B Informatics

Subsystems of Open Induction

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Logic and Computation
eingereicht von

Johannes Franz-Stefan Weiser, BSc BSc
Matrikelnummer 11906087

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

Wien, 26. November 2024

Johannes Franz-Stefan Weiser Stefan Hetz|

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

B Informatics

Subsystems of Open Induction

DIPLOMA THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Logic and Computation
by

Johannes Franz-Stefan Weiser, BSc BSc
Registration Number 11906087

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

Vienna, November 26, 2024

Johannes Franz-Stefan Weiser Stefan Hetz|

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Johannes Franz-Stefan Weiser, BSc BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 26. November 2024

Johannes Franz-Stefan Weiser

Danksagung

Zuerst mochte ich mich bei meinem Betreuer Stefan Hetzl bedanken, der mir in den
letzten Jahren verschiedene interessante Themen vorgestellt und meine Arbeiten dazu
betreut hat. Dabei hat er mich stets mit Korrektur, Diskussion und Rat unterstiitzt,
auch wenn ich es ihm manches Mal vielleicht hétte einfacher machen kénnen.

Weiters gilt mein Dank meinen Eltern, Sonja und Bernhard, die mir die Moglichkeit
gaben, mich auf meine Studien zu konzentrieren.

Zuletzt bedanke ich mich bei meiner restlichen Familie und meinen Freunden, die die
letzten Jahre auch abseits des Studiums mit Leben fiillten und mir die Ablenkung
verschafften, die ich manchmal so bitter bendtigte.

vii

Acknowledgements

First, I would like to thank my advisor, Stefan Hetzl, who introduced me to various
interesting topics over the past few years and supervised my theses on them. He has
always supported me with corrections, discussions, and advice, even though I may not
have always made it easy for him.

Furthermore, I am grateful to my parents, Sonja and Bernhard, who gave me the
opportunity to focus on my studies.

Lastly, I would like to thank my extended family and friends, who filled the past few
years with life beyond my studies and provided the distraction I sometimes so desperately
needed.

ix

Kurzfassung

In [Sho58] und [She63]| wurde gezeigt, dass es einfache, manchmal endliche, alternative
Axiomatisierungen von offener Induktion in verschiedenen Kontexten der Arithmetik
gibt. Dies ertffnet zwei Fragen: Benotigt man die gesamte offene Induktion, um diese
alternativen Axiomatisierungen zu beweisen oder geniigt eine echte Teilmenge? Gibt
es solche alternativen Axiomatisierungen von offener Induktion nur im arithmetischen
Kontext oder auch fiir andere induktive Datentypen?

Wir zeigen in dieser Arbeit, dass unterschiedliche Teilsysteme der offenen Induktion
oftmals gleich stark sind, in dem Sinne, dass sie die gleichen Formeln beweisen. Als
Spezialfall sehen wir, dass die gesamte offene Induktion in verschiedene interessanten
Fallen gleich viel beweist, wie Induktion iiber eine echte Teilmenge der Menge aller
offenen Formeln (z.B. Literale). Dariiber hinaus gibt es in Analogie zu den Resultaten
von Shoenfield und Shepherdson in vielen der von uns betrachteten Fille eine alternative
einfache Axiomatisierung von offener Induktion.

X1

Abstract

In [Sho58] and [She63] it was shown that there are simple, sometimes finite, alternative
axiomatizations of open induction in the context of various arithmetical theories. This
begs two questions: Does one need all open instances of the induction axiom to prove
these alternative axiomatizations or do certain subsets suffice? Does this only work in
the context of arithmetics or for other inductive data types as well?

In this thesis, we show that various subsystems of open induction are equally strong in the
sense that they prove the same theorems. In particular, in multiple interesting cases, open
induction collapses to induction over a proper subset of the set of all open formulas (e.g.
literals). Moreover, in many of the cases, we considered, there are simple axiomatizations
of open induction in analogy to the results of Shoenfield and Shepherdson.

xiii

Contents

Kurzfassung xi
Abstract xiii
Contents XV
1 Introduction 1
2 Preliminaries 3
3 General Inductive Data Types 7
3.1 General Frame 7
3.2 Useful Models e 10
3.2.1 Themodel M*({o0}) 10

3.22 Themodel M7 o 11

3.2.3 Models with cycles 15

3.2.3.1 Themodel M¢, 15

3.2.3.2 Themodel M¢ 16

3.3 Languages with Static Constructorsonly 17
3.3.1 Constructorsonly 18

3.3.2 Constructors and Selectors 21

3.4 Languages with Dynamic Constructors 25
3.4.1 Constructorsonly, 25

3.4.2 Constructors and Selectors 32

4 Arithmetics 39
4.1 General Frame 39
4.2 Usefulmodels 40
421 Themodel Noy o 40

422 Themodel Nop . oo oo oo 41

4.3 0Oand Successoronly 42
4.4 TInjective Successor 46
4.5 Adding the Predecessor 47
4.6 Linear Arithmetic 49

XV

4.7 Polynomials

5 General Inductive Data Types with a Size Function

5.1 General Frame e
5.1.1 The Scheme of Induction
5.1.2 General Lemmas o

5.2 Useful models
521 Themodel My, L
5.2.2 Themodel My
5.2.3 Themodel Mgy oo

5.3 Essentially Unary Constructors Only
5.3.1 Two Schemes of Induction
5.3.2 One Combined Scheme of Induction

5.4 Not Only Essentially Unary Constructors
5.4.1 Two Schemes of Induction
5.4.2 One Combined Scheme of Induction

6 Lists

6.1 General Frame

6.2 Constructorsonly L

6.3 Constructors only and a Size Function

6.4 Concatenation e

6.5 Concatenation and a Size Function

7 K-ary Trees

7.1 General Frame e
7.2 Constructorsonly Lo
7.3 Constructors only and a Size Function

8 Conclusion
Overview of Generative AI Tools Used

Bibliography

o1

59
59
61
62
67
67
68
69
70
71
73
74
75
76

77
77
78
79
80
85

91
91
92
92

95

97

99

CHAPTER

Introduction

Induction is an important tool in mathematics and computer science. Additionally to
using it in semantic proofs, we can also use it to axiomatize data types syntactically. For
example, it is a rather important property of the natural numbers that every subset,
which is closed under 0 and successor is the whole set of natural numbers. Switching
from subsets to formulas, we can rephrase the axiom and say, that any formula ¢(z)
with ¢(0) and ¢(x) — ¢(s(z)) satisfies Vozp(x). In PA, this leads to the axiom-scheme

©(0) A Va(p(z) — @(s(x))) = Vap(z), for all formulas .

As stated above this is not an axiom, but an axiom-scheme since we cannot quantify over
formulas in FOL. This type of scheme can be adapted to fit different kinds of inductive
data types - that is, data types, whose instances can be constructed inductively, such as
k-ary trees or lists. Having axiom-schemes as described above, begs the question, what
happens if we replace for all formulas with for some formulas. Of particular interest
is the question, what happens, if we only allow open (i.e. quantifier-free) formulas or
even smaller subsets of formulas (e.g. clauses). The interest in this question is due to
the fact that modern automated theorem provers often can only deal with induction
of quantifier-free formulas (if any) (cf. [Vie24]). For sufficiently strong arithmetical
theories, it is well understood how different levels of induction relate to each other. If
some non-arithmetical theory is strong enough to allow encoding of numbers, then there
is not much of a difference to arithmetics.

However, there is a gap in the literature, when it comes to weak theories of inductive
data types. Thus, in Chapter 3, we consider general inductive data types. We show that
if the language is sufficiently uncomplicated, there are simple alternative axiomatizations
of open induction.

In Chapter 4, we refine the results of [Sho58] and [She63|: Shoenfield and Shepherdson
gave alternative axiomatizations for open induction in various arithmetical contexts. We

1. INTRODUCTION

consider the same theories and analyze, how the different subsystems of open induction
relate to each other.

In Chapter 5, we combine the two previous chapters by adding a size function to
some arbitrary inductive data type. Again, we give alternative axiomatizations of open
induction. Moreover, we show that in this case, induction over all open formulas does
not prove more than induction over literals regardless of the inductive data type at hand.

In Chapter 6 and Chapter 7, we consider lists and k-ary trees as special cases of inductive
data types and apply our findings from the previous chapters.

CHAPTER

Preliminaries

In this whole thesis, we work in classical predicate logic with the usual connectives
A, v,— and the quantifiers 3,V. On the meta-level, we use = for syntactic equality of
any kind of objects such as terms, formulas or variables. We use — and < defined as
p—>yY=-pviyand p & = (¢ > YP) A (Y = ¢). Moreover, sometimes we may omit
parentheses in order to increase the legibility. For this, we use the usual conventions
that —,V and 3 all take precedence over A, which again takes precedence over v. The
semantics are defined in the usual way. We will write WFF for the set of well-formed
formulas.

All of our languages will contain the relational symbol =, which is always interpreted as
the equality with the usual axiomatization. If the logic in which we work is many sorted,
there is an = symbol for each sort, and the axiomatization is done accordingly. We will
refrain from writing it down, each time we encounter a new language.

If the logic we work in has the sorts Sy, ..., Sy, then there are n different versions of V
and 3. Formally, we should write something like (3z : S,,)(¢(x)) to denote that there is
some x of the sort Sy, for which ¢ holds. In our cases, it will usually be clear from the
context, over which sort we quantify and thus, we only write 3x : ¢(x). In particular, we
will write formulas of the form 3x1,...,Zn, Y1, -, Ym : f(z1,.. . 2n) = g(Yy1,-..,Ym) OF
even 37,7 : f(T) = g(y) since n, m and the sort of every z; and y; can be inferred from
the signatures of f and g.

We will analyze subsystems of open induction over various languages and theories. With
this we mean the following: Let I(¢)! be the scheme of induction over some language
L with some base theory B. We explicitly allow that ¢ contains parameters. Since we
work in FOL, we have to add an instance of I(y) for any formula ¢, we want to be able
to use in the scheme. Now we can add all instances or just some. Depending on which
instances we add, we have different names for the resulting sets:

Note that we do not care how I(p) is defined yet, we just accept that it is a formula scheme

2.

PRELIMINARIES

o TAtom = {I(p) | is an atom}

o ILiteral = {I(y) | ¢ is a literal}

o IClause = {I(y) | ¢ is a clause}

o IDClause = {I(¢) | ¢ is a dual clause}

o IOpen = {I(p) | ¢ is an open formula}

These systems will be the main focus of our analysis. Note that these names are ambiguous
and different schemes of induction I will yield different sets. However, the induction
scheme is always clear from the context and we will therefore stick with these names.

A more subtle thing to note is that we use axiom-schemata and not rules as in in parts of
[She63]. Consider the following axiom-schema of induction in the context of arithmetics

©(0) AV : (p(z) = @(sz)) = Vo : p(z)
and compare it to the rule of induction in the same context

©(0) p(x) > p(sz)
Va @ p(z)

Note that the axiom of induction is stronger in the sense that Vz : p(z) holds in every
model, where the preconditions are met, while the rule only gives us that Vzx : ¢(x) holds
in all models if the antecedent holds in every model.

Since we want to talk about the expressivity of theories and axiomatizations, we need
some notion to compare them. Given some set of formulas I', we write Th(I") for the
deductive closure of T" given by Th(I') = {¢ e WFF | T I ¢}. Given two sets of formulas
I', A, we define the relation < by I' < A if Th(I') € Th(A). We define I' * A if ' < A
and A < I'. The respective strict relation is defined in the usual way: ' < Aif I' < A
and I' % A.

From the definitions above, it follows trivially that for any base theory B it holds
that B + [Atom < B + I[Literal < B + IClause < B + IOpen and B + ILiteral <
B + IDClause < B + I0pen. Graphically, this can be represented in the following way:

7/ N
7/ N
7 N
7 N
7 N
e N
7/ N
e AN
B + IDClause B + IClause
N 7
N Ve
N 7/
N 7
N e
N 7
N 7/
N 7/

N s

B + ILiteral

B + I Atom

B

In the diagram above, dashed lines represent < and solid lines represent <. Clearly, we
cannot draw any solid lines yet, but we will need the distinction in later chapters. Note
that depending on the base theories this diagram can collapse as induction over different
sets of formulas might yield the same theorems and some base theories may even satisfy
some form of induction.

CHAPTER

General Inductive Data Types

The following chapter contains, in some sense, the strongest results about open induction
in this thesis. Although it is the first chapter, it was written as one of the last ones.
This is due to the fact that it generalizes some results from later chapters. We will deal
with inductive data types with constructors and selectors. Including arbitrary function
symbols becomes so complicated that they lie outside of the scope of this thesis. Some
function symbols that have common defining axioms are dealt with in the subsequent
chapters.

One of the most interesting results is that some of the results fundamentally depend on
the structure of the language, meaning that e.g. the arity or number of constructors has
substantial influence on whether open induction can be axiomatized naturally and if the
levels of induction actually differ.

3.1 General Frame

For defining an inductive data type D, we consider a (possibly) many-sorted logic with

the sorts D, T1,...,T,. Our language is defined in the following way: We have some
constructors ci, . . . , ¢k, where each of the ¢; has arity m,; and is a function symbol of type
7t x - x 7" — D with 7/ € {D,Ty,...,T,}. For each constructor ¢; with m; > 1, we

add the selectors d}, ..., d;" to the language. Each selector d{ has the type D — 77.

If a constructur does not take input of sort D, then we call it static. If it does take
input of sort D, then we call it dynamic. In order to define induction, we need some
well-founded order relation on the elements of the standard-model. This translates to
the restriction that there is at least one static constructor c;.

Without loss of generality, we assume that for every constructor ¢; the first n (possibly 0)
input-sorts are D. The other sorts 7; are ordered by their index ¢. This is an assumption,

3.

GENERAL INDUCTIVE DATA TYPES

to simplify notation, but of course, all the results are independent on the ordering of the
inputs of the c;.

The following will be our base axioms:

D;i; c(T) #ci(y) foralli#j,1<i,j<k Disjointness
INJ; ¢(@)=c¢(y) > T=7gforalll <i<k Injectivity
INVY di(cj(z1,.. . Tmy)) = ap forall 1 <i < k,1<n<m Inverse

For the scheme of induction, we first define a shorthand:

k

LHS(p(z)) /\ Vay, ..., Tm, /\ o(x1,2) = p(ci(x1, ..., Tm,;), Z)

=1 le{1,..., m;}

The scheme of induction now has the following form:

I(p) LHS(p(2,%)) — Va : ¢(z,%)

The formula ¢ potentially contains parameters Z, which we will not explicitly mention in
the following as from now on every formula contains parameters if not stated otherwise.
Now, we need to define two basic languages and theories:

Definition 3.1.1. We define Lo = {¢; | i <k} and L1 = Lo U {d} | m; = 1,5 < m;}
Definition 3.1.2. We define To = {D;; | i,j < k,i # j} W{INJ; | i < k} and
T1=T0u{INV7"|j<k,mJ>n>1}

Having these defined these basic things, it makes sense to talk about standard models of
Ty and T3. Usually, there is not one standard model of Ty, but rather infinitely many,
each being parameterized by the interpretation of the parameter sorts T;.

Definition 3.1.3. Let My,...,M,,Y be sets. Then, the set T(Mi,...,M,,Y) of all
ground terms is defined inductively:

e So = {ci(my,...,mp,) | ¢ is staticcmye 7'} Y
e Snt1 = {cj(s1,...,5m;) | ¢j is dynamic,T; #D — s, € Ml, =D —-3k<n:s¢
Sk}

e T(My,...,M,,Y)= UneN S

Definition 3.1.4. Let My, ..., M, be sets. The model M*(Mj, ..., M,,Y) of Ty over
the language Ly, given that TZ-M* = M;, is defined in the following way:

e DM* = T(My,...,M,,Y)

3.1. General Frame

e For any constructor ¢; and any suitable tuple (a1,...,am,): cZM*(al, ey Omy) =
cl-(al, e ,ami)

If Y = &, then we write M*(My, ..., M,) instead of M*(M,..., M,) and call it
the standard model w.r.t. My, ..., M,.

Definition 3.1.5. For any set I < {1,...,n}, we write M5 (Y) for M*(M;, ..., M,,Y),
where M; = {i} ifi ¢ I and M; = {a;, b;} if i € I. Moreover, we define M*(Y) = ME(Y)
and Mi(J) = Mj.

Note that with the selectors being axiomatized in the way they are, there is a lot of
ambiguity as to what a term of the form d7(c;(...)) is canonically interpreted as. Thus,
if we work with £, we will often refer to the standard models of Ty over £y and then
extend the language.

Since, there are non-standard models, it makes sense, to define, what a standard element
inside a non-standard model is:

Definition 3.1.6. Let M be any model over the language {ci,...,cx}. The standard
part Sy of the model M is defined inductively:

e So = {ci(mi,...,mp,) | ¢; is static,m; € 7!}

o Snt1 = {cj(s1,.--,8m;) | ¢j is dynamic, 7ij' # D — s € Ml,T]l. =D —-3Jdk<n:
SlGSk}

° SM = UnEN S”
An element A e DM is a standard element if A € Syy.

Often, it makes sense to consider the graph induced by the constructors ¢;

Definition 3.1.7. Let M be any model of & over the language {c1,...,cx}. The directed
graph G = (V, E) induced by M is given by V = DM and for any A,BeV, E(A, B) if
there is some constructor c; and elements m; € (TZ-Z)M s.t. A =my for some of the | and
ci(ma,...,mm,) = B. The connected components of the undirected educt of G are called
comparison classes.

Now let us define an additional axiom, we will need in the following sections:
k
SUR \/ 37 : X = ¢i(9) (Surjectivity)
i=1
Note that surjectivity above does usually not mean that the interpretations of one of the
constructors is surjective, but rather that DM = Ule AM(THM, L (7M.

1

We will often refer to the following lemma:

3.

GENERAL INDUCTIVE DATA TYPES

10

Theorem 3.1.8. Let L be any language extending Lo. Then & + I Literal - SUR.

Proof. Take any model M of &§ + I Literal. Assume that there is some element B € DM
s.t. B does not lie in the image of any czM. Consider the following literal L(X) = X # Z
and the interpretation £ : Z — B. Then M, & E LHS(A), but clearly, M, ¢ ¥ VX : A(X).
Thus, M, & ¥ I Literal, which is a contradiction. [|

First, we consider some interesting models:

3.2 Useful Models

We will now consider useful non-standard models for Ty and 77, which we will use in the
following sections to separate theories.

3.2.1 The model M*({o0})

The following sums up our results about M*({c0}):

Theorem 3.2.1. If there is exactly one constructor, then M*({o0}) ¥ I Atom. If there
is more than one constructor, then M*({0}) E IAtom. In any case, M*({o0}) ¥ SUR.

This theorem follows from the following lemmas and observations:
Observation 3.2.2. M*({o0}) ¥ SUR

Lemma 3.2.3. Let M be a model of Ty or T} and assume that M contains exactly one
standard element B and at least one non-standard element C. Then M ¥ I Atom.

Proof. First, note that since there is only one standard element, there can only be
one constructor, which has to be static. Consider the atom A(X) = X = Z and the
interpretation & : Z +— B. Then M E LHS(A), but M ¥ VX : A(X). [|

Lemma 3.2.4. If there is exactly one constructor c;, then M*({0}) ¥ I Atom.
Proof. This follows directly from Lemma 3.2.3. |

The following Lemma applies to the case of dynamic constructors as well.

Lemma 3.2.5. Take any model M of Ty, any comparison class C = DM that does not
contain cycles and two distinct standard elements B,C € C. For any term t, it holds that if
there is some term s with M E t(B) = s(B) nt(C) = s(C), then M EVX : t(X) = s(X).

3.2. Useful Models

Proof. There are three cases:

1. If X appears in neither ¢ nor s, then M F (3X : ¢(X) = s(X)) & (VX : ¢(X) = s(X)).
Therefore, the claim of the Lemma holds trivially.

2. If, w.l.o.g., X appears in ¢, but not in s, we claim that M F ¢(B) # t(C') and thus, the
conditions of the lemma are never met as s™ is constant. We prove the claim inductively:
The base case is that t = X. Then clearly, M F ¢(B) # t(C). Assume that we have
shown this property for some term ¢; that contains X and take some appropriate terms
t2,...,tm,. Consider the term ¢t = ¢;(t1,...,tm,). By INJ; and the induction hypothesis,
MEt(B) # t(C).

3. Assume that X appears in both s and t. We proceed with induction on the structure
of t. The base case is that t = X. By assumption, there are no cycles in C. Thus, if
s contains X and M F t(B) = s(B), then s = X and M F VX : t¢(X) = s(X). Now
assume that ¢ has the form ¢;(t1,...,ty,), where we have shown the claim for any term ¢;.
We can exclude the case that s = X by symmetry and the base case. We can also exclude
the case that s = ¢ (5) with k& # [by Dy;. The only case left is that s = ¢;(s1,...,5m,)-
By INJ;, we obtain that M E t;(B) = s;(B) A t;(C) = s;(C). From the induction
hypothesis, it follows that M E VX : £;(X) = s;(X). Thus, MEVX : ¢(X) = s(X). N

Corollary 3.2.6. If some model M of Ty contains no cycles at all, then M E (Y #
Znt(Y) =s(Y) nt(Z) =s(2)) = (VX)(H(X) = 5(X))

Corollary 3.2.7. If there is more than one constructor, then M*({0}) F I Atom.

