝛤 ⊢ 𝛥 as the root of a tree and then iteratively enumerating all inferences that
could have led to the current top level of the tree. If this process terminates, then the
resulting tree can be converted to a cut-free proof of 𝛤 ⊢ 𝛥; if it does not terminate, we
can use it to construct a countermodel. For a rigorous proof, see [Tak87].

1.2 Eliminating cuts
If a sequent 𝛤 ⊢ 𝛥 has a proof 𝜋, then it is valid by Theorem 1.5 and we can construct
a cut-free proof 𝜋′ of 𝛤 ⊢ 𝛥 by Theorem 1.6. This shows that provability and cut-free
provability of sequents are equivalent. The problem with this approach is that the cut-free
proof 𝜋′ is constructed from scratch and has no relation to the original proof 𝜋. This
raises the question of whether we can obtain a cut-free proof of 𝛤 ⊢ 𝛥 by transforming 𝜋.

In this section we will define a relation 𝜋  𝜋′ between proofs 𝜋, 𝜋′ of the same end
sequent signifying that 𝜋′ is obtained from 𝜋 either by reducing a cut or by applying a
transformation that makes reduction of a cut more convenient. All of these operations
are sound, i.e. they transform correct proofs into correct proofs.

Definition 1.7 (Cut reduction). Let 𝑐 be a cut in a proof 𝜋 and let 𝐴𝑐 be the cut
formula of 𝑐. We define the following methods of cut reduction according to the inferences
immediately above the cut:

1. On one side of 𝑐, there is a unary or binary inference 𝑟 whose active formula is not 𝐴𝑐:

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐

(𝜓2)
𝐴𝑐,𝛱

′ ⊢ 𝛬′

𝐴𝑐,𝛱 ⊢ 𝛬
𝑟

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐

(𝜓2)
𝐴𝑐,𝛱

′ ⊢ 𝛬′

𝛤,𝛱 ′ ⊢ 𝛥,𝛬′ 𝑐𝑢𝑡[𝑐]

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑟

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐

(𝜓2)
𝐴𝑐,𝛱1 ⊢ 𝛬1

(𝜓2)
𝛱2 ⊢ 𝛬2

𝐴𝑐,𝛱 ⊢ 𝛬
𝑟

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐

(𝜓2)
𝐴𝑐,𝛱1 ⊢ 𝛬1

𝛤,𝛱1 ⊢ 𝛥,𝛬1
𝑐𝑢𝑡[𝑐]

(𝜓3)
𝛱2 ⊢ 𝛬2

𝛤,𝛱 ⊢ 𝛥,𝛬
𝜄

The case where 𝜄 is on the left side of 𝑐 works entirely symmetrically.
2. 𝐴𝑐 is introduced by an axiom on one side of 𝑐:

𝐴𝑐 ⊢ 𝐴𝑐

(𝜓)
𝐴𝑐,𝛤 ⊢ 𝛥

𝐴𝑐,𝛤 ⊢ 𝛥
𝑐𝑢𝑡[𝑐]

 (𝜓)
𝐴𝑐,𝛤 ⊢ 𝛥
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3. 𝐴𝑐 is introduced by a weakening on one side of 𝑐:

(𝜓1)
𝛤 ⊢ 𝛥

𝛤 ⊢ 𝛥,𝐴𝑐
𝑤𝑟

(𝜓2)
𝐴𝑐,𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 
(𝜓1)
𝛤 ⊢ 𝛥

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑤*

The case where the weakening is on the right side is symmetrical.
4. 𝐴𝑐 is the main formula of a contraction on one side of 𝑐:

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐,𝐴𝑐
𝛤 ⊢ 𝛥,𝐴𝑐

𝑐𝑟
(𝜓2)

𝐴𝑐,𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 

(𝜓1)
𝛤 ⊢ 𝛥,𝐴𝑐,𝐴𝑐

(𝜓′′
2)

𝐴𝑐,𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬,𝐴𝑐
𝑐𝑢𝑡[𝑐′′]

(𝜓′
2)

𝐴𝑐,𝛱 ⊢ 𝛬

𝛤,𝛱,𝛱 ⊢ 𝛥,𝛬,𝛬
𝑐𝑢𝑡[𝑐′]

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐*

Here, 𝜓′
2 and 𝜓′′

2 each arise from 𝜓2 by replacing all eigenvariables occurring in 𝜓2 with
fresh copies. The case where the contraction is on the right is treated analogously.

5. 𝐴𝑐 = ∃𝑥𝐵 and 𝐴𝑐 is introduced by ∃-inferences immediately above the cut:

(𝜓1)
𝛤 ⊢ 𝛥,𝐵[𝑥∖𝑡]
𝛤 ⊢ 𝛥,∃𝑥𝐵 ∃𝑟

(𝜓2)
𝐵[𝑥∖𝛼],𝛱 ⊢ 𝛬

∃𝑥𝐵,𝛱 ⊢ 𝛬
∃𝑙

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 
(𝜓1)

𝛤 ⊢ 𝛥,𝐵[𝑥∖𝑡]
(𝜓2[𝛼∖𝑡])

𝐵[𝑥∖𝑡],𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐′]

6. 𝐴𝑐 = ∀𝑥𝐵: Analogous to the previous case, but with switched sides.
7. 𝐴𝑐 = 𝐵 ∧ 𝐶 and 𝐴𝑐 is introduced by ∧-inferences immediately above the cut:

(𝜓1)
𝛤1 ⊢ 𝛥1,𝐵

(𝜓2)
𝛤2 ⊢ 𝛥2,𝐶

𝛤 ⊢ 𝛥,𝐵 ∧ 𝐶
∧𝑟

(𝜓3)
𝐵,𝐶,𝛱 ⊢ 𝛬

𝐵 ∧ 𝐶,𝛱 ⊢ 𝛬
∧𝑙

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐′]

 

 (𝜓1)
𝛤1 ⊢ 𝛥1,𝐵

(𝜓2)
𝛤2 ⊢ 𝛥2,𝐶

(𝜓3)
𝐶,𝐵,𝛱 ⊢ 𝛬

𝐵,𝛤2,𝛱 ⊢ 𝛥2,𝛬
𝑐𝑢𝑡[𝑐′′]

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐′]

8. 𝐴𝑐 = 𝐵 ∨ 𝐶: Analogous to the previous case.
9. 𝐴𝑐 = ¬𝐵 and both ¬-inferences introducing 𝐴𝑐 are immediately above the cut:

(𝜓1)
𝐵,𝛤 ⊢ 𝛥

𝛤 ⊢ 𝛥,¬𝐵
¬𝑟

(𝜓2)
𝛱 ⊢ 𝛬,𝐵

¬𝐵,𝛱 ⊢ 𝛬
¬𝑙

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐]

 
(𝜓2)

𝛱 ⊢ 𝛬,𝐵
(𝜓1)

𝐵,𝛤 ⊢ 𝛥

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡[𝑐′]
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If 𝜋′ arises from 𝜋 by finitely many applications of these rules, then we write 𝜋  * 𝜋′. If
no instances of rule 3 are used, we write 𝜋  *

𝑛𝑒 𝜋
′ (for non-erasing).

Theorem 1.8 (Gentzen). Let 𝜋 be a proof of 𝛤 ⊢ 𝛥. Then there is a cut-free proof 𝜋*

of 𝛤 ⊢ 𝛥 such that 𝜋  * 𝜋*.

A system of reducing objects to certain normal forms is called weakly normalizing if a
normal form can always be reached in a finite number of steps for any initial object. Thus,
Gentzen’s theorem can be reformulated as “Cut reduction is weakly normalizing”. On
the other hand, cut reduction is not strongly normalizing, i.e. there are transformation
sequences that do not terminate. Moreover, cut reduction is not confluent, which means
that given a proof 𝜋, it is possible to end up with different cut-free proofs 𝜋′, 𝜋′′.

Example 1.9. Consider the proof

(𝜓1)
𝛤 ⊢ 𝛥
𝛤 ⊢ 𝛥,𝐴

𝑤𝑟

(𝜓2)
𝛱 ⊢ 𝛬
𝐴,𝛱 ⊢ 𝛬

𝑤𝑙

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡

and assume that 𝜓1 and 𝜓2 are cut-free. Since the cut formula is introduced by a
weakening on both sides, this proof can be reduced to two different cut-free proofs

(𝜓1)
𝛤 ⊢ 𝛥

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑤*

(𝜓2)
𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑤*

This shows the non-confluence of cut reduction.

Definition 1.10 (Pruning). Let 𝜋 and 𝜋′ be proofs of the same end sequent. We say
that 𝜋′ is the result of “pruning” 𝜋, written as 𝜋 𝑝𝑟

 𝜋′, if 𝜋′ is obtained from 𝜋 by the
following subproof transformation:

(𝜓)
𝐴[𝑥∖𝛽], 𝛤 ′′ ⊢ 𝛥′′

∃𝑥𝐴, 𝛤 ′′ ⊢ 𝛥′′ ∃𝑙
....

𝐴[𝑥∖𝛼], 𝛤 ′ ⊢ 𝛥′

∃𝑥𝐴, 𝛤 ′ ⊢ 𝛥′ ∃𝑙
....

𝐶[∃𝑥𝐴], 𝐶[∃𝑥𝐴], 𝛤 ⊢ 𝛥

𝐶[∃𝑥𝐴], 𝛤 ⊢ 𝛥
𝑐𝑙

𝑝𝑟
 

(𝜓[𝛽∖𝛼])
𝐴[𝑥∖𝛼], 𝛤 ′′ ⊢ 𝛥′′

∃𝑥𝐴,𝐴[𝑥∖𝛼], 𝛤 ′′ ⊢ 𝛥′′ 𝑤𝑙
....

𝐴[𝑥∖𝛼], 𝐴[𝑥∖𝛼], 𝛤 ′ ⊢ 𝛥′

𝐴[𝑥∖𝛼], 𝛤 ′ ⊢ 𝛥′ 𝑐𝑙

∃𝑥𝐴, 𝛤 ′ ⊢ 𝛥′ ∃𝑙
....

𝐶[∃𝑥𝐴], 𝐶[∃𝑥𝐴], 𝛤 ⊢ 𝛥

𝐶[∃𝑥𝐴], 𝛤 ⊢ 𝛥
𝑐𝑙

We say that a proof is “pruned” if it cannot be pruned further.



CHAPTER 2
Expansion Trees

Expansion trees were originally presented by Miller in [Mil87] as a generalization of
Herbrand disjunctions for higher-order logic. For our purposes, it will be sufficient to
develop them only with respect to first-order logic.

Expansion trees are conceptually very similar to formulas in that they are constructed
as trees from atomic formulas and logical connectives. The connectives used in expansion
trees are ¬, ∨ , ∧ ,∀,∃, as in first-order formulas, and additionally a new symbol +𝑡 where
any term may be inserted for 𝑡.

Definition 2.1 (Expansion tree, dual expansion tree, deep formula). Let 𝐴 be a formula.
Expansion trees and dual expansion trees of 𝐴 are trees recursively defined by the rules
below. Each (dual) expansion tree also has an associated deep formula, denoted by 𝐷𝑝,
that is constructed along with it.

1. ⊥ is an expansion tree of any formula and 𝐷𝑝(⊥) := ⊥. ⊤ is a dual expansion tree
of any formula and 𝐷𝑝(⊤) := ⊤.

2. If 𝐴 is atomic, then 𝐴 is an expansion tree and a dual expansion tree of itself and
𝐷𝑝(𝐴) := 𝐴.

3. If 𝐸 is an expansion tree of 𝐴, then ¬𝐸 is a dual expansion tree of ¬𝐴. If 𝐸 is
a dual expansion tree of 𝐴, then ¬𝐸 is an expansion tree of ¬𝐴. In both cases,
𝐷𝑝(¬𝐸) := ¬𝐷𝑝(𝐸).

4. Let ◇ ∈ {∨,∧}. If 𝐸 and 𝐹 are (dual) expansion trees of 𝐴 and 𝐵 respectively, then
𝐸 ◇ 𝐹 is a (dual) expansion tree of 𝐴 ◇𝐵 and 𝐷𝑝(𝐸 ◇ 𝐹 ) := 𝐷𝑝(𝐸) ◇𝐷𝑝(𝐹 ).

5. If 𝐴[𝑥∖𝛼] has an expansion tree 𝐸, then ∀𝑥𝐴+𝛼𝐸 is an expansion tree of ∀𝑥𝐴 and
𝐷𝑝(∀𝑥𝐴+𝛼 𝐸) := 𝐷𝑝(𝐸).
If 𝐴[𝑥∖𝛼] has a dual expansion tree 𝐸, then ∃𝑥𝐴+𝛼 𝐸 is a dual expansion tree of
∃𝑥𝐴 and 𝐷𝑝(∃𝑥𝐴+𝛼 𝐸) := 𝐷𝑝(𝐸).

6. If 𝑡1, . . . ,𝑡𝑛 are distinct terms such that 𝐸1, . . . ,𝐸𝑛 are expansion trees of𝐴[𝑥∖𝑡1], . . . ,
𝐴[𝑥∖𝑡𝑛], then ∃𝑥𝐴+𝑡1 𝐸1, . . . ,+𝑡𝑛 𝐸𝑛 is an expansion tree of ∃𝑥𝐴 and 𝐷𝑝(∃𝑥𝐴+𝑡1

𝐸1, . . . ,+𝑡𝑛 𝐸𝑛) :=
⋁︀𝑛
𝑖=1𝐷𝑝(𝐸𝑖).

9
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If 𝐸1, . . . ,𝐸𝑛 are dual expansion trees of𝐴[𝑥∖𝑡1], . . . ,𝐴[𝑥∖𝑡𝑛], then ∀𝑥𝐴+𝑡1𝐸1, . . . ,+𝑡𝑛

𝐸𝑛 is a dual expansion tree of ∀𝑥𝐴 and 𝐷𝑝(∀𝑥𝐴+𝑡1 𝐸1, . . . ,+𝑡𝑛 𝐸𝑛) =
⋀︀𝑛
𝑖=1𝐷𝑝(𝐸𝑖)

+𝛼 (in 5.) and +𝑡𝑖 (in 6.) are called strong and weak expansions, respectively. They are
typically visualized as labeled arcs connecting the node 𝑄𝑥𝐴 with the (dual) expansion
trees immediately following them. We say that +𝛼 dominates every expansion in 𝐸 and
+𝑡𝑖 dominates every expansion in 𝐸𝑖. 𝛼 is referred to as an eigenvariable; we stipulate
that each strong expansion in a (dual) expansion tree use a unique eigenvariable.

The concept of expansion trees can be generalized to sequents.

Definition 2.2 (Expansion sequent). Let 𝛤 ⊢ 𝛥 = 𝐴1, . . . ,𝐴𝑚 ⊢ 𝐵1, . . . ,𝐵𝑛 be a sequent.
A formal sequent E ⊢ F = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛 is called an expansion sequent of
𝛤 ⊢ 𝛥 if it fulfills the following two conditions:

1. Each 𝐸𝑖 is a dual expansion tree of 𝐴𝑖 and each 𝐹𝑖 is an expansion tree of 𝐵𝑖.
2. No eigenvariable occurs more than once in the whole sequent.

If E ⊢ F is an expansion sequent, then

𝐷𝑝(E ⊢ F) := 𝐷𝑝(𝐸1), . . . ,𝐷𝑝(𝐸𝑚) ⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛)

is its deep sequent.

Definition 2.3 (Dependency relation). Let 𝐸 be a (dual) expansion tree and +𝑠,+𝑡

weak expansions in 𝐸. The relation +𝑠 <0
𝐸 +𝑡 is defined by

+𝑠 <0
𝐸 +𝑡 if +𝑠 dominates a strong expansion +𝛼 such that 𝛼 occurs in 𝑡.

The transitive closure of <0
𝐸 is written as <𝐸 and called the dependency relation of 𝐸.

We will omit the subscript if the meaning is clear from the context. 𝐸 is called acyclic if
<𝐸 is acyclic.

If E ⊢ F is an expansion sequent, the relations <0
E⊢F and <E⊢F are defined in an

analogous manner between all weak expansions of (dual) expansion trees in E ⊢ F.

Definition 2.1 requires the terms that are used to expand a weak quantifier to be unique.
This fact necessitates some thought on how we define the union of (dual) expansion trees
of the same formula. We will first expand the definition of (dual) expansion trees by a
new type of node that indicates that the node’s child trees need to be merged. Then
we will give a reduction procedure describing how these merge nodes can be shifted
further and further down until a (dual) expansion tree according to the original definition
remains. In order to define this reduction, we will need some terminology: If 𝐸 and 𝐹
are expansion trees (either or both might be dual), we write 𝐸[𝐹 ] to indicate that 𝐸
contains 𝐹 as a subtree.

Definition 2.4 (Expansion tree with merge). Let 𝐴 be any formula. A (dual) expansion
tree with merge is a tree together with an associated deep formula that is defined by the
following rules:
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1. If 𝐸 is a (dual) expansion tree of 𝐴, then 𝐸 is a (dual) expansion tree with merge
of 𝐴.

2. If 𝐸,𝐹 are expansion trees with merge of 𝐴, then so is 𝐸 ⊔ 𝐹 and 𝐷𝑝(𝐸 ⊔ 𝐹 ) =
𝐷𝑝(𝐸) ∨𝐷𝑝(𝐹 ).
If 𝐸,𝐹 are dual expansion trees with merge of 𝐴, then so is 𝐸⊔𝐹 and 𝐷𝑝(𝐸⊔𝐹 ) =
𝐷𝑝(𝐸) ∧𝐷𝑝(𝐹 ).

Given this definition of expansion trees with merge, expansion sequents with merge
can be defined analogously to expansion sequents.

We can apply substitution operators to (dual) expansion trees. This operation is
less straightforward than one might imagine, due to the fact that the terms in weak
expansions of the same quantifier must be unique.

Definition 2.5 (Substitution for expansion trees). Let 𝛼,𝛽 be distinct variables and 𝑡 a
term. We define the application of the substitution [𝛼∖𝑡] to (dual) expansion trees with
merge inductively:

1. ⊥[𝛼∖𝑡],⊤[𝛼∖𝑡], 𝐴[𝛼∖𝑡] are just substitutions of formulas.
2. (𝐸 ◇ 𝐹 )[𝛼∖𝑡] = 𝐸[𝛼∖𝑡] ◇ 𝐹 [𝛼∖𝑡] and (¬𝐸)[𝛼∖𝑡] = ¬(𝐸[𝛼∖𝑡]).
3. (𝑄𝑥𝐴 +𝛼 𝐸)[𝛼∖𝑡] is not defined if 𝑡 is not a variable; otherwise it is equal to
𝑄𝑥𝐴+𝑡 𝐸[𝛼∖𝑡].