Proof of Theorem 3.2.1. If there is exactly one constructor, then M*({o0}) ¥ I Atom
by Lemma 3.2.4. If there is more than one constructor, then M*({o0}) E I Atom by
Corollary 3.2.7. In any case, M*({oo}) # SUR by Observation 3.2.2. [|

3.2.2 The model M}
Definition 3.2.8. We construct the model MY, : Take the model M*({o0}) of Ty over Ly

and extend the language with the selectors. The selectors are interpreted in the following
way

e IfC = cZMgz’(nl, o Nm,), then define (dL(C))M% = ny

o If C is not in the image of clM and Tl-l # D, then there is only one possible way to
interpret (dé(C’))MfO since |1} =1

e If C is not in the image of clM& and 7} = D, then define (dé(C’))Mgko =C

The following sums up our findings about M :

11

3.

GENERAL INDUCTIVE DATA TYPES

12

Theorem 3.2.9. If there is exvactly one constructor, then MZ% ¥ IAtom. If there is
more than one constructor, then MY &= I Atom. In any case M} ¥ SUR.

This theorem is a consequence of the following observations and lemmas:
Observation 3.2.10. M3 ¥ SUR and M}, F 1.

Lemma 3.2.11. If there is exactly one constructor, then M7, ¥ I Atom.

Proof. This follows directly from Lemma 3.2.3. |

Lemma 3.2.12. Assume that there is more than one constructor and that all constructors
are static. Take any atom A(X). If Mk E A(E) for any standard element E € DM |
then M% EVX : A(X).

Proof. Since there are at least two constructors ¢; and c¢;, there are, by D; ;, at least two
distinct elements B, C in the standard part of M.

We start by some preprocessing of the terms, we consider: Take any term ¢. If ¢ contains
some subterm of the form d!(#), then replace this subterm with the parameter 2! and
set (z))M% = g with 7/ = {a}. Thus, w.l.o.g., we can assume that the symbols d! do not
appear in any term, we consider.

Now take any atom A(X) = t; = ta. There are three cases:
1. If X appears on neither side of A, we are done.

2. If X appears on exactly on side of A, say t1, then t; = X as no selectors may appear
*
and all constructors are static and téwoo is constant. Then, M% ¥ A(B) n A(C).

3. If X appears on both sides of A, then t; = t5 = X and A is an identity. Thus,
MEEVX D A(X) [|

Lemma 3.2.13. Let t be a term of the form dii(diZ(X)), where all the Tf: are D.
Then, there is some term s; with the following properties:

e MPEVX :X = (tos)(X)
e The interpretation S;\/l;"c maps standard elements to standard elements

o All function symbols in s; are dynamic constructors

e For any term t' of the form dfll(dfz (X)), where all the Tfhh are D and M}, E
VX : X = (tosy) and M EVX : X = (t' 0 s¢), it holds that M% Et(X) =t/(X)

This term sy is called right-inverse of t.

3.2. Useful Models

Proof. Take any such term ¢ of the form dg(. dﬁ: (X)), where all the 7;* are D. We
define the sequence s, ..., s, inductively: so = X and sp41 =¢;, ., (a1,...,0m, ,),
where a;,_, ., = s and the other a; are arbitrary (fixed) parameters of the right sorts
and if that sort is D, we choose it to be a standard element. Then, the term s; = s,

has the property that 77 - VX : (t o s;)(X) = X. By construction S?Ag“’ maps standard
elements to standard elements.

Now take any ¢’ = dfll(df:,? (X)) and its respective right-inverse sy. Assume that
MEEVX : X = (fos)(X) and M3 EVX : X = (tosy)(X). W.lo.g., assume
that n < m and take the biggest h € {1,...,n} s.t. di’; # df: if such an h exists.
There are two cases: If iy, = ju, then I, # kp, and (dy, (... di (sp(X))))M® is some fixed

in
parameter by construction of the right-inverse. In particular, ((¢osy)(X))M% is constant,
which contradicts our assumption. If ij # jp, then M% F VX : di’;(. diz (sp(X))) =
dl‘h+1
th+1
one for each time, we do this and call the result n’. In summary, we can assume that

such an h does not exist and diﬁ = dz}; for any h < n. Now assume that n’ < m. Then,

MEE (' os)(X) = dfll(df:::: (X)). However, there are standard elements FE s.t.

MEEE = dfll (... d?:n":: (E)), which contradicts our assumptions. Thus, n’ = m. This

can only be the case if we never deleted any diz Thus, n = m and for any h e {1,...,n}
it holds that dj* = di". In particular M F VX : #(X) = #/(X). |

(... dﬁz(st/(X))) by construction of M. Thus, we can cut di’; and reduce n by

Lemma 3.2.14. Assume that there is more than one constructor and that there is some
dynamic constructor. Take any atom A(X). If M% E A(E) for any standard element
E e DM% | then M* EVX : A(X).

Proof. We start by some preprocessing of the terms, we consider: Take any term ¢. If ¢
contains some subterm of the form d.(#'), there are four cases:

o If X does not appear in ¢/, then di(#') has a fixed interpretation and we can replace
it with some new parameter that we interpret as (di(Z))™M.

o If Tz-l # D, then there is only one possible interpretation of dé (t'). Thus, replace

d.(t") with some parameter z and interpret z as the only element in 7/.

o If Tz»l = D and ¢ is of the form ¢;(sq,..., Sm,), there are two cases: If j = 4, then
replace dé(t') with s;. If ¢ # j, then dé is interpreted as the identity and we can
replace d!(t') with t'.

« If the prior cases are not applicable, i.e. we have some term of the form dli1 (... dir (X)),
1 in
we leave it as it is.

Thus, w.l.o.g., we can assume that the symbols dﬁ appear only stacked directly over X.

13

3.

GENERAL INDUCTIVE DATA TYPES

14

Now note that since there are at least two constructors, there are at least two distinct
*

standard elements B, C by D, ;|, where B lies in the image of CZMOO and C lies in the

. ME

image of G .

Now take any atom A(X) = t; = ty. There are three cases:

1. If X appears on neither side of A, we are done.

2. If X appears on exactly one side, say ¢, then 3 is constant. We show inductively
that #! is not constant in the standard part of the model and thus it does not hold that
M E A(F) for all standard elements E.

2.1. The first base case: If ¢; = X, then t{w‘f"(B) # t{wz’ko(C’).

2.2. The second base case: If t; = dﬁ (... dﬁz (X)), then consider the right-inverse s, of
t1 from Lemma 3.2.13. It holds that M ¥ A(s;, (B)) A A(st, (C))

2.3. Assume that we have shown that the interpretations of the terms si,...,s,,, are
not constant in the standard part. Then, by INJ;, the interpretation of the term
¢i(S1,--.,8m,;) is not constant as well.

3. Now assume that X appears on both sides of A. We show by induction that for any
term ¢ it holds that if there is some term ¢’ containing X with M¥% E t(E) = t/(E) for
all standard elements F, then M* EVX : ¢(X) = t/(X).

3.1. The first base case: Assume that t = X. If ¢ = ¢(5), then M¥% ¥ t(B) =
t'(B) A t(C) =t'(C) by Dy, or Dy ;. If t' is of the form dﬁ(. di’; (X)), then consider the
right-inverse sy. Note that the outermost constructor ¢; of sy must be dynamic. Thus,
if we take any static constructor ¢,, and define E = st/(cleékC(a)) for some appropriate
tuple @, then t'(F) = P (m) and M E t(E) = t/(E). Thus, if the conditions are met,
tQ = X.

3.2. The second base case: Assume that ¢ is of the form dii (... di’; (X)). By symmetry
and case 3.1, we can exclude the case that t; = X. Assume that ty = ¢(5). Note
that ¢; has to be dynamic since X must occur in it and no selector that maps into any
sort other than D is allowed. Take the right-inverse s; of ¢ and any static constructor
Cm. Define E = cf\n/lé‘o(ﬁ). Then t(E) = C%gko(a) and M* ¥ t(F) = t/(E). It follows
that ¢’ has the form d?ll(. df;" (X)). Consider the right-inverse s; of t. By assumption,
MEEE = (t'os)(F)and M% E E = (tosy)(F) for any standard element E. By the
induction hypothesis, M¥* F VX : X = (tosy)(X) and M* EVX : X = (t'0s)(X). By
Lemma 3.2.13, we obtain that M} F VX : ¢(X) = ¢/(X).

3.3. Assume that we have shown the claim for the terms si,..., s,,,. Consider the term
t=ci(s1,...,8m,;). It M% Et(E) =t'(F) for some term t' and all standard elements F,

then from the base cases, we obtain that ¢’ = ¢(s],..., s,). From D;, it follows that

» Omy
| =i and from INJ;, we obtain that M3 E s;(E) = s;(F) for any standard element E
and any . From the induction hypothesis, we obtain that M F VX : §(X) = s(X)

and thus M* EVX : ¢(X) = t/(X).]

3.2. Useful Models

Corollary 3.2.15. If there is more than one constructor, then M7 E I Atom.
Proof. This follows from Lemma 3.2.12 and Lemma 3.2.14. |

Proof of Theorem 3.2.9. If there is exactly one constructor, M} ¥ I Atom by Lemma
3.2.11. If there is more than one constructor, then M E I Atom by Corollary 3.2.15. In
any case M3 ¥ SUR by Observation 3.2.10. |

3.2.3 Models with cycles

We will later see that IOpen proves acyclicty in the sense that for any term t # X,
To + IOpen +— X # t(X). However, it depends on the constructors, which level of
induction we need for this. In the worst case, we need I DClause, while in some cases,
I Literal suffices. For these cases, where induction over dual clauses is needed, we now
give models with cycles, in which I Literal holds.

3.2.3.1 The model Mg

For the rest of this subsubsection, we assume that there is at least one constructor
c1: 7} x - x 7™ — D, where at least one of the 7! is D and m; > 2. Note that 77 is

either D or some T}j. In the second case, assume, w.l.o.g., that k = 1.

Definition 3.2.16. Now, we make a case distinction based on T3:

1. If 7} = D, then start with the model M = M*({A, B}). Fiz two standard elements
C1,Co € DM and consider the set M defined as DM factorized by the equations
A =ci1(B,C1,€) and B = ¢1(A, Cq,€), where € is some tuple of standard elements
with appropriate sorts.

2. If 72 = Ty, then start with the model M = Mfl}({A,B}), where T{M = {ay,b1}.
Now, consider the set M defined as D™ factorized by the equations A = c1(B, a1, €)
and B = c1(A, by,€), where € is some tuple of elements with appropriate sorts.

Set DM = M and TZMC = TZ-M. In any case, the constructors are interpreted canonically
in the sense that clMc([fl], s Ufms]) = [€M(f1, - - -, fm,)]. Note that this is well-defined
and Mg E Ty.

Observation 3.2.17. There is some term t £ X, which contains X with Mg F 31X :
X =t(X).

Lemma 3.2.18. My E IClause

Proof. Take any clause C' = L v ... L, and assume that M F LHS(C). We start by
preprocessing C:

15

3.

GENERAL INDUCTIVE DATA TYPES

16

Assume that there is some literal L; that does not contain X. Then, Mg E L; < T or
Mc E L; < L. In the first case, Mc E C < T. In the second case, Mg F C < (',
where C' is obtained from C' by deleting L;. Thus, we can assume that every literal
contains X.

Assume that there is some negated atom L; = t; # to and both ¢; have the outermost
function symbol ¢;. Then both ¢; are of the form c,-(tll, o). By INJ;, Mc E L; &

wi th # t. Thus, we can replace L; in C with the clause \/}7, t§ # t5 and obtain
another equivalent clause.

Assume that all the L; are atoms. Since the standard part of M is infinite, there is
some L; and distinct standard elements B,C € D¢ s.t. Mg E L;i(B) A L;(C). By
Lemma 3.2.5, M¢c E VX : L;(X) and thus, M¢c F VX : C(X). In this case, we are done.

From now on, we assume that at least one of the L; =t # s is a negated atom. W.l.o.g.,
assume that ¢; contains X.

We make a case distinction:

1. The case that both ¢ and s share the same outermost function symbol is eliminated by
our preprocessing.

2. If the outermost function symbols of ¢ and s are ¢; and c; respectively with 7 # j,
then M¢c EVX : Lj(X) by D;; and thus, M E VX : C(X). In this case, we are done.

3. If t = X and £"'¢ is constant with some fixed interpretation B, then M¢ & L;(B) for
any B # B’. There are two cases: If B’ is a standard element, then there has to be some
L; with M¢ F Lj(B’) since M¢ F LHS(C). If B’ is a non-standard element, then by
SUR, there is some dynamic constructor ¢; and elements By, ..., B, bj41,. .., by, where
all the B; are of sort D and B’ = CZMC(BI, .. .,bm,;). As mentioned, M¢ F L;(B;) and
thus, M¢c E C(B;) for any j. Since M¢c F LHS(C), we conclude that M¢ E C(B’).
Thus, in any case, M¢ EVX : C(X).

4. Assume that ¢ = X and s contains X. If s = X, then M¢ F VX : —=L;(X) and
Mg E C < (') where C' is obtained from C by deleting L;. In that case, we can start
from the top with C’. Thus, we assume that s # X. Assume that there is some E € DMc
with M ¥ L;(E). Then E = A or E = B. W.lo.g., assume that £ = A. It follows that
t = ci(s1,s2,€) with so(E) = Cy. Since C is a standard element and A is not, sé\/tc
has to be constant. It follows that M¢c ¥ B = ¢(B) and thus M¢ E L;(B). Since C
and all the e; are standard elements, M¢ F L;(E), and thus M¢ F C(E), for any E in
{B,C1} v {e; | € is of sort D}. Thus, M E C(A) since M F LHS(C). It follows that
MEVX :C(X). [|

3.2.3.2 The model M

For the rest of this subsubsection, we assume that there are at least two dynamic
constructors cg, ¢ and all dynamic constructors are unary!.

!The name M comes from unary

3.3. Languages with Static Constructors only

Definition 3.2.19. We define the model M¢ in the following way: Take the model
M = M*(A, B) and define the set M to be DM factorized by the equations A = c1(B)

and B = c3(A). Then set DM& = M and TlMé = TM. The constructors are interpreted

canonically in the sense that czMg([fl], s Ufm]) = [EM(f1,- - -5 fn,)]- Note that this is
well-defined and Mg E Tj.

Observation 3.2.20. There is some term t # X, which contains X with M$ = 3IX :
X =t(X).

Lemma 3.2.21. M¢ & ILiteral.

Proof. From Lemma 3.2.5, it follows that Mg E [Atom. Thus, we only have to deal
with negated atoms. Fix the negated atom L(X) =t # s. There are three cases:

1. If X appears on neither side of L, then M¢ E (3X : L(X)) < (VX : L(X)) and we
are done.

u

2. If X appears on exactly one side of L, say in t;, then téwc is constant. Assume

that there is some element ' € DM¢ st. MY ¥ L(E). If E lies in the image of the
interpretation of some static constructor ¢;, then M ¥ LHS(L). Assume that E does
not lie in the image of the interpretation of any static constructor. Then, by construction
of M¢, E lies in the image of some dynamic constructor ¢; and there is some F' € DM
with E = ¢;(F). By repeated application of D; ; and INJj, for any i, j, k, we obtain that
t1(BYME # t1(F)ME. Thus, F L(F) and hence, MY ¥ LHS(L).

3. Assume that X appears on both sides of L and that M E L(E) for any standard
element F. Then —L is not an identity. If M ¥ VX : L(X), then, by construction of
M, the only possible elements E s.t. Mg ¥ L(E) are A or B. W.l.o.g., assume that

M ¥ L(A). We proceed by induction on the structure of ¢ and show that Mg F L(B).

If t = X, then, w.lo.g., then s = ¢ (s') since M E A = s(A). By D2, M¢ ¥ B = s(B)
and thus, M¢ E L(B).

Assume that t = ¢;(¢') (by assumption, all dynamic constructors are unary). Since

Mg E t(A) = s(A), it follows that s = ¢;(s’). By INJ;, we obtain that t'(A) = s'(A).

Both ' and s’ must contain X. From the induction hypothesis, it follows that Mg
t'(B) # s'(B) and consequently, by INJ;, M¢ & t(B) # s(B). Thus, M{ E L(B).

u

Thus, M¢ F L(B) if M¢ ¥ L(A). Since A = ciwc(B), we conclude that Mg ¥
LHS(L). n

3.3 Languages with Static Constructors only

In the following section we assume that our language contains only constructors that do
not take any input of sort D. This is a special case, in which some things are easier.

The following theorem states exactly why this case is that easy:

17

3.

GENERAL INDUCTIVE DATA TYPES

18

Theorem 3.3.1. Let L be any language extending {ci,...,cr}, where all the ¢; are static.
Then & + SUR + I(p) for any (not necessarily open) formula .

Proof. We work in ¢ + SUR. Take any formula ¢. Note that we only have constructors
that do not take input of sort D. Thus, our induction axiom looks like this:

)

k
I(p) = (Vor, ..., zm, (T = @(ci(z1, ...y xm,)))) = Yo : (),
=1

which is logically equivalent to

k
(/\Va:l, ey T, p(ci(2, - ,xml))> — Vo : ().
i=1

Now we only need to note that by SUR every element is some instance of a constructor.
Thus, if LHS(p) holds, then VX : ¢(X) holds as well. [

3.3.1 Constructors only

The following theorem will be the main result:

Theorem 3.3.2. There are three cases:

1. There is more than one constructor
2. There is exactly one constructor ¢ and c is not constant

3. There is exactly one constructor ¢ and c is constant

In the case 1, we obtain the following result:

To ~ Ty + [Atom
< Ty + ILiteral
~ Ty + IOpen
~ Ty + SUR

This yields the following Hasse-Diagram:

Ty + ILiteral ~ Ty + IOpen

Ty ~ Ty + [Atom

3.3. Languages with Static Constructors only

In case 2, we obtain the following result:

Ty < Ty + [Atom
< Ty + ILiteral
~ Ty + IOpen
~ Ty + SUR

This yields the following Hasse-Diagram:

Ty + ILiteral ~ Ty + IOpen

Ty + I Atom

To

In case 3, we obtain the following result:

To < Ty + [Atom
~ Ty + IOpen
~ Ty + SUR

This yields the following Hasse-Diagram:

Ty + I Atom ~ Ty + IOpen

To

This theorem is a consequence of the following lemmas.

Lemma 3.3.3. If there are static constructors only and M is a model of Ty, where there
are at least two elements B,C € DM, which lie in the image of some (possibly the same)
constructors cM, M, then M E I Atom.

i7j7

19

3.

GENERAL INDUCTIVE DATA TYPES

20

Proof. Fix some model M with these properties and let B,C € DM be two distinct
elements in the image of some ¢M, cj\/‘. Take any atom A(X) = t; = t2. We make a case
distinction:

1. If X appears on neither side of A, then #! and #}! are both constant and M
A(B) < VX : A(X). Thus, M EI(A).

2. If X appears on both sides of A, then, since there are static constructors only, both ¢;
and t9 are syntactically identical to X. Thus, A is an identity and M F VX : A(X) and
consequently M F I(A).

3. If X appears on exactly one side of A, say in t1, then t; = X and té\/t is constant.
Thus, M E t1(B) # t1(C). Thus, there is some E € {B,C} with M E t;(E) # ty and
consequently M F —A(E). Therefore, M ¥ LHS(A) and hence, M F I(A). [|

Corollary 3.3.4. If there is more than one constructor, then Ty — I Atom
Proof. Assume that there are two constructors ¢; and ¢;. By D; ;, in any model M of
Ty, the images of CZM and cf/‘ are disjoint. Moreover, each of them contains at least one

element and thus, Lemma 3.3.3 is applicable for M. This holds for every model of Tj
and thus Ty — I Atom. [|

Lemma 3.3.5. If there is more than one constructor, then Ty + I Atom ¥ I Literal.

Proof. Since Ty + I Literal — SUR, this follows from Theorem 3.2.1.]

Lemma 3.3.6. If there is exactly one constructor, then Ty ¥ I Atom.

Proof. This follows from Theorem 3.2.1 |

Lemma 3.3.7. If there exactly one constructor ¢; and c¢; is not constant, then Ty +
1 Atom ¥ I Literal

Proof. Tt suffices to give a model of Ty + I Atom, in which SUR does not hold. W.lL.o.g.
assume that ¢; takes input of the sort 71. Consider the model M = M, ({B}). By

definition, B does not lie in the image of CZ/VI and thus, M E SUR.

It remains to be shown that M E I Atom. Note that, by definition, there are at least two
elements in the image of ¢c™. By Lemma 3.3.3, M E [Atom. [|

Lemma 3.3.8. If there is exactly one constructor ¢ and c is constant, then + I Atom +
SUR.

Proof. Consider the atom A(X) = X = c¢. Clearly, @ — LHS(A) and thus, &5+ IAtom
VX AX). If @+ TAtom VX : X = ¢, then obviously, & + [Atom — SUR. [|

3.3. Languages with Static Constructors only

Proof of Theorem 3.3.2. The fact that Ty + SUR — IOpen is the content of Theorem
3.3.1. Moreover, from Theorem 3.1.8, it follows that Ty + I Literal - SUR in any case.

Case 1 is a consequence of Corollary 3.3.4 and Lemma 3.3.5.
Case 2 is a consequence of Lemma 3.3.6 and Lemma 3.3.7.

Case 3 is a consequence of Lemma 3.3.6 and Lemma 3.3.8. |

3.3.2 Constructors and Selectors

We now have a similar main result as in the last subsection:

Theorem 3.3.9. There are three cases:

1. There is exactly one constructor
2. There is more than one constructor and at most one constructor is non-constant

3. There is more than one constructor and at least two constructors are non-constant
In case 1, we have the following Hasse-Diagram:

Ty + I Atom ~ Ty + IOpen ~ Ty + SUR

Th

In case 2, we have the following Hasse-Diagram.:

Ty + I Literal ~ T1 + IOpen ~ T7 + SUR

T1 ~ Ty + [Atom

In case 3, we have the following Hasse-Diagram:

21

3.

GENERAL INDUCTIVE DATA TYPES

22

T1 + ILiteral ~ T1 + I0pen ~ T7 + SUR

T, + I Atom

Ty

This theorem will be a direct consequence of the following lemmas.

Now we need to work out, how I Atom behaves depending on the language. We have
slightly different cases than in the last subsection:

Lemma 3.3.10. If there is exactly one constructor ci, then Ty ¥ I Atom

Proof. This follows from Theorem 3.2.9.]

Lemma 3.3.11. If there is exactly one constructor c¢1 and ci is constant, then 17 +
I Atom +— SUR.

Proof. This follows directly from Lemma 3.3.8 since Ty € 11 and Lo S L;. [|

Lemma 3.3.12. If there is exactly one constructor ¢ and ¢y is not constant, then
T1 + I Atom +— SUR. Consequently, Ty + I Atom + I Literal.

Proof. Take any model M of T} + I Atom and assume that there is some element
B € DM, which does not lie in the image of ¢{!. Consider the atom A(X) = X =
c1(di(X),d¥(X),...,d7"(X)). Since every element C in the standard part of M has
the form ¢ (a1, ..., am,), it holds by INV} that (d}(C))™ = a; and thus, M £ A(C).
We conclude that M F LHS(A). However, B € D™ does not lie in the image of
C{M by assumption and thus M ¥ VX : A(X), which contradicts our assumption that
ME Ty + I Atom. [|

Lemma 3.3.13. If there is more than one constructor and all constructors are constant,
then T1 — I Atom.

Proof. Note that in this case that all constructors are constant, it holds that £y = £4
and Ty = T1. Thus, this Lemma is equivalent to Corollary 3.3.4. |

Lemma 3.3.14. If there is more than one constructor and exactly one constructor is
non-constant, then Ty — I Atom.

3.3. Languages with Static Constructors only

Proof. Assume that ¢ is the only non-constant constructor and cs is some constant
constructor. Take any model M of T;. Before we deal with atomic induction, a small
observation about the interpretation of terms in this model: Let ¢(X) be some term that
contains X. If there is some subterm in ¢ of the form d}(c;(¥)), we can identify this
subterm with ¢; by IN V}. We assume that every term, we consider has already been
simplified in this manner. Thus, if ¢ contains X and since there is only one non-constant
constructor, it can have the form X, d’(X) or ¢;(3), where each of the s; has either
constant interpretation or is of the form d} (X).

Now consider the atom A(X) = t; = to and make a case distinction:

1. If X appears on neither side of A, then t1! and #)* are both constant and there is
nothing to prove.

2. If X appears on exactly one side of A, say in t1, then té\/‘ is constant. There are the
three aforementioned possibilities.

2.1. If t; = X, then, since ¢ is constant, either M ¥ A(c;(@)) for some tuple @ with
aj € 7 or M ¥ A(cz). Thus, M ¥ LHS(A).

2.2. If t; = d{(X), then there are two cases: If || = 1, then M F VX : A(X) trivially. If
71 has at least two elements by, by, then consider the elements B; = ¢ (), where m; € 7/
and m; = b;. Then, because) is constant, M ¥ A(B;) A A(Ba). Thus M ¥ LHS(A).

2.3. If t; = ¢1(d} (X),m), then we make the same case distinction: If there is 7{ has exactly
one element, then replace dll (X) with some parameter and repeat the procedure from
the top. If 7'{ has at least two elements by, by, then construct the elements B; = ¢; (m),
where m; € 7{ and m; = b;. From INJj, it follows that t1(B;) # ¢1(B2) and thus,
MFE A(By) A A(Bz). Therefore, M ¥ LHS(A).

3. Assume that X appears on both sides of A. There are again three cases:

3.1. Assume t; = X. If t, = d{(X), then the atom A is not well-formed. If £, = ¢1(3),
then M ¥ A(cz) by Dj 2. Thus, if M ¥ LHS(A), we have that ¢, = X.

3.2. Assume that t; = d}(X). Then, there are two cases: If ¢; takes the input 7/ exactly

once, then ty = d'(X) for A to be well-formed. In that case, M F VX : A(X). If ¢
l

takes the input 7{ more than once, then it is possible that to = d7(X), where 7" = 7.

There are two options: If |7{| = 1, then M F VX : A(X) trivially. If 74 has at least two

elements by, by, construct the element B = ¢1(7), where m; € Tf, m; = by and m,, = bs.

Then M ¥ A(B) and thus, M ¥ LHS(A).

3.3. Assume that t; = ¢1(5). From the cases 3.1 and 3.2, we conclude that t2 = ¢ ().

If M E LHS(A), then M E LHS(s; = ;) for any i € {1,...,m;1} since we have static
constructors only. From the cases 3.1 and 3.2, we obtain that M E VX : 5;(X) = r;(X)
and thus, M F VX : A(X). [

Lemma 3.3.15. If there is more than one constructor, at least two constructors are
non-constant and no two constructors take input of the same sort, then Ty ¥ I Atom

23

3.

GENERAL INDUCTIVE DATA TYPES

24

Proof. Fix the two constructors ¢;, c¢; and assume, w.l.o.g., that Til =T and 7']-1 = T5.
Consider the following M = M, 2}({3}) of Ty over the language Ly. We extend the
language with the selectors and interpret them in the following way:

o For any constructor dj', where 7" ¢ {1}, T}, there is only one element in 7}°, so
there is only one way to interpret d'(A) for any element A € DM

o If A=cM(my,...,mp,), then (d} (A)M = mj.

o If A= cj\’l(ml, <oy My, then (d}(A))M =m

« For any standard element A, define (d})™ and (djl-)M st. (dH(AYM = ay iff
(d]l(A))M = as, where T1 = {al,bl} and T2 = {ag,bg}.

o For the only non-standard element B, define (d}(B))™ = a; and (djl(B))M = by

Note that no two selectors share any sort of their input and thus, this interpretation
covers any case. Moreover, the axiom INV}" is satisfied for any [€ {1,...,k} and
ne{l,...,my}.

Now consider the atom A(X) = d;(X) = dj(¢;(dj(X),m)) for some appropriate tuple
m. By the definition above, we have that A(C) holds iff d}(C) = a; <= djl-(C) = ag. By
construction, this holds for the whole standard part of the model and thus, M F LHS(A).
However, d}(B) = a; and djl-(B) = b1. Thus, M E VX : A(X). [|

Lemma 3.3.16. If there are at least two constructors and two of them share some input
sort, then Th ¥ 1 Atom

Proof. Fix the two constructors c¢; and co that share some input sort. W.l.o.g., we can
assume that they share the sort 77 and both of them take it as the first input.

Consider the model M = M’{"l} ({B}) of Ty over the language Ly. We extend the language
with the selectors and interpret them in the following way:

o For any selector dﬁ» that maps into some sort 7T} other than 77 there is only one
possible interpretation for terms of the form d(t')

o If C € DM has the form ¢cM(my, ..., m.y,) with 7/ = T1, then (d}(C))M = my

o For any standard element C' and we interpret di(C) and d}(C) to coincide

« For B, we interpret d}(B) = a; and d}(B) = by, where T} = {ay,b1}

« If some case was not covered above, define d!(C) arbitrarily

3.4. Languages with Dynamic Constructors

Note that M E T7.

Consider the atom A(X) = di(X) = di(X). Then, M F LHS(A), but M ¥ VX :
A(X). []

Lemma 3.3.17. If there is more than one constructor, then T + I Atom ¥ I Literal
Proof. Since T1 + I Literal - SUR, this follows from Theorem 3.2.9. |

Proof of Theorem 3.3.9. The fact that Ty + SUR — IOpen is the content of Theorem
3.3.1. Moreover, from Theorem 3.1.8, it follows that 17 + I Literal - SUR in any case.
Case 1 follows from Lemma 3.3.10, Lemma 3.3.11 and Lemma 3.3.12.
Case 2 follows from Lemma 3.3.13, Lemma 3.3.14 and Lemma 3.3.17.

Case 3 follows from Lemma 3.3.15, Lemma 3.3.16 and Lemma 3.3.17. |

3.4 Languages with Dynamic Constructors

In the following section, we will restrict ourselves to the case, where there is at least one
constructor that does take some input of sort D. This is arguably the more interesting
case as the induction is now more than just the base case.

3.4.1 Constructors only

First we need some definitions:

Definition 3.4.1. The D-depth d(t) of a term t is defined inductively: For any static
constructor c¢; and variables X we define d(cj(y)) = d(X) = 0. For any dynamic
constructor ¢, we define d(ci(ty, ..., tn)) = 1 + max{d(t1),...,d(t,)}.

Definition 3.4.2. Consider the set of all terms of D-depth n = 1. We define the set M,
by taking all the terms t with D-depth n that satisfy the following properties:

e One of the variables of sort D is X
o FEvery variable is used exactly once

e Any subterm that does not contain X is a variable

Now consider the binary relation ~ on the set M,, defined byt ~ s if t = s up to renaming
of variables and define the set M) = (Mn)/w. Note that M), is finite. We define the set
Sn by choosing a representative for each class in M), and S = J,>, Sn-

25

3. GENERAL INDUCTIVE DATA TYPES

Now we can define a new set of axioms
Gy X #t(X) forallteS (Acyclicity)
The following will be the main result of this section.

Theorem 3.4.3. We have the following cases:

1. There is only one dynamic constructor and this dynamic constructor is unary

2. There is more than one dynamic constructor or there is exactly one dynamic
constructor and this constructor is not unary

a) For every dynamic constructor c;, there is exactly one | with Til =D

b) There is some dynamic constructor ¢; with l; # ly and Tz-ll = 7'7;12 =D
In case 1, we obtain the following Hasse-Diagram:

To + I Literal ~ Ty + IOpen ~ Ty + SUR + {G; | t € S}

To ~ Ty + I Atom

In case 2a, we obtain the following Hasse Diagram:

To + IDClause ~ Ty + [Open ~ Ty + SUR + {G; | t € S}

Ty + I Literal ~ Ty + IClause

Ty ~ Ty + [Atom

In case 2b, we obtain the following Hasse Diagram:

26

3.4. Languages with Dynamic Constructors

To + IDClause ~ Ty + IOpen ~ Ty + SUR + {G; | t € S}

To + IClause

Ty + I Literal

Ty ~ Ty + [Atom

This theorem will a consequence of the following lemmas:

Lemma 3.4.4. Ty — [Atom

Proof. This follows directly from Lemma 3.2.5 since there are at least two constructors
in our language. |

Lemma 3.4.5. Ty + I Atom ¥ I Literal

Proof. Since Ty + I Literal - SUR, this follows directly from Theorem 3.2.1. |

Definition 3.4.6. Let M be any model of Ty. A finite sequence (Bo, ..., By) € (DM)n+1
is called a cycle if By = By, and for all l € {1,...,n}, there is some term t;(X) =
cj,(sh, .. .,sin]_) s.t. M E By = t)(B,—1) and at least one of the s, is identical to X. A
cycle C' can have two types:

1. There is some term tc(X) = c¢i(s1, ..., Sm,) where at least one of the s; =X - X
may appear in other sy, as well - s.t. M E Bi11 = to(B;) forany B;€ C, i <n—1.

2. There is no such term

Lemma 3.4.7. Let M be any model of Ty + I Literal and C' = (By,...,By) a cycle in
M. Then C is not of type 1.

Proof. Assume that C is of type 1. Then there is a term t¢c = ¢;(s1,...,5m,;) s.t. ME

Bii1 = tc(B;). Consider the sequence of terms t1, . .., t,, where t| = tc and t; 11 = to(t;).

Then B; = t;(By) and By = t,(Bp). Consider the literal L(X) = X # ¢,(X). Clearly,
M E L(cj(a)) for any static constructor c¢; and tuple @. Assume that M # L(A) for some
element A. Then, A = ¢M(A1,..., Ak, Grsty- - am,) = M(s1(tn—1, .-+, Sm, (tn_1)) for

27

3.

GENERAL INDUCTIVE DATA TYPES

28

some elements Aj,a;. By INJ;, A; = slM (thn—1(A)). By assumption, there is one s; = X
and thus, there is one A; = t21,(A). By construction of tc, A = to(t,_1(A)) = tc(A)).
Thus, A; = tp—1(tc(4;)) = tn(4;). Thus, M E LHS(L). By ILiteral, M EVX : A(X).
This, however, contradicts the assumption that such a cycle C exists. |

Lemma 3.4.8. Assume that every dynamic constructor takes the sort D as input exactly
once. Let M be a model of Ty + ILiteral and C = (Bi,...,By) a cycle in M. If
M E B; = t(B;) for some term t # X that contains X, then M ¥ By = t(By) for some
By.

Proof. By Lemma 3.4.7, C' is not of type 1. In particular, there is no term s = ¢;(X,a)
st. M E B; = s(B;—1) for all B;. Now take any term ¢t # X containing X with
M E B; = t(B;). t has the form ¢;(X,b). There is some B; s.t. B; = ¢j(B;_1,€), where
either j # i or b # e. From D, ; or INJ;, it follows that M ¥ B, = t(B). [|

Lemma 3.4.9. If every dynamic constructor takes the sort D as input exactly once, then
To + I Literal — IClause.

Proof. Note that by Theorem 3.1.8, we have that Ty + I Literal — SUR.

Now take any model M of Ty + I Literal and some clause C(X) = L; v --- v L, and
assume that M F LHS(C'). We start by preprocessing C"

Assume that there is some literal L; that does not contain X. Then, M E L; < T or
M E L; < L. In the first case, M E C < T. In the second case, M E C < C’, where C’
is obtained from C by deleting L;. Thus, we can assume that every literal contains X.

Assume that there is some negated atom L; =t # t5 and both ¢; have the outermost
function symbol ¢;. Then both #; are of the form ¢;(¢],...,"). By INJ;, M E L; <

i) th # t5. Thus, we can replace L; in C with the clause Vi, th # t5 and obtain
another equivalent clause.

Assume that all the L; are atoms. Since the standard part of M is infinite, there is some
L; and distinct standard elements B,C € DM s.t. M L;(B) A L;(C). By Lemma 3.2.5,
MEVX : L;(X) and thus, M EVX : C(X). In this case, we are done.

From now on, we assume that at least one of the L; =t # s is a negated atom. W.l.o.g.,
assume that ¢; contains X.

We make a case distinction:

1. The case that both ¢ and s share the same outermost function symbol is eliminated by
our preprocessing.

2. If the outermost function symbols of ¢t and s are ¢; and ¢; respectively with 7 # j,
then M E VX : L;(X) and thus, M EVX : C(X). In this case, we are done.

3. If t = X and #)" is constant with some fixed interpretation By, then M F L;(B) for
any B # By. There are two cases: If By is a standard element, then there has to be

3.4. Languages with Dynamic Constructors

some L; with M F L;(By) by assumption. If By is a non-standard element, then by
SUR, there is some dynamic constructor ¢; and elements By, ..., B, bj11,..., by, where
all the B; are of sort D and By = ¢ (Bj,...,bm,;). As mentioned, M F L;(B;) and
thus, M E C(Bj) for any j. Since M £ LHS(C'), we conclude that M E C(By). Thus,
in any case, M E VX : C(X).

4. Assume that t = X and s contains X. If s = X, then M E VX : —=L;(X) and
ME C < (', where €' is obtained from C' by deleting L;. In that case, we can start
from the top with C’. Thus, we assume that s # X. Assume that there is some By € DM
with M ¥ L(B). Then By lies in a cycle E = (By,...,B,). By Lemma 3.4.8, there is
some By with M F L(B;) and thus, M F C(B;). Since every constructor takes the sort D
exactly once as input and M F LHS(C), we obtain that M E L(B;41) and inductively
for all B; in E. Thus, M EVX : C(X). [

We have not succeeded in proving that Ty + I Literal - IClause if there is an constructor
that takes the sort D as input twice. This leads to the following open problem:

Open Problem 3.4.10. Assume that there is some dynamic constructor c¢; s.t. there
are ly # lo with Till = 72-12 = D. Does it hold that Ty + I Literal — IClause?

Building up on the definitions of S,, and S, we need a new definition:

Definition 3.4.11. For this definition, fit D = Ty. Fiz some k > 1. Define QF = {y |
the variable y is of sort T; and occurs in some term in Sy} for i > 0. Let .7-"2-’c be the set
of functions f : QF — QF. Note that every]-"f is finite since Sy is finite. Moreover, for
any variable x, let i(x) be the i s.t. x € T;. For any term t(x1,...,x,) assume that the
variables of t are fully indicated. Define the set Ry = {t[x1/fi(x1),...,zn/fu(zn)] |t €
Sy, fi € FE)}. Again, Ry is finite.

i(z;

Lemma 3.4.12. {G; |te S} — X # t(X) for any term t, which contains X, but is not
identical to X.

Proof. Take any model M of {G; | t € §}. Assume that there is some term ¢, which

contains X, but is not identical to X and some element A € DM st. M E A = t(A).

Now define the term s by picking one occurrence of X in ¢ and changing every other
occurrence to a different, unique parameter. Define s’ by changing every subterm of
s, which does not contain X to some new parameter. Modulo renaming s’ € S and by
interpreting the fresh parameters accordingly, we obtain that M E A = §/(A). |

Lemma 3.4.13. Ty + IDClause + Gy for anyte S.
Proof. Take any model M of Ty + IDClause and any k > 1. Define the dual clause

D(X) = Niep, X # t(X). We show that M F VX : D(X). By the definition of S, the
claim then follows directly.

29

3.

GENERAL INDUCTIVE DATA TYPES

30

It is clear that M & D(c;j(@)) for any static constructor ¢; and tuple of elements @. Now,
assume that there is some element A s.t. M ¥ D(A). Then there is a term t € Ry, with
ME A =t(A). Since d(t) = 1, t has the form ¢;(s1, ..., Sm,;) and all s; except for one
are parameters. W.l.o.g., assume that s; is not a parameter and all s; = a; for [> 2 are
parameters occurring in the respective Qf. It follows that A = ¢;(A1,az,...,an,) for
some element A;. From INJ;, it follows that A; = s1(A4) = s1(ci(A1, ag,...,am,)). Note
that d(t) = 1 + max{si,...,Sm,} = 1 + max{s1,0,...,0} = 1+ s1. Thus, and because
any subterm of s1, which does not contain X is a parameter and has D-depth 0, the term
s(X) =s1(a1(X,ag,...,am,)) satisfies that d(s) =1 + d(s1) = d(t). Since all the a; are
in the respective Q¥, it follows that s € Ry,. Thus, M ¥ D(A;) and hence, M F LHS(D).
Since M E IDClause, it follows that M E VX : D(X). [|

Lemma 3.4.14. If there is only one dynamic constructor ci and c1 is unary, then
To + I Literal - Gy for any te S.

Proof. Since there is only one dynamic constructor ¢; and c¢; is unary, any term ¢ of
D-depth k, which contains X has the form c¢§(X). Define the literal L(X) = X # ¢"*(X)
and take any model M of Ty + I Literal. Clearly, M E L(c;(a)) for any static constructor
cj and tuple of elements @. Assume that there is some A € DM with M ¥ L(A).
Then, A = (G (AWM = (c1(FH(A))M = (c1(B))M for some B. By IN.Jy, it follows
that B = (] H (AWM = (¢! (er(B))M = (¢}(B))M. Thus, M ¥ L(B) and hence,
M E LHS(L). Since M E [Literal, M E VX : L(X). Since Sy = Ry = {c}(X)}, this
proves the claim.]

Lemma 3.4.15. If there is more than one dynamic constructor or there is one dynamic
constructor, which is not unary, then Ty + IClause ¥ I DClause.

Proof. We need to give a model M of Ty + IClause in which there is some cycle. There
are two mutually exclusive cases:

1. If there is some non-unary dynamic constructor, then by Lemma 3.2.18, the model
M does exactly what we want.

2. If there is more than one dynamic constructor and every dynamic constructor is unary,
then Ty + I Litera — IClause. 1t suffices to give a model M of Ty + I Literal. By Lemma
3.2.21, the model M¢ does exactly what we want. |

Lemma 3.4.16. Let A(X) = t1 = to be an atom. Take any model M of Ty +SUR +{G |
t € 8}, where the sort D is interpreted as the set M. Then the set S ={X e M | M E
A(X)} is either empty, has cardinality 1 or is equal to M.

Proof. Take any model M of Ty + SUR + {G; | t € S} and any atom A(X) =t; = to.
There are three cases:

1. If neither side contains X, then S is either empty or equal to M.

3.4. Languages with Dynamic Constructors

2. If only one term, say t1, contains X, then #"! is constant. We show inductively that
there is at most one B € DM with M E A(B). If t; = X, the claim holds trivially.
Assume that t; = ¢i(s1, ..., 8m,). If there is some element B with M F t1(B) = t2, then
there are elements Ay, ..., Aj,a;41,. .. am, with 31 = cM(A1, ... am,). At least one of
the s; has to contain X and from the induction hypothesis it follows that there is at
most one B s.t. M F s;(B) = a;. From INJ;, it follows that there is at most one B s.t.
ME tl(B) = 19.