4. (𝑄𝑥𝐴+𝛽 𝐸)[𝛼∖𝑡] = 𝑄𝑥𝐴+𝛽 𝐸[𝛼∖𝑡].
5. Let 𝑠1, . . . ,𝑠𝑛 be distinct terms and 𝐽1, . . . ,𝐽𝑚 the equivalence classes of the relation
𝑖 ∼ 𝑗 iff 𝑠𝑖[𝛼∖𝑡] = 𝑠𝑗 [𝛼∖𝑡] for 𝑖,𝑗 ∈ {1, . . . ,𝑛} and let 𝑙1, . . . ,𝑙𝑚 ∈ {1, . . . ,𝑛} such
that 𝑙𝑖 ∈ 𝐽𝑖. Then

(𝑄𝑥𝐴+𝑠1 𝐸1 . . .+𝑠𝑛 𝐸𝑛)[𝛼∖𝑡] = 𝑄𝑥𝐴+𝑠𝑙1 [𝛼∖𝑡] (
⨆︁
𝑗∈𝐽1

𝐸𝑗 [𝛼∖𝑡]) . . .

. . . +𝑠𝑙𝑚 [𝛼∖𝑡] (
⨆︁
𝑗∈𝐽𝑚

𝐸𝑗 [𝛼∖𝑡]).

Note that due to 3., 𝐸[𝛼∖𝑡] is not defined if 𝐸 contains the strong expansion +𝛼 and 𝑡 is
not a variable.

Definition 2.6 (Merge reduction). We define a reduction relation ⊔↦→ between expansion
sequents with merge. Note that in each case except strong expansion, only the expansion
tree that is being reduced needs to be taken into consideration, as the rest of the sequent
is unaffected. For this reason, we formulate these cases for expansion trees instead of
sequents:

1. 𝐸[𝐹 ⊔ ⊥] ⊔↦→ 𝐸[𝐹 ] and 𝐸[⊥ ⊔ 𝐹 ] ⊔↦→ 𝐸[𝐹 ].
Likewise, 𝐸[𝐹 ⊔ ⊤] ⊔↦→ 𝐸[𝐹 ] and 𝐸[⊤ ⊔ 𝐹 ] ⊔↦→ 𝐸[𝐹 ].

2. If 𝐴 is atomic, then 𝐸[𝐴 ⊔𝐴] ⊔↦→ 𝐸[𝐴].
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3. 𝐸[(¬𝐸1) ⊔ (¬𝐸2)] ⊔↦→ 𝐸[¬(𝐸1 ⊔ 𝐸2)].

4. If ◇ ∈ {∨,∧}, then 𝐸[(𝐸1 ◇ 𝐸2) ⊔ (𝐹1 ◇ 𝐹2)] ⊔↦→ 𝐸[(𝐸1 ⊔ 𝐹1) ◇ (𝐸2 ⊔ 𝐹2)].

5. (E ⊢ F)[(𝑄𝑥𝐴+𝛼 𝐸1) ⊔ (𝑄𝑥𝐴+𝛽 𝐸2)] ⊔↦→ (E ⊢ F)[𝑄𝑥𝐴+𝛼 (𝐸1 ⊔ 𝐸2)][𝛽∖𝛼].
6. If 𝑟1, . . . ,𝑟𝑙,𝑠1, . . . ,𝑠𝑚,𝑡1, . . . ,𝑡𝑛 are terms such that {𝑠1, . . . ,𝑠𝑚} ∩ {𝑡1, . . . ,𝑡𝑛} = ∅

and

𝐸1 = 𝑄𝑥𝐴+𝑟1 𝐸1,1 . . .+𝑟𝑙 𝐸1,𝑙 +𝑠1 𝐹1 . . .+𝑠𝑚 𝐹𝑚,

𝐸2 = 𝑄𝑥𝐴+𝑟1 𝐸2,1 . . .+𝑟𝑙 𝐸2,𝑙 +𝑡1 𝐺1 . . .+𝑡𝑛 𝐺𝑛,

then

𝐸[𝐸1 ⊔ 𝐸2] ⊔↦→ 𝐸[𝑄𝑥𝐴+𝑟1 (𝐸1,1 ⊔ 𝐸2,1) . . .+𝑟𝑙 (𝐸1,𝑙 ⊔ 𝐸2,𝑙)
+𝑠1 𝐹1 . . .+𝑠𝑚 𝐹𝑚 +𝑡1 𝐺1 . . .+𝑡𝑛 𝐺𝑛]

We write ⊔→ for the reflexive and transitive closure of ⊔↦→.

Theorem 2.7.

1. For acyclic (dual) expansion sequents with merge, the reduction ⊔→ is strongly
normalizing and confluent. Its normal forms are proper (dual) expansion sequents,
i.e. they do not contain any ⊔-nodes.

2. Let 𝐸,𝐹 be acyclic expansion trees with merge. If 𝐸 ⊔ 𝐹
⊔→ 𝐺, then there are

variables 𝛼1, . . . ,𝛼𝑛,𝛽1, . . . ,𝛽𝑛 such that

𝐷𝑝(𝐺) ↔ (𝐷𝑝(𝐸) ∨𝐷𝑝(𝐹 ))[𝛽1∖𝛼1, . . . ,𝛽𝑛∖𝛼𝑛].

If 𝐸 and 𝐹 are dual expansion trees with merge, then

𝐷𝑝(𝐺) ↔ (𝐷𝑝(𝐸) ∧𝐷𝑝(𝐹 ))[𝛽1∖𝛼1, . . . ,𝛽𝑛∖𝛼𝑛].

Proof.

1. If 𝑚 is a merge node in any (dual) expansion tree 𝐸 in E ⊢ F, then let |𝑚| be the
number of nodes below 𝑚. By extension we define the weight |E ⊢ F| of E ⊢ F to be
the sum of |𝑚| over all merge nodes anywhere in the sequent. Now observe that all
reduction steps except 5. reduce |E ⊢ F| by shifting merge nodes downward. Step
5. may introduce new merge nodes anywhere in the sequent, thereby increasing
the weight, but the resulting sequent has one eigenvariable fewer. It follows that
if E ⊢ F

⊔↦→ E′ ⊢ F′, then E′ ⊢ F′ <𝑙𝑒𝑥 E ⊢ F, where <𝑙𝑒𝑥 is the order on expansion
sequents induced by the lexicographic order on (|𝐸𝑉 (E ⊢ F)|, |E ⊢ F|). Since this
order is clearly well-founded, it follows that every reduction sequence terminates.

2. We show that each of the reduction steps in Definition 2.6 preserves the equivalence.
The cases of 𝐸 = ⊥ or 𝐸 atomic are trivial. If 𝐸 = ¬𝐸′, 𝐹 = ¬𝐹 ′ and 𝐸 ⊔𝐹 ⊔↦→ 𝐺,
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then

𝐷𝑝(𝐺) = 𝐷𝑝(¬(𝐸′ ⊔ 𝐹 ′)) = ¬𝐷𝑝(𝐸′ ⊔ 𝐹 ′) = ¬(𝐷𝑝(𝐸′) ∧𝐷𝑝(𝐹 ′))
= ¬𝐷𝑝(𝐸′) ∨ ¬𝐷𝑝(𝐹 ′) = 𝐷𝑝(𝐸) ∨𝐷𝑝(𝐹 ).

The other propositional cases are proved similarly. Now, let 𝐸 = ∀𝑥𝐴 +𝛼 𝐸′,
𝐹 = ∀𝑥𝐴 +𝛽 𝐹 ′ and 𝐸 ⊔ 𝐹

⊔↦→ 𝐺. It follows that 𝐷𝑝(𝐺) = 𝐷𝑝(𝐸′ ⊔ 𝐹 ′) =
(𝐷𝑝(𝐸′) ∨𝐷𝑝(𝐹 ′))[𝛽∖𝛼].
The only case left to deal with is that of weak expansions. Let 𝐸1, 𝐸2 as in Definition
2.6, 6., and let 𝐸1 ⊔ 𝐸2

⊔↦→ 𝐸3. Then

𝐷𝑝(𝐸3) = 𝐷𝑝(𝐸1,1 ⊔ 𝐸2,1) ∨ . . . ∨𝐷𝑝(𝐸1,𝑙 ⊔ 𝐸2,𝑙)
∨𝐷𝑝(𝐹1) ∨ . . . ∨𝐷𝑝(𝐹𝑚) ∨𝐷𝑝(𝐺1) ∨ . . . ∨𝐷𝑝(𝐺𝑛)
↔ 𝐷𝑝(𝐸1,1) ∨ . . . ∨𝐷𝑝(𝐸1,𝑙) ∨𝐷𝑝(𝐹1) ∨ . . . ∨𝐷𝑝(𝐹𝑚)
∨𝐷𝑝(𝐸2,1) ∨ . . . ∨𝐷𝑝(𝐸2,𝑙) ∨𝐷𝑝(𝐺1) ∨ . . . ∨𝐷𝑝(𝐺𝑛)
↔ 𝐷𝑝(𝐸1) ∨𝐷𝑝(𝐸2).

Definition 2.8 (Union of expansion trees). By Theorem 2.7, if (E ⊢ F)[𝐸1 ⊔ 𝐸2] is an
acyclic expansion sequent with merge, then it has a unique ⊔→-normal form. We define
the union (E ⊢ F)[𝐸1 ∪ 𝐸2] to be this normal form.

Definition 2.9 (Expansion proof). Let 𝛤 ⊢ 𝛥 be a sequent and E ⊢ F an expansion
sequent of 𝛤 ⊢ 𝛥. E ⊢ F is called an expansion proof if < is acyclic and 𝐷𝑝(E ⊢ F) is
tautological.

We shall now define a method for extracting an expansion sequent from a cut-free
proof. This expansion sequent will actually turn out to be an expansion proof.

Definition 2.10 (Expansion proof extraction). Let 𝜋 be a proof of some sequent. Then
we can construct an expansion sequent 𝐸𝑥(𝜋) of the same sequent by the following
inductive procedure:

1. If 𝜋 is a one-line proof of 𝐴 ⊢ 𝐴, then we let 𝐸𝑥(𝜋) = 𝐴 ⊢ 𝐴.
2. If the bottommost inference of 𝜋 is a contraction on the left, i.e.

𝜋 =
(𝜓)

𝐴,𝐴,𝛤 ⊢ 𝛥

𝐴,𝛤 ⊢ 𝛥
𝑐𝑙

and 𝐸𝑥(𝜓) = 𝐸1, 𝐸
′
1,𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛, then

𝐸𝑥(𝜋) = 𝐸1 ∪ 𝐸′
1, 𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛.

Contractions on the right are treated symmetrically (also using ∪).
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3. If 𝜋 ends with a weakening on the left, i.e.

𝜋 =
(𝜓)
𝛤 ⊢ 𝛥
𝐴,𝛤 ⊢ 𝛥

𝑤𝑙

and 𝐸𝑥(𝜓) = 𝐸1,𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛, then

𝐸𝑥(𝜋) := ⊤, 𝐸1,𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛,

and analogously for a weakening on the right, using 𝑏𝑜𝑡.
4. Suppose that

𝜋 =
(𝜓)

𝛤 ⊢ 𝛥,𝐴

¬𝐴,𝛤 ⊢ 𝛥
¬𝑙

and let 𝐸𝑥(𝜓) = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛. Then

𝐸𝑥(𝜋) = ¬𝐹𝑛, 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛−1.

¬𝑟-inferences are treated analogously.
5. If 𝜋 ends with a unary ∧-inference, i.e.

𝜋 =
(𝜓)

𝐴,𝐵,𝛤 ⊢ 𝛥

𝐴 ∧𝐵,𝛤 ⊢ 𝛥
∧𝑙

and 𝐸𝑥(𝜓) = 𝐸1,𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛, then

𝐸𝑥(𝜋) = 𝐸1 ∧ 𝐸2, 𝐸3, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛.

Unary ∨-inferences are treated in the same way.
6. Suppose that

𝜋 =
(𝜓1)

𝐴,𝛤 ⊢ 𝛥
(𝜓2)

𝐵,𝛱 ⊢ 𝛬

𝐴 ∨𝐵,𝛤,𝛱 ⊢ 𝛥,𝛬
∨𝑙

and

𝐸𝑥(𝜓1) = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛,

𝐸𝑥(𝜓2) = 𝐺1, . . . ,𝐺𝑘 ⊢ 𝐻1, . . . ,𝐻𝑙

Then

𝐸𝑥(𝜋) := 𝐸1 ∨𝐺1, 𝐸2, . . . ,𝐸𝑚,𝐺2, . . . ,𝐺𝑘 ⊢ 𝐹1, . . . ,𝐹𝑛,𝐻1, . . . ,𝐻𝑙.
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The case of a binary ∧-inference is treated analogously.
7. If 𝜋 ends with a strong quantifier inference, say

𝜋 =
(𝜓)

𝐴[𝑥∖𝛼],𝛤 ⊢ 𝛥

∃𝑥𝐴,𝛤 ⊢ 𝛥
∃𝑙

and 𝐸𝑥(𝜓) = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛, then

𝐸𝑥(𝜋) := ∃𝑥𝐴+𝛼 𝐸1, 𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛.

8. If 𝜋 ends with a weak quantifier inference, say

𝜋 =
(𝜓)

𝛤 ⊢ 𝛥,𝐴[𝑥∖𝑡]
𝛤 ⊢ 𝛥, ∃𝑥𝐴 ∃𝑟

and 𝐸𝑥(𝜓) = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛, then

𝐸𝑥(𝜋) := 𝐸1, 𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛−1,∃𝑥𝐴+𝑡 𝐹𝑛.

9. If 𝜋 ends with a cut, as in

𝜋 =
(𝜓1)

𝛤 ⊢ 𝛥,𝐴
(𝜓2)

𝐴,𝛱 ⊢ 𝛬

𝛤,𝛱 ⊢ 𝛥,𝛬
𝑐𝑢𝑡

and

𝐸𝑥(𝜓1) = 𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛,

𝐸𝑥(𝜓2) = 𝐺1, . . . ,𝐺𝑘 ⊢ 𝐻1, . . . ,𝐻𝑙,

then

𝐸𝑥(𝜋) := 𝐸1, . . . ,𝐸𝑚,𝐺2, . . . ,𝐺𝑘 ⊢ 𝐹1, . . . 𝐹𝑛−1,𝐻1, . . . ,𝐻𝑙.

Theorem 2.11. If 𝜋 is a proof of 𝛤 ⊢ 𝛥 in which all cuts are either unquantified or
have their cut formula introduced by a weakening, then 𝐸𝑥(𝜋) is an expansion proof of
𝛤 ⊢ 𝛥.
Proof. Clearly, 𝐸𝑥(𝜋) is an expansion sequent of 𝛤 ⊢ 𝛥. We need to show that 𝐷𝑝(𝐸𝑥(𝜋))
is a tautology and that <𝐸𝑥(𝜋) is acyclic. For acyclicity, observe that if +𝑡 <0

𝐸𝑥(𝜋) +𝑠,
then there is a strong expansion +𝛼 dominated by +𝑡 such that 𝑠 contains 𝛼. But this
is only possible if the weak quantifier inference that gave rise to +𝑠 is above the strong
inference that produced +𝛼, because 𝜋 is regular. It follows that if +𝑡 <𝐸𝑥(𝜋) +𝑠, the
inference corresponding to 𝑠 is above that corresponding to 𝑡. Thus, a cycle would imply
that two inferences are each above the other, which is impossible.
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For the validity of 𝐷𝑝(𝐸𝑥(𝜋)), we use induction on the length of 𝜋 to show that each
rule in Definition 2.10 preserves the validity of 𝐷𝑝(𝐸𝑥(𝜋)).

1. If 𝜋 is a one-line proof of 𝐴 ⊢ 𝐴, then 𝐷𝑝(𝐸𝑥(𝜋)) = 𝐴 ⊢ 𝐴 is tautological.
2. By Theorem 2.7,

𝐷𝑝(𝐸1 ∪ 𝐸′
1, 𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛) ↔

↔ 𝐷𝑝(𝐸1 ∪ 𝐸′
1), 𝐷𝑝(𝐸2), . . . , 𝐷𝑝(𝐸𝑚) ⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛) ↔

↔ 𝐷𝑝(𝐸1) ∧𝐷𝑝(𝐸′
1)[𝛽1∖𝛼1, . . . ,𝛽𝑛∖𝛼𝑛], 𝐷𝑝(𝐸2), . . . , 𝐷𝑝(𝐸𝑚) ⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛) ↔

↔ 𝐷𝑝(𝐸1[𝛽1∖𝛼1, . . . ,𝛽𝑛∖𝛼𝑛], 𝐸′
1[𝛽1∖𝛼1, . . . ,𝛽𝑛∖𝛼𝑛], 𝐸2, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛)

for some 𝛼𝑖,𝛽𝑖. Note that applying a variable substitution to a quantifier-free
formula preserves validity and consequently, so does the contraction rule.

3. 𝐸𝑥(𝜋) arises from 𝐸𝑥(𝜓) by adding the dual expansion tree ⊤ to the antecedent.
Since 𝐷𝑝(𝐸𝑥(𝜋)) = ⊤,𝐷𝑝(𝐸𝑥(𝜓)) ↔ 𝐷𝑝(𝐸𝑥(𝜓)), 𝐷𝑝(𝐸𝑥(𝜋)) is a tautology.

4. This step transforms a deep sequent of the form 𝛱 ⊢ 𝛬,𝐵 to the logically equivalent
¬𝐵,𝛱 ⊢ 𝛬.

5.