3. Assume that both t; and o contain X. We proceed by induction on the structure of
t1:

3.1. Assume that t; = X. If t3 #£ X, then S = J by Gy,. If toa = X, then § = M.

3.2. Assume that ¢, = ci(s1,...,8m;). If there is some element B with M F t;(B) =
t2(B), then t has the form ¢;(ry,...,mm,) by D;j, ¢ # j. From INJ;, it follows that
S =%, Sk with Sy = {B € DM | M F s(B) = rg(B)}. From the induction hypothesis
and the cases 1 and 2, it follows that every Sy is either empty, has cardinality 1 or is
equal to M. Thus, as the intersection of the Sk, S has this property as well. |

Lemma 3.4.17. Let M, N be two finite or cofinite sets. Then M n N and M u N are
also finite or co-finite.

Proof. Since a set is finite or cofinite iff its complement is and (M U N)¢ = M¢ n N€| it
suffices to deal with one of the two cases.

Consider M u N and assume that it is infinite. Then at least one of the two sets has to
infinite and, therefore, co-finite, w.l.o.g. assume that M is co-finite. Since (M UN)¢ < M€,
it follows that also M u N has to be co-finite. |

Lemma 3.4.18. Let F(X) be an open formula with X € D. In any model M of
To + SUR + {Gy | t € S}, it holds that Sp = {X € DM | M E F(X)} is finite or co-finite.

Proof. We proceed inductively: The base is that F' is an atom. From Lemma 3.4.16 it
follows that S is finite or cofinite in this case. If ' = =G, then Sp = S and thus, Sf is
finite or cofinite if S is. If F = G1 v Gy or F = G1 A G, then it follows from Lemma
3.4.17 that S is finite or cofinite if both Sg, and Sg, are. n

Theorem 3.4.19. Ty + SUR + {G; | t € S} - IOpen

Proof. Take any model M of Tp + SUR + {G; | t € S} and any open formula F(X).
Assume that M F LHS(F'). By Lemma 3.4.18, the set Sr is finite or cofinite. Since the
standard part of M is infinite and M F F(B) for any element B € D™, S is cofinite
and |S%| = n € N. Now define a partial function p : D™ <> DM on the set S%. Let B
be any element in S%. Since M F LHS(F), B cannot be a standard element and, by
SUR, there is some dynamic constructor ¢; with elements By,...,Bj,bj11,...,by, s.t.
B =cM(By,...,bpy,). For at least one of the By it holds that M ¥ F(B;). Define p(B) by

31

3. GENERAL INDUCTIVE DATA TYPES

picking any such B; with M ¥ F(B;). Assume that S% is not empty and that there is some
B with M ¥ F(B). Then, M ¥ F(p'(B)) for any | € N. In particular, M ¥ F(p"(B)).
Since |S%| = n, there has to be some E € S% and k < n with p'(E) = E. By definition
of p, this implies that there is a term ¢ with M £ E = ¢(F), which contradicts the
assumption that M E {G; | t € S}. Thus, S¢ = & and M EVX : F(X). |

Proof of Theorem 3.4.3. In all three cases, it follows from Lemma 3.4.4 that Ty — I Atom,
from Lemma 3.4.5 that Ty + IAtom ¥ ILiteral and from Theorem 3.4.19 that Ty +
SUR + {G; | t € S} + IOpen.

In case 1, it follows from Lemma 3.4.14 that Ty + I Literal - IOpen.
In both cases 2a and 2b, it follows from Lemma 3.4.15 that Ty + IClause ¥ I DClause.
In case 2a, it follows from Lemma 3.4.9 that I Literal — IClause. |

3.4.2 Constructors and Selectors

The following will be our main result:

Theorem 3.4.20. The are two cases:

1. There is exactly one dynamic constructor and all other constructors are constants.

2. There is more than one dynamic constructor or some static constructor, which is
not constant.

In the first case, we obtain he following (partial) Hasse-Diagram:

Ty + IOpen

s N
s N
Y N
s
N
Y N

, N

s

T+ IDC/‘lause T, + IClause

s
N s
N s
N s

s
N ’
N

Ty + I Literal

Ty ~ Ty + T Atom

In the second case, we obtained the following (partial) Hasse-Diagram:

32

3.4. Languages with Dynamic Constructors

Ty + IOpen

s N
’ N
’
N
’
s N

’ N

’

T, + IDClause T, + IClause

s
N s
N s
N s

s
N ’
N

Ty + ILiteral

T, + I Atom

Ty

This will be a direct consequence of the following lemmas:

Lemma 3.4.21. T7 + I Literal — SUR

Proof. This follows directly from Theorem 3.1.8. |

Lemma 3.4.22. T1 + IDClause + Gy for any term t € S.

Proof. This follows directly from Lemma 3.4.13 since T 2 Tj. |

Lemma 3.4.23. If there is only one dynamic constructor ¢ and c is unary, then T1 +
I Literal - Gy for any term t in S, withn > 1

Proof. This follows directly from Lemma 3.4.14 because 11 2 Tp. |

Lemma 3.4.24. If there are at least two dynamic constructors, then Ty ¥ I Atom

Proof. Fix two dynamic constructors cj,cz and one selector di : D — D of di. Now
start with the model M = M*({0}) of Tj over language Ly. We need to interpret the
selectors. For this, we fix two distinct elements By, Bs € DM and proceed with a case
distinction:

o If B e DM can be written as ¢ (b), then define (d¥(B))™ = by,

o If B = c¢M(b) and B is a standard element, then define (d3(B))™ = B;

33

3.

GENERAL INDUCTIVE DATA TYPES

34

o If B = ¢ (b) and B is a non-standard element, then define (d3(B))™ = By

e If none of the previous cases is applicable and Tl-k # D, then there is only one
possible interpretation for d¥(B)

« If none of the previous cases is applicable and 7/ = D, then define (d¥(B))™ = B

Note that by construction M E T7.

Consider the atom A(X) = di(c1(X)) = Z and the interpretation ¢ : Z — B;. By
construction M E A(B) iff B is a standard element. Thus, M F LHS(A), but M F VX :
A(X). |

Lemma 3.4.25. If there is exactly one dynamic constructor, but there is some non-
constant static constructor, then Ty ¥ I Atom.

Proof. Fix the dynamic constructor ¢; and the non-constant static constructor co. W.l.o.g.,
assume that 74 = T} and thus, d} : D — Tj. Now take the model M = M1y ({oo}) of Ty
over the language L£y. We need to interpret the selectors. For this, fix the elements a1, by
with T{M = {ay, b1} and proceed with a case distinction:

o If B e DM can be written as ¢;!(b), then define (d¥(B))M = by

o If B =c(b) and B is a standard element, then define (d3(B))M = a;

o If B = ¢ (b) and B is a standard element, then define (d}(B))™ = b;

o If none of the previous cases is applicable and 7 = T}, then define (d¥(B))™ = a;
« If none of the previous cases is applicable and 7¥ = D, then define (d¥(B))™ = B

« If none of the previous cases is applicable and 7¥ ¢ {D,T}}, then there is only one
possible interpretation for d¥(B)

Note that by construction M E T7.

Consider the atom A(X) = di(c1(X)) = 2z and the interpretation ¢ : z — a;. By
construction M E A(B) iff B is a standard element. Thus, M F LHS(A), but M F VX :
A(X). |

Remark 3.4.26. Prior to this subsection, our standard approach to prove that e.g.
T + I Atom ¥ I Literal, was to find some formula ¢ with T + I Literal — ¢ and show
that T + I Atom ¥ . In the current setting it is much more difficult to use this approach
due to the added complexity of the selectors in combination with dynamic constructors.
However, there is some other approach, we used in two previous Lemmas that we think
could be fruitful if someone decides to try to find solutions to the questions that we did
not manage to answer: If there are at least two constructors ¢y and co that take some

3.4. Languages with Dynamic Constructors

input, then the axioms of T1 make no statement about how the selectors of c¢1 should
be interpreted on elements of the form cé"‘(..) in some model M of Ty. Using this,
one might be able to define a model with different patterns that prove that some level of
induction is stronger than some other level. Moreover, in this case, it seems very difficult
to give a simple alternative axiomatization of open induction and after spending some
thought on this, we think that it might not even be possible.

This leads to the following conjecture:

Conjecture 3.4.27. If there is at least one dynamic constructor and some other construc-
tor that takes input of some sort, then T1+1 Literal ¥ IClause, T1+1 Literal ¥ IDClause,
T, + IClause ¥ IDClause and T1 + IDClause ¥ IClause.

Lemma 3.4.28. Assume that there is only one dynamic constructor ¢ and that every
other constructor is constant. Let M be any model of T1 and t be a term of the form
di(...d» (X)), where all the T{h are D. Then, there is some term s; with the following
properties:

e MEVX : X = (tos)(X)
e d(t) = d(st)

e All function symbols in s; are dynamic constructors

e The interpretation s,{\/‘ maps standard elements to standard elements

o For any term t' of the form dfll (... df;: (X)), where all the Tfhh are D and M EVX :
X =(tosy) and MEVX : X = (t' 0s), it holds that M F t(X) = t/(X)

This term s is called right-inverse of t.

Proof. Take any such term ¢ of the form dﬁ(. dﬁz (X)), where all the 7 are D. We
define the sequence sq,..., s, inductively: so = X and sy, 1 = cin_kﬂ(al, el amn_k+1),
where a;, , ., = s and the other a; are arbitrary (fixed) parameters of the right sorts
and if that sort is D, we choose it to be a standard element. Then, the term s; = s,
has the property that T3 - VX : (t o s;)(X) = X. By construction s maps standard
elements to standard elements.

Now take any ¢/ = d¥(...d"" (X)) and its respective right-inverse sy. Assume that
MEVX : X = (t'os)(X) and MEVX : X = (tosy)(X). W.lo.g., assume that n < m
and take the biggest h € {1,...,n} s.t. dllh # dlf”’ if such an h exists. It holds that I}, # ky,
and (dl{‘ (... diﬁ (s(X))))M% is some fixed parameter by construction of the right-inverse.
In particular, ((£o sy)(X))M% is constant, which contradicts our assumption. Thus,
such an h cannot exist and for all A < n, it holds that dllh = dlfh. Assume that n < m.
Then define r = d’fl(...,dlfm’"(X)). It holds that M EF VX : X = (' o0 5)(X) and

35

3.

GENERAL INDUCTIVE DATA TYPES

36

MEVX : (' 08)(X) = r(X). Thus, M F VX : X = r(X). However, there are
standard elements F s.t. M ¥ E = r(FE). Thus, m = n, ¢t and ¢’ are identical and
MEVX : t(X) =t/ (X). [

Lemma 3.4.29. Assume that there is only one dynamic constructor and all other
constructors take no input at all. Let M be any model of Ty s.t. TZM contains at least
two elements a;, b;. If there are two terms t and s of sort T;, which consist of selectors

only and contain X, then they are either syntactically identical or there is some standard
element B € DM with t(B)M # s(B)M.

Proof. Tt holds that ¢ has the form d%(...,d" (X)) and s has the form d}*(... (d"" (X)),
where the selectors alll1 and d]fl map into the sort 7; and all other selectors occurring in
t or s map into the sort D. W.l.o.g., assume that m > n. First, we fix some constant
constructor ¢ and make a case distinction:

1. If dlf # dlfl, then define the following sequence of standard elements By = ¢{!(b),
where b; = ¢ Ef = D,b, = a1, by, = ap and b; is some arbitrary parameter otherwise.
Bii1 = ct(b), where bj = By if { = D,b;, = a1,by, = a2 and b; is some arbitrary
parameter otherwise. By construction, it follows that t(B,,)" = a; and s(B,,)™ = a
as m = n.

2. Now assume that di = dkr, We define some auxiliary sequence first: By = ¢{!(b),
where b; = cif 7{ =D, b; = a1 if 7§ = 7 and b; is some arbitrary parameter otherwise.
Biy1 = c(b), where b; = By if le- =D, bj =aif i =7 and b; is some arbitrary
parameter otherwise. Fix the element B,,. Note that any term r, which consists of
selectors only, has D-depth < m has the property and is of sort T;, that r(B,,) = a;. Now
define the sequence Ej, in the following way: Eg = ¢ (€), where ¢;, = as, ej = By, if
Tf = D and e; is some arbitrary parameter otherwise. Ej4q = e (€), where e, , = Fk,
ej = By, if Tf = D and e; is some parameter otherwise. It holds that t(E,)M = as.

If there is some there is some dlf # dlfj or m > n, then we can write s = r o ¢ with
q(E,)M = B,, and thus 7(E,)M = a;.

In any case, we obtain that there is some standard element B wiht M ¥ t(B) = s(B) if
they are not syntactically identical. |

Lemma 3.4.30. Assume that there is only one dynamic constructor and all other
constructors take no input at all. Take any model M of Ty and atom A(X) =t) = ty. If
ME A(E) for any standard element E in DM, then M E VX : A(X).

Proof. Let ¢; be the only dynamic constructor. Assume that M F LHS(A). First note
that since there is only one dynamic constructor and every other constructor is constant,
we can assume that there are no subterms of the form d¥(ci(...)).

There are three cases:

3.4. Languages with Dynamic Constructors

1. If X appears on neither side of A, then M E (3X : A(X)) & (VX : A(X)) and we are
done.

M

2. If X appears on exactly one side of A, say in t1, then s is constant. There are two

cases:

2a. Assume t1(X) is of sort Tj. If T;1M has exactly one element, then t{! is constant and
MEVX :t1(X) = ta(X). Assume that TiM contains the distinct elements a1, as. Note
that ¢; has the form d''(...d" (X)), where 7' = T; and for i > 2, 7" = D. Define | =
d?(...dy (X)) Then by 3.4.28, there is some term s, with M F VX : X = (t] o sy)(X)
and t; = di' ot’. Tt follows that M F VX : t1(sy (X)) = df'(X). Now define the
elements B;j = ci(e/), where e{l = a; for j € {1,2}. Thus, M F t1(sy (B1)) = a1 and
M E t1(sy (B2)) = az. Thus, it does not hold that M E t,(E) = t3(E) for any standard
element E.

2b. Assume that ¢1(X) is of the sort D. We claim that ¢; is not constant in the standard
part and thus, it does not hold that M E A(FE) for any standard element E. We prove
the claim inductively:

2b.i. The first base case: If t; = X, the claim is trivially true.

2b.ii. The second base case: If t; = d! (... (d""(X))), then, by Lemma 3.4.28, there is a
right-inverse term s;, with M EVX : X = (t; 0 s4,)(X). In particular, ¢; is not constant
in the standard part of M.

2b.iii. For the induction step, assume that ¢; has the form ¢;(s1,. .., Sm,). At least one
of the s; has to contain X and by the induction hypothesis and case 2a, all the terms
s; that contain X have either constant interpretation slM in the whole model or there
are elements B, E s.t. M E s/(B) # s,(F). If all the s;*! are constant, then so is t{1. If
there is some s; and standard elements B, E with M F s;(B) # s;(E), then, by IN.Jj,

M E t1(B) # t1(E).

3. Assume that X appears on both sides of A. There are two cases:

3a. Assume that t; and t9 are of the sort T; # D. There are two cases:

3a.i. If T™M has exactly one element, then M F VX : t;(X) = to(X) trivially.

3a.ii. If TM contains at least two elements, then it follows from Lemma 3.4.29 that
t1 and to are either syntactically identical or there is some standard element B with

ME t1(B) # t2(B).

3b. Assume that t; and ¢y are of the sort D. We proceed by induction on the structure
of t.

3b.i. The first base case: Assume that ¢t = X. If the outermost connective of s is some
constructor ¢;, then it does not hold that M E A(FE) for any standard element E since
we have at least one other constructor ¢; and M F D; ;. If the outermost connective of s
is some selector d~', then s has the form d¥' (... (d" (X))). By Lemma 3.4.28, there is

37

3.

GENERAL INDUCTIVE DATA TYPES

38

some term r = s; with M E VX : s(X) =r(X). f MEt(E) = s(E) for any standard
element E, then M E (tor)(E) = (sor)(E) for any standard element E since 7" maps
standard elements to standard elements. Since M EVX : (sor)(X) =X and t = X,
this implies that M E r(E) = E for any standard element E. We are now in the first
case that ¢ = X and the outermost function symbol of s is a constructor (with switched
sides). Thus, it does not hold that M F r(E) = E for any standard element E, which
is a contradiction. We conclude that if t = X and M F ¢(E) = s(F) for any standard
element E, then s = X and M E VX : ¢{(X) = s(X).

3b.ii. The second base case: Assume that ¢ = d!(...dyl,(X)) and that M E t(E) = s(E)
for any standard element E. By 3.4.28, there is some term s; with M F VX : X =
(tosy)(X). Consequently, M F E = (sos;)(FE) for any standard element E. From the case
3b, it follows that M F VX : X = (sos;)(X). By Lemma 3.4.28, M E VX : t(X) = s(X).

3c.iii. The induction step: Assume that ¢t = ¢;(s1,...,8m,). From the cases 3a and
3b, it follows that s = ¢1(r1,...,7m,;). If M E t(E) = s(E) for any standard element
E, then, by INJ;, M E r;(E) = s;(F) for any standard element E and from the
induction hypothesis and the cases 1, 2, and 3a, it follows that M F VX : (X)) = s;(X).
Consequently, M E VX : t(X) = s(X). [|

Corollary 3.4.31. If there is only one dynamic constructor and all other constructors
take no input at all, then T + I Atom.

Lemma 3.4.32. Ty + [Atom ¥ I Literal

Proof. Since there are at least two constructors, a static one and a dynamic one, this
follows directly from Theorem 3.2.9 and the fact that T} + I Literal — SUR. [|

Proof of Theorem 8.4.20. In either case, it follows from Lemma 3.4.32 that T7 + [Atom ¥
I Literal.

In case 1, it follows from Corollary 3.4.31 that T1 — I Atom.

In case 2, it follows from Lemma 3.4.24 and Lemma 3.4.24 that 11 ¥ I Atom. |

CHAPTER

Arithmetics

Open Induction in the context of arithmetics has already been studied in [Sho58] and
[She63|. However, they only considered induction over all open formulas and not over
particular subsets of them. The goal of this chapter is to analyze how much induction is
needed for the known results and prove them in the respective subsystems. The structure
of this chapter closely follows the one of [She63]. We consider systems of arithmetics up
to and including multiplication.

4.1 General Frame

In the following we will consider a one-sorted logic. We work with the language ¥ =
{0,s,p, +,-} or subsets of it. 0 is O-ary, s and p are unary and + and - are binary.
Furthermore, we use = as a binary predicate with the usual axiomatization. The base
axioms are

Al s(x) #

A2 <>=

A3 p(s(a)) -

A3a st =sy—>zxz =y

A4 z+0=2x

A5 z+s(y)=s(x+y)#0
A6 z-0=0#0

A7 z-s(y)=z-y+ux

For the sake of readability, we will often write sz and px instead of s(x) and p(z)
respectively. If it is clear from the context, we might also drop the - and write zy instead
of z - y.

39

4.

ARITHMETICS

40

Lastly, we have the following scheme for induction:

LHS(p(x,2)) ¢(0,2) A Vz : o(x,2) — p(sz,Z%)
I(p(z,2)) LHS(p(2,2) - Vo : (2,7

In the scheme above Z is a parameter in the formula ¢. Again, for the purpose of legibility,
we might sometimes not mention parameters explicitly as all formulas may contain them
if not stated otherwise.

Note that in list of the axioms above, we have the axioms A3 and A3a. The first one,
does not state directly that s is injective, but it follows trivially from it. Thus, whenever,
we have the axiom A3, we can also use A3a freely.

Having established the general context, we can consider various theories over ¥ and its
subsets in the following sections. We start by taking the empty theory and expand it
gradually. Also the language will be enriched step-by-step.

4.2 Useful models

In this section, we define two useful non-standard models of arithmetics. We will then
prove some properties of them and refer to them in the later parts of this chapter.

4.2.1 The model N,

In this subsection, we will define a model that is in some sense the least non-standard
model of the natural numbers. We will prove some properties of this model and make
heavy use of this model in course of this chapter.

In this section we consider the language £ = {0,s,p, +,-} with the axiomatization
T ={Al,..., A7}

Definition 4.2.1. The model Ny, is constructed in the following way: The domain is
given by N U {0}. The symbols are interpreted in the following way:

e 0 is interpreted as 0

e All the symbols s, p, +, - are interpreted canonically in the standard part of the model
o 5(o0) = p(0) =

e For any x in the domain, ©0 + x = x + 00 = ©

e 0-0=0-00=0and foranyx #0, x-00 =00 -2 =00

Lemma 4.2.2. N, F T

Proof. This holds trivially by construction. |

4.2. Useful models

Lemma 4.2.3. Let n be the numeral s™(0) and A(x) =t; =ty any atom. If Ny F A(n)
for alln e N, then Ny, EVzx: A(z).

Proof. 1. If x does not appear in either ¢; nor ¢s, then A(0) <> A(0).

2. If x appears on exactly one side of A, say t1, then t, is constant in x and there are
two cases:

2a. If some parameter in ¢; is interpreted as oo, then ¢(z) = oo for any z. Thus,
A(o) < A(0).

2b. If no parameter in t; evaluates to oo, then ¢; is evaluated as a polynomial in = almost
everywhere in the standard part of the model. In particular, it cannot be constant there
and the conditions are not met.

3. If = appears on both sides, then, by construction of the model, both terms ¢;(0)
evaluate to co. Thus, A(c0) holds. [|

Lemma 4.2.4. For any reduct N}, of Ny, (that still contains 0 and s) it holds that
Ni E I Atom

Proof. W.l.o.g. assume that N* = Ng,. The claim follows directly from Lemma 4.2.3 as
Ny E A(n) for any n € N if Ny, E A(0) A A(x) — A(sz). [

Lemma 4.2.5. For any reduct N}, of Ny, (that still contains 0 and s) it holds that
N ¥ ILiteral

Proof. Consider the literal L(z) = x # z. where the parameter z is interpreted as o0.
Clearly, N* F L(0) A L(z) — L(sx), but obviously N ¥ Vz : L(z). Note that this works
regardless of the concrete reduct as L uses no symbols of the language. |

Theorem 4.2.6. Let T" = T be some theory over the language L' < L. Then T' +
T Atom ¥ I Literal

Proof. By Lemma 4.2.2 the appropriate reduct N7, of N, is a model of 7. By Lemma
4.2.4 N} is a model of I Atom, but by Lemma 4.2.5 N% is not a model of I Literal. W

4.2.2 The model N,

In this subsection, we will define another very common non-standard model of natural
numbers. We will use this model, to separate atomic induction from the base theory in
some cases.

Although the model below is slightly different, it is very similar to the model in [Het24,
page 38].

Definition 4.2.7. The model N,y is constructed in the following way: The domain is
given by N U {a,b}. The symbols are interpreted as follows:

41

4.

ARITHMETICS

42

e 0 is interpreted as 0
e For every standard element n, sNatn = n + 1, sNebvg = a and sNebb = b
e For every standard element n # 0, pNabtn = n—1, plas) = 0, pNavg = a, pNavh = b

e + and - are interpreted according to the tables below

+ 10 1 2 a b 0 1 2 a b
010 1 2 b a 00 0 O b a
171 2 3 b a 110 1 2 b a
2 12 3 4 b a 210 2 4 b a
ala a a a a 0O|b b b a a
b|b b b b b Ola a a b b

Lemma 4.2.8. N, F {Al, A2, A3, A3a, A4, A5, A6, AT}

Proof. 1t was shown in [Het24, page 38] that N, ; F {Al, A3a, A4, A5, A6, A7}. Note that
A2 and A3 hold by construction.]

Lemma 4.2.9. Ny, Fr+y=y+=x

Proof. Consider a+0=a#b=0+a. [|

4.3 0 and Successor only

In this section, we fix the language £ = {0, s}

Definition 4.3.1. We define two very basic theories:

Additionally, we define the following auxiliary axioms:

m
Bam s"0 = sm — Va:\/:c = s*0 for any n,m e Nand n <m
k=0

Theorem 4.3.2. In [She65], it was shown that the following holds:

e Ty + 10pen ~ Ty + {Bym | n,m e N,n < m}

4.3. 0 and Successor only

e Ty + I0pen ~ Ty + {Bpm | n,m € Nyn < m}
We can strengthen this by the following theorem:

Theorem 4.3.3. For any i € {1,2} the following holds:

T; < T; + I Atom
< T; + I Literal
< T; + IDClause
~ T; + IClause
~T; +10pen ~ Ty + {Bpm | n,me N,n <mj}

This yields the following Hasse Diagram:

T; + IDClause =~ T; + IClause ~ T; + IOpen

T; + I Literal

T; + I Atom

T;

Proof. This Theorem will follow directly from the following Lemmas. |

Remark 4.3.4. Note that Th and Ty are defined over the same language with Ty < T1.
Thus, by showing T ¥ ¢ for some formula ¢, we obtain that Ty ¥ ¢ for free and vice-versa
for Ty - .

Lemma 4.3.5. Ty + IClause - By, for any n,m e N with n <m

Proof. We work in Ty 4+ IClause. Fix suitable n,m and assume that s"0 = s™+10.
Consider the clause C(z) = \/{,x = s¥0. Clearly, C(0) is logically valid. Now, assume
that C(x) holds. There is some k < m s.t. © = s¥0. We make a case distinction:

o If k <m, then k + 1 < n and sz = s**10 makes the clause true

43

4.

ARITHMETICS

44

o If k = m, then s™0 = s**10 by assumption. Since n < m, we set k&’ = n < m and
obtain sz = sFT10 = s70 = s¥'0.

Applying the scheme of induction on C, yields that B, ,, holds. |

Lemma 4.3.6. T} ¥ I Atom

Proof. Consider the following model M: The domain is given by {0,1,2,a,b, c} and the
symbols are interpreted in the following way:

e 0 is interpreted as 0
e s0=1,51=252=1

e sa=b,sb=c,sc=a

Since 0 has no predecessor in this model, all axioms of 77 hold. Consider the atom
A(z) = sz = s3z. Then A holds for the elements 0,1,2, but not for a, b, c. In particular,
M E LHS(A), but M ¥ Vz: A(z). Thus, M E I(A). [|

Lemma 4.3.7. T + I Atom ¥ I Literal

Proof. This follows directly from Theorem 4.2.6. |

Lemma 4.3.8. Let M be any model of Ty + I Literal. Then, M contains no element
z#0st sy=z2—-y=z.

Proof. Assume that there is such an element z and consider the literal L(x) = x # z.
Then, clearly, M E L(0) A L(z) — L(sz). Thus, by induction on L, Yz : x # z, which is
a contradiction. Such an element cannot exist. [

Lemma 4.3.9. Let M be any model of Ty + IDClause and z € M any element that
is not a successor of 0. Then for every n € N, there is a sequence of distinct elements

Y0y -+ Yn St SYi = Yir1 and y, = 2.

Proof. Assume that there is a non-standard element z and some n s.t. such a sequence
does not exist for z. Let m be the biggest number s.t. such a sequence o, . .., Yy, does
exist for z and consider the dual clause D(z) = A",z # y;. Since z is non-standard,
M E D(0). If D(z) holds and D(sx) does not, then sx = yy. Then, however, z,yo, . .., Ym
would be the sequence for m, which contradicts our assumption of m being maximal.
Thus, M E D(z) — D(sz). Induction on D yields M E Yz : D(x), which contradicts
ME 2z =2z |

Lemma 4.3.10. Ty + IDClause + IClause.

4.3. 0 and Successor only

Proof. From Theorem 3.1.8, it follows that Ty + I Literal -z =0 v Jy : © = sy. Now
let us analyse, how models of Ty + I DClause look like: Let M be any model with the
domain M, G = (M, E) be the graph induced by s and C < 2™ the set of all connected
components of G. We fix Cy to be the component containing 0 and distinguish a few cases:
1. If sO = 0, consider the atom A(x) = sz = z. Clearly, M F A(0) A A(z) — A(sx).
Thus, by applying the induction scheme on A, we obtain that every element is its own
successor. By Lemma 4.3.8, 0 can be the only such element. In particular, the domain of
M is {0} and induction over all formular clearly holds.

2. Assume that s(0) # 0 and there are some n,m with m # 0 s.t. s"0 = s"t™0.
Consider the atom s"z = s"t™z. Clearly, M E A(0). Assume that M F A(z). Then
s"(sx) = s(s"x) = s(s"T™Mx) = s"T"(sx) and thus A(sz). By induction, we obtain that
MEVYz : A(z). W.lo.g., we assume that n and m are minimal with those properties.
Now assume that there is some element z, which is not a successor of 0. Then there are
three cases:

2a. If x has some predecessor y that does not lie in a cycle. Then, since every element
other than 0 is a successor, there have to be n + m distinct predecessors of x. Let y be
the predecessor that s"t™y = x. Then, s"y # s""™y, which is a contradiction. Thus,
such an x cannot exist.

2b. Assume that z is its own only predecessor. By Lemma 4.3.8 this cannot be.

2c. We are left with the case that every non-standard element lies in a cycle of length &k > 2.
For any k # m, consider the literal L(z) = 2 # s*z. Clearly, M E L(0) A L(x) — L(sz).

Thus, every non-standard element lies in a cycle of length m.

By Lemma 4.3.9 there cannot be any finite non-standard cycle. Thus, every element in
M is a successor of 0 and induction over all formulas holds.

3. Assume that there are no n,m with m # 0 s.t. s"0 = s"™"0. Then, all of the By, ,,
trivially hold. By Theorem 4.3.2, open induction has to hold in M and in particular,
induction over clauses. n

Lemma 4.3.11. T3 + I Literal ¥ IClause and 11 + I Literal ¥ IDClause.
Proof. For the first part, it suffices, by Lemma 4.3.5, to give a model of T + I Literal,

which does not satisfy B, ,, for some suitable n, m. For the second part, we give a dual
clause D, over which induction does not work in the same model.

Consider the following model M: The domain is given by {0, 1,2, a,b}. The symbols are
interpreted in the following way:

e (is interpreted as 0
e s0=1,51=252=1

e sa=b,sb=a

45

4.

ARITHMETICS

46

As 0 is no successor, 171 holds. Moreover, By 2 does not hold.

Consider the dual clause D(x) = x # y1 Ax # ya, where y; and y, are interpreted as a and
b respectively. Clearly, M F D(0) and by construction of the model, M F D(x) — D(sx)
as well. However, M ¥ D(a). Thus, induction over dual clauses does not hold.

It remains to be shown that I Literal holds.

First take any atom A(z) = t; = t3. Note that any term ¢ has the form s"(y), where y is
either x, some parameter, or 0. We make a case distinction:

1. If z appears in neither t;, then A < 1 or A < T. Induction over A clearly holds.

2. If x appears in only one term, say t;, then ¢y is constant in x. However, t; is not
constant in the whole standard part of the model. Induction over A holds, as the left-hand
side of the scheme is not satisfied.

3. If x appears on both sides, then A has the form s"x = s™x. There are three cases:
3a. If n = m = 0, then A holds trivially in the whole model.
3b. If n = 0 # m, then A(0) does not hold.

3c. If n # 0 # m, then M E A(0) « A(z) for any z. In particular, induction over A
holds.

Now take any negated atom L(x) = t; # t2. We make a case distinction:
4. If z appears on neither side, induction over L holds for the same reasons as above.

5. If x appears in exactly on term, say t1, then to has a constant interpretation and ¢;
has the form s™x. There are three cases:

Sa. If t9 is interpreted as 0 and n = 0, then L(0) does not hold.

5b. If ty is interpreted as 0 and n # 0, then L(x) holds for any x.

5¢. If to is interpreted as y # 0, then there is some 3/, 2" s.t. sy’ = y and "2’ = ¢/.
However, s"sz’ = sy’ = y. Thus, the left-hand side of the scheme of induction is not
met. |

4.4 Injective Successor

We define the new theory T5:

Definition 4.4.1. Ty = {Al, A3a} over the language {0, s}.

Now, we need some supplementary axioms:
Definition 4.4.2. We define the following axiom for every naturaln > 1:

Bn z # s"x for anyn > 1

4.5. Adding the Predecessor

In [She63| the following was shown:

Theorem 4.4.3. Ty + IOpen is equivalent to To + {B,, | n € N,n > 1}.

We can also use Theorem 3.4.3:

Theorem 4.4.4.

Ty ~ Ty + I Atom
< Ty + T Atom
~ Ty + IOpen
~ Ty +SUR +{B, |n=>1}

This yields the following Hasse Diagram:

Ty + ILiteral ~ Ty + IO0pen

Ty ~ 15 + I Atom

We conclude that SUR is superfluous in this context.

4.5 Adding the Predecessor

We define the theory T3:

Definition 4.5.1. T3 = {A1l, A2, A3} over the language {0, s, p}.

We need another auxiliary axiom:

Definition 4.5.2. We define the aziom:

Bl z2#0—-z=spz

In [She63] the following was proven:

Theorem 4.5.3. T3 + IOpen is equivalent to T3 + {By, | n € N,n > 1} + {B1}.

Again, we can strengthen this result:

47

4.

ARITHMETICS

48

Theorem 4.5.4.

T3 ~ T3+ I Atom
< T3 + ILiteral
~ T3 + IOpen
~ T3+ {B,|neN,n>1}+ {Bl1}

This yields the following Hasse diagram:

T3 + I Literal ~ T3 + IOpen

T3 ~ T3+ [Atom
Lemma 4.5.5. T5 + I Literal — B,, for alln > 1.

Proof. We work in T5 + I Literal. Fix any n > 1 and consider the literal Ly (z) = z # s"x.
By A1 we have that L1(0) holds. By A3 we have sz = s"*lz — 2 = psz = ps" Tz = ps"z
and by counterposition L;(x) — Li(sz). By induction on L1, we obtain Vz : z # s"z. B

Lemma 4.5.6. T5 + I Literal — Bl

Proof. From Theorem 3.1.8 it follows that T3 + I Literal - x =0 v dy : x = sy. Assume

that x # 0. There is some y s.t. z = sy. It follows that z = sy e s(psy) = (sp)sy =
spx |

Lemma 4.5.7. T35 — [Atom

Proof. We work in T5. Take any atom A(z) = t; = t2. Assume that both terms have
the form st;. Then by A3, we obtain that ¢{ = pst| = psty = t,. We can therefore
cancel the leading s and assume that at most one of the terms starts with s. If neither
term contains x, then A < T or A « L - in any case, the induction over A holds.
If one of the terms does not contain z, then the other is interpreted as a fixed value,
regardless of x. In particular, either A(0) or A(s0) does not hold since sO # 0 by Al.
Thus, induction over A holds. We are left with the case where both terms contain x. If
one of the terms, in fact, starts with an s, then A(0) does not hold by Al. It follows
that A(z) < p"z = p™z. Assume that A(0) and A(z) — A(sz) holds. If m —n =k > 0,
then A(x) — A(s™x) and thus A(z) implies s*z = p"s™x = p™s™x = z. In particular,
A(0) implies that 0 = s¥0, which contradicts Al. By symmetry, we conclude that m = n
and A(z) < p"x = p"x < T, which proves the claim. [|

Lemma 4.5.8. T3 ¥ I Literal

Proof. This follows directly from Theorem 4.2.6. |

4.6. Linear Arithmetic

4.6 Linear Arithmetic

We define the theory Ty:

Definition 4.6.1. Ty = {A1, A2, A3, A4, A5} over the language {0, s, p, +}

Now again, some auxiliary axioms:

Definition 4.6.2. We define the following axioms:

B2 z+y=y+=z

B3 (z+y)+z=z+(y+2)
B4z+y=az+z—-y==z

In [Sho58] the following was shown:

Theorem 4.6.3. Ty + IOpen is equivalent to Ty + {B1, B2, B3, B4}

We can strengthen this result in the usual way:

Theorem 4.6.4.

Ty < Ty + I Atom
< ILiteral
~ Ty + IOpen
~ T, + {B1, B2, B3, B4}

This yields the Hasse diagram:

Ty + ILiteral ~ T4 + IOpen

Ty + I Atom

T}
Lemma 4.6.5. T + ILiteral - Bl

Proof. This follows directly from Lemma 4.5.6 and the fact that 7T, is a superset of
T;. |

49

4.

ARITHMETICS

50

Lemma 4.6.6. T, + I Atom +— B2.

Proof. Consider the atom A;j(x) = 0+ x = x. By A4, we have that A;(0) holds. Assume

that Aj(z) holds and 0 + z = . Then 0 + sz 4 s(0 + z) 5 sz. By induction on Ay, we

obtain Vx : 0 +x = z.

Now consider the literal Ay(z) = sy + x = s(y + x). A2(0) holds because sy + 0 By

s(y +0). Assume that Az(x) holds and sy + = s(y + x), then sy + sz L s(sy +)

s(s(y + x)) 4 s(y + sx). By induction on A, and universal quantification, we obtain

VyVa : sy +x = s(y + x).

1H

Now consider the atom Lz(x) =x +y = y + x. L3(0) holds because 0 + y 4 Yy & y+ 0.

Assume that L3(z) holds and x +y = y+ 2. Then sz +y L s(z+y) = s(y+x) Ly 4 sa.
By induction on L3 and universal quantification, we obtain VyVr:z +y=y+z. 1

Lemma 4.6.7. T, + I Atom +— B3.

Proof. Note that by Lemma 4.6.6, we already know that = +y = y + . Now consider the
atom A(z) = (z+y)+ 2=+ (y + 2). A(0) holds because (0+y) + z = (y+0) + z =
y+z2 (y+2)+02Z 0+ (y+2). Assume that A(z) holds and (z+y) +2 = 2+ (y + 2).
Then,

Vsz+w+2) Bs(@+y)+2) s+ (y+2)

Bzzs((y—kz)—irx)A=5(y—|—z)+st=23x+(y+z)

(sx+y)+zB=2z+(y+sx)

and A(sz) holds as well. By induction on A and universal quantification, we obtain
VaVyVe : (z+y) +z=x + (y + 2). |

Lemma 4.6.8. T, + [Literal — B4

Proof. We work in Ty + I Literal. Note that by Lemma 4.6.6, we can use commutativity.

Assume that y # z and consider the literal L(x) = x +y # = + z. L(0) holds because
O+y]3:2y+0gy¢z’gz+OB:20+z. Assume that L(x) holds and = +y # = + z.

A3a
Then sx—i—y@y—i—sxi‘%s(y—kx)]g:?s(xvty) * s(x+z) B=23(z—|—:c)’§z+sa:B=25x+z.
By induction over L, we obtain Vx : x +y # = + 2.]

Lemma 4.6.9. T, ¥ I Atom

Proof. By Lemma 4.6.6, it suffices to give a model of T}, in which + is not commutative.

The claim now follows directly from Lemma 4.2.9 if we take the appropriate reduct of
N, from Definition 4.2.7. []

Lemma 4.6.10. Ty + I Atom ¥ I Literal

Proof. This follows directly from Theorem 4.2.6. |

4.7. Polynomials

4.7 Polynomials

We define the theory T5:

Definition 4.7.1. T; = {Al — A7} over the language {0, s,p, +,-}.

We define new auxiliary axioms:

Definition 4.7.2. We define the following axioms:

B5 zy = yx

B6 x(yz) = (2y)z

B7 2(y+z2)=zy+az>y==z2
d—1

Cy dy=d2—>\/(m+i)y=(x+i)zf0rcmyd=2,3,...
i=0

The following result was postulated in [She63] and proven in [She67].

Theorem 4.7.3. T5 + IOpen is equivalent to Ts + {B1 — B7} + {C), | d e N,d > 2}.

We can strengthen this result:

Theorem 4.7.4.

Ts < Ty + [Atom
< T5 + I Literal
~ Ty + IDClause
< T5 + IClause
~ T5 + IOpen
~Ts+{Bl—B7} +{C)|deN,d = 2}

This yields the following Hasse diagram:

51

4.

ARITHMETICS

52

Ts + IClause ~ Ts + IOpen

Ts + I Literal ~ Ts + IDClause

T5 + I Atom

Ts5

This theorem will be a consequence of the following lemmas in combination with Theorem
4.7.3.

Lemma 4.7.5. T5 + I Atom + {B2, B3, B5, B6, BT}

Proof. Since Ty 2 Ty, it follows from the Lemma 4.6.6 and Lemma 4.6.7 that T5+1 Atom
B2 and T5 + [Atom B3. For the remaining proof, we work in T5 + [Atom.

B5 : We need three atoms:

1. Consider the atom A;(x) = 0z = 0. A;(0) holds because 0 - 0 40, Assume that

Aj(z) holds and 0z = 0. Then 0sz 2 0z +0 2 0402 0 and A;(sz) holds as well. By
induction over A1, we obtain that Vx : Ox = 0.

2. Consider the atom Az(x) = (sy)x = yr+x. A2(0) holds because (sy)0 LoLoyrod
y0 + 0. Assume that As(x) holds and (sy)z = yx + . Then,

(sy)(s)

7

IS

(sy)z + sy 2 s((sy)z + 1) L s((yz +) +y) Z sy + (yx + 1))

o

3s((y—kyac)—kx)i‘%(y+yac)—irsa:B=2 (ya:+y)+sa:i7y(sx)+sx

and Ag(sx) holds as well. By induction over Ay and universal quantification, we obtain
VyVa : (sy)z = yx + y.

3. Now consider the atom Az(x) = xy = yz. Asz(0) holds because Oy 4 & 0.
Assume that As(z) holds and zy = yz. Then (sz)y L Ty +y = yr +y 4 y(sz) and

As(sx) holds as well. By induction over A and universal quantification, we obtain that
YyVx : xy = yzx.

4.7. Polynomials

7 : Consider the atom Ay(z) = z(y + z) = zy + xz. A4(0) holds because 0(x + y) 4

0M0+02 0z + Oy. Assume that A4(z) holds and z(y + z) = zy + xz. Then,

2

(s2)(y+2) Z (y+2)(s2) L (y+2)z+ (y+2) Daly+2)+(y+2)
g(xynL:zz) + (y + 2) 82,58 (zy +y) + (xz + 2) 55 (yzr +y) + (zx + 2)
y(x) + z(sx) 55 (sx)y + (sx)z

and A4(sx) holds as well. By induction over A4 and universal quantification, we obtain
that VzVyVe : x(y + 2) = zy + z2

B6 : Consider the atom As(z) = (2y)z = z(yz). Ag(0) holds because (0y)z R

(y2)0 2 0(yz). Assume that As(x) holds. By A7, commutativity of -, distributivity of +
and - and the induction hypothesis, it follows that

((sz)y)z 2 (y(sz))z & (yx+y> <yx+y> T 2(yx) + 2y
5
2 (sz)(y2)

Induction on Aj yields the desired result. |

I®

(xy)z +yz L a(yz) +yz T (y2)(sz)

Lemma 4.7.6. T + I Literal - {B1, B4}

Proof. Since Ty 2 Ty, this claim follows directly from Lemma 4.6.5 and Lemma 4.6.8. W

Lemma 4.7.7. T5 + IClause - C/, for any d > 2

Proof. We Work in T5 + IClause. Fix any d > 2 and consider the clause C(z) = dy =
dz — \/,,C o(s¥z)y = (s*z)z. By A6 and commutativity of -, we have that Oy = 0 = 0z
and in particular that C(0) holds. Now assume that C(z) holds. Take any y, z s.t.
dy = dz. If there is some k > 0 s.t. (sF2)y = (sF2)z, then (s*1sz)y = (s lsx)z and
in particular C(sz) holds. If k = 0, then xy = zz. Consider the term (s%z)y. It holds
that (sz)y = (s4 1)y +y=--- = (s%)y + dy = 2y + dy = vz + dz = (s%z)z and thus
C(sz). Induction on C yields the desired result. |

Lemma 4.7.8. T; ¥ [Atom

Proof. By Lemma 4.7.5 it suffices to give a model of T5, where + is not commutative.
The claim now follows directly from Lemma 4.2.9. |

Lemma 4.7.9. T + [Atom ¥ I Literal
Proof. This follows directly from Theorem 4.2.6. |

We now proceed similarly as in [She67|, but fill the gaps:

53

4.