𝐷𝑝(𝐸𝑥(𝜋)) = 𝐷𝑝(𝐸1 ∧ 𝐸2, 𝐸3, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛) =
= 𝐷𝑝(𝐸1) ∧𝐷𝑝(𝐸2), 𝐷𝑝(𝐸3), . . . ,𝐷𝑝(𝐸𝑚) ⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛)
↔ 𝐷𝑝(𝐸1), 𝐷𝑝(𝐸2), 𝐷𝑝(𝐸3), . . . ,𝐷𝑝(𝐸𝑚) ⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛) =
= 𝐷𝑝(𝐸𝑥(𝜓))

It follows that if 𝐷𝑝(𝐸𝑥(𝜓)) is a tautology, then so is 𝐷𝑝(𝐸𝑥(𝜋)).
6. First, note that

𝐷𝑝(𝐸𝑥(𝜋)) = 𝐷𝑝(𝐸1) ∨𝐷𝑝(𝐺1), 𝐷𝑝(𝐸2), . . . ,𝐷𝑝(𝐸𝑚),𝐷𝑝(𝐺2), . . . ,𝐷𝑝(𝐺𝑘) ⊢
⊢ 𝐷𝑝(𝐹1), . . . ,𝐷𝑝(𝐹𝑛),𝐷𝑝(𝐻1), . . . ,𝐷𝑝(𝐻𝑙).

Now assume that 𝐷𝑝(𝐸𝑥(𝜓1)) and 𝐷𝑝(𝐸𝑥(𝜓2)) are tautologies and let I be any
interpretation of 𝐷𝑝(𝐸𝑥(𝜋)). If the whole antecedent of either 𝐷𝑝(𝐸𝑥(𝜓1)) or
𝐷𝑝(𝐸𝑥(𝜓2)) is true under I, then so is one of the 𝐹𝑖 or one of the 𝐻𝑖, respectively,
and hence 𝐷𝑝(𝐸𝑥(𝜋)) is true under I. If neither antecedent is true under I, there
are two possibilites. First, if both 𝐷𝑝(𝐸1) and 𝐷𝑝(𝐺1) are false under I, then so
is 𝐷𝑝(𝐸𝑥(𝐸1)) ∨𝐷𝑝(𝐸𝑥(𝐺1)). If either of them is true, then one of the 𝐸𝑖 or the
𝐺𝑖 for 𝑖 ≥ 2 must be false. In both cases, 𝐷𝑝(𝐸𝑥(𝜋)) is true under I. Since I was
arbitrary, 𝐷𝑝(𝐸𝑥(𝜋)) is a tautology.

7. Since 𝐷𝑝(∃𝑥𝐴+𝛼 𝐸1) = 𝐷𝑝(𝐸1), the deep sequent is not changed by this rule.
8. Again, the deep sequent does not change in this step.
9. If 𝐴 is quantifier-free, then each expansion tree of 𝐴 is also dual and vice versa.

Thus, if 𝐹𝑛 and 𝐺1 are (dual) expansion trees of 𝐴, then there is a (dual) expansion
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tree 𝑀 of 𝐴 such that 𝐷𝑝(𝑀) implies both 𝐷𝑝(𝐹𝑛) and 𝐷𝑝(𝐺1). Consequently, we
may assume that 𝐹𝑛 = 𝐺1. Now it is straightforward to prove that if 𝐷𝑝(𝐸𝑥(𝜓1))
and 𝐷𝑝(𝐸𝑥(𝜓2)) are tautological, so is 𝐷𝑝(𝐸𝑥(𝜋)).
If 𝐴 is introduced by a weakening on the left side of the cut, then 𝐹𝑛 = ⊥. It follows
that 𝐷𝑝(𝐸𝑥(𝜓1)) ↔ 𝐷𝑝(𝐸1, . . . ,𝐸𝑚 ⊢ 𝐹1, . . . ,𝐹𝑛−1). But if the latter formula is
valid, then clearly so is 𝐷𝑝(𝐸𝑥(𝜋)). Note that in this case we do not actually use
any information about 𝐸𝑥(𝜓2), which is reminiscent of the weakening case of cut
reduction. The case where 𝐴 is introduced on the right-hand side of the cut is
treated analogously.

Definition 2.12 (Deep set). Let 𝐸 be a (dual) expansion tree of 𝐴. The deep set 𝐷𝑝*(𝐸)
is defined as follows:

• If 𝐸 contains no weak expansions, then 𝐷𝑝*(𝐸) = {𝐷𝑝(𝐸)}.
• 𝐷𝑝*(¬𝐸) = ¬𝐷𝑝*(𝐸).
• If 𝐸 = 𝐸1 ◇ 𝐸2, then 𝐷𝑝*(𝐸) = 𝐷𝑝*(𝐸1) ◇𝐷𝑝*(𝐸2).
• If 𝐸 = 𝑄𝑥𝐴+𝑡1 𝐸1 . . .+𝑡𝑛 𝐸𝑛, then 𝐷𝑝*(𝐸) =

⋃︀𝑛
𝑖=1𝐷𝑝

*(𝐸𝑖).
• 𝐷𝑝*(𝑄𝑥𝐴+𝛼 𝐸) = 𝐷𝑝*(𝐸).

If E ⊢ F is an expansion sequent, then 𝐷𝑝*(E ⊢ F) :=
⋃︀
𝐸∈E ¬𝐷𝑝*(𝐸) ∪

⋃︀
𝐹∈F𝐷𝑝

*(𝐹 ).

Lemma 2.13. Let E ⊢ F be an expansion sequent. Then 𝐷𝑝(E ⊢ F) ↔
⋁︀
𝐷𝑝*(E ⊢ F).

Proof. First of all, it is clear that 𝐷𝑝(E ⊢ F) ↔
⋁︀
𝐸∈E ¬𝐷𝑝(𝐸) ∨

⋁︀
𝐹∈F𝐷𝑝(𝐹 ). As a

consequence, we only need to show that 𝐷𝑝(𝐸) ↔
⋁︀
𝐷𝑝*(𝐸) for any expansion tree 𝐸

and 𝐷𝑝(𝐸) ↔
⋀︀
𝐷𝑝*(𝐸) for any dual expansion tree 𝐸. We prove this for expansion

trees by induction on the structure of 𝐸:

• The case where 𝐸 contains no weak expansions is trivial.
• If 𝐸 is an expansion tree, 𝐷𝑝(¬𝐸) = ¬𝐷𝑝(𝐸) ↔ ¬

⋁︀
𝐷𝑝*(𝐸) ↔

⋀︀
¬𝐷𝑝*(𝐸) =⋀︀

𝐷𝑝*(¬𝐸). The case where 𝐸 is a dual expansion tree is dealt with analogously.
• If 𝐸1, 𝐸2 are expansion trees, then 𝐷𝑝(𝐸1◇𝐸2) = 𝐷𝑝(𝐸1)◇𝐷𝑝(𝐸2) ↔ (

⋁︀
𝐷𝑝*(𝐸1))◇

(
⋁︀
𝐷𝑝*(𝐸2)) ↔

⋁︀
(𝐷𝑝*(𝐸1) ◇𝐷𝑝*(𝐸2)). The case of dual expansion trees is treated

in the same way.
• If 𝐸1, . . . ,𝐸𝑛 are expansion trees, then 𝐷𝑝(𝑄𝑥𝐴+𝑡1𝐸1 . . .+𝑡𝑛𝐸𝑛) =

⋁︀𝑛
𝑖=1𝐷𝑝(𝐸𝑖) ↔⋁︀𝑛

𝑖=1
⋁︀
𝐷𝑝*(𝐸𝑖) =

⋁︀⋃︀𝑛
𝑖=1𝐷𝑝

*(𝐸𝑖).
• Straightforward.

Definition 2.14 (Herbrand set). Let 𝜋 be a proof of the form described in Theorem
2.11. Then H(𝜋) := 𝐷𝑝*(𝐸𝑥(𝜋)) is called the Herbrand set of 𝜋.
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Corollary 2.15. If 𝜋 is a proof of the form described in Theorem 2.11, then H(𝜋) is a
tautological set, i.e.

⋁︀
H(𝜋) is a tautology.

Proof. By combining Theorem 2.11 and Lemma 2.13.



CHAPTER 3
Grammars

In this chapter we will develop the theory of regular tree grammars as applicable to this
thesis. We will need the notion of a ranked alphabet, i.e. a set 𝛴 of symbols together with
their respective arities. We write T𝛴 for the set of terms that can be constructed from 𝛴
and T𝛴(𝑋) for the set of terms that can be constructed from 𝛴 together with a set 𝑋 of
variables. For any symbol 𝑥 and term 𝑡, we write 𝑥 ∈ 𝑡 to express that 𝑥 occurs in 𝑡.

Definition 3.1 (Regular tree grammar). A regular tree grammar is a tuple 𝐺 =
⟨𝜙,𝑁,𝛴,𝑃 ⟩, where

1. 𝛴 is a finite ranked alphabet; its elements are called terminal symbols (or terminals
for short);

2. 𝑁 is a finite set, disjoint from 𝛴; its elements are called nonterminals;
3. 𝜙 ∈ 𝑁 is the starting symbol;
4. 𝑃 ⊆ 𝑁 × T𝛴(𝑁), is the finite set of production rules (productions). Its elements

are usually written as 𝛼 → 𝑡 instead of (𝛼,𝑡).

A production of the form 𝛼 → 𝑡 is said to begin with 𝛼. The set of productions
beginning with 𝛼 will be denoted by 𝑃𝛼. If 𝑃𝛼 = {𝛼 → 𝑡1, . . . ,𝛼 → 𝑡𝑛}, we can concisely
denote these productions by 𝛼 → 𝑡1| . . . |𝑡𝑛.

Remark 3.2. We can and frequently will apply the substitution operator defined in
Definition 1.2 to productions; the substitution is always understood as being applied to
the second term, i.e. 𝛼 → 𝑡[𝛽∖𝑟] = 𝛼 → (𝑡[𝛽∖𝑟]). If 𝑄 is any set of productions, 𝑄[𝛽∖𝑟]
is defined as {𝑝[𝛽∖𝑟] | 𝑝 ∈ 𝑄}.

Now we shall define the derivability relation of a grammar 𝐺. Let 𝑟,𝑠 ∈ T𝛴(𝑁). We
say that 𝑠 is derivable from 𝑟—written as 𝑟 →𝐺 𝑠—if there is a production 𝛽 → 𝑡 ∈ 𝑃
such that 𝑠 can be obtained by replacing one occurence of 𝛽 in 𝑟 by 𝑡. The reflexive and
transitive closure of this relation will be denoted by 𝑟 →*

𝐺 𝑠. If the grammar is clear
from the context, the subscript will be omitted.
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It is clear from the above that every step in a derivation can be viewed as an applica-
tion of a specific production rule to one term in order to receive a new term; we shall
occasionally write 𝑟 𝑝→ 𝑠 to express that 𝑠 arose from 𝑟 through application of the rule
𝑝. Consequently, the notion of a production rule that is used in a derivation is well-defined.

Definition 3.3 (Language of a grammar). Let 𝐺 be a tree grammar of any type. Since
every class of grammar carries with it a notion of what a valid derivation is, the language
of 𝐺, denoted by 𝐿(𝐺), is always definable as the set of all 𝑡 ∈ T𝛴 such that 𝜙 →*

𝐺 𝑡.

In the sequel we shall need types of grammars that arise from regular tree grammars
by restricting the productions—or, more precisely, the combinations of productions—that
can be used in derivations. The first of these types is that of rigid grammars. The notion
of rigidity was first introduced in the form of automata in [Jac11].

Definition 3.4 (Rigid tree grammar). A rigid tree grammar is a tuple 𝐺 = ⟨𝜙,𝑁,𝑅,𝛴,𝑃 ⟩
such that ⟨𝜙,𝑁,𝛴,𝑃 ⟩ is a regular tree grammar (called the underlying regular grammar
of 𝐺) and 𝑅 ⊆ 𝑁 is the set of rigid nonterminals. In the case of 𝑅 = 𝑁 , 𝐺 is called
totally rigid; when talking about totally rigid grammars, we shall leave the set 𝑅 out of
the definition.

The important difference between rigid and nonrigid grammars lies in the derivation
relation. A derivation 𝜙 → 𝑡1 → . . . → 𝑡𝑛 → 𝑡 of the underlying regular grammar is a
valid derivation of 𝐺 if the following rigidity condition holds: If 𝛽 is a rigid nonterminal
and 𝑞,𝑞′ are positions such that 𝑡𝑖|𝑞 = 𝑡𝑗 |𝑞′ = 𝛽 for some 𝑖,𝑗, then 𝑡|𝑞 = 𝑡|𝑞′ . This condition
ensures that if an occurence of a rigid nonterminal is replaced by a certain term in the
end product, all other occurences of the same nonterminal are replaced by the same term
there.

Lemma 3.5.

1. If 𝐺 is a rigid grammar and 𝑡 ∈ 𝐿(𝐺), then there is a derivation of 𝑡 that uses at
most one production beginning with each rigid nonterminal.

2. If 𝐺 is a grammar and every term 𝑡 ∈ 𝐿(𝐺) can be derived using at most one
production beginning with each nonterminal, then 𝐺 can be interpreted as a totally
rigid grammar.

Proof.

1. Suppose that 𝜙 → 𝑡1 → . . . → 𝑡𝑛 → 𝑡 is a derivation of 𝐺 and 𝛽 ∈ 𝑅 such that
two different productions 𝛽 → 𝑟, 𝛽 → 𝑟′ are used in steps 𝑡𝑖 → 𝑡𝑖+1 and 𝑡𝑗 → 𝑡𝑗+1
respectively. We know that in the end term 𝑡, every occurrence of 𝛽 has been
replaced by the same term 𝑠, so obviously we can replace either of the subderivations
𝛽 → 𝑟 →* 𝑠, 𝛽 → 𝑟′ →* 𝑠 with the other and end up with a valid derivation of 𝑡.

2. If a derivation of a term 𝑡 only includes one rule for each terminal, then it clearly
satisfies the rigidity condition for all terminals.



21

Example 3.6. Let 𝛴 = {𝑓/2, 𝑔/1, 𝑎/0} and 𝐿 = {𝑓(𝑔𝑛(𝑎),𝑔𝑛(𝑎)) |𝑛 ≥ 0}. Using the
pumping lemma for tree grammars found, for instance, in [Com07], it is easy to show
that 𝐿 is not generated by a regular tree grammar. On the other hand, the following
rigid grammar generates 𝐿:

• 𝑁 = {𝜙,𝛼,𝛽}
• 𝑅 = {𝛼}
• Productions:

– 𝜙 → 𝑓(𝛼,𝛼)
– 𝛼 → 𝛽

– 𝛽 → 𝑎|𝑔(𝛽).

In a rigid grammar, the choice we make for one nonterminal has no influence on what
productions we can use for the others. It turns out that it is possible to define a class
of grammars that allows us to enforce any relationship between nonterminals (or their
productions, respectively) that we might want. We call this the class of constrained
grammars.

Definition 3.7 (Constrained tree grammar). A constrained tree grammar is a tuple
𝐺 = ⟨𝜙,𝑁,𝛴,𝑃,C⟩ consisting of a regular tree grammar ⟨𝜙,𝑁,𝛴,𝑃 ⟩ together with a
constraint formula C, which is a propositional formula that uses productions as atoms.

As in the case of rigid grammars, the salient point of this definition lies in the derivation
relation. Every derivation 𝑑 of the underlying regular tree grammar naturally induces a
partial truth assignment 𝑣𝑑 that assigns ⊤ to all productions used in 𝑑 and leaves the
other atoms unassigned. We define the language of 𝐺 to be the set of all terms 𝑡 ∈ T𝛴(𝑁)
such that there is a derivation 𝑑 ending with 𝑡 and 𝑣𝑑 is a maximal interpretation of
C, i.e. if 𝑑′ is the extension of 𝑣 by a production that is not in 𝑣, then 𝑣𝑑′(C) is a
contradiction. Note that by this definition, the language of a constrained grammar may
contain nonterminals.

By Lemma 3.5, totally rigid grammars are characterized by the fact that derivations
may use at most one production for each nonterminal. It follows that if 𝐺 = ⟨𝜙,𝑁,𝛴, 𝑃 ⟩
is a totally rigid grammar, then the constrained grammar 𝐺′ = ⟨𝜙,𝑁,𝛴, 𝑃, 𝑇𝑅𝑃 ⟩, where

𝑇𝑅𝑃 :=
⋀︁
𝛼∈𝑁

⋀︁
𝑝,𝑞∈𝑃𝛼
𝑝 ̸=𝑞

¬(𝑝 ∧ 𝑞),

generates the same language as 𝐺. By extension, if 𝐺 = ⟨𝜙,𝑁,𝛴, 𝑃,C⟩ is a constrained
grammar, then 𝐺′ = ⟨𝜙,𝑁,𝛴, 𝑃,C ∧ 𝑇𝑅𝑃 ⟩ is a totally rigid constrained grammar that
enforces the same constraints as 𝐺.

From time to time we will need to substitute both sides of a production rule at the
same time. To this end, we define a variant substitution operator.
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Definition 3.8 (Variant substitution operator). If 𝛼 → 𝑡 is a production rule of a
grammar, then 𝛼 → 𝑡{𝛽∖𝑟} is defined as the production that results from replacing all
occurences of 𝛽 in both 𝛼 and 𝑡 with 𝑟. Concatenation of this operator and its application
to a set of productions are defined as in Definition 1.2 and Remark 3.2, respectively.

Both substitution operators can be applied in a natural way to constraint formulas;
indeed, this is the primary use of the variant operator.

We shall now turn our attention to defining a certain relation on grammars that will
in practice turn out to be a partial order.

Definition 3.9 (Dependency relation). Let 𝐺 be a tree grammar (of any kind) and 𝑁
its set of nonterminals. We define the relation ≺0

𝐺 on 𝑁 as

𝛼 ≺0
𝐺 𝛽 iff there is a term 𝑡 such that 𝛼 → 𝑡 ∈ 𝑃 and 𝛽 ∈ 𝑡.

The transitive closure of this relation is written as ≺𝐺 and called the dependency relation
of 𝐺. As in the case of the derivation relation, the subscript will be omitted if the grammar
is clear from the context. The dependency relation is transitive by definition. If it is also
acyclic, i.e. there are no 𝛼, 𝛾1, . . . ,𝛾𝑘 ∈ 𝑁, 𝑘 ≥ 0, such that 𝛼 ≺ 𝛾1 ≺ . . . ≺ 𝛾𝑘 ≺ 𝛼, it is
called the dependency order and 𝐺 is called an acyclic grammar .

If 𝑀 is any nonempty subset of 𝑁 , then a nonterminal 𝛼 ∈ 𝑀 is said to be minimal
with respect to 𝑀 if there is no 𝛽 ∈ 𝑀 with 𝛽 ≺ 𝛼.

Lemma 3.10. Let 𝐺 be a totally rigid grammar and 𝛼 ∈ 𝑁 minimal with 𝑃𝛼 = 𝛼 →
𝑡1| . . . |𝑡𝑛. Define a new totally rigid grammar 𝐺′ = ⟨𝜙,𝑁 ′,𝛴′,𝑃 ′⟩, where

1. 𝑁 ′ = 𝑁 ∖ {𝛼},
2. 𝛴′ = 𝛴,
3. 𝑃 ′ =

⋃︀
𝛽∈𝑁 ′∖{𝜙} 𝑃𝛽 ∪

⋃︀𝑛
𝑖=1 𝑃𝜙[𝛼∖𝑡𝑖].

Then 𝐿(𝐺) = 𝐿(𝐺′).

Proof. We need to show that any valid derivation of 𝐺 can be transformed into a valid
derivation of 𝐺′ and vice versa. Suppose that 𝜙 → 𝑟1 → . . . → 𝑟𝑘 → 𝑠 is a derivation of
𝐺 that uses only one production for each terminal, cf. Lemma 3.5. If 𝛼 does not occur
in any 𝑟𝑖, it is easy to see that this derivation is just as valid in 𝐺′. If, on the other hand,
the derivation uses 𝛼, then the first step 𝜙 → 𝑟1 must introduce all the occurences of 𝛼
since 𝛼 is minimal. Any two steps where 𝛼 is replaced use the same production beginning
with 𝛼, say 𝑝 := 𝛼 → 𝑡𝑗 . Thus, we can replace the first step by 𝜙 → 𝑟1[𝛼∖𝑡𝑗 ] and remove
all steps that use 𝑝; the result will be a valid 𝐺′-derivation ending in 𝑠.
Conversely, assume that 𝜙 → 𝑟1 → . . . → 𝑟𝑘 → 𝑠 is a 𝐺′-derivation. Then 𝑟1 = 𝑞1[𝛼∖𝑡𝑖]
for some 𝑞1 ∈ T𝛴(𝑁) and 1 ≤ 𝑖 ≤ 𝑛. There are two cases to consider, according to
whether or not 𝑞1 contains 𝛼. If it does not, then we already have a 𝐺-derivation. If it
does, then we replace the first step by 𝜙 → 𝑞1 (which is a 𝐺-production) and immediately
afterwards insert as many applications of 𝛼 → 𝑡𝑖 as we need to arrive at 𝑟1. Again, the
result is a valid derivation of 𝐺.
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Corollary 3.11. Let 𝐺 be totally rigid and acyclic. Then there is an enumeration
𝛼1, . . . ,𝛼𝑛 of 𝑁 ∖ {𝜙} such that

𝐿(𝐺) = {𝑠[𝛼1∖𝑡1, . . . ,𝛼𝑛∖𝑡𝑛] |𝜙 → 𝑠, 𝛼𝑖 → 𝑡𝑖 ∈ 𝑃 for 1 ≤ 𝑖 ≤ 𝑛} . (3.1)

Proof. By induction on the number 𝑛 of nonterminals, excluding 𝜙. The case 𝑛 = 0 is
trivial.
Now suppose that 𝐺 has 𝑛 nonterminals, not counting 𝜙, and that 3.1 holds up to 𝑛− 1.
Since 𝐺 is acyclic, there is a minimal element 𝛼1 ∈ 𝑁 ∖ {𝜙}. We can apply Lemma 3.10
to 𝐺 and 𝛼1 to obtain a grammar 𝐺′ with fewer nonterminals that is again totally rigid
and acyclic and satisfies 𝐿(𝐺) = 𝐿(𝐺′). By the induction hypothesis,

𝐿(𝐺) = 𝐿(𝐺′) =
{︀
𝑠[𝛼2∖𝑡2, . . . ,𝛼𝑛∖𝑡𝑛]

⃒⃒
𝜙 → 𝑠, 𝛼𝑖 → 𝑡𝑖 ∈ 𝑃 ′ for 2 ≤ 𝑖 ≤ 𝑛

}︀
;

note that 𝛼𝑖 → 𝑡𝑖 ∈ 𝑃 ′ is obviously equivalent to 𝛼𝑖 → 𝑡𝑖 ∈ 𝑃 and 𝜙 → 𝑠 ∈ 𝑃 ′ is
equivalent to 𝑠 = 𝑟[𝛼1∖𝑡1] for some 𝑟, 𝑡1 such that 𝜙 → 𝑟, 𝛼1 → 𝑡1 ∈ 𝑃 . Substituting
these equivalent conditions in the above equation yields equation (3.1) and concludes the
proof.

Remark. Equation (3.1) shows that totally rigid acyclic grammars—and by extension,
those constrained grammars that we are actually going to use—always generate finite
languages. Since any finite language can be trivially generated by a tree grammar without
resorting to rigidity, these grammars do not give us any additional expressive power.
The reason they are useful rather lies in the fact that constrained grammars allow us to
represent some languages in a more compact form than general tree grammars would; in
particular, the size of a grammar that corresponds to a proof is polynomially bounded
by the size of that proof.





CHAPTER 4
Proofs and Grammars

We impose some restrictions on the proofs we consider in this chapter:

1. In order to avoid having to deal with strong expansions in the end-sequent, we
only consider proofs of sequents that do not contain any strong quantifiers. This
is not a significant restriction, as we can always Skolemize a sequent with strong
quantifiers into an equivalid one that only contains weak quantifiers.

2. For every cut 𝑐 of 𝜋, if the cut formula of 𝑐 contains quantifiers, then it is either
𝛱1 or 𝛴1; we call 𝑐 a 𝛱1-cut or a 𝛴1-cut accordingly.

A large part of this chapter will be devoted to constructing a constrained grammar
𝐺(𝜋) = ⟨𝜙,𝑁(𝜋),𝛴,𝑃 (𝜋),C(𝜋)⟩. The nonterminals of 𝐺(𝜋) will belong to two distinct
types: those given by the end sequent and those arising from quantified cuts in 𝜋.

We will denote the set of quantified cut inferences of 𝜋 by QCuts(𝜋). Let 𝑐 ∈ QCuts(𝜋),
𝐴𝑐 be the cut formula of 𝑐 and 𝜋1, 𝜋2 be the left and right subproofs above 𝑐 respectively,
then exactly one of 𝜋1 and 𝜋2 uses strong quantifier inferences to introduce the quantifiers
in 𝐴. We call this subproof the strong side and the other one the weak side of 𝑐. The
strong side is on the left for 𝛱1-cuts and on the right for 𝛴1-cuts.

The relation defined in the following paragraph bears a close relationship to the
dependency relation defined in 3.9, cf. Lemma 4.12.

Definition 4.1 (Scope relation). Let 𝜋 be a simple proof. We define a relation <0
𝜋 on

QCuts(𝜋) by

𝑐 <0
𝜋 𝑐

′ if the weak side of 𝑐 and the strong side of 𝑐′ have nonempty intersection.

The transitive closure of this relation is written as <𝜋 and called the scope relation of 𝜋.
We will omit the subscript if the proof is clear from the context.

The one-step scope relation <0 of a proof 𝜋 can easily be determined from the types
of cuts and their spatial relationship in the proof.

Lemma 4.2. Let 𝑐,𝑐′ ∈ QCuts(𝜋).

25
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1. 𝑐 ̸<0 𝑐, i.e. <0 is irreflexive.
2. If 𝑐 and 𝑐′ are not on a common branch in 𝜋, then neither 𝑐 <0 𝑐′ nor 𝑐′ <0 𝑐 hold.
3. If 𝑐 and 𝑐′ are on a common branch, then there are three cases, depending on their

respective types:
• 𝑐 and 𝑐′ are both 𝛴1: w.l.o.g. 𝑐′ is above 𝑐; if 𝑐′ is to the right, then 𝑐′ <0 𝑐,

otherwise 𝑐 <0 𝑐′ (i.e. the cut “further right” is smaller).
• 𝑐 and 𝑐′ are both 𝛱1: The converse of the previous case holds, i.e. the cut

“further left” is smaller.
• 𝑐 is 𝛱1, 𝑐′ is 𝛴1: If either of them is above and to the right of the other,
𝑐 <0 𝑐′, otherwise 𝑐′ <0 𝑐.

Proof.

1. It is clear that the strong and weak sides of a cut do not intersect.
2. If 𝑐 and 𝑐′ are not on a common branch, then their respective strong and weak

subproofs obviously cannot intersect.
3. All three cases are easily verified by using the fact that the strong side of 𝛱1-cuts

is left and the strong side of 𝛴1-cuts is right.

Lemma 4.3. <𝜋 is acyclic.

Proof. By induction on the cardinality of QCuts(𝜋). If QCuts(𝜋) = ∅, then <𝜋 is trivially
acyclic. Now let 𝜄 be the lowest inference in 𝜋 such that either 𝜄 is itself a cut or both
its subproofs 𝜋1 and 𝜋2 contain cuts. In either case, both 𝜋1 and 𝜋2 contain fewer
cuts than 𝜋 and consequently their scope relations are acyclic. In the second case,
<𝜋=<𝜋1 ∪ <𝜋2 and hence <𝜋 is clearly acyclic. In the first case, assume there is a cycle
𝑐1 <

0 . . . <0 𝑐𝑛 <
0 𝑐1 in QCuts(𝜋). Since both <𝜋1 and <𝜋2 are acyclic by the induction

hypothesis and <0 is irreflexive, there must be 𝑖,𝑗 such that 𝜄 <0 𝑐𝑖 and 𝜄 <0 𝑐𝑗 and
𝑐𝑖 ∈ QCuts(𝜋1); 𝑐𝑗 ∈ QCuts(𝜋2) (i.e. 𝜋1 and 𝜋2 must each contain a cut larger than 𝜄).
Now, we can apply Lemma 4.2 to see that either possibility for the type of 𝜄 leads to a
contradiction. Thus, <𝜋 is acyclic.

Lemma 4.3 implies that <𝜋 is in fact a strict partial order; we will henceforth call it
the scope order of 𝜋.

Before we proceed to constructing the grammar of a proof, we need to fix some
terminology. Let 𝜋 be a proof and 𝑐 ∈ QCuts(𝜋) with cut formula 𝐴𝑐. As we have noted
before, introducing the quantifiers of 𝐴𝑐 requires strong inferences on one side of 𝑐 (the
“strong side”). The eigenvariables of these inferences will be called the eigenvariables of
𝑐 and denoted by 𝐸𝑉 (𝑐). Due to contractions, each quantifier might be introduced by
several inferences and because of regularity, the eigenvariables of these inferences are all
distinct.
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Moving on, on the weak side of 𝑐 each quantifier is introduced one or more times by
inferences of the form

𝛤 ⊢ 𝛥,𝐴[𝑥∖𝑡]
𝛤 ⊢ 𝛥,∃𝑥𝐴 ∃𝑟 or𝐴[𝑥∖𝑡], 𝛤 ⊢ 𝛥

∀𝑥𝐴, 𝛤 ⊢ 𝛥
∀𝑙,

according to the type of 𝑐. If 𝛼 ∈ 𝐸𝑉 (𝑐) is used to introduce ∃𝑥 on the strong side of 𝑐,
then each such term 𝑡 is said to be associated with 𝛼. Likewise, if 𝑥 is a bound variable
in the end sequent of 𝜋 and the weak quantifier 𝑄𝑥 is introduced by a term 𝑡 in 𝜋, then
we call 𝑥 and 𝑡 associated.

We can now work towards defining the grammar of a proof.

Definition 4.4 (Nonterminals of the end sequent). Let 𝜋 be a proof of 𝐴1, . . . ,𝐴𝑚 ⊢
𝐵1, . . . ,𝐵𝑛 and let 𝐵𝑉 (𝐴) be the set of bound variables in the formula 𝐴. Then

𝑁𝐸𝑆(𝜋) =
𝑚⋃︁
𝑖=1

𝐵𝑉 (𝐴𝑖) ∪
𝑛⋃︁
𝑖=1

𝐵𝑉 (𝐵𝑖).

Definition 4.5 (Nonterminals of cuts). Let 𝜋 be a proof and 𝐸𝑉 (𝜋) :=
⋃︀
𝑐∈QCuts(𝜋)𝐸𝑉 (𝑐).

Furthermore, let 𝛼1, . . . ,𝛼𝑛 be an enumeration of 𝐸𝑉 (𝜋) such that if 𝑐 <𝜋 𝑐′, then all
elements of 𝐸𝑉 (𝑐) have lower indices than all elements of 𝐸𝑉 (𝑐′). We inductively define
sets 𝑁1(𝜋), . . . ,𝑁𝑛(𝜋) in the following manner:
Consider the set

𝐵(𝛼1) := {𝑥 ∈ 𝑁𝐸𝑆 |𝑥 is associated with a term 𝑡(𝛼1)}.

Now let 𝑥1,1, . . . ,𝑥1,𝑘1 be those elements of 𝐵(𝛼1) whose quantifiers are outermost. Then

𝑁1(𝜋) := {𝛼𝑥1,1
1 , . . . ,𝛼

𝑥1,𝑘1
1 },

where the 𝛼𝑥1,𝑗

1 are new symbols.
Now suppose that we have already defined 𝐵(𝛼1), . . . ,𝐵(𝛼𝑖) and 𝑁1(𝜋), . . . ,𝑁𝑖(𝜋). Let

𝐵(𝛼𝑖+1) := {𝑥 ∈ 𝑁𝐸𝑆 |𝑥 is associated with a term 𝑡(𝛼𝑖+1)}∪

∪
⋃︁

{𝐵(𝛼𝑗) |𝛼𝑗 is associated with a term 𝑡(𝛼𝑖+1), 𝑗 ≤ 𝑖}

and 𝑥𝑖+1,1, . . . ,𝑥𝑖+1,𝑘𝑖+1 those variables in 𝐵(𝛼𝑖+1) whose quantifiers are outermost. Then

𝑁𝑖+1(𝜋) := {𝛼𝑥𝑖+1,1
𝑖+1 , . . . ,𝛼

𝑥𝑖+1,𝑘𝑖+1
𝑖+1 },

where the 𝛼𝑥𝑖+1,𝑗

𝑖+1 are new symbols.
Finally, 𝑁𝐶𝑢𝑡𝑠(𝜋) :=

⋃︀𝑛
𝑖=1𝑁𝑖(𝜋).

Definition 4.6 (Productions of a proof). Let 𝜋 be a proof and 𝛼1, . . . ,𝛼𝑛 and the 𝐵(𝛼𝑖)
as in the previous definition. We define a family (𝑜𝑖)𝑖∈{1,...,𝑛} of functions such that
𝑜𝑖 : 𝐵(𝛼𝑖) → 𝐵(𝛼𝑖) maps each variable 𝑥 ∈ 𝐵(𝛼𝑖) to the unique outermost variable
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𝑦 ∈ 𝐵(𝛼𝑖) above or equal to 𝑥.

1. For 𝑥 ∈ 𝑁𝐸𝑆(𝜋), let

𝑃𝑥(𝜋) :=
{︁
𝑥 → 𝑡

(︁
𝛼
𝑜𝑖1 (𝑥)
𝑖1

, . . . ,𝛼
𝑜𝑖𝑘

(𝑥)
𝑖𝑘

)︁ ⃒⃒⃒
𝑡(𝛼𝑖1 , . . . ,𝛼𝑖𝑘) is associated with 𝑥

}︁
.

2. For 𝛽𝑥 ∈ 𝑁𝐶𝑢𝑡𝑠(𝜋), let

𝑃𝛽𝑥(𝜋) :=
{︁
𝛽𝑥 → 𝑡

(︁
𝛼
𝑜𝑖1 (𝑥)
𝑖1

, . . . ,𝛼
𝑜𝑖𝑘

(𝑥)
𝑖𝑘

)︁ ⃒⃒⃒
𝑡(𝛼𝑖1 , . . . ,𝛼𝑖𝑘) is associated with 𝛽

}︁
.

Definition 4.7 (Constraint formula of the end sequent). Let 𝜋 be a proof of 𝐴1, . . . ,𝐴𝑚 ⊢
𝐵1, . . . ,𝐵𝑛. We construct a constraint formula for the end sequent by traversing the
ancestor trees of the 𝐴𝑖 and 𝐵𝑖. To this end, let 𝜇 be an occurrence of any formula in 𝜋.

• If 𝜇 is quantifier-free, then

C𝐸𝑆(𝜇,𝜋) := ⊤.

• If 𝜇 is introduced by a weakening, then let 𝑧1, . . . ,𝑧𝑘 be the bound variables in 𝜇
and

C𝐸𝑆(𝜇,𝜋) :=
𝑘⋀︁
𝑗=1

⋀︁
¬𝑃𝑧𝑗 (𝜋).

• If 𝜇 is introduced by a ∧𝑟-rule, as in

𝛤1 ⊢ 𝛥1, 𝐴[𝜈1] 𝛤2 ⊢ 𝛥2, 𝐵[𝜈2]

𝛤 ⊢ 𝛥,(𝐴 ∧𝐵)[𝜇]
∧𝑟
,

then

C𝐸𝑆(𝜇,𝜋) := C𝐸𝑆(𝜈1,𝜋) ∧ C𝐸𝑆(𝜈2,𝜋).

The same holds in the case of a ∨𝑙-inference.
• If 𝜇 is introduced by a ∧𝑙-rule, as in

𝐴[𝜈1],𝐵[𝜈2],𝛤 ⊢ 𝛥

(𝐴 ∧𝐵)[𝜇], 𝛤 ⊢ 𝛥
∧𝑙
,

then

C𝐸𝑆(𝜇,𝜋) := C𝐸𝑆(𝜈1,𝜋) ∧ C𝐸𝑆(𝜈2,𝜋),

and analogously for ∨𝑟.
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• If 𝜇 arises from a contraction on the right, i.e.

𝛤 ⊢ 𝛥,𝐴[𝜈1],𝐴[𝜈2]

𝛤 ⊢ 𝛥,𝐴[𝜇]
𝑐𝑟
,

then

C𝐸𝑆(𝜇,𝜋) := C𝐸𝑆(𝜈1,𝜋) ∨ C𝐸𝑆(𝜈2,𝜋),

and analogously for a contraction on the left.
• If 𝜇 is introduced by a ¬𝑟 rule, as in

𝛤,𝐴[𝜈] ⊢ 𝛥

𝛤 ⊢ 𝛥,(¬𝐴)[𝜇]
¬𝑟
,

then

C𝐸𝑆(𝜇,𝜋) := C𝐸𝑆(𝜈,𝜋).