ARITHMETICS

54

Lemma 4.7.10. The models of Ts + {B1 — BT} are exactly the ones obtained by taking
a commutative ring with 1, R = (R, +,—,0,-,1), and then taking some subset M of R
that does not contain —1, is closed under 0,+,-,x — = + 1 and is closed under x — x — 1
for all x # 0. We then define the operations +,- as in R, sx =x + 1 and pxr = x — 1 if
x # 0 and 0 otherwise.

Proof. The first direction is trivial: Any subset of a commutative ring with 1 with the
given properties is a model of 75 + {B1 — BT}.

For the other direction, take any model M of T5+{B1— B7} with domain M. Consider the
set R = M/2~, where ~ is equivalence relation defined by (z,y) ~ (a,b) ;& x+b=a+y".
The operations +, -, — are defined canonically on R:

o [z y)]~ +[(a,0)]~ = [(z + a,y +)]~
o [(@ 9]~ - [(a,0)]~ = [(za + yb, ab + ya)]~
o [(@ 9]~ = [(a,0)]~ = [(z,9)]~ + (b, a)]~

Note that these operations are well-defined. Then, [(0,0)]~ is neutral w.r.t. + and
[s0,0)]~ is neutral w.r.t to -. These elements are thus our 0 and 1 elements. The ring
axioms hold.

Define the function ¢ : M — R : x — [(z,0)]~. ¢ is clearly a homomorphism w.r.t.
0,1,+,-. Assume that x # 0 and let y be s.t. & = sy. Then pr = y and since
r+0=1z=sy=y+1 olpr) = [(y,0)]- = [(z,)]~ = [(z,0)]~ = [(1,0)]~. Thus, a
copy of M lies in R. |

Note that any such ring has characteristic 0 because 0 # s"0 for any n > 1.

Definition 4.7.11. Let R be a commutative ring with unit and characteristic 0. R
induces a graph with the map © — x + 1. The connected components of this graph are
called comparison classes.

Definition 4.7.12. Let R be a commutative ring with 1. For any given natural number
d, we define I; ={xe R|dy =0 — zy = 0}.

Lemma 4.7.13. For each natural number d, 1 is an ideal of R.
Proof. We have to show that I is an additive subgroup and that for any z € R it holds
that zI; < 1.

1, is trivially closed under 0 and —. To show the closure under +, consider two elements
x, 2’ in Iy and any element y s.t. dy = 0. By distributivity, we have (x+2')y = zy+2'y =
04+0=0.

'Note that this is basically the construction of Z

4.7. Polynomials

For the second part, take any z € R, any z € Iy, and any y € R s.t. dy = 0. By
associativity, it holds that (zz)y = z(xy) = 20 = 0. [

Lemma 4.7.14. For each natural number d, for each element x € R we have x = k (1)
for some k € {0,...,d—1}.

Proof. [She67, Lemma 2] |

Lemma 4.7.15. Let f € R[x] be a polynomial. If f has degree n and more than n roots
in one comparison class, then there is some natural number d s.t. the set of roots of f
are the union of certain equivalence classes modulo 1.

Proof. [She67, Lemma 3] |

Lemma 4.7.16. Let M be any model of Ts +{B1— BT} with domain M and t some term.
Identify M with its embedding in the ring R. There is some polynomial f € M|[z] s.t.
t(z) is interpreted as f(x) for almost all elements in M. The (finitely many) elements,
where the evaluation differs are all standard elements.

Proof. f is obtained by replacing every occurrence of px with x — 1. Note that x — 1
and pzr have the same evaluation if x # 0. By the commutativity, associativity and
distributivity of + and -, f is, w.l.o.g., a polynomial. If n is the largest number s.t. p™(¢')
appears in t, then f and ¢ have a different evaluation, at most, at the first n successors
of 0. |

Lemma 4.7.17. Let M be any model of Ty + {B1,...,B7} and A any atom. If
M E A(s"0) for any n =0, then M EVx : A(x).

Proof. Take any such model M and atom A. By Lemma 4.7.16, for every term ¢, there is
a polynomial g; s.t. t(z) = g;(z) for almost all elements in M except for maybe finitely
many standard elements. Now take any atom A(x) = t; = to. Define the polynomial
f = 94, — g1, Then, for almost all x € M, except for maybe finitely many standard
elements, M F A(x) iff f(x) = 0. By assumption, f has infinitely many roots in the
comparison class of 0. By Lemma 4.7.15, there is some d € N s.t. the set of roots of f is
the union of certain equivalence classes modulo /. Fix this d. We claim that f has a root
in every equivalence class of I; and thus, f = 0. Note that x = x+d mod I is equivalent
to d =0 mod d, which holds by definition. Thus, and since M E A(0) A A(z) — A(sx),

we conclude that f has a zero in the equivalence classes of 0,1,...,d — 1. By Lemma
4.7.14, these cover all the equivalence classes. Since M E A(z) iff f(xz) = 0 for any
non-standard element x, we have M E Vz : A(z). [

Theorem 4.7.18. T5 + {B1 — B7} \~ I Literal.

55

4.

ARITHMETICS

56

Proof. Take any model M of Ts + {B1 — B7}. By Lemma 4.7.16, for every term ¢, there
is a polynomial g; s.t. t(x) = g;(z) for almost all elements in M except for maybe finitely
many standard elements.

It follows directly from Lemma 4.7.17 that M satisfies induction over atoms.

Now take any any negated atom L(z) = t; # to and assume that M F L(0) A L(z) —
L(sz). Again, if f = g¢, — gt,, then M E L(z) iff f(x) # 0 for almost all elements, except
for maybe finitely many standard elements. If there is some y s.t. L(y) does not hold,
then this y has to be a non-standard element and f(y —m) = 0 for any m > 0. Thus, f
has infinitely many zeros in the comparison class of y. By Lemma 4.7.15, there is some
d € N s.t. the set of roots of f is the union of certain equivalence classes modulo ;. In
particular, for every element y’ in the equivalence class of y it holds that f(y’) = 0. By
Lemma 4.7.14, there is some k € {0,...,d — 1} s.t. k =y mod I;. Note that z =x + d
mod I is equivalent to 0 = d mod I;, which holds by definition. Thus, f(k + md) =0
for any d € Z and f has infinitely many roots in the standard part of the model, which
contradicts our assumption of M E L(0) A L(z) — L(sx). |

Lemma 4.7.19. T + I Literal ¥ IClause

Proof. By Lemma 4.7.7 it suffices to give a model of T5 + I Literal, where some C”;, does
not hold.

We construct a suitable model. Take the ring Z[u,v] and some prime number p € P.
Consider the factor ring R = Z[u,v]/p.u—v)- R is still a commutative ring with
1. For the domain of the model consider the following subset M = {[f] € R |
all coefficients of highest degree of f are non-negative}. Note that in some equivalence
class [f], there can be some polynomials that satisfy the conditions and some that do
not - we pick any class that contains at least one polynomial that satisfies the conditions.
We observe that M is closed under 0,1, + and -. Take any polynomial g € Z[u,v]. Any
polynomial of the fort g - p- (u —v) — 1 cannot have only non-negative coefficients of
highest degree. It follows that [—1] ¢ M. However, if [f] # [0], then [f] — [1] € M. The
model M is obtained by taking M as the domain and defining the operations canonically.
By Lemma 4.7.10, M is a model of T5 + {B1, ..., B7}. By Theorem 4.7.18, M is a model
of I Literal.

Now consider z = y = [u] and z = [v]. Then pl[u] = [pu] = [pv] = p[v], but ([u] +
[k])[u] = [(u+ k)u] # [(u+ k)v] = ([u] + [k])[v] for any k € {0,...,p— 1} as this would
imply that (u + k)(u — v) is divisible by p, which cannot be the case. Thus, C}, does not
hold in M. [

Lemma 4.7.20. T5 + I Literal — IDClause

Proof. Take any model M of Ts + I Literal with domain M. By Lemma 4.7.10, we know
that M extends to a commutative ring with 1. and by Lemma 4.7.16 we know that for

4.7. Polynomials

every term t, there is a polynomial g; s.t. g(z) and ¢(z) have the same interpretation for
almost all elements in M, except for maybe finitely many standard elements.

Take any dual clause D(z) = L1 A -+ A Ly. Assume that M F D(0) A D(z) — D(sz)
If any of the L; is an atom, then M F L;(s"0) for any n > 0 and by Lemma 4.7.17,
M EVx : Li(z). Thus, D < D', with D’ being obtained by deleting L; from D. We
can therefore assume that every literal in D is a negated atom L;(x) =t} # t?. For any
i < n, let f; be the associated polynomial s.t. M E L;(z) iff f(x) = 0 for almost all
except for maybe finitely many standard elements.

Assume that there is some non-standard element y € M s.t. M ¥ D(y). Then, M F
D(y —m) for any m > 0. For any of these infinitely many y — m, one of the L; cannot
hold. Thus, there is some L; with M ¥ L;(y — m) for infinitely many m > 0. This is
equivalent to f having infinitely many roots in the comparison class of y. By Lemma
4.7.15, there is some d € N s.t. the set of roots of f is the union of certain equivalence
classes modulo I;. Pick any root and call it 4'. By Lemma 4.7.14, ¥/ = k mod I, for
some k € {0,...,d — 1}. Since k = k + md for any m € Z, we obtain that f;(k +md) =0
for any m € Z. In particular, f; has infinitely many roots in the standard part of M,
which contradicts our assumption that M E D(0) A D(x) — D(sx). Thus, such a y
cannot exist and M F Yz : D(x). [

o7

CHAPTER

General Inductive Data Types
with a Size Function

We now take an arbitrary general inductive data type as defined in Chapter 3. In contrast
to Chapter 3, we will consider, for this sort, constructors only. We will add another sort
Nat to this data type, to mimic the natural numbers and add a size function to connect
the sorts. This will allow us, to reduce the level of induction we need. In analogy to
[Shob8] and [She63], we give a simple alternative axiomatizations of open induction in
this context.

This chapter is now closer to reality as one rarely considers only one inductive data type,
but usually combines them.

About the outline of the chapter: We start by defining, what we mean with induction in
the context of two inductive data types. Then, we will prove some general lemmas about
these notions of induction.

5.1 General Frame

We start similar as in Section 3.1: We consider a (possibly) many-sorted logic with the
sorts D,T1,...,T,. The first part of our language consists of the constructors cq,..., ¢,
where each of the ¢; has arity m; and is a function symbol of type 7} x --- x 77" — D
with 7} € {D, Ty, ..., Th}.

The definition of static and dynamic constructors is taken from Section 3.1. In order
to define induction, we need some well-founded order relation on the elements of the
standard-model. This translates to the restriction that there is at least one static
constructor c;.

29

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

60

Without loss of generality, we assume that for every constructor ¢; the first n; (possibly
0) input-sorts are D. The other sorts T} are ordered by their index i.

The following will be the first part of our base axioms (cf. Section 3.1):

Dij ¢i(T) #c¢j(y) foralli #j5,1<i,j<k Disjointness

INJ; ¢(7) =ci(y) > T =g forall 1l <i<k Injectivity

Now we add another sort Nat and enrich our language with the symbols 0 € Nat, s :

Nat — Nat, + : Nat x Nat — Nat,l/ : D — Nat. We add the following to our base axioms
for the sort Nat (cf. Section 4.1):

Al s(x)#0
A3a st =sy—>zxz =y
A4 z+0==x

A5 z+s(y)=s(z+y)#0

Furthermore, we need to axiomatize the size-function {:

E1 i(c;(T)) = 0 for any static constructor ¢;

E2 [(¢;(X1,...,X;,7)) = s(g;l [(X;)) for any dynamic constructor, where exactly
the first j input-sorts of ¢; are D

Those are all the base axioms. We also need a definition for our case distinction:

Definition 5.1.1. A constructor ¢; : 7} x -+ x 7]" is essentially unary iff ezactly one

of the Til is D. Otherwise, it is not essentially unary.

Lastly, we define some auxiliary axioms, which we will need later. Note that these axioms
are not chosen arbitrarily. The ones relating to arithmetics were used in Chapter 4 to give
an alternative axiomatization of open induction in the context of arithmetics. The ones
concerning the data type D were used in Chapter 3 to give an alternative axiomatization
of open induction in the general context. Using them as a starting point, in order to find
an alternative axiomatization of open induction seems like a logical step. In fact, we will
see that they suffice.

Gy X #t(X)foranyteS (Acyclicity for D)
k
SUR \/ 37 : X = ¢i(v) (Surjectivity for D)
i=1
B, z#s'zforanyn>1 (Acyclicity for Nat)
Bla z=0viy:x=sy (Surjectivity for Nat)

B2 z+y=y+=x
B3 z+(y+z2)=(@+y) +=z
B4 z+y=zxz+z2z—-y=2=z

5.1. General Frame

Regarding the notation, we define a shorthand: Instead of writing +z+- - -+ (n-times),
we write nz. Since we do not have the symbol - in our language, this should not lead to
any misunderstanding.

We overload the name of our language and base theory:

Definition 5.1.2. If there are essentially unary constructors only, then Lo = {c1,...,cp}u
{0,5,0} and Ty = {D1;; |1 <i,j <k,i#j}u{D2|1<i<k}u{Al A3a, FEl, E2}.

If there is at least one constructor, which is not essentially unary, then Lo = {c1,...,cx}uU

{0,5,0,4+} and Ty = {D1;; | 1 <i,j < k,i # j}u{D2; | 1 <i < k}U{Al, A3a, A5, A5, E1, E2}

Note that the definition of Lg is perfectly fine in both cases as we do not need + if there
are only essentially unary constructors.

5.1.1 The Scheme of Induction

In this case, with two sorts that satisfy some form of induction (at least in their respective
standard model), it is a priori unclear how the scheme of induction looks like. We present
two possibilities, that we will deal with in the following sections.

The first possibility, is to take the two single schemes of induction and take the union of
the induced sets of axioms. In that case, we have two left-hand-sides for the respective
axiom of induction:

LHSyac(6(x)) $(0) A (Vo : A)((x) — v(s2))

The schemes of induction now have the following form:

In(p) LHSp(p(,%)) — (VX : D)(p(X,%))
INat(w) LHSNat(w(xaz)) - (VQ? : A)(¢(x,§))

The formulas ¢ and v potentially contain parameters z, which we will not explicitly
mention in the following as from now on every formula contains parameters if not stated
otherwise.

In the subscript of each scheme, it says, which sort it applies to.

Definition 5.1.3. We define Is = Inat + Ip to be the union of the two single schemes of
induction.

61

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

62

It should be stated that Iy is the standard approach in the literature. However, there is
a problem with this form of induction if we restrict it to open formulas: Assume that
we want to show that 7'+ (VX : D)(Vz : A)(F(x, X)) for some base theory T' and open
formula F'. We could apply the single schemes sequentially. The problem, however, is
that after the first application, we obtain Yz : ¢(X, x), which is not open anymore.

This leads to the second option. Let C' be the set of all static constructors and C” the
set of all dynamic constructors. We define a new left-hand-side:

LHS,(p(z, X, %))

/\ VT @(Ci(f)voﬂz) A /\ vz /\ Lp(a?k,u,f) - (P(xla s(u),f) A @(Ci(f)ﬂuvz)

CiEC CZEC/ Tik:D
Then define the scheme of induction:
Ii(p) LHS:(p(z, X,%2)) = (VX : D)(Vx : A)(p(z, X, Z))

This scheme introduces two universal quantifiers at once and thus, avoids the aforemen-
tioned problem.

The following observation seems obvious, but needs to be formulated nonetheless:

Observation 5.1.4. For any language L and base theory T, it holds that if some formula
¢ can be shown in T + Ia(T"), where I € {I Atom, I Literal, IClause, DClause, IOpen},
then ¢ can be shown in T + I1(T).

5.1.2 General Lemmas

We will now present some general lemmas that will come in handy later. Consider the
following example as motivation:

Example 5.1.5. Consider the language {0, s,c1,ca,l,+} and the sorts D and Nat. 0 €
Nat,s : Nat — Nat,+ : Nat x Nat — Nat,c; € D,co : D — D, I : D — Nat. Let
T = {D1,. D21, A, A3a, A4, A5, E1, E2}.

The standard model M of this theory is two copies of N - one for Nat and one for D.
Consider any atom B(x, X)) in this standard model. There is some affine function f : N x
N — Z with integer coefficients s.t. M E B(n,m) iff f(n,m) =0 for all natural numbers
n,m. Let Sy = {(n,m) € N? | f(n,m) = 0} be the set of solutions of f. We identify f
with its extension in RE®. The set Py = {(z,y, f(z,y)) | (z,y) € R?} now describes
a plane in R3. If there are solutions of B in M of the form (L, ¢), (I, ¢c), (a,m), (b, m)
with a # b and | # n, then Py = {(z,y,0) | (x,y) € R?}, f is constantly 0 and
M E (Yz : Nat)(VX : D)(B(z, X)).

The idea of the following lemmas is to abstract the observation of the example above
and use it, to prove that only trivial atoms have many solutions in the standard part of
the models, we consider.

5.1. General Frame

Lemma 5.1.6. Let (A;), be a family of subsets of N x N s.t. | J_1 A; =
Then there is some A; and a,b,c,x,y,z < n s.t. a # b, x # y and {(a, 2), ()
A;.

{0,...,n}2.
(e). (c.9)

Proof. Fix such sets (4;)!"; and assume that there is no 4; and a,b, ¢, x,y, z with the
desired properties. We fix the terminology, that two points a,b lie on a line if either the
first or the second coordinate are the same (i.e. we ignore diagonals). We show, that under
these assumptions - for each A; there is at most one line with two points on it - every A;
contains at most n + 1 elements. Fix any A; and assume that A; contains n + 2 elements
of the form (ug,v;). Since there are n + 1 rows and n + 1 columns, by the pigeonhole
principle, there have to be u and v s.t. there are elements (u,vg), (u,v1), (ug,v), (u1,v)
in A; with vy # v and wg # u;. Thus, for any A; it holds that |4;| < n + 1.

It follows that |[JI; 4i]l < n(n+1) < (n+ 1)* = [{0,...,n}?|, which contradicts
our assumptions. Thus, there exists some A; and some a,b,c, x,y,z with the desired
properties. |

Lemma 5.1.7. Assume that there is at least one dynamic constructor c¢;. Let L 2
{c1,..., ¢k, 8} be a language, T 2 {Al,A3a} 0 {D1;; |1 <i,j<k,i#j}u{D2|1<
i <k} a theory and M a model of T. Let F(x,X)=Fy v --- v F, be a disjunction of
other formulas. If M E F(a, A) for all standard elements a € NatM and A € DM, then
there is some F; and some a,b,c € Nat™ and A, B, C' € DM with the following properties:

1. a =s"b for somen # 1
2. A =t(B) for some non-constant term t that is not the identity

3. M E Fi(a,C) A Fi(b,C) A Fi(c,A) A Fi(c, B)

Proof. First, fix some instance ¢’ = ¢;j(@) for some static constructor ¢;. Now, fix the
dynamic constructor ¢;. We define as a shorthand ¢(E) = ¢;(E,b), where E is of sort
D, every other occurrence of some variable of sort D is substituted with ¢’; and the rest
of b is some tuple of elements of appropriate sorts. Then, by A3a and D2;, it holds
that s"0 = s™0 = n = m and ¢"*(¢) = ¢™(¢/) = m = n. Thus, there is a natural
bijection between N x N and {(s"0,c™(c¢')) | n,m € N}. Since all these elements s™0
and ¢"(c’) are standard elements, M E F(s"0,c¢™(c)) for any n,m € N. Define the
function f : {1,...,n} > P(NxN) : 7 — {(n,m) €e NxN | M E F;(s"0,c"())}.
By assumption, N x N = (J_; f(i) and thus, {0,...,n}?> = {0,...,n}> n U, f(i) =
U, (f(z) n{0,..., n}Q) Now, we apply Lemma 5.1.6 and obtain that there is some
ie{l,....n}st. f(i) n{0,...,n}? contains elements (j,7),(l,7), (k,p), (k,q) with
j # land p # q. W.lo.g.,, 7 > 1 and p > q. By definition, this means that M E
Fi(s70,c7 () A Fy(s'0,c" () A Fy(s*0,cP(¢)) A Fy(s'0,c9(c’)). Setting a = s70,b =
5'0,c = 580, A = cP(¢), B = (), C = ¢"(c') proves the claim. [|

63

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

64

Lemma 5.1.8. Assume that there is at least one dynamic constructor c¢;. Let L 2
{c1,... ¢k, s} be a language, T 2 {SUR, Bla} U{G; |t e S} U{B, | n = 1} a theory and
M a model of T + I2(Open). Let F(x,X)= Dy v ---v Dy, be a formula in DNF' s.t.
one of the dual clauses D; = L1 A - -+ A Ly consists of negated atoms only. Assume that
M E LHS;(F) and that there are non-standard elements a € Nat™ and A € DM s.t.
M ¥ F(a,A). Then, there is some negated atom L; in D; and some a,b,c € NatM and
A, B,C e DM with the following properties:

1. a = s"b for somen # 1
2. A =t(B) for some non-constant term t that is not the identity
3. M ¥ Lj(a,C) v Lj(b,C) v Lij(c,A) v Lj(c,B)

Proof. Our goal will be to apply Lemma 5.1.6. First, we define partial function ¢q :
DM < DM on the set of all B € DM s.t. M ¥ F(a, B). Fix such a B. Note that the set
Qp = {C e DM | M ¥ F(a,C), there is some ¢; and ¢ s.t. B = ¢ (C,¢)} is not empty
since M E LHS;(F) and M E SUR. For any standard element E € D™ consider the
formula F'(z) = F(x, E). It holds that M F LHS1(F") and thus, the ones of I. Since
M E I2(Open), we conclude that M E Vz : F(z, E). In particular, M F F(a, E) for any
standard element F and the set Qp contains only non-standard elements. Now define
q(B) by choosing any element from Qp.