The same is true for a ¬𝑙-inference.
• If 𝜇 is introduced by a quantifier rule, i.e.

𝛤 ⊢ 𝛥, (𝐴[𝑥∖𝑡(𝛼𝑖1 , . . . ,𝛼𝑖𝑘)])[𝜈]

𝛤 ⊢ 𝛥,(∃𝑥𝐴)[𝜇]
∃𝑟
,

then

C𝐸𝑆(𝜇,𝜋) := 𝑥 → 𝑡
(︁
𝛼
𝑜𝑖1 (𝑥)
𝑖1

, . . . ,𝛼
𝑜𝑖𝑘

(𝑥)
𝑖𝑘

)︁
∧ C𝐸𝑆(𝜈,𝜋).

The case of a ∀𝑙-inference is analogous.
• We skip over all inferences whose active formula is not 𝜇.

Now we let 𝜇1, . . . ,𝜇𝑚,𝜈1, . . . ,𝜈𝑛 be the occurrences of 𝐴1, . . . ,𝐴𝑚,𝐵1, . . . 𝐵𝑛 in the end
sequent. Then

C𝐸𝑆(𝜋) :=
𝑚⋀︁
𝑖=1

C𝐸𝑆(𝜇𝑖,𝜋) ∧
𝑛⋀︁
𝑖=1

C𝐸𝑆(𝜈𝑖,𝜋).

4.1 The case of simple end sequents
For the remainder of this section, we only consider proofs whose end sequents are of
the form ⊢ ∃𝑥1 . . . ∃𝑥𝑚𝐴 ∨ ∃𝑦1 . . . ∃𝑦𝑛𝐵 with 𝐴,𝐵 quantifier-free. For such a proof 𝜋
it follows that 𝑁𝐸𝑆(𝜋) = {𝑥1, . . . ,𝑥𝑚,𝑦1, . . . ,𝑦𝑛} and each 𝛼 ∈ 𝐸𝑉 (𝜋) has at most two
copies in 𝑁𝐶𝑢𝑡𝑠(𝜋), one originating from the 𝑥𝑖 and one from the 𝑦𝑖. Thus, 𝑁𝐶𝑢𝑡𝑠(𝜋) =
{𝛼𝑥𝑖1 , . . . ,𝛼

𝑥
𝑖𝑘

} ∪ {𝛼𝑦𝑗1 , . . . ,𝛼
𝑦
𝑗𝑙

}.
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If 𝑡 is any term, then let

𝑡𝑥 := 𝑡[𝛼𝑖1∖𝛼𝑥𝑖1 , . . . ,𝛼𝑖𝑘∖𝛼𝑥𝑖𝑘 ],
𝑡𝑦 := 𝑡[𝛼𝑗1∖𝛼𝑦𝑗1 , . . . ,𝛼𝑗𝑙∖𝛼

𝑦
𝑗𝑙

]

The productions of 𝜋 are now easy to compute:

𝑃𝑥𝑖(𝜋) = {𝑥𝑖 → 𝑡𝑥 | 𝑡 is associated with 𝑥𝑖} ,
𝑃𝑦𝑖(𝜋) = {𝑦𝑖 → 𝑡𝑦 | 𝑡 is associated with 𝑦𝑖} ,
𝑃𝛼𝑥

𝑖
(𝜋) = {𝛼𝑥𝑖 → 𝑡𝑥 | 𝑡 is associated with 𝛼𝑖} ,

𝑃𝛼𝑦
𝑗
(𝜋) =

{︁
𝛼𝑦𝑗 → 𝑡𝑦

⃒⃒⃒
𝑡 is associated with 𝛼𝑖

}︁
.

In the sequel, we will use “𝑧𝑖” to denote “𝑥𝑖 or 𝑦𝑖” and “𝑧” to denote “𝑥 or 𝑦”.

Definition 4.8 (Constraint formula of a cut). Let 𝑐 ∈ QCuts(𝜋) and 𝐴𝑐 be the cut
formula of 𝑐. We construct a new formula of productions by induction on the ancestor
tree of 𝐴𝑐. If 𝜇 is an occurrence of a formula on the weak side of 𝑐, we define C𝑥𝑐 (𝜇,𝜋) in
the following manner:

• If 𝜇 is quantifier-free , then C𝑥𝑐 (𝜇,𝜋) = ⊤.
• If 𝜇 is introduced by a weakening, then let 𝑧1, . . . ,𝑧𝑘 be the bound variables in 𝜇

and

C𝑥𝑐 (𝜋,𝜋) :=
𝑘⋀︁
𝑗=1

⋀︁
¬𝑃𝑧𝑗 (𝜋).

• If 𝜇 is introduced by a ∧𝑟-rule, as in

𝛤1 ⊢ 𝛥1, 𝐵[𝜈1] 𝛤2 ⊢ 𝛥2, 𝐶[𝜈2]

𝛤 ⊢ 𝛥,(𝐵 ∧ 𝐶)[𝜇]
∧𝑟
,

then C𝑥𝑐 (𝜇,𝜋) = C𝑥𝑐 (𝜈1,𝜋) ∧ C𝑥𝑐 (𝜈2,𝜋). The same holds in the case of a ∨𝑙-inference.
• If 𝜇 is introduced by a ∧𝑙-rule, as in

𝐵[𝜈1],𝐶[𝜈2],𝛤 ⊢ 𝛥

(𝐵 ∧ 𝐶)[𝜇], 𝛤 ⊢ 𝛥
∧𝑙
,

then C𝑥𝑐 (𝜇,𝜋) = C𝑥𝑐 (𝜈1,𝜋) ∧ C𝑥𝑐 (𝜈2,𝜋), and analogously for ∨𝑟.
• If 𝜇 arises from a contraction on the right, i.e.

𝛤 ⊢ 𝛥,𝐵[𝜈1],𝐵[𝜈2]

𝛤 ⊢ 𝛥,𝐵[𝜇]
𝑐𝑟
,

then C𝑥𝑐 (𝜇,𝜋) = C𝑥𝑐 (𝜈1,𝜋) ∨ C𝑥𝑐 (𝜈2,𝜋), and analogously for a contraction on the left.
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• If 𝜇 is introduced by a ¬𝑟 rule, as in

𝛤,𝐵[𝜈] ⊢ 𝛥

𝛤 ⊢ 𝛥,(¬𝐵)[𝜇]
¬𝑟
,

then C𝑥𝑐 (𝜇,𝜋) = C𝑥𝑐 (𝜈,𝜋). The same is true for a ¬𝑙-inference.
• If 𝜇 is introduced by a quantifier rule, i.e.

𝛤 ⊢ 𝛥, (𝐵[𝑧∖𝑡])[𝜈]

𝛤 ⊢ 𝛥,(∃𝑧𝐵)[𝜇]
∃𝑟
,

then

C𝑥𝑐 (𝜇,𝜋) = (𝛽𝑥1 → 𝑡𝑥 ∨ . . . ∨ 𝛽𝑥𝑟 → 𝑡𝑥) ∧ C𝑥𝑐 (𝜈,𝜋),

where 𝛽1, . . . ,𝛽𝑘 ∈ 𝐸𝑉 (𝑐) are the eigenvariables associated with the quantifier ∃𝑧
that have 𝑥-copies in 𝑁𝐶𝑢𝑡𝑠(𝜋), if such eigenvariables exist. If there is no such
eigenvariable, then C𝑥𝑐 (𝜇,𝜋) = C𝑥𝑐 (𝜈,𝜋). The case of a ∀𝑙-inference is analogous.

• We skip over all unary inferences whose active formula is not 𝜇, i.e. inferences that
only operate on the context.

A formula C
𝑦
𝑐 (𝜇,𝜋) is defined analogously. Finally, we set C𝑐(𝜋) := C𝑥𝑐 (𝜇0,𝜋) ∧ C

𝑦
𝑐 (𝜇0,𝜋),

where 𝜇0 is the active occurence of 𝐴𝑐 in the weak premise of 𝑐.

Definition 4.9 (Grammar of a proof). Let 𝜋 be a proof of 𝐴1, . . . ,𝐴𝑚 ⊢ 𝐵1, . . . ,𝐵𝑛.
The constrained grammar 𝐺(𝜋) = ⟨𝜙,𝑁(𝜋),𝛴,𝑃 (𝜋),C(𝜋)⟩, where

𝜙 is a new symbol;
𝑁(𝜋) = 𝑁𝐸𝑆(𝜋) ∪𝑁𝐶𝑢𝑡𝑠(𝜋) ∪ {𝜙};
𝛴 is the language of 𝜋;

𝑃 (𝜋) =
⋃︁

𝑥∈𝑁𝐸𝑆(𝜋)

𝑃𝑥(𝜋) ∪
⋃︁

𝛼∈𝑁𝐶𝑢𝑡𝑠(𝜋)

𝑃𝛼(𝜋) ∪ {𝜙 → 𝐴 ∨𝐵};

C(𝜋) = C𝐸𝑆(𝜋) ∧
⋀︁

𝑐∈QCuts(𝜋)

C𝑐(𝜋) ∧ 𝑇𝑅𝑃 (𝜋),

is called the grammar of 𝜋.

Note that the definition of C(𝜋) implies the total rigidity of 𝐺(𝜋).
From this definition, it is immediately clear that the first step of any valid derivation

instantiates 𝜙 as the single formula in the end sequent. It follows that 𝐿(𝐺𝐸𝑆(𝜋)) consists
of partial instances of that formula; as we noted in the definition of the language of a
constrained grammar, it is possible that there are nonterminals remaining at the end
of a derivation. Nonterminals that no productions can be applied to may result from
weakenings in the proof.
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Let 𝐴,𝐵 be formulas. We write 𝐴 ≤ 𝐵 to express that 𝐵 arises from 𝐴 by substituting
positive instances of ⊥ and negative instances of ⊤ by other formulas. If 𝑀,𝑁 are sets of
formulas, then 𝑀 ≤ 𝑁 means that for every 𝐴 ∈ 𝑀 , there is a 𝐵 ∈ 𝑁 such that 𝐴 ≤ 𝐵
(i.e. 𝑀 is bounded above by 𝑁).

Lemma 4.10. Let 𝜋 be a proof and C(𝜋) the constraint formula of its grammar 𝐺(𝜋).

1. 𝑑 is a valid derivation of 𝐺(𝜋) iff 𝑑 uses at most one production for each nonterminal
and each of the formulas 𝑣𝑑(C𝐸𝑆(𝜋)) and 𝑣𝑑(C𝑐(𝜋)), 𝑐 ∈ QCuts(𝜋) is satisfiable.

2. C𝐸𝑆(𝜋) and each C𝑐(𝜋) are satisfiable.

Proof.

1. First, note that the formula 𝑣𝑑(C𝐸𝑆(𝜋) ∧
⋀︀
𝑐∈QCuts(𝜋) C𝑐(𝜋) ∧ 𝑇𝑅𝑃 (𝜋)) is satisfiable

iff 𝑣𝑑(C𝐸𝑆(𝜋) ∧
⋀︀
𝑐∈QCuts(𝜋) C𝑐(𝜋)) is satisfiable and 𝑑 obeys total rigidity. Since the

constraint formulas of the end sequent and those of cuts have pairwise disjoint sets
of atoms, the satisfiability of 𝑣𝑑(C𝐸𝑆(𝜋) ∧

⋀︀
𝑐∈QCuts(𝜋) C𝑐(𝜋)) is equivalent to the

individual satisfiability of 𝑣𝑑(C𝐸𝑆(𝜋)) and all 𝑣𝑑(C𝑐(𝜋)).
2. Let us first consider C𝐸𝑆(𝜋). By the same argument as above, it is sufficient to

show that each C𝐸𝑆(𝜇,𝜋), where 𝜇 is a formula occurrence in the end sequent,
is satisfiable. We show this by induction on the complexity of C𝐸𝑆(𝜇,𝜋). In the
cases of 𝜇 quantifier-free or 𝜇 introduced by weakening, C𝐸𝑆(𝜇,𝜋) is satisfied by the
empty interpretation or by interpreting each atom occurring in it as ⊥, respectively.
If 𝜇 is introduced from 𝜈1 and 𝜈2 by a ∨- or ∧-inference and C𝐸𝑆(𝜈1,𝜋),C𝐸𝑆(𝜈2,𝜋)
are satisfied by interpretations 𝐼1, 𝐼2 respectively, then C𝐸𝑆(𝜇,𝜋) is satisfied by
𝐼1 ∪ 𝐼2 since 𝐼1 and 𝐼2 do not share any atoms.
If 𝜇 is introduced by a quantifier inference from 𝜈 and C𝐸𝑆(𝜈,𝜋) is satisfied by
𝐼, C𝐸𝑆(𝜇,𝜋) is of the form 𝑝 ∧ C𝐸𝑆(𝜈,𝜋) and can be satified by the interpretation
𝐼 ∪ {𝑝}. Note that this is an actual interpretation because 𝑝 does not occur in
C𝐸𝑆(𝜈,𝜋) and hence is not assigned in 𝐼.
In the case of a contraction, C𝐸𝑆(𝜇,𝜋) is of the form C𝐸𝑆(𝜈1,𝜋) ∨ C𝐸𝑆(𝜈2,𝜋) and
C𝐸𝑆(𝜈1,𝜋),C𝐸𝑆(𝜈2,𝜋) are satisfiable by the induction hypothesis. It follows that
any satisfying interpretation of either also satisfies C𝐸𝑆(𝜇,𝜋).
The remaining cases are trivial. The argument for the constraint formulas of cuts
proceeds analogously.

Theorem 4.11. Let 𝜋 be a proof of ⊢ ∃𝑥1 . . . ∃𝑥𝑚𝐴 ∨ ∃𝑦1 . . . ∃𝑦𝑛𝐵 in which all cuts are
unquantified or have their cut formulas introduced by weakening. Then H(𝜋) ≤ 𝐿(𝐺(𝜋)).

Proof. First, let us consider 𝐸𝑥(𝜋) = ⊢ 𝐸. Since ⊢ 𝐷𝑝(𝐸) = 𝐷𝑝(⊢ 𝐸) must be
tautological by Theorem 2.11, 𝐸 cannot be of the form ⊥ or ⊥∨⊥; in fact, if 𝐸 = 𝐸1 ∨𝐸2,
then either 𝐸1 or 𝐸2 must expand all quantifiers in ∃�̄�𝐴 or ∃𝑦𝐵, respectively, as the only
alternative would be 𝐷𝑝(𝐸) ↔ ⊥.
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Next, suppose that 𝑐 is a cut whose cut formula is introduced by a weakening on
the weak side. The consequence is that none of the nonterminals of 𝑐 will have any
productions and hence cannot be eliminated once they are introduced in a derivation of
𝐺(𝜋). If the cut formula of 𝑐 is introduced by weakening on the strong side, 𝑐 will simply
not contribute anything to the grammar of 𝜋.

Now let 𝐶 be an element of H(𝜋). Due to the above considerations, 𝐶 is certainly
of the form 𝐴′ ∨ 𝐵′. Moreover, there are numbers 𝑚0 ≤ 𝑚 and 𝑛0 ≤ 𝑛 and terms
𝑠1, . . . ,𝑠𝑚0 ,𝑡1, . . . ,𝑡𝑛0 such that for each 𝑖 ∈ {1, . . . ,𝑚0}, 𝑥𝑖 is replaced by 𝑠𝑖 in 𝐶, and
analogously for 𝑦1, . . . ,𝑦𝑛0 . Clearly, 𝑥𝑖 → 𝑠𝑖 and 𝑦𝑖 → 𝑡𝑖 are productions of 𝐺(𝜋).
Therefore, let 𝑑 be a derivation that begins with 𝜙 → 𝐴∨𝐵 and then uses the productions
𝑥𝑖 → 𝑠𝑖 and 𝑦𝑖 → 𝑡𝑖 in any order and as many times as necessary to eliminate all
𝑥1, . . . ,𝑥𝑚0 and 𝑦1, . . . ,𝑦𝑛0 from 𝐶.

The result is a formula 𝐴* ∨ 𝐵*. Note that due to the above considerations about
cuts, the terms 𝑠𝑖 and 𝑡𝑖, as well as 𝐴* ∨𝐵* itself, may contain nonterminals of cuts that
cannot be eliminated. We need to show that 𝐴* ∨𝐵* ∈ 𝐿(𝐺(𝜋))—i.e., that 𝑑 is a valid
derivation of 𝐺(𝜋)—and that 𝐶 ≤ 𝐴* ∨𝐵*. Concerning the first point, we observe that
C𝐸𝑆(𝜋) is certainly equivalent to a formula of the form C𝑥 ∧ C𝑦 with C𝑥 only containing
𝑥𝑖-productions and C𝑦 only 𝑦𝑖-productions. The fact that in 𝐴′ the variables 𝑥1, . . . ,𝑥𝑚0

are assigned terms 𝑠1, . . . ,𝑠𝑚0 while all 𝑥𝑖 with 𝑖 > 𝑚0 remain unassigned implies that
there is a branch in 𝜋 that contains inferences

𝛤 ⊢ 𝛥,𝐴𝑖[𝑥𝑖∖𝑠𝑖]
𝛤 ⊢ 𝛥,∃𝑥𝑖𝐴𝑖

∃𝑟

for each 𝑖 ∈ {1, . . . ,𝑚0} and on which the formula ∃𝑥𝑚0+1 . . . ∃𝑥𝑚𝐴 is introduced by
a weakening. It follows that there is a clause in C𝑥 that contains exactly the literals
𝑥1 → 𝑠1, . . . , 𝑥𝑚0 → 𝑠𝑚0 and ¬𝑥𝑖 → 𝑠 for any 𝑖 > 𝑚0 and 𝑥𝑖 → 𝑠 ∈ 𝑃𝑥𝑖(𝜋). An analogous
result holds for the structure of C𝑦. From this observation, it is clear that 𝑣𝑑 is both a
partial interpretation of C and maximal, as extending 𝑑 would necessitate the use of a
production 𝑥𝑖 → 𝑠 or 𝑦𝑖 → 𝑡 with 𝑖 > 𝑚0 or 𝑖 > 𝑛0, respectively.

Now suppose that 𝐶 contains ⊥ as a subformula. This implies that ⊥ is an expansion
tree of some formula 𝐷 in 𝐸, which in turn means that 𝐷 is introduced by a weakening
somewhere in 𝜋. If 𝐷 is a quantifier-free formula, then 𝐷 is a subformula of 𝐴* ∨ 𝐵*

and occupies the same position there as ⊥ in 𝐶. If 𝐷 contains any quantifiers, then the
corresponding variables have not been used in the production 𝑑 and hence 𝐷 is again a
subformula of 𝐴* ∨𝐵*. All in all, we obtain 𝐶 ≤ 𝐴* ∨𝐵*.

We can now investigate the relationship between the scope order of 𝜋 and the depen-
dency relation of 𝐺(𝜋) that was alluded to earlier.

Lemma 4.12. Let 𝑐, 𝑐′ ∈ QCuts(𝜋) and 𝛼 ∈ 𝐸𝑉 (𝑐), 𝛼′ ∈ 𝐸𝑉 (𝑐′).

1. If 𝛼 ≺0
𝐺(𝜋) 𝛼

′, then 𝑐 <0
𝜋 𝑐

′.

2. If 𝛼 ≺𝐺(𝜋) 𝛼
′, then 𝑐 <𝜋 𝑐

′.
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3. 𝐺(𝜋) is acyclic.
4. If 𝑐 is minimal in <𝜋, then 𝛼 is minimal with respect to 𝑁𝐶𝑢𝑡𝑠 in ≺𝐺(𝜋).

Proof.

1. 𝛼 ≺0
𝐺(𝜋) 𝛼 means that there is a production 𝛼 → 𝑡(𝛽) in 𝐺(𝜋). This can only be

the case if 𝑡(𝛽) is associated with 𝛼. Since 𝑡(𝛽) is associated with an eigenvariable
of 𝑐 and contains an eigenvariable of 𝑐′, it is in both the weak side of 𝑐 and the
strong side of 𝑐′, which entails 𝑐 <0

𝜋 𝑐
′.

2. Follows immediately from (1).
3. Follows immediately from (2) and Lemma 4.3.
4. Follows immediately from (2).

Remark 4.13. For the remainder of this chapter, we will simply call those cut nonter-
minals that are minimal with respect to 𝑁𝐶𝑢𝑡𝑠 minimal.

Lemma 4.14. Let 𝜋 and 𝜋′ be proofs such that 𝜋 𝑝𝑟
 𝜋′, cf. Definition 1.10. If 𝛼, 𝛽 are

as depicted there, then 𝐿(𝐺(𝜋′)) ⊆ 𝐿(𝐺(𝜋)).

Proof. Let 𝑑′ = 𝜙 →* 𝑠 be a valid derivation of 𝐺(𝜋′). Suppose that there is a term
𝑡(𝛼,𝛽) in 𝜓 such that the production 𝜎𝑧 → (𝑡[𝛽∖𝛼])𝑧 is used in 𝑑′. It follows that 𝜎𝑧 → 𝑡𝑧

is a production of 𝐺(𝜋). Since 𝛼 and 𝛽 are associated with the same terms, the 𝛼𝑧 and
𝛽𝑧 must have the same productions in 𝐺(𝜋). We can thus obtain a derivation 𝑑 of 𝐺(𝜋)
by first replacing 𝜎𝑧 → (𝑡[𝛽∖𝛼])𝑧 with 𝜎𝑧 → 𝑡𝑧. If no production for 𝛼𝑧 is used in 𝑑′, we
are done; if a production 𝛼𝑧 → 𝑟𝑧 is used, we add 𝛽𝑧 → 𝑟𝑧 at any point after 𝜎𝑧 → 𝑡𝑧.
The validity of 𝑑 is easy to verify; in the case where a production 𝛽𝑧 → 𝑟𝑧 is added, 𝑣𝑑
does not invalidate the constraint formula of 𝐺(𝜋) because 𝑣𝑑 = 𝑣𝑑′ ∪ {𝛽𝑧 → 𝑡𝑧} and
whenever C(𝜋′) contains a positive instance of 𝛼𝑧 → 𝑡𝑧, C(𝜋) must contain a positive
instance of 𝛼𝑧 → 𝑡𝑧 ∨ 𝛽𝑧 → 𝑡𝑧 in the same position.

Theorem 4.15. Let 𝜋, 𝜋′ be proofs of ∃�̄�𝐴∨ ∃𝑦𝐵 and 𝜋  𝜋′ by one of the cut reduction
steps defined in 1.7, except contraction and weakening. Then 𝐿(𝐺(𝜋)) = 𝐿(𝐺(𝜋′)).

Proof. First of all, observe that no cut reduction step changes the end sequent part of
𝐺(𝜋) and consequently, we only need to consider what happens to the parts of 𝐺(𝜋) that
originate from cuts. We shall consider each of the steps in 1.7 in turn. In each case,
we will assume that 𝐴𝑐 is 𝛴1 and note the changes that need to be made in case of a
𝛱1-formula.

1. Rule permutations obviously have no effect on the grammar, regardless of the type
of 𝐴𝑐.

2. If 𝐴𝑐 is an axiom, then 𝑐 ̸∈ QCuts(𝜋) and eliminating 𝑐 has no effect on the
grammar.
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5. Obviously, there is only a single production for 𝛼𝑥 in 𝐺(𝜋), namely 𝛼𝑥 → 𝑡𝑥 , and
C𝑥𝑐 has the form 𝛼𝑥 → 𝑡𝑥 ∧ B𝑥. In 𝐺(𝜋′), 𝛼𝑥 and its single production are deleted
and any production 𝛽𝑥 → 𝑠𝑥 ∈ 𝑃 (𝜋) is replaced by 𝛽𝑥 → 𝑠𝑥[𝛼𝑥∖𝑡𝑥]. Of course,
analogous statements hold for 𝛼𝑦. Moreover, the constraint formula of 𝐺(𝜋′) is
obtained by replacing C𝑥𝑐 and C

𝑦
𝑐 in C with B𝑥 and B𝑦, respectively. Now it is easy

to see that both grammars generate the same language, cf. the proof of Lemma
3.10. If 𝐴𝑐 is 𝛱1, this case cannot occur.

6. 𝐴𝑐 = ∀𝑥𝐵 is impossible for a 𝛴1-formula. The case where 𝐴𝑐 is 𝛱1 is treated
analogously to 5.

7. Let 𝐸𝑉 (𝑐) = {𝛽1, . . . ,𝛽𝑛, 𝛾1, . . . ,𝛾𝑚} such that the 𝛽𝑖 and 𝛾𝑖 occur in 𝐵 and 𝐶
respectively. Clearly, C𝑥𝑐 (𝜋) = B𝑥′ ∧ B𝑥′′. In 𝜋′, 𝑐 is replaced by two new cuts 𝑐′, 𝑐′′

with cut formulas 𝐵 and 𝐶 respectively; this replacement leaves all nonterminals
and their productions unchanged. It follows that C𝑥𝑐′(𝜋′) = B𝑥′ and C𝑥𝑐′′(𝜋′) = B𝑥′′,
which implies C(𝜋′)𝑥 = C(𝜋)𝑥. The same argument can be made for 𝑦 and hence
𝐺(𝜋′) = 𝐺(𝜋). This proof also works in the case of a 𝛱1-cut.

8. Disjunction is handled analogously to conjunction, in either case of the type of 𝐴𝑐.
9. It is straightforward to see that removing ¬-inferences does not change the grammar

at all.

The following lemma is the main technical result of this thesis.

Lemma 4.16. Let 𝜋 be a pruned proof of ∃�̄�𝐴 ∨ ∃𝑦𝐵 and 𝑐 a minimal cut in 𝜋. If
𝜋  𝜋′ by reducing 𝑐 according to a contraction rule, then 𝐿(𝐺(𝜋)) = 𝐿(𝐺(𝜋′)).

Proof. We assume that 𝑐 is 𝛴1; the case of a 𝛱1-cut can be treated by switching the
strong and weak sides. Let 𝐺(𝜋′) = ⟨𝜙,𝑁 ′, 𝛴, 𝑃 ′,C′⟩.

First, suppose that the contraction that is reduced is on the left-hand side of 𝑐; This
situation is pictured in Definition 1.7. The first thing we note is that the only nonterminals
that are affected by the proof transformation are those introduced in 𝜓2. Due to the
minimality of 𝑐, there are no quantified cuts in 𝜓2 and hence the only eigenvariables
therein are those of cuts below 𝑐 and those of 𝑐 itself. Let 𝐸𝑉 (𝑐) = {𝛼1, . . . ,𝛼𝑛}. In
𝐺(𝜋′), each 𝛼𝑖 is replaced by two new copies 𝛼′

𝑖 and 𝛼′′
𝑖 . Moreover, if 𝑐 is a cut in 𝜋

such that 𝑐 is on the strong side of 𝑐, then there might be eigenvariables of 𝑐 that are
introduced within 𝜓2. Let 𝛽1, . . . ,𝛽𝑚 be all such eigenvariables; it follows that 𝜋′ contains
two new copies 𝛽′

𝑖,𝛽
′′
𝑖 for each of them.

Let us now consider the effects of the reduction on the end sequent part of the
grammar. The nonterminals are obviously unchanged, but the productions and the
constraint formula are not. If 𝑧𝑗 → 𝑡𝑧 is a production of the end sequent, then it is
replaced in 𝐺(𝜋′) by two new productions

𝑧𝑗 → 𝑡𝑧[𝛼𝑧1∖𝛼′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′

𝑛
𝑧,𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧] and

𝑧𝑗 → 𝑡𝑧[𝛼𝑧1∖𝛼′′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′′

𝑛
𝑧,𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧].



36 4 Proofs and Grammars

By the same token, if 𝜈 is any formula occurrence in the conclusion of 𝑐, then

C𝐸𝑆(𝜈,𝜋′) = C𝐸𝑆(𝜈,𝜋)[𝛼𝑧1∖𝛼′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′

𝑛
𝑧,𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧]∨

∨ C𝐸𝑆(𝜈,𝜋)[𝛼𝑧1∖𝛼′′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′′

𝑛
𝑧,𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧].

Now we consider the rest of the grammar. If 𝜇′ and 𝜇′′ are the two occurrences of 𝐴𝑐
on the weak side of 𝑐, then one of them is arbitrarily designated as the cut formula of
𝑐′ and the other as the cut formula of 𝑐′′; w.l.o.g we assume that 𝜇′ is the cut formula
of 𝑐′ and 𝜇′′ the cut formula of 𝑐′′. The productions of 𝛼𝑖 are split between 𝛼′

𝑖 and 𝛼′′
𝑖

accordingly, that is, if 𝛼𝑧𝑖 → 𝑡𝑧 is a production of 𝐺(𝜋) and 𝑡 introduces a quantifier in 𝜇′,
then 𝛼′

𝑖
𝑧 → 𝑡𝑧 is a production of 𝐺(𝜋′) and analogously if 𝑡 introduces a quantifier in 𝜇′′.

As for the 𝛽𝑖, each of them originates from a cut below 𝑐 whose weak side is entirely
unaffected by the duplication of 𝜓2, so 𝛽′

𝑖
𝑧 and 𝛽′′

𝑖
𝑧 simply inherit the productions of 𝛽𝑧𝑖 .

The constraint formula of 𝑐 is necessarily of the form (B′𝑥 ∨ B′′𝑥) ∧ (B′𝑦 ∨ B′′𝑦); it
follows that the constraint formulas of 𝑐′ and 𝑐′′ are B′𝑥∧𝐵′𝑦 and B′′𝑥∧𝐵′′𝑦, respectively,
up to replacement of nonterminals by their fresh copies:

C′
𝑐′ = B′𝑥{𝛼𝑥1∖𝛼′

1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′

𝑛
𝑥} ∧ B′𝑦{𝛼𝑦1∖𝛼′

1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′

𝑛
𝑦},

C′
𝑐′′ = B′′𝑥{𝛼𝑥1∖𝛼′′

1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′′

𝑛
𝑥} ∧ B′𝑦{𝛼𝑦1∖𝛼′′

1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′′

𝑛
𝑦}.

If 𝑐 is above the strong side of 𝑐, then eigenvariables of 𝑐 might be duplicated, as noted
above. In that case, we obtain the new constraint formula of 𝑐 by replacing each 𝛽𝑧𝑖 → 𝑡𝑧

in C𝑐(𝜋) with 𝛽′
𝑖
𝑧 → 𝑡𝑧 ∨ 𝛽′′

𝑖
𝑧 → 𝑡𝑧.

Summing up, 𝐺(𝜋′) has the following components:

• Nonterminals:

𝑁 ′ = (𝑁 ∖ {𝛼𝑧1, . . . ,𝛼𝑧𝑛,𝛽𝑧1 , . . . ,𝛽𝑧𝑚}) ∪
∪ {𝛼′

1
𝑧, . . . ,𝛼′

𝑛
𝑧,𝛽′

1
𝑧, . . . ,𝛽′

𝑚
𝑧}∪

∪ {𝛼′′
1
𝑧, . . . ,𝛼′′

𝑛
𝑧,𝛽′′

1
𝑧, . . . ,𝛽′′

𝑚
𝑧}
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• Productions:

𝑃 ′ = 𝑃 ∖

⎛⎝ ⋃︁
𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 ∪
𝑛⋃︁
𝑖=1

𝑃𝛼𝑧
𝑖

∪
𝑚⋃︁
𝑖=1

𝑃𝛽𝑧
𝑖

⎞⎠∪

∪
⋃︁

𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 [𝛼𝑧1∖𝛼′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′

𝑛
𝑧,𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧]∪

∪
⋃︁

𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 [𝛼𝑧1∖𝛼′′
1
𝑧, . . . ,𝛼𝑧𝑛∖𝛼′′

𝑛
𝑧,𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧]∪

∪
𝑛⋃︁
𝑖=1

{︀
𝛼′
𝑖
𝑧 → 𝑡𝑧

⃒⃒
𝑡 is associated with 𝛼𝑖 and introduces a quantifier in 𝜇′, 𝑧 ∈ {𝑥,𝑦}

}︀
∪

∪
𝑛⋃︁
𝑖=1

{︀
𝛼′′
𝑖
𝑧 → 𝑡𝑧

⃒⃒
𝑡 is associated with 𝛼𝑖 and introduces a quantifier in 𝜇′′, 𝑧 ∈ {𝑥,𝑦}

}︀
∪

∪
𝑚⋃︁
𝑖=1

𝑃𝛽𝑖
{𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧}

∪
𝑚⋃︁
𝑖=1

𝑃𝛽𝑖
{𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧}

• Constraint formula:

C′ = C𝐸𝑆(𝜋′)∧

∧
⋀︁

𝑐∈QCuts(𝜋)
𝑐 ̸=𝑐

C𝑐(𝜋)∧

∧ B′𝑥{𝛼𝑥1∖𝛼′
1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′

𝑛
𝑥} ∧ B′𝑦{𝛼𝑦1∖𝛼′

1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′

𝑛
𝑦}∧

∧ B′′𝑥{𝛼𝑥1∖𝛼′′
1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′′

𝑛
𝑥} ∧ B′′𝑦{𝛼𝑦1∖𝛼′′

1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′′

𝑛
𝑦}∧

∧ 𝑇𝑅𝑃 ′

Now let 𝑑 = 𝜙 →* 𝑠 be a valid derivation of 𝐺(𝜋). If no nonterminals belonging to 𝑐
are used in 𝑑 then all we have to do to obtain a valid derivation of 𝐺(𝜋′) is replace each
𝛽𝑖 that occurs in 𝑑 with 𝛽′

𝑖. If, on the other hand, such nonterminals are used, then all
of them must be produced from nonterminals of the end sequent due to the minimality
of 𝑐. Let 𝛼𝑥𝑖1 , . . . ,𝛼

𝑥
𝑖𝑙
,𝛼𝑦𝑖𝑙+1

, . . . ,𝛼𝑦𝑖𝑟 be those nonterminals of 𝑐 that occur in 𝑑. If any of
the 𝛼𝑥𝑖𝑗 are later replaced by terms, then either all of these terms are above 𝜇′ or all of
them are above 𝜇′′. To see this, assume w.l.o.g. that 𝛼𝑥𝑖1 is later replaced by a term
𝑡𝑥1 that introduces a quantifier in 𝜇′, but not in 𝜇′′ and 𝛼𝑥𝑖2 by a term 𝑡𝑥2 for which the
converse is true. Since 𝑑 is valid, the atom 𝛼𝑥𝑖𝑗 → 𝑡𝑥𝑗 in C𝑐(𝜋) is assigned the value ⊤
by 𝑣𝑑 and no other atoms beginning with 𝛼𝑥𝑖𝑗 can have that value, due to total rigidity.
C𝑥𝑐 (𝜋) is certainly of the form B̃′ ∨ B̃′′ with 𝛼𝑥𝑖𝑗 → 𝑡𝑥𝑗 only occurring in B̃(𝑗) because of
our stipulations about the terms 𝑡𝑥𝑗 . It follows that on the one hand, no positive literal
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beginning with 𝛼𝑥𝑖2 within B̃′ can be assigned the value ⊤, while on the other hand the
literal ¬𝛼𝑥𝑖2 → 𝑡𝑥2 certainly evaluates to ⊥ (if it occurs at all) in B̃′. As a consequence, B̃′

is unsatisfiable under 𝑣𝑑. An analogous argument shows the unsatisfiability of B̃′′ under
𝑣𝑑, which leads to a contradiction with the validity of 𝑑.

We now consider the case where all terms produced from the 𝛼𝑥𝑖𝑗 and 𝛼𝑦𝑖𝑗 introduce
quantifiers in 𝜇′. In this case, replacing all 𝛼𝑥𝑖𝑗 in 𝑑 with 𝛼′

𝑖𝑗
𝑥 yields productions of 𝐺(𝜋′).

An analogous substitution applied to the 𝛼𝑦𝑖𝑗 gives a new derivation 𝑑′. The derivation 𝑑
might also contain some of the 𝛽𝑧𝑖 . Since the 𝛽′

𝑖
𝑥 and the 𝛽′′

𝑖
𝑥 have the same productions

in 𝑃 ′ as the 𝛽𝑥𝑖 do in 𝑃 , we can simply replace all 𝛽𝑥𝑖 with 𝛽′
𝑖
𝑥 and analogously for the 𝛽𝑦𝑖 .

In the case where the terms produced from the 𝛼𝑥𝑖𝑗 or 𝛼𝑦𝑖𝑗 (or both) introduce quantifiers
in 𝜇′′, we replace the corresponding 𝛼𝑧𝑖𝑗 and 𝛽𝑧𝑖 by their respective ′′-versions instead.