Analogously, we define the partial function p : Nat™ < Nat™ on the set of all B € DM
with M ¥ F(b, A). Let P, = {c € Nat™ | M ¥ F(¢, A) Ab = sc}. For the same reasons as
above P, is not empty and contains only non-standard elements. Define p(b) by choosing
some element in P.

From G; and B,, it follows that p"a # a and ¢"a # a for any n > 1. Assume
that there is some n,m € N s.t. M E F(p"a,q™A). Then, since M F LHSq(F),
M E F(a,¢™A), which contradicts the definition of g. Thus, for every n,m € N, it
holds that M ¥ F(p™a,q™A). Since, we work in a model and every parameter is fixed,
we obtain M E —F(p"a,q™A) and, by classical logic, M F —D;(p"a,q™A). Define
the function f: {1,...,k} > P(NxN):i— {(n,m) e NxN | ME =L;(p"a,q™A)}.
By assumption, |J*, f(i) = N x N and {0,...,k}2 n U, F(i) = {0,...,k}2. We
apply Lemma 5.1.6 and obtain that there is some j s.t. {0,...,k}?> n f(j) contains
elements k,l,m,r, s, t with (k,t),(l,t),(r,m),(s,m) € f(j). This means that M F
Li(p*a,q*A) v L;j(p'a,¢*A) v Lij(p"a,q™A) v L;(p*a,¢™A), which proves the claim. M

Definition 5.1.9. Let £ 2 {c1,...,¢p,0,s} be a language and T a theory over L. We
say that T has the anchor property if the following implication holds: Take any atom
A(z, X) with the variables x € Nat and X € D and any model M of T'. Assume that there
are elements e, f, g € Nat™ and E,F,Ge DM s.t. a = s"b, A = t(B), where t contains
constructors only and A # B, and M E A(e,G) A A(f,G) n A(g, F) n A(g,G). Then, it
holds that M EVYzVX : A(xz, X).

5.1. General Frame

Lemma 5.1.10. Let £ 2 {c1,...,¢,0,5} be a language with a least one dynamic
constructor ¢; and and T 2 {Al, A3a, SUR, Bla} + {D1,; | 1 <i,j < k,i # j} + {D2; |
1<i<k}+{Gi|teS}+{B,|n =1} a theory with the anchor property. Then
T + I2(Open).

Proof. We need to consider two induction schemes: For Nat and for D. Take any model
M of T. Now, we make a case distinction:

1. Take any formula F'(x) = D; v --- v D,, in DNF and assume that M £ F(0) A F(z) —
F(sz). Assume that every dual clause D; contains some positive 4; and consider the
formula F/ = A; v --- v A,. By Lemma 5.1.7, there are elements [, m,n, L, M, N and
some atom A; s.t. M E A;(I, N) A Ai(m,N) A A;j(n, L) A Aj(n, M) and | = skn, L #
M,L = t(M). By the anchor property, M F VaVX : A;(z,X). Note that the X in
A;(x, X) does not actually appear anywhere. There are two cases:

o If D; = A;, then M E Vz : F(z) and we are done

o If D; = A; A D, then M E F < G, where G is obtained from F' by replacing D;
with D]. We can restart the procedure with G.

Thus, w.l.o.g., we can assume that there is some dual clause D; = L1 A --- A L that
contains negated atoms only. Assume that there is some literal L; with M E Vo : —=L;(x).

There are two cases:

o If F=D;, then M E F < 1, which contradicts our assumption of M F F(0)

o If F=D; v G, then MF F < G and we can restart the procedure with G

Thus, w.l.o.g., we can assume that for every L; in D;, it holds that M F 3z : L;(z). We

define the partial function p : Nat™ < Nat™ on the set S = {n € Nat™ | M ¥ F(n)}.
Pick any element m € .S. m has to be a non-standard element and in particular m # 0.

By Bla, the set P, = {n € Nat™ | sn = m} is not empty. By A3a, P,, contains exactly
one element n. Define p(m) = n. Note that M ¥ F(n) since M F F(z) — F(sz). Thus,
it makes sense to write p*m for the k-th application of p on m. By B, | # k implies that
p'm # pFm. By the pigeonhole principle, there is some L;andl #n,1 <l,n<k+1 with
M E =L;(p'm) A —L;(p"m). Since X does not appear in L;, M F Lj(m, A) < Lj(m, B)
for any A, B € DM. In particular, the conditions of the anchor property are triggered
and M E Vo : —L;(x). This, however, contradicts our assumption above. Thus, such an
m € Nat™ does not exist.

2. Take any formula F(X)= D; v --- v D, in DNF and assume that M £ LHSp(F).

For the same reasons as above, we can assume w.l.o.g. that there is some dual clause
D; = Liv---v L that consists of negated atoms only and M F 3X : L;(X) for any j. We
define a partial function ¢ : D™ < DM on the set S’ = {N € DM | M ¥ F(N)}. Take any

65

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

66

element A € S’. By SUR, the set Q4 = {B € DM | There is some ¢; and tuple 7 s.t. A =
¢i(B,7y} is not empty. Since M E LHSp(F), there is some element B € Q4 with
M ¥ F(B). Define q(A) = B. Again, it makes sense to write ¢*(A) for the k-th
application of q. By Gy, it holds that k # [implies that ¢*(A) # ¢'(A). Now assume
that there is in fact some A € S’. By the pigeonhole principle, there is some L; in D;
and some k # [€ N with M ¥ L;(¢*(A)) v L;j(¢'(A)). Again, the anchor property is
triggered and M F VX : —L;(X), which contradicts our assumption. Thus S’ = . W

Theorem 5.1.11. Let L 2 {c1,...,¢n, 0,8} a language with a least one dynamic con-
structor ¢; and and T 2 {Al, A3a,SUR, Bla} + {D1;; | 1 < i,j < k,i # j} + {D2; |
1<i<k}+{Gi|teS}+{B,|n =1} a theory with the anchor property. Then
T + I1(Open).

Proof. First, note that by Lemma 5.1.10, I" - I3(Open).

Now, take any model M of T and any formula F(z,X) = D; A --- A D,, in DNF.
Assume that M E LHS;(F). If every dual clause D; contains an atom A;, then
consider the formula G = A; v --- v A,,. Clearly, - F — G. Thus, M F G(a, A)
for any standard two elements a € Nat™ and A € DM. Lemma 5.1.7 is applicable
and there is some A; and elements b,c,e € Nat™ and B,C,E € DM with b = s"¢,
B =t(C),B # C and M E A;(b,E) A Ai(c, E) A Ai(e, B) A Ai(e,C). By the anchor
property, M E VaVX : A;(xz, X). We make a case distinction:

o If D; = A;, then M E VaVX : F(x, X) and induction over F holds

o If D; = A; A D], then M E F — F’, where F’ is obtained from F' by replacing D;
with Dj]. We can restart with F”

Thus, w.l.o.g., we can assume that there is one dual clause D;, which only contains
negated atoms. Now fix this D; = L; A ...L;. Assume that there is some L; with
M EVaVX : =Lj(x, X). We make another case distinction:

o If F =D, then M E VaVX : —=F(x, X), which is contradictory to our assumption

e If F=D; v F/, then M E F < F’ and we can restart with F’

Thus, w.l.o.g., we can assume that for every literal L;, M F 323X : L;(x, X). Assume that
there are some elements a € Nat™ and 4 € DM s.t. M E —F(a,A). Then, Lemma 5.1.8
is applicable and we obtain some L; and elements b,c, e € Nat™ and B, C, E € DM with
b=s"c,B=1t(C),B# Cand M E —L;(b,E)r—Lj(c, Eyn—Lj(e, B)n—Lj(e,C). Note
that —L; is an atom and by the anchor property, we obtain that M &= VaVX : —L;(z, X),
which contradicts our assumption. Thus, such elements a € Nat™ and A € DM cannot
exist and M F VaVX : F(x, X). [|

5.2. Useful models

5.2 Useful models

We will now define some models, which will prove useful in the later parts of this chapter.
One model will be for the case, where there are only essentially unary constructors and
two will be for the case, where there are not essentially-unary constructors as well.

5.2.1 The model MY

In this subsection, assume that every dynamic constructor is essentially unary!. We fix
the language Lo and the base theory Tp:

Definition 5.2.1. Ly = {c1,...,c} U {0,801} and Ty = {D1;; | 1 < i,j < k,i #
JYu{D2 |1<i<k}u{Al A3a, E1, E2}

Note that the definition of L is perfectly fine as we do not need + because every dynamic
constructor is essentially unary.

Now, we define the model MY :

Definition 5.2.2. We start with the interpretation of the sorts:

My
o T, = {i}
o DMS = T(TM=, . T)

e NatM® = N U {0}
The constructors are interpreted canonically:

e ¢;(@)M> = ¢;(@) for any static constructor c;

u
. CZMOO(t,ag, ceym,)) = ci(ti,az ... am,) for any dynamic constructor ¢;
e OM =0
o SMgOn:n-i-l, SM&OO=OO

The size function [is interpreted according to E1 and E2:

. ZM&(CZM& (@) = 0 for any static constructor ¢;
o Mo(ci(t,ag, ... am,)) = sMeIMe(t) for any dynamic constructor c;
Observation 5.2.3. MY = T

Observation 5.2.4. MY F x # s"x for anyn > 1

!The u in MY comes from unary

67

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

68

5.2.2 The model M,

In this subsection assume that there is at least one constructor, which are not essentially
unary. Now, we define the model M:

Definition 5.2.5. We start with the interpretation of the sorts:

- T =i}
e DMw — T(TM=, .. TM=)

e NatM* = N u {0}
The constructors are interpreted canonically:

e M= (a) = ¢i(a) for any static constructor c;

. cg\/lw(tl, vty Q4 1y - -5 Amy) = Ci(t1, .. tm,) for any dynamic constructor c;,
where exactly the first k; inputs are of sort D

o OMx =0

o sMen=n+1, sMoon =00
The symbol + is interpreted as in Nyy:

e (n+mMe =n+m

e (n+)Mo = (0 +n)Me =0
The size function [is interpreted according to E1 and E2:

o M (¢;(@)) = 0 for any static constructor ¢;

o Mo(ci(try ety Qpyrts - - - Gmy)) = sM2((1(t1)) + -+ 1(tg,)) M= for any dynamic
constructor ¢;, where exactly the first k; inputs are of sort D

Observation 5.2.6. M E T}
Observation 5.2.7. My, ¥ x # s"x for any s > 1

Observation 5.2.8. In My, + is associative and commutative. Thus, for any term
t(z, X) of sort Nat, there is another term s(z, X) = nl(X) + mx + s’ s.t. neither x nor
X appear in s and My, E (Vx : Nat)(VX : D)(t(x, X) = s(z, X)). Therefore, we can
assume that any term of sort Nat has this form.

Lemma 5.2.9. M, F I;(Atom)

5.2. Useful models

Proof. Take any atom A(x,X) = t; = to and assume that M F LHS;(A). There are
two cases:

1. Both terms ¢; are of the sort D. Then, x cannot appear in A. By construction of M,
induction on the sort D and thus, on A, holds.

2. Both terms are of the sort Nat. W.l.o.g., assume that each t; has the form n;I(X) +
m;x + t; for some natural numbers n;,m;. Fix some static constructor ¢; and some
dynamic constructor ¢;. We define B = CZMOO(B) for some tuple b and C' = cjww(é)
for some tuple ¢, where each element in ¢ of sort D is B. Note that M= (B) = 0 and
M= (C) = 50. By assumption, My, = A(0, B) A A(0,C) A A(s0, B). Thus, My, =t} =
n10 + m10 + t) = t1(0,B) = t2(0, B) = n20 + mo0 + t = t,. Define t’ = t|. There
is now another case distinction: If #*M= = oo, then M F VaVX : A(z, X) since o
absorbs everything. Assume that M= % oo. Note that in the standard part of N,
cancellation w.r.t. + holds. Then, m1s0 + t' = t1(s0, B) = t2(s0, B) = m2s0 + t'. By
cancellation, we obtain m;s0 = mas0. Repeated application of cancellation and A1l yields
that m1 = mg = m. Lastly, n1s0 + m0 + t' = t1(0,C) = t2(0,C) = nys0 + m0 + ;.
Cancellation yields, n1s0 = n2s0 and thus ny = ny = n. Thus, A is an identity and
My EVZVX Az, X). [

5.2.3 The model M,

In this subsection assume that there is at least one constructor, which are not essentially
unary. We adapt the model Ny, 1, which is again based on [Het24, page 38]:

Definition 5.2.10. We start with the interpretation of the sorts:
. T;M{'l’b} — {Z}
) DM{a,b} — T(T]'-A/l{a,b}’ L 7T7'i\/l{a,b})

e NatMbt = N U {a,b}

The constructors are interpreted canonically:

Mo by — _ .
e ¢, (@) = ci(@) for any static constructor c;
My, .
o ¢, Uty Qi 1y ey Gy) = Ci(t, - tmy) for any dynamic constructor c;,

where exactly the first k; inputs are of sort D
e OMiaty =0

o sMiatin =n + 1, sMiattg = a, sMiabrh = b

+ 1is interpreted according to the following table:

The size function [is interpreted according to E1 and E2:

69

5. GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

+10 1 2 a b
010 1 2 b a
111 2 3 b a
212 3 4 b a
a |a a a a a
b|b b b b b

e M= (ci(@)) =0 for any static constructor c;

o Mo (ci(ty oty Qhyits - amy)) = M2 ((1(t1)) + - - -+ 1(t,))M for any dynamic
constructor c¢;, where exactly the first k; inputs are of sort D

Observation 5.2.11. M, ; F Tj

Observation 5.2.12. M, Fz+y=y+x

5.3 Essentially Unary Constructors Only

In this section, we consider the case that every dynamic constructor of D is unary.

Now, before we dive into the scheme of induction, we will have a closer look at our theory
combined with our auxiliary axioms.

Definition 5.3.1. We define I' =Ty + SUR + Bla+ {G; |t € S} + {Bn | n = 1}

It will be part of the next theorem that, analogously to [Sho58| and [She63], T" is, in fact,
an alternative axiomatization of open induction in this context:

Theorem 5.3.2.

Ty ~ Ty + I2(Atom) Ty ~ T + 11 (Atom)
< T4 + Ia(Literal) < Ty + Ii(Literal)
~ T} + I2(Open) ~ T} + I1(Open)
~T ~T

This yields the following Hasse Diagram:

To + Ia2(Literal) ~ Ty + 11 (Literal) ~ Ty + I2(Open) ~ Ty + I1 (Open)

To ~ Ty + Ia(Atom) ~ Ty + I (Atom)

70

5.3. Essentially Unary Constructors Only

Observation 5.3.3. Let t(X) be a term of sort Nat that contains X. Then, Ty - t(X) =
s"(I(X)) for some n € N.

Lemma 5.3.4. Take any model M of T' and any atom A(x,X) =t; = ty. If there are
elements B,C, D € DM and b, ¢,d € Nat™ s.t. M A(b, D) A A(c, D) A A(d, B) A A(d, C),
b= s"c for somen =1 and B = t(C) for some term t # X, then M E VaVX : A(z, X).
In other words, I' has the anchor property.

Proof. There are five cases:
1. If A contains neither z nor X, we are done.

2. Assume that A contains X on exactly one side, say t1, and that there there are
two elements B # C with B = t(C) and M F A(B) A A(C). There are two cases: If
both terms are of sort Nat, then, w.l.o.g., t; has the form s*(I(X)) and 3! € Nat™
is constant in X. Note that M E I(B) = s*(I(C)) for some k > 1. From A3a and

M E s*(1(0)) = s"TH(1(C)), it follows that M E [(C) = s*(I(C)), which contradicts By.

In the other case - both terms are of the sort D - it follows similarly that there is a cycle
in DM, which contradicts G.

3. Assume that A contains z on exactly one side, say t1, and that there are elements
b # ¢ with b = s"c and M E A(b) A A(c). W.lo.g., t; has the form s¥z and t" is
constant in z. It follows that M E s¥¢ = s"tF¢. From A3a it follows that M E ¢ = sPe,
which contradicts B,,.

4. Assume that A contains X on both sides and that there are B # C € DM with
B = t(C) for some non-constant term ¢t and M E A(B) A A(C). There are two cases: If
A is of the sort D, then both ¢; and o contain only the constructors ¢;. Since M does
not contain any cycles, it follows from 3.2.6 that M E VX : ¢1(X) = t2(X). Assume that
A is of the sort Nat. Then, w.l.o.g., t; and t9 have the form s™ (I(X)). It follows from
A3a that ny = ng. Thus, M E (VX : D)t1(X) = t2(X).

5. Assume that A contains z on both sides and there are b, c € Nat™ with b = s™c¢ and
M E A(b) A A(c). Then both t; have the form s™z. Since M does not contain any
cycles, it follows from 3.2.6 that M E (Vz : Nat)(¢1(x) = ta(x)). [
5.3.1 Two Schemes of Induction

Now, we consider a concrete scheme of induction, namely, the two single schemes for
arithmetics and general data types.

Lemma 5.3.5. It holds that

o Ty + Ix(Literal) -z # s"x
e To+1Ix(Literal) -z =0v3Iy:x=sy
o Ty + Iz(Literal) - SUR

71

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

72

Proof. This follows directly from Theorem 3.1.8 and Section 4.6. |

The crucial Lemma is the following:

Lemma 5.3.6. Ty + Ia(Literal) = Gy for anyte€ S.

Proof. Assume that there is some ¢ € S and X s.t. X = ¢(X). Then, since every ¢
is not identical to X and there are only unary constructors, there is some m > 1 s.t.
I(X) = s™(l(X)), which contradicts Lemma 5.3.5]

Corollary 5.3.7. Ty + Ia(Literal) — T

Lemma 5.3.8. I' - I5(Open)

Proof. This follows directly from Lemma 5.3.4 and Lemma 5.1.10. |

Lemma 5.3.9. Tp - I2(Atom)

Proof. Take any model M of Tj. Fix the atom A(x, X) with the variables z of sort Nat
and X of sort D. We want to show that for any b € Nat™ and B € DM, the respective
scheme of induction works for A(b, X) and A(z, B). Note that we can restrict ourselves to
the case, where there is some occurrence of the function symbol [in A. Assume that there
is not such occurrence. Then, A is a well-formed atom in either {0, s} or {c1,...,cx}. By
Lemma 3.4.4, there are proofs of the respective induction axiom, instantiated with A(b, X)
and A(z, B), in either {A1, A3a} or {D1;; | i # j,1 <i,j < k}u{D2; | 1<j <k},
which clearly remains valid in Tp.

Now, assume that [occurs somewhere in A. Both terms have to be of the sort Nat. We
make a case distinction:

1. If we consider the unary atom A(x, B), then x cannot appear inside {. Thus, we can
replace every subterm of the form [(s;) with some parameter z;. We obtain an equivalent
atom A’ that does not contain /. Thus, induction over A holds.

2. Now, let us consider the atom A(b, X'). There are three cases:
2a. If X does not appear in A, we are done.

2b. If X appears on exactly one side, say ¢, then modulo Tp, ¢; can be written as s™(X)
for some n > 0. ¢3! is constant. Since, ¢, is clearly not constant in the standard part of
the model, the left hand side of the induction scheme cannot hold.

2¢. If X appears on both sides of A, then both terms can be written, modulo Ty, as
s™[(X). Since there is a static constructor ¢; with I(¢;(y)) = 0 for any tuple 7 and
all successors of 0 are distinct, we conclude that if A(b, ¢;(7)) holds, then ny = ng and
A(b, X) holds for all X. The left hand side of the induction scheme, clearly implies
A(b, ¢;(y)) and thus, induction over A(b, X) holds. [|

5.3. Essentially Unary Constructors Only

Lemma 5.3.10. Tj + Ia(Atom) ¥ Ia(Literal)

Proof. By Lemma 5.3.9 it suffices to give a model M of Ty s.t. ILiteral does not hold
in M. By Lemma 5.3.5, it suffices if M ¥ Bla. The model MY does exactly that. W

5.3.2 One Combined Scheme of Induction

Now, we consider the case that we have one combined induction scheme of the following
form:

1(9) Acec V% 9(ci(@),0.2) A A eeer (Y7 (Ao ol w,2) = pler, s(w),2) A plei(@),u,2))) -
(VX : D)(Yu : Nat)p(X, u,Z)

We collect known results:

Lemma 5.3.11. It holds that

To+ Ii(Literal) mx=0v dy: x = sx

To + I1(Literal) - SUR

()

To + Iy (Literal) - x # s"x

()

To + Iy (Literal) -+ Gy for anyte S

Proof. This follows directly from Lemma 5.3.5, Lemma 5.3.6 and the Observation 5.1.4
that the two individual schemes of induction are subsumed by the combined one. W
Corollary 5.3.12. Ty + I (Literal) - T

Lemma 5.3.13. T' - I1(Open)

Proof. This follows directly from Lemma 5.3.4 and Theorem 5.1.11. |
Lemma 5.3.14. Ty + I1(Atom)

Proof. Let M be any model of Ty. Take any atom A(z, X) = t; = t. Note that if A
does not contain both and X, then this case is subsumed by Lemma 5.3.9. We are left
with the case that A contains both 2 and X. W.lo.g., assume that t; = s"[(¢(X)) and
ty = s™x. Modulo Ty, we can write ¢; as s¥I(X). Assume that M = LHS;(A). Thus,
To + A(0,¢(g)) and Ty - A(s0,¢;(y)) for any static constructor ¢; and tuple y. By E1,
t1(ci(y)) = s¥0. Thus, s™0 = s¥0 = s™(s50) = s™*10 and m = k = m + 1, which cannot
be. Therefore, A cannot satisfy the left hand side of the scheme of induction. |

Lemma 5.3.15. Ty + I1 (Atom) ¥ I (Literal)

Proof. By Lemma 5.3.9 it suffices to give a model M of Ty s.t. ILiteral does not hold
in M. By Lemma 5.3.5, it suffices if M ¥ Bla. The model MY does exactly that. W

73

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

74

5.4 Not Only Essentially Unary Constructors

In this subsection, we consider the case that there is some constructor ¢;, which is not
essentially unary. Note that our arguments would work otherwise just as well, but we
would not add + to our language and could receive different results (cf. Section 5.3).

Definition 5.4.1. We define the theory T' = T + {Bla, B2, B3, B4, SUR} + {G; | t € S}.

Observation 5.4.2. Let t(x, X) be any term in Lo. If t is of sort Nat, then T'
t(z, X) = nl(X) + mzx +t' for some n,m e N and t', which contains neither x nor X.

The following will be our main result:

Theorem 5.4.3.

ToxTy+ 1o (Atom) ToxTo+ 11 (Atom)
< Ty + Ix(Literal) < Ty + I1(Literal)
~ Tp + I2(Open) ~ Tp + I (Open)
~T ~T

This yields the following Hasse Diagram:

To + I2(1I Literal) ~ Ty + 11 (Literal) ~ Ty + I2(Open) ~ Ty + I1(Open)

To + I (Atom)

To + I2(Atom)

Ty
Lemma 5.4.4. Ty + B4+ x # s"x for anyn = 1.

Proof. Assume that there is some z s.t. s = s"x. Then 0 +x = z = s"z = s"0 + x,
which contradicts Al or B4.]

Lemma 5.4.5. Tp + BlaFz+y=0—-2=0Ay=0

5.4. Not Only Essentially Unary Constructors

Proof. Assume that x +y = 0. If y # 0, then there is some z s.t. y = sz. Thus,
0 =2+ sz = s(x + z), which cannot be. Thus, y=0and 0=z +y=2+0=z. |

Lemma 5.4.6. Let M be a model of T' and A(x, X) an atom with the variables x € Nat
and X € D. Assume that there are values b, ¢, d € Nat™ and B,C,D € DM s.t. b= slc
(1=1) and B = t(C) with t # id and M E A(b, D) A A(¢c, D) A A(d, B) A A(d,C). Then,
MEV2VX : A(xz, X). In other words, T’ has the anchor property.

Proof. There are two cases:

1. Both term ¢; are of the sort D. Then both terms contain only constructors ¢;. Since M
does not contain any cycles, it follows from Corollary 3.2.6 that M F (VX : D)(A(d, X)),
which is equivalent to M E (Vz : Nat)(VX : D)(A(z, X)) as = does not appear in A.

2. Both terms t; are of the sort Nat. Then, w.l.o.g., they both have the form n;l(X) +
mix + t;. Since M E A(d,B) A A(d,C) and M E [(B) = sl(C) + t¢, it follows that
ME ti(d, B) = nil(B) +mid+t) = ni(sl(C) +tc) +mid+t] = n1(s0+tc)+ (nil(C) +
mid—+t)) = n1(s0+tc)+t1(d,C). Analogously, M E to(d, B) = na(s0+tc)+ta(d,C). Tt
follows that M E ny(s0+tc) +t1(d, C) = n2(s0+tc) +ta(d,C) = na(s0+te) +t1(d, C).
By cancellation w.r.t. +, we obtain M E n;s0 = nes0 and thus, ny = no. We define
n =ny. Since M E A(b, D) A A(c, D) and M E b = s¥c, it follows that M F t1(b, D) =
nl(D) + myskc + t) = nl(D) + m15°0 + mic +) = m1s*0 + t1(c, D). Analogously, it
follows that M E t3(b, D) = mgs®0 + ta(c, D). It follows that M F m1s*0 + t1(c, D) =
mas®0 + t1(c, D). By cancellation w.r.t. +, we obtain M E m1s*0 = mas*0. Thus,
m1 = ma. We define m = my. By assumption, ¢} and t, contain neither z nor X. Since
M E A(b, D), we conclude that M E nl(D)+mb+t| = nl(D)+mb+t5. By cancellation
w.r.t. +, we obtain M E t} = t,. Thus, M E (Vz : Nat)(VX : D)(A(z, X)). [|

5.4.1 Two Schemes of Induction

Again, we start by considering the combination of the two schemes of induction - one for
the sort Nat and one for the sort D.

Lemma 5.4.7. The following holds:

Ty + Ia(Atom) -z +y=y+=z

To+ I2(Atom) Fx + (y+2) = (x +y) + 2

Ty + Ix(Literal) - SUR

(
(
To + Ia(Literal) o +y=ac+2—>y==z2
(
(

To + Ia(Literal) - x =0 v Jy : x = sy

Proof. This follows directly from Theorem 3.1.8 and Section 4.6. |

75

d.

GENERAL INDUCTIVE DATA TYPES WITH A SIZE FUNCTION

76

Lemma 5.4.8. Ty + Ix(Literal) = Gy for anyt € S.

Proof. Take any n > 1 and t € S,,. Then, since ¢ is not identical to X and by E2, we can
write [(t(X)) as [(X) + s(¢'), where t’ is some term of sort Nat (possibly containing X).
If there is some X s.t. X = ¢(X), then, by B4, we obtain 0 = s(¢'), which contradicts
Al.]

Lemma 5.4.9. T' - I2(Open)

Proof. This follows directly from Lemma 5.4.6 and Lemma 5.1.10. |
Lemma 5.4.10. T' ¥ Io(Atom)

Proof. 1t suffices to give a model M of Ty with M ¥ 2 +y = y + 2. The model M,
from the subsection 5.2.3 does exactly that.]

Lemma 5.4.11. ' + Ia(Atom) ¥ Ia(Literal)

Proof. 1t suffices to give a model M of Ty + Ia(Atom) with M ¥ x # s"x for some n > 1.
Consider the model M, from the Subsection 5.2.2. My, F I;(Atom). Thus, any by
Observation 5.1.4, M E Ia(Atom). Also, M ¥ x # s"x for every n € N. [
5.4.2 One Combined Scheme of Induction

Now, we use one combined scheme of induction I.

Lemma 5.4.12. Ty + I (Literal) =T

Proof. This follows directly from Lemma 5.4.7 and Observation 5.1.4. |
Lemma 5.4.13. ' - I1(Open)

Proof. This follows directly from Lemma 5.4.6 and Theorem 5.1.11.]
Lemma 5.4.14. T ¥ I1(Atom)

Proof. It suffices to give a model M of Ty with M ¥ x +y = y + 2. The model M,
from the subsection 5.2.3 does exactly that.]
Lemma 5.4.15. T + I1(Atom) ¥ I (Literal)

Proof. Tt suffices to give a model M of Ty + I; (Atom) with M ¥ z # s"x for some n > 1.
The mode M, from does exactly that. [|

Open Problem 5.4.16. [t is yet unclear, whether Ty + Ia(Atom) Ia(Atom) in the
case with not only essentially unary constructors.

CHAPTER

Lists

In this chapter, we deal with the structure of lists in more depth. This seems to be the
logical next step as numbers can be considered a special case of lists, where the lists
contain only one element (possibly multiple times). We will see that theories of lists are,
in fact, much more complicated than arithmetic theories.

After defining the general frame, we work in, we will apply theorems from Chapters 3
and 5 to the special case of lists. After that, we consider list concatenation and see that
it makes things considerably more difficult.

6.1 General Frame

In the following, we will consider a two-sorted logic to represent lists: The sort ¢ is the
sort of the list elements, and L is the sort of the actual lists. To avoid confusion, we will
capitalize lists and list-variables and write elements and element-variables in lowercase.
The only exception will be the empty list nal.

The language £ consists of the following symbols nil, [-|-], 4+, where nil is a constant
symbol of sort L, [-|-] is a function symbol of type ¢ x L — L, and + is a function symbol
of type L x L — L to denote list concatenation. Additionally, we have the equality relation
for each sort with the usual axiomatization. The other axioms are the following:

L1 nil # [z|X]
L2 [z|X]=[ylY] mz=y~n X =Y
L3 nil+ X =X

L4 [z]X]+Y = [2]X + Y]

7

6. LisTs

For the sake of readability, we use the shorthand [z1, 9, ..., z,| X] for [x1|[z2][. . . |[zn]| X]]]],
where [(J|X] is defined to be X.

The scheme of induction axiom is given by

LHS(¢(z,%2)) @(nil,z) A VXV : p(X,Z) — ¢([z|X],2)
I(p(x,Z)) LHS(p(z,2) > VX : p(X,Z))

Again, for the sake of readability, we will often refrain from writing the parameters of a
formula explicitly. If not explicitly stated otherwise, all our formulas in this chapter may
possibly contain parameters.

Remark 6.1.1. While dealing with lists, we thought about interesting properties of
them. One that should be mentioned is the property that lists are mot periodic, in
the sense that no period x1,...,x, is repeated infinitely many times. This follows
clearly from the fact that lists are finite. However, this property cannot be formulated
in FOL: Assume there is a formula, ¥(X) s.t. 1 expresses that X is not periodic.
Now extend the language with the mew constant symbol c. We define new formulas
on(X) = 3Y : D)(3x1, 22 :)(X = [x1, 22,21, X2, ..., 21,22|Y], where the period x1,
is repeated n times. Consider the set I' = {pn(c) | n € N}. Ty + T' + ¢(c) is finitely
satisfiable (in any standard model of lists). However, ¥)(c) + I" is inconsistent. Thus, 9
cannot exist.

The even more interesting part is the following: The standard model of lists over the
alphabet v can be considered to be the set 1. If we think about non-standard models of
lists, it is thus natural to consider the subsets of 1% for some limit-ordinal o with the
canonical interpretation of [-|-] and + (cf. [HV24, Section 2.3]). In these models, all
lists are aperiodic in the sense from above. However, if we consider the set I' from above,
then Ty + T' + {I(¢) | ¢ € WFF} is finitely satisfiable in any standard model. Thus, it
is satisfiable by compactness and there is a non-standard model of lists, which satisfies
induction and contains a periodic list. This shows that there are non-standard models of
lists with induction that are fundamentally different and harder to grasp than the ones
we maight consider.

6.2 Constructors only

As usual, we start with the theory Ty = {L1, L2} and the language consisting of only nil
and [-|-].

We overload the axioms SUR and G to fit into the context of lists. Note that we only
have rather simple terms in this context. Thus, there is exactly one term ¢ in S,, £ S for
any n. Therefore, we can write GG, instead of Gy:

SUR VY :Y = nil v3X3z: Y = [2|X]
Gn X #[z1,...,2,|X] foralln >1

78

6.3. Constructors only and a Size Function

We have already dealt with this case in Chapter 3:
Theorem 6.2.1.

Ty ~ Ty + [Atom
< Ty + ILiteral
~ Ty + IClause
< Ty + IDClause
~ Ty + IOpen
~ Ty + SUR +{Gy | n>1}

We receive the following Hasse Diagram:

To + IDClause ~ Ty + IOpen

To + I Literal ~ Ty + IClause

Ty ~ Ty + [Atom
Proof. This is a direct consequence of Theorem 3.4.3.

6.3 Constructors only and a Size Function

We now add the sort Nat to the lists to represent natural numbers. Additionally, we add
the symbols 0 € Nat, s : Nat — Nat, ! : L — Nat with the following axioms:

Al. 0=sz

A3a. st=sy—x=y
El. I[(nil) =0
E2. [([z|X]) = sl(X)

We will also need these auxiliary axioms:

Bla. x=0vdy:x =sy

79

6. LisTs

Bn. z # 5"z

Definition 6.3.1. T} = Ty + {Al, A3a, E1, E2} over the language L' = {nil,[-|-],0,s,1}
Definition 6.3.2. T' = T + SUR + Bla + {B,, Gy | n > 1}

Theorem 6.3.3.

T} ~ T} + Ia(Atom) Ty ~ T4 + 11 (Atom)
< T} + Ia(Literal) < Th + Ii(Literal)
~ T} + Iz(Open) ~ T + I1(Open)
~T ~T

This yields the following Hasse Diagram:

T} + Ia(Literal) ~ T} + 11 (Literal) ~ T} + I2(Open) ~ T} + 11 (Open)

T ~ Ty + Ia(Atom) ~ T + I1(Atom)
Proof. This follows directly from Theorem 5.3.2. |

6.4 Concatenation

We now consider the language nil, [-|-] and + with the theory Ty = {L1, L2, L3,14}. We
use the induction scheme from Section 6.2.

Again, we define some additional axioms, which we will derive in this section:

M1l X +nil=X

M2 X+Y+2)=(X+Y)+Z
M3 X+Y=X+Z->Y=Z

M4. X+Y =nil > X =nil AY =nil

The following will be our main result:
Theorem 6.4.1.

T1 < Ty + I Atom
< Ty + ILiteral
< Ty + IDClause

We obtain the following (partial) Hasse Diagram:

80

6.4. Concatenation

B:i + IOpen

N

N
’

N
4 N
N
4 N
N
s

B} + IClause B} + IDClause

N
N
N
N
N
N
N

Bi + I Literal

Bi + [Atom

By

We start by collecting the results from the previous sections:

Lemma 6.4.2. The following holds:

e T + ILiteral - SUR

o T1 + IDClause - Gy, for anyn =1
Proof. These results are special cases of Theorem 3.1.8 and Lemma 3.4.13. |

We also need to prove some new results:

Lemma 6.4.3. T} + [Atom +— X +nil = X.

Proof. We work in T} + I Atom. Consider the atom A(X) = X +nil = X. By L3 it holds
that nil + nil = nil and thus A(nil). Now assume that A holds for some X. Let x € ¢ be
arbitrary. By L4 and the induction hypothesis, it follows that [z|X]+ nil = [z|X +nil] =
[z| X]. By applying the induction scheme on A, we obtain VX : X + nil = X. |

Lemma 6.4.4. Ty + [Atom - X + (Y + Z) = (X +Y)+ Z
Proof. Take any model M of T1 + I Atom and consider the atom A(X) =X+ (Y + Z2) =
(X +Y) + Z. Fix any interpretation : Y — B,Z — C. From L3 it follows that

M EEnl+(Y+Z) =Y +Z = (nil+Y)+ Z and thus M, £ E A(nil). Now assume that
M, € E A(E) for some element E and pick an arbitrary element e € /™. From L3 and

81

6.

LisTs

82

the induction hypothesis, it follows that M,{ E [e|E] + (Y + Z) = [e|(E+ (Y + Z)] =
[el(E+Y)+Z]=[elE+Y]+Z = ([e|]E]+Y)+ Z. Thus, M,{ F A([e|E]). Induction
yields M,E EVX : X + (Y +Z) = (X +Y) + Z. Since £ was arbitrary, it follows from
the semantics of classical FOL that M EVZYYVX : X + (Y +2)=(X+Y)+Z. R

Lemma 6.4.5. To+ SUR - X +Y =nil > X =mil AY =nal. Thus, Ty + I Literal
X+Y=nil >X=nil ANY =nil.

Proof. We work in Ty + SUR. Take any X,Y s.t. X +Y = nil. Assume that X # nil.
By SUR there is some element Z s.t. X = [z|Z]. By L4, it holds that X +Y =
[z|Z] +Y = [z|Z + Y]. By L1, this cannot be equal to nil. Thus, X = nil. Assume
that Y # nil. By SUR there is some element Z s.t. Y = [z|Z]. By L3, it holds that
X+Y =nil+Y =Y = [z|Z]. Again, by L1 this cannot be equal to nil. Thus,
Y = nil. |

Remark 6.4.6. The Lemma above will not be particularly useful, but it is a nice property
that can be shown with a low level of induction. Moreover, it emphasizes the following: In
previous Lemmas, we have seen that a formula can be an implication, but if it contains X
on only one side of the implication, it can be dealt with like a literal by fixing the parameters
(e.g. M3). The situation now is different: Although X +Y =nil > X =nil A'Y = nil
it is not even a clause or a dual clause and contains X in various places, it follows from
a level of induction much lower than general open induction.

The more general question is: What is the relation between two formulas F and G if
I(G) & F? This question goes much deeper than the Lemma above and this thesis in
general, but this seemed like a good place to mention it.

Lemma 6.4.7. Ty + I Literal - X +Y =X +2Z ->Y =7

Proof. We work in Ty + I Literal. Fix any two Y # Z and consider the literal L(X) =
X+Y # X + Z. From L3 it follows that nil +Y =Y # Z = nil + Z and thus A(nil).
Now assume that A holds for some X and let z € ¢ be arbitrary. By counterposition of
L2, we obtain [z|X + Y] # [z|X + Z]. By induction on the literal L, we obtain that it
holds for all X. [}

Remark 6.4.8. The previous Lemma shows that left-cancellation holds in all models of
To + I Literal. Interestingly, in [HV24, Chapter 4] it was shown that right-cancellation
(i.e. Y+ X =272+ X —>Y = Z) cannot be shown with open induction at all. This is
characteristic for the problems we encountered with lists: Since list concatenation is in
general not commutative it is very difficult to deal with formulas, where the induction
variable appears on the right side of some (in)equality.

Lemma 6.4.9. T ¥ [Atom

Proof. By Lemma 6.4.3 it suffices to give a model of 77 that does not satisfy M1. For
this consider the following model M:

6.4. Concatenation

. M=

o nilM =0

o« LM =Nu{a,b}

o [nM =4 1, [Lal™ = a, [= b

e n+mM=n+m, n+a)M=a, n+0)M =0, (a+n)M =10, (b+n)M =q,

(a+o)M=0b+a)M=(a+aM=b+bM=0a

Then, M E T7, but M ¥ z + nil = x since M E a + nil = b. |
Lemma 6.4.10. T7 + I Atom ¥ I Literal
Proof. By Lemma 6.4.2 it suffices to give a model of Ty + I Atom, where SUR does not

hold.
Consider the following model M:

o M={1}

o« LM =Nx{0,1}

e nil™M = (0,0)

o [1/(n,m)IM = (n+1,m)

e ((a,b) + (n,m))" = (a +n,b+m mod 2)

MET.

We still need to show that induction over atoms holds. For this take any atom A(X) =
t1 = to. If neither ¢1 nor t9 contains X, then A either holds in the whole model or it holds
nowhere. Assume that exactly one term, say t1, contains X. Note that the reduct (L, +) of
our model is the product of two commutative monoids. Since commutative monoids form
a variety, they are closed under products. In particular, (L, +) is a commutative monoid.
Thus, w.l.o.g., we can write ¢1 in the form of nX + ¢, where ¢ is some fixed parameter and
nX is the usual abbreviation for »" ;| X. Obviously, ¢;(nil) =t # (n,0) + t = t:((1,0)).
Thus, M ¥ LHS(A). We are left with the case that X appears in both sides of A.
Thus, t; = nX +t and to = mX + . Assume that A(nil) holds. Then ¢ = t/. Thus,
to = mX +t. Let t = (a,b). If m # n, then ¢1((1,0)) = (n+a,b) # (m+y,b) = t2((1,0)).
Thus, under the assumption that A((0,0)) and A((1,0)) hold, A has to hold for all
elements in LM. Since this condition is clearly implied if M F LHS(A), we are done.

Lastly, we need to state the obvious: Since (0,1) is not in the image of [1|-], the axiom
SUR and thus induction over literals cannot hold. n

83

6.

LisTs

84

Lemma 6.4.11. 17 + I Literal ¥ IDClause

Proof. By Lemma 6.4.2 it suffices to give a model of T1 + I Literal, where some G,, does
not hold. Consider the alphabet ¥ = {a, b, c,d}. We define the model M:

o« M={a,0}

o LM ={a,b}* U{c,d} U {a,b}*bc U {a,b}*ad

e [a|c] =d and [b|d] = ¢

o [z|w] = zw for any other combination of z,w
e cHtw=w+te=w

e a+w = [alw] and b+ w = [b|lw]

e cHw=d+w=uw!

e v + w for some composite word v is defined according to L4

Note that L1 and L3 hold by construction. For L2, note that [a|v] # [b|w] for any
v,w € L. Moreover, [a|v] = [