Thus, we obtain a derivation 𝑑′′ that certainly consists of productions of 𝐺(𝜋′); we
now need to show that it is in fact valid. By Lemma 4.10, it is sufficient to show the
satisfiability of the separate conjuncts of 𝑣𝑑′′(C(𝜋′)). First of all, note that 𝑑′′ does
not invalidate 𝑇𝑅𝑃 ′ . It is easy to see that 𝑣𝑑′′(C𝐸𝑆(𝜋′) is satisfiable. If 𝑐 is any cut
with an eigenvariable among the 𝛽𝑖, say 𝛽𝑖0 , and 𝛽𝑖0 has an associated term 𝑡, then the
production 𝛽𝑧𝑖0 → 𝑡𝑧 in C𝑐 has been replaced with 𝛽′

𝑖0
𝑧 → 𝑡𝑧∨𝛽′′

𝑖0
𝑧 → 𝑡𝑧 in 𝐺(𝜋′) and since

𝑣𝑑(C𝑐(𝜋)) is satisfiable, so is 𝑣𝑑′′(C𝑐(𝜋′)). The formulas B′𝑥{𝛼𝑥1∖𝛼′
1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′

𝑛
𝑥} and

B′𝑦{𝛼𝑦1∖𝛼′
1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′

𝑛
𝑦} are clearly satisfiable under 𝑑′′ because they contain exactly

the same substitutions relative to B′𝑥 and B′𝑦, respectively, as 𝑑′′ does relative to 𝑑.
B′′𝑥{𝛼𝑥1∖𝛼′′

1
𝑥, . . . ,𝛼𝑥𝑛∖𝛼′′

𝑛
𝑥} and B′′𝑦{𝛼𝑦1∖𝛼′′

1
𝑦, . . . ,𝛼𝑦𝑛∖𝛼′′

𝑛
𝑦} are trivially satisfiable under

𝑑′′ because none of their literals are assigned. The maximality of 𝑑′′ follows immediately
from the maximality of 𝑑.

Conversely, suppose that we have a derivation 𝑑′ of 𝐺(𝜋′). The first thing we need to
establish is that if nonterminals 𝛼′

𝑖1
𝑧1 and 𝛼′′

𝑖2
𝑧2 of 𝑐 are used in 𝑑′, then 𝑧1 ̸= 𝑧2; that is

to say, any subderivation that uses only the 𝑥𝑖 or the 𝑦𝑖 from the end-sequent cannot
contain nonterminals of both 𝑐′ and 𝑐′′. This is the case because on the one hand, no
production of 𝐺(𝜋′) contains nonterminals of both 𝑐′ and 𝑐′′ and on the other hand, once
a production resulting in nonterminals of either cut is used for some nonterminal of
the end sequent, C𝐸𝑆(𝜋′) prevents productions of the other kind from being used. An
analogous result holds for the 𝛽𝑧𝑖 .

We thus obtain a derivation 𝑑 of 𝐺(𝜋) by replacing all 𝛼′
𝑖
𝑧, 𝛽′

𝑖
𝑧, 𝛼′′

𝑖
𝑧, 𝛽′′

𝑖
𝑧 with their

original versions. This 𝑑 does not violate total rigidity because due to the considerations
above, 𝑑′ cannot contain both 𝛼′

𝑖
𝑧 and 𝛼′′

𝑖
𝑧 for any given 𝑖, and analogously for the 𝛽𝑧𝑖 .

As in the argument for the other direction, the satisfiability under 𝑑 of the various parts
of C follows readily from the satisfiability of the corresponding parts of C′.

Now suppose that the contraction happens on the strong side of 𝑐. Reducing the
contraction leaves us with two new cuts 𝑐′, 𝑐′′ whose cut formulas are both 𝐴𝑐. Let 𝜇′ and
𝜇′′ be the occurrences of 𝐴𝑐 that serve as cut formulas for 𝑐′ and 𝑐′′ respectively. Each
eigenvariable 𝛼 of 𝑐 introduces a quantifier in either 𝜇′ or 𝜇′′ and consequently belongs
to either 𝑐′ or 𝑐′′ accordingly. Consequently, 𝐸𝑉 (𝑐) = 𝐸𝑉 (𝑐′)∪̇𝐸𝑉 (𝑐′′), where either set
on the right might be empty. Thus, let 𝐸𝑉 (𝑐) = {𝛼1, . . . ,𝛼𝑛} and assume for the sake
of simplicity that 𝐸𝑉 (𝑐′) = {𝛼1, . . . ,𝛼𝑘} and 𝐸𝑉 (𝑐′′) = {𝛼𝑘+1, . . . ,𝛼𝑛}. Each 𝛼𝑖 has a
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duplicate belonging to 𝑥 or 𝑦 in 𝐺(𝜋′) iff it has one in 𝐺(𝜋).
The duplication of the left subproof 𝜓1 has extensive effects on the grammar. We will

discuss these effects separately for each 𝑐 ∈ QCuts(𝜋). First, if 𝑐 is below 𝑐, then 𝑐 must
be on the strong side of 𝑐 due to 𝑐’s minimality. As a consequence, it is possible that
there are eigenvariables of 𝑐 that are introduced within 𝜓1. If 𝛾 is such an eigenvariable,
then 𝛾 is duplicated, giving rise to eigenvariables 𝛾′ and 𝛾′′. This duplication naturally
carries over to 𝛾’s 𝑥- and 𝑦-versions. Each such 𝛾′𝑧 and 𝛾′′𝑧 inherits the productions
of 𝛾𝑧 in 𝐺(𝜋). The constraint formula of 𝑐 changes in a straightforward manner, by
replacing 𝛾𝑧 → 𝑡𝑧 with 𝛾′𝑧 → 𝑡𝑧 ∨ 𝛾′′𝑧 → 𝑡𝑧 for each 𝛾 that is duplicated. In the sequel,
let {𝛾1, . . . ,𝛾𝑙} be all eigenvariables of the original proof duplicated in this manner.

Next, assume that 𝑐 is located in 𝜓1. In this case, 𝑐 is replaced with two new cuts
𝑐′ and 𝑐′′. If {𝛽1, . . . ,𝛽𝑚} are all eigenvariables that belong to such cuts, then clearly
each of them is replaced by two new copies 𝛽′

𝑖 and 𝛽′′
𝑖 . The productions of the 𝑥- and

𝑦-versions of these duplicates work out to

𝑃 ′
𝛽′𝑧

𝑖
= 𝑃𝛽𝑧

𝑖
{𝛽𝑧∖𝛽′𝑧,𝛾𝑧∖𝛾′𝑧},

𝑃 ′
𝛽′′𝑧

𝑖
= 𝑃𝛽𝑧

𝑖
{𝛽𝑧∖𝛽′′𝑧,𝛾𝑧∖𝛾′′𝑧}

for each 𝑖 ∈ {1, . . . ,𝑚}. Similarly, 𝑐′ and 𝑐′′ have the constraint formulas C𝑐′ =
C𝑐{𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧} and C𝑐′′ = C𝑐{𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧} respectively.

The final case to consider is that of 𝑐 itself: The productions of the 𝛼𝑖 in 𝐺(𝜋′) work
out to

𝑃 ′
𝛼𝑧

𝑖
= 𝑃𝛼𝑧

𝑖
[𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧,𝛾𝑧1∖𝛾′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′

𝑙
𝑧] for 𝑖 ≤ 𝑘,

𝑃 ′
𝛼𝑧

𝑖
= 𝑃𝛼𝑧

𝑖
[𝛽𝑧1∖𝛽′′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′′

𝑚
𝑧,𝛾𝑧1∖𝛾′′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′′

𝑙
𝑧] for 𝑖 > 𝑘.

The constraint formula of 𝑐′ can be obtained from C𝑐 by replacing each literal 𝛼𝑧𝑖 → 𝑡𝑧 that
occurs in it with 𝛼𝑖𝑧 → 𝑡𝑧[𝛽𝑧1∖𝛽′

1
𝑧, . . . ,𝛽𝑧𝑚∖𝛽′

𝑚
𝑧,𝛾𝑧1∖𝛾′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′

𝑘
𝑧] (for 𝑖 ≤ 𝑘) removing it

(for 𝑖 > 𝑘). An analogous transformation yields C𝑐′′ . If 𝑐 is any other cut with quantifiers,
then 𝑐 is either within the strong side of 𝑐 or on a different branch of the proof from 𝑐.
The first case is impossible due to minimality of 𝑐 and in the second case, 𝑐 is unaffected
by the proof transformation.

The last thing that needs to be taken care of are the productions and constraint formula
of the end sequent. Each production 𝑧𝑖 → 𝑡𝑧 is replaced by

𝑧𝑖 → 𝑡𝑧[𝛽𝑧1∖𝛽′
1𝑧, . . . ,𝛽

𝑧
𝑚∖𝛽′

𝑚
𝑧,𝛾𝑧1∖𝛾′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′

𝑘
𝑧] and

𝑧𝑖 → 𝑡𝑧[𝛽𝑧1∖𝛽′′
1𝑧, . . . ,𝛽

𝑧
𝑚∖𝛽′′

𝑚
𝑧,𝛾𝑧1∖𝛾′′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′′

𝑘
𝑧].

If 𝑡 does not contain any 𝛽𝑖 or 𝛾𝑖, then both of these duplicates obviously coincide with
the original production and it simply carries over to 𝐺(𝜋′). As for C𝐸𝑆(𝜋′), there are
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formulas B1, . . . ,B𝑟 such that

C𝐸𝑆(𝜋) = C[B1, . . .B𝑟] and
C𝐸𝑆(𝜋′) = C[B1[𝛽𝑧1∖𝛽′

1𝑧, . . . ,𝛽
𝑧
𝑚∖𝛽′

𝑚
𝑧,𝛾𝑧1∖𝛾′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′

𝑘
𝑧]∨

∨ B1[𝛽𝑧1∖𝛽′′
1𝑧, . . . ,𝛽

𝑧
𝑚∖𝛽′′

𝑚
𝑧,𝛾𝑧1∖𝛾′′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′′

𝑘
𝑧],

. . .

B𝑟[𝛽𝑧1∖𝛽′
1𝑧, . . . ,𝛽

𝑧
𝑚∖𝛽′

𝑚
𝑧,𝛾𝑧1∖𝛾′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′

𝑘
𝑧]∨

∨ B𝑟[𝛽𝑧1∖𝛽′′
1𝑧, . . . ,𝛽

𝑧
𝑚∖𝛽′′

𝑚
𝑧,𝛾𝑧1∖𝛾′′

1
𝑧, . . . ,𝛾𝑧𝑘∖𝛾′′

𝑘
𝑧]].

As in the previous case, we can now sum up the contents of the new grammar:

• Nonterminals:

𝑁 ′ = 𝑁 ∖ {𝛽𝑧 |𝛽 is introduced in 𝜓1} ∪
∪
{︀
𝛽′𝑧, 𝛽′′𝑧 ⃒⃒𝛽 is introduced in 𝜓1

}︀
• Productions:

𝑃 ′ = 𝑃 ∖

⎛⎝ ⋃︁
𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 ∪
𝑛⋃︁
𝑖=1

𝑃𝛼𝑧
𝑖

∪
⋃︁

𝛽∈𝐸𝑉 (𝜓1)

𝑃𝛽𝑧 ∪

⎞⎠∪

∪
⋃︁

𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 [𝛽𝑧1∖𝛽′
1
𝑧, . . . ,𝛽𝑚∖𝛽′

𝑚
𝑧]∪

∪
⋃︁

𝑧𝑖∈𝑁𝐸𝑆(𝜋)

𝑃𝑧𝑖 [𝛽𝑧1∖𝛽′′
1
𝑧, . . . ,𝛽𝑚∖𝛽′′

𝑚
𝑧]∪

∪
𝑘⋃︁
𝑖=1

𝑃𝛼𝑧
𝑖
[𝛽𝑧∖𝛽′𝑧,𝛾𝑧∖𝛾′𝑧]∪

∪
𝑛⋃︁

𝑖=𝑘+1
𝑃𝛼𝑧

𝑖
[𝛽𝑧∖𝛽′′𝑧,𝛾𝑧∖𝛾′′𝑧]∪

∪
𝑚⋃︁
𝑖=1

𝑃𝛽𝑧
𝑖
{𝛽𝑧∖𝛽′𝑧,𝛾𝑧∖𝛾′𝑧}∪

∪
𝑚⋃︁
𝑖=1

𝑃𝛽𝑧
𝑖
{𝛽𝑧∖𝛽′′𝑧,𝛾𝑧∖𝛾′′𝑧}∪

∪
𝑙⋃︁

𝑖=1
𝑃𝛾𝑧

𝑖
{𝛾𝑧∖𝛾′𝑧}∪

∪
𝑙⋃︁

𝑖=1
𝑃𝛾𝑧

𝑖
{𝛾𝑧∖𝛾′′𝑧}
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• Constraint formula:

C′ = C𝐸𝑆(𝜋′)

∧
⋀︁

𝑐∈QCuts(𝜋)
𝑐 below or parallel to 𝑐

(C𝑐{𝛾𝑧∖𝛾′𝑧} ∧ C𝑐{𝛾𝑧∖𝛾′𝑧})

∧
⋀︁

𝑐∈QCuts(𝜓1)

C𝑐{𝛽1∖𝛽′
1, . . . ,𝛽𝑘∖𝛽′

𝑘}∧

∧
⋀︁

𝑐∈QCuts(𝜓1)

C𝑐{𝛽1∖𝛽′′
1 , . . . ,𝛽𝑘∖𝛽′′

𝑘}∧

∧ C𝑐′ ∧ C𝑐′′∧
∧ 𝑇𝑅𝑃 ′ .

Let 𝑑 be a valid derivation of 𝐺(𝜋). If nonterminals of 𝑐 occur in 𝑑, then due to the
minimality of 𝑐 they can only be introduced from nonterminals of the end sequent. Let
𝛼𝑧𝑖1 , . . . ,𝛼

𝑧
𝑖𝑟

be those nonterminals of 𝑐 that are used in 𝑑 and are later replaced by terms
𝑡𝑧1, . . . ,𝑡

𝑧
𝑟 . For each 𝑖𝑗 , we replace the production 𝛼𝑧𝑖𝑗 → 𝑡𝑧𝑗 with 𝛼𝑧𝑖𝑗 → 𝑡𝑧𝑗 [𝛽𝑧∖𝛽′𝑧, 𝛾𝑧∖𝛾′𝑧]

if 𝑖𝑗 ≤ 𝑘 or 𝛼𝑧𝑖𝑗 → 𝑡𝑧𝑗 [𝛽𝑧∖𝛽′′𝑧,𝛾𝑧∖𝛾′′𝑧] if 𝑖𝑗 > 𝑘. Also, if 𝑧𝑖 → 𝑡𝑧 is a production of the end
sequent in 𝑑, we replace it with 𝑧𝑖 → 𝑡𝑧[𝛽𝑧∖𝛽′𝑧, 𝛾𝑧∖𝛾′𝑧], obtaining a new derivation 𝑑′.
This can lead to 𝑑′ containing both 𝛽′

𝑖 and 𝛽′′
𝑖 for some 𝑖, and similarly for the 𝛾𝑖. Due to

total rigidity, 𝑑 uses at most one production for each 𝛽𝑖 and 𝛾𝑖 and we can simply replace
any such production by one or both of its two variants in the new grammar, according
to whether one or both copies of the respective nonterminal occur in 𝑑′. We call the
derivation obtained by this process 𝑑′′.

As before, it is sufficient to show that 𝑑′′ is totally rigid and does not invalidate the
conjuncts of C(𝜋′). 𝑣𝑑′′(C𝑐′) is satisfiable because up to renaming, the literals of C𝑐′ are a
subset of those of C𝑐 and 𝑣𝑑(C𝑐) is satisfiable. The satisfiability of 𝑣𝑑′′(C𝑐′′) is shown in
an analogous manner. The constraint formulas of all other cuts are similarly easy to deal
with because they contain the same substitutions relative to their original counterparts
as 𝑑′′ does to 𝑑. The satisfiability of 𝑣𝑑′′(C𝐸𝑆(𝜋′)) is immediately obvious.

Now suppose that we have a valid derivation 𝑑′ of 𝐺(𝜋′). First of all, there are
some important conclusions to be drawn from the form of C𝐸𝑆(𝜋′): If some production
𝑥𝑖 → 𝑡𝑥(�̄�𝑥) is used in 𝑑′, no production of a nonterminal 𝑥𝑗 with 𝑗 > 𝑖 that is used in
𝑑′ can contain any of the 𝛽′

𝑖
𝑥 or 𝛾′

𝑖
𝑥 (or their ′′-versions), and vice versa. Moreover, if

there is a production 𝑥𝑖 → 𝑡𝑥𝑖 (𝛽′𝑥, 𝛾′𝑥) in 𝑑′, then productions 𝑥𝑗 → 𝑡𝑥𝑗 (𝛽′′𝑥,𝛾′′𝑥) with
𝑗 > 𝑖 cannot occur in 𝑑′, and analogously with the ′- and ′′-nonterminals changed around.
Since 𝜋 is pruned, no term in 𝜓2 contains two eigenvariables that introduce the same
quantifier. These facts imply that the 𝑥-part of 𝑑′ only uses ′- or ′′-nonterminals, but
not both; the same is naturally true for the 𝑦-part. It follows that we can simply replace
all ′- and ′′-nonterminals by their original versions without violating total rigidity. The
argument that the resulting derivation 𝑑 is valid then goes through just as in the previous
cases.
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Corollary 4.17. Let 𝜋 be a proof of ⊢ ∃�̄�𝐴 ∨ ∃𝑦𝐵. Then 𝐿(𝐺(𝜋)) is tautological.

Proof. The result is obtained as a combination of Theorem 4.15, Lemma 4.14, Theorem
4.16 and Theorem 4.11.

4.2 The general case
Theorem 4.18. Let 𝐶 be a formula such that 𝐶 is a Boolean combination of prenex
formulas and all quantifiers in 𝐶 are weak. If 𝜋 is a proof of ⊢ 𝐶, then 𝐿(𝐺(𝜋)) is
tautological.

Sketch of proof. First, it is clear that Lemmas 4.14 and 4.16 and Theorems 4.15 and
4.11 still hold if the disjunction in ∃�̄�𝐴 ∨ 𝑦𝐵 is replaced with a conjunction or if either
block of existential quantifiers is replaced with negated universal quantifiers. Second,
each additional block of quantifiers simply induces (at most) another copy for each cut
nonterminal; all the proofs still proceed in exactly the same manner.

Let 𝛤 ⊢ 𝛥 be a sequent where every formula is of the form described in Theorem 4.18.
If 𝜋 is a proof of 𝛤 ⊢ 𝛥, the only amendment we need to make to the definition of 𝐺(𝜋)
is

𝑃𝜙(𝜋) := {𝜙 → ¬𝐴* |𝐴 ∈ 𝛤} ∪ {𝜙 → 𝐵* |𝐵 ∈ 𝛥}

instead of the single production we had for 𝜙 in the simple case.

Theorem 4.19. Let 𝜋 be a proof of an end sequent consisting only of formulas of the
form described in Theorem 4.18. Then 𝐿(𝐺(𝜋)) is tautological.

Sketch of proof. The proofs of Lemmas 4.14 and 4.16 and Theorems 4.15 and 4.11 still
work in exactly the same manner.

The previous two theorems enable us to present an example of a proof with cuts and
its grammar.

Example 4.20. Let L be the language consisting of six constant symbols 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓 and
a binary relation symbol ∼. Let A be the set of axioms expressing that the constants are
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all distinct and that ∼ is irreflexive and symmetric. We define a few abbreviations:

∼{𝑥1,𝑥2,𝑥3} :↔ 𝑥1∼𝑥2 ∧ 𝑥2∼𝑥3 ∧ 𝑥1∼𝑥3

̸∼{𝑥1,𝑥2,𝑥3} :↔ 𝑥1 ̸∼𝑥2 ∧ 𝑥2 ̸∼𝑥3 ∧ 𝑥1 ̸∼𝑥3

̸={𝑥1, . . . ,𝑥𝑘} :↔
𝑘⋀︁
𝑖=1

𝑘⋀︁
𝑗=𝑖+1

𝑥𝑖 ̸=𝑥𝑗

𝐾(𝑥1,𝑥2,𝑥3) :↔ ̸={𝑥1,𝑥2,𝑥3} ∧ ∼{𝑥1,𝑥2,𝑥3}
𝑁(𝑥1,𝑥2,𝑥3) :↔ ̸={𝑥1,𝑥2,𝑥3} ∧ ̸∼{𝑥1,𝑥2,𝑥3}

𝐾𝑎(𝑧1,𝑧2,𝑧3) :↔ ≠{𝑎,𝑧1,𝑧2,𝑧3} ∧
3⋀︁
𝑖=1

𝑎 ∼ 𝑧𝑖

𝑁𝑎(𝑧1,𝑧2,𝑧3) :↔ ≠{𝑎,𝑧1,𝑧2,𝑧3} ∧
3⋀︁
𝑖=1

�̸�∼𝑧𝑖

Then the sequent A ⊢ ∃�̄� 𝐾(�̄�) ∨ ∃𝑦 𝑁(𝑦) can be interpreted as “in a group of six people
there are always three who all know each other or three who don’t know each other”. We
shall give a proof 𝜋 containing a cut with the cut formula ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)), or “there
are three distinct people who know 𝑎 or three distinct people who don’t know 𝑎”. This is
a well-known special case of Ramsey’s Theorem.

In order to construct the grammar of 𝜋, we need to discuss the structure of the subproofs
𝜓0, . . . ,𝜓32 and 𝜙0, . . . ,𝜙3, defined at the end of the example. First, 𝜓0 contributes nothing
to the grammar. Note that there are 32 distinct possibilities for which of 𝑏,𝑐,𝑑,𝑒,𝑓 know
𝑎. In each of these cases, there either are three who know 𝑎 or three who don’t; this is
easy to see using a pigeonhole argument. In each of the subproofs 𝜓1, . . . ,𝜓32, we prove
the cut formula ∃𝑧 (𝐾𝑎 ∨𝑁𝑎) under the assumption of one of these constellations. We
choose to always instantiate the variables 𝑧1, 𝑧2, 𝑧3 in 𝐾𝑎 ∨𝑁𝑎 as the first three elements
that do or don’t know 𝑎 in alphabetical order. We also choose to enumerate the 32
constellations by converting them into binary numbers 𝑚𝑓𝑚𝑒𝑚𝑑𝑚𝑐𝑚𝑏 where 𝑚𝑖 = 1 if
𝑖 knows 𝑎 and 0 otherwise. For instance, the constellation where 𝑏, 𝑐 and 𝑒 know 𝑎 is
converted to 01011, so this is constellation number 11. See the table at the end of the
example for how 𝑧1,𝑧2,𝑧3 are instantiated in each case.

In 𝜙1, we prove that if 𝛽,𝛾,𝛿 are distinct and know 𝑎 and two of them also know each
other, there are three people who know each other. We always instantiate 𝑥1 as 𝑎 and
𝑥2, 𝑥3 alphabetically as the first two elements of {𝛽,𝛾,𝛿} who also know each other. In
𝜙2, we instantiate (𝑦1,𝑦2,𝑦3) as (𝛽,𝛾,𝛿). The proof 𝜙3 is entirely analogous to the part
above the left side of 𝜏 , but with ∼ and ̸∼ switched.

Now we have enough information to compute the grammar of 𝜋, restricting ourselves
to the formula in the succedent:

• Nonterminals: 𝑁(𝜋) = {𝜙,𝑥1,𝑥2,𝑥3,𝑦1,𝑦2,𝑦3,𝛽
𝑥,𝛽𝑦,𝛾𝑥,𝛾𝑦,𝛿𝑥,𝛿𝑦}
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• Productions:

𝑥1 → 𝑎|𝛽𝑥 𝑦1 → 𝑎|𝛽𝑦

𝑥2 → 𝛽𝑥|𝛾𝑥 𝑦2 → 𝛽𝑦|𝛾𝑦

𝑥3 → 𝛾𝑥|𝛿𝑥 𝑦3 → 𝛾𝑦|𝛿𝑦

𝛽𝑥 → 𝑏|𝑐|𝑑 𝛽𝑦 → 𝑏|𝑐|𝑑
𝛾𝑥 → 𝑐|𝑑|𝑒 𝛾𝑦 → 𝑐|𝑑|𝑒
𝛿𝑥 → 𝑑|𝑒|𝑓 𝛿𝑦 → 𝑑|𝑒|𝑓
𝜙 → 𝐾 ∨𝑁

• Constraint formula:

C𝐸𝑆(𝜋) =
[︀
(𝑥1 → 𝑎 ∧ ((𝑥2 → 𝛽𝑥 ∧ 𝑥3 → 𝛾𝑥) ∨ (𝑥2 → 𝛽𝑥 ∧ 𝑥3 → 𝛿𝑥) ∨ (𝑥2 → 𝛾𝑥 ∧ 𝑥3 → 𝛿𝑥)))

∧ (𝑦1 → 𝛽𝑦 ∧ 𝑦2 → 𝛾𝑦 ∧ 𝑦3 → 𝛿𝑦)
]︀

∨
[︀
(𝑦1 → 𝑎 ∧ ((𝑦2 → 𝛽𝑦 ∧ 𝑦3 → 𝛾𝑦) ∨ (𝑦2 → 𝛽𝑦 ∧ 𝑦3 → 𝛿𝑦) ∨ (𝑦2 → 𝛾𝑦 ∧ 𝑦3 → 𝛿𝑦)))

∧ (𝑥1 → 𝛽𝑥 ∧ 𝑥2 → 𝛾𝑥 ∧ 𝑥3 → 𝛿𝑥)
]︀

C𝑥𝑐 (𝜋) is a disjunction of 32 formulas of the form 𝛽𝑥 → 𝑡1 ∧ 𝛾𝑥 → 𝑡2 ∧ 𝛿𝑥 → 𝑡3,
where (𝑡1,𝑡2,𝑡3) ranges over the columns in the table. C

𝑦
𝑐 (𝜋) is identical up to the

superscripts of the nonterminals.
𝑇𝑅𝑃 is straightforward.

We claim that

𝐿(𝐺(𝜋)) =
=:𝑈⏞  ⏟  

{𝐾(𝑎,𝑠2,𝑠3) ∨𝑁(𝑡1,𝑡2,𝑡3) | 𝑠𝑖,𝑡𝑖 ∈ {𝑏,𝑐,𝑑,𝑒,𝑓}, 𝑠2 < 𝑠3, 𝑡1 < 𝑡2 < 𝑡3} ∪
∪ {𝐾(𝑠1,𝑠2,𝑠3) ∨𝑁(𝑎,𝑡2,𝑡3) | 𝑠𝑖,𝑡𝑖 ∈ {𝑏,𝑐,𝑑,𝑒,𝑓}, 𝑠1 < 𝑠2 < 𝑠3, 𝑡2 < 𝑡3}⏟  ⏞  

=:𝑉

(“<” refers to alphabetical order in the above). For the “⊇” direction, consider 𝑈 and
let 𝑠2 < 𝑠3, 𝑡1 < 𝑡2 < 𝑡3. We first use the production 𝑥1 → 𝑎. Now C𝐸𝑆(𝜋) allows us to
produce (𝛽𝑥,𝛾𝑥), (𝛽𝑥,𝛿𝑥) or (𝛾𝑥,𝛿𝑥) from (𝑥2,𝑥3). We choose one of the three based on
what 𝑠2 and 𝑠3 are. We also have to produce (𝛽𝑦, 𝛾𝑦, 𝛿𝑦) from (𝑦1,𝑦2,𝑦3) and can then
use those nonterminals to produce (𝑡1,𝑡2,𝑡3). 𝑉 is treated analogously.

For the “⊆” direction, let 𝑑 : 𝜙 →* 𝐾(𝑠1,𝑠2,𝑠3) ∨𝑁(𝑡1,𝑡2,𝑡3) be a valid derivation of
𝐺(𝜋). Due to C𝐸𝑆(𝜋), either 𝑠1 or 𝑡1 must be 𝑎; assume 𝑠1 w.l.o.g. It follows that one of
the pairs of productions (𝑥2 → 𝛽𝑥, 𝑥3 → 𝛾𝑥), (𝑥2 → 𝛽𝑥, 𝑥3 → 𝛿𝑥) or (𝑥2 → 𝛾𝑥, 𝑥3 → 𝛿𝑥)
must occur in 𝑑 and due to C𝑥𝑐 (𝜋), 𝑠2 < 𝑠3, as can easily be seen from the table. The
derivation 𝑑 also certainly contains the productions 𝑦1 → 𝛽𝑦, 𝑦2 → 𝛾𝑦 and 𝑦3 → 𝛿𝑦 and
hence 𝑡1 < 𝑡2 < 𝑡3 by the same argument for C

𝑦
𝑐 (𝜋).

Note that 𝐿(𝐺(𝜋)) is not strictly speaking a tautology, as we neglected the axiom
set and hence did not compute the entire language. As a consequence, we obtain the
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result A �
⋁︀
𝐿(𝐺(𝜋)). Why is this the case? We know that in every model of A, there

are three people that know each other or three that don’t. If 𝑎 knows two other people
𝑠2 and 𝑠3 who also know each other, all formulas 𝐾(𝑎,𝑠2,𝑠3) ∨𝑁(𝑡1,𝑡2,𝑡3) in 𝑈 will be
true for any 𝑡1,𝑡2,𝑡3. If 𝑠1,𝑠2,𝑠3 all know each other and none of them is 𝑎, then all
𝐾(𝑠1,𝑠2,𝑠3) ∨𝑁(𝑡1,𝑡2,𝑡3) in 𝑉 will be true. The case where three people don’t know each
other is treated analogously.

This example illustrates a useful property of 𝐺(𝜋): It is possible to restrict oneself to
computing the part of the grammar (and the language) that is actually interesting and
consider the other parts of the end sequent only implicitly. Working out the complete
grammar of 𝜋 and verifying that its language is a proper tautology is left as an exercise
for the reader.
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𝜋1:

(𝜓0)
A ⊢

⋁︀32
𝑖=1𝐶𝑖

(𝜓1)
𝐶1 ⊢ ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)) . . .

(𝜓32)
𝐶32 ⊢ ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧))⋁︀32

𝑖=1𝐶𝑖 ⊢ (∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)))32
∨𝑙 × 31

⋁︀32
𝑖=1𝐶𝑖 ⊢ ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧))

𝑐𝑟 × 31

A ⊢ ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧))
𝑐𝑢𝑡

𝜋2:

(𝜙0)
A ⊢ (𝛽∼𝛾 ∨ 𝛽∼𝛿 ∨ 𝛾∼𝛿) ∨ ̸∼{𝛽,𝛾,𝛿}

(𝜙1)
A,𝐾𝑎(𝛽,𝛾,𝛿), 𝛽∼𝛾 ∨ 𝛽∼𝛿 ∨ 𝛾∼𝛿 ⊢ ∃𝑥 𝐾𝑥

(𝜙2)
A,𝐾𝑎(𝛽,𝛾,𝛿), ̸∼{𝛽,𝛾,𝛿} ⊢ ∃𝑦 𝑁𝑦

A,(𝐾𝑎(𝛽,𝛾,𝛿))2, 𝛽∼𝛾 ∨ 𝛽∼𝛿 ∨ 𝛾∼𝛿 ∨ ̸∼{𝛽,𝛾,𝛿} ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦
∨𝑙

A,𝐾𝑎(𝛽,𝛾,𝛿), 𝛽∼𝛾 ∨ 𝛽∼𝛿 ∨ 𝛾∼𝛿 ∨ ̸∼{𝛽,𝛾,𝛿} ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦
𝑐𝑙

A,𝐾𝑎(𝛽,𝛾,𝛿) ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦 𝑐𝑢𝑡
(𝜙3)

A, 𝑁𝑎(𝛽,𝛾,𝛿) ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦
A,𝐾𝑎(𝛽,𝛾,𝛿) ∨𝑁𝑎(𝛽,𝛾,𝛿) ⊢ (∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦)2

∨𝑙[𝜏 ]

A,∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)) ⊢ (∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦)2 ∃𝑙 × 3

A,∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)) ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦
𝑐𝑟

𝜋:

(𝜋1)
A ⊢ ∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧))

(𝜋2)
A,∃𝑧 (𝐾𝑎(𝑧) ∨𝑁𝑎(𝑧)) ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦

A ⊢ ∃𝑥 𝐾𝑥 ∨ ∃𝑦 𝑁𝑦
𝑐𝑢𝑡[𝑐]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑧1 𝑏 𝑐 𝑏 𝑑 𝑏 𝑐 𝑏 𝑏 𝑏 𝑐 𝑏 𝑏 𝑏 𝑏 𝑐 𝑏 𝑏 𝑐 𝑏 𝑏 𝑏 𝑏 𝑐 𝑏 𝑏 𝑏 𝑐 𝑏 𝑑 𝑏 𝑐 𝑏

𝑧2 𝑐 𝑑 𝑑 𝑒 𝑐 𝑒 𝑒 𝑐 𝑐 𝑑 𝑑 𝑐 𝑐 𝑑 𝑑 𝑐 𝑐 𝑑 𝑑 𝑐 𝑐 𝑑 𝑑 𝑐 𝑐 𝑒 𝑒 𝑐 𝑒 𝑑 𝑑 𝑐

𝑧3 𝑑 𝑒 𝑒 𝑓 𝑒 𝑓 𝑓 𝑑 𝑑 𝑓 𝑓 𝑒 𝑓 𝑒 𝑒 𝑑 𝑑 𝑒 𝑒 𝑓 𝑒 𝑓 𝑓 𝑑 𝑑 𝑓 𝑓 𝑒 𝑓 𝑒 𝑒 𝑑

𝑟𝑒𝑙 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑘 𝑛 𝑛 𝑛 𝑘 𝑛 𝑘 𝑘 𝑘 𝑛 𝑛 𝑛 𝑘 𝑛 𝑘 𝑘 𝑘 𝑛 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘



4.2
The

generalcase
47





CHAPTER 5
Conclusion

This thesis generalizes the results of [Het12a] in two ways: First, we use the concept of
the constrained grammar to address cuts with more than one quantifier. It is clear that
even in the case of several quantifiers, the resulting grammar should be totally rigid, since
each eigenvariable of a cut is instantiated at most once in any given instance of the end
sequent. But totally rigid tree grammars are not sufficient to describe the relationships
between the terms of different eigenvariables: Choosing a term for some eigenvariable 𝛼
constrains our choices for eigenvariables that are used within the scope of 𝛼’s quantifier.
Constraint formulas are a natural way of expressing these restrictions.

The other generalization concerns Herbrand’s Theorem. A simple version of the
theorem states that if ∃�̄�𝐴 with 𝐴 quantifier-free is a valid formula, there is a tautological
set {𝐴[�̄�∖𝑡1], . . . ,𝐴[�̄�∖𝑡𝑛]} of instances of 𝐴. If one wants to generalize this fact to non-
prenex formulas, a question naturally arises: What do we actually mean by “instance” in
that case? Given an expansion tree 𝐸 ◇𝐹 of a formula 𝐴◇𝐵 where ◇ ∈ {∨,∧}, the natural
definition of an instance of 𝐸 ◇𝐹 would be “any formula 𝐶 ◇𝐷 where 𝐶 is an instance in
𝐸 and 𝐷 is an instance in 𝐹 ”; that is, we would essentially “multiply out” the tree every
time a binary connective is encountered. The problem with this approach is that if 𝐸 ∨𝐹
was obtained by extraction from a proof 𝜋, then not all these combinations necessarily
occur in 𝜋 itself—there may be dependencies between formulas that are parallel in the
expansion tree. To deal with this disparity, we essentially define separate copies of the
cut part of the grammar that do not interact, ensuring that all combinations of instances
of 𝐶 and 𝐷 can be generated. In the case of a formula 𝐶 ∨𝐷 with 𝐶 and 𝐷 prenex, this
is easy: There simply are two copies of the part of the grammar that is generated by
cuts. It is also easy to see that this fact can be generalized to any Boolean combination
of prenex formulas; the number of copies of the grammar will increase, but apart from
that everything stays the same.

Extending the result to arbitrary formulas seems to be possible, but significantly more
involved, since different cut nonterminals may vary in the number and of and relationships
between their duplicates. A part of the required work is already present in this thesis, as
the definitions of all parts of the grammar of a proof, apart from the constraint formula,
are already very general. Completing the generalization is left as future work.
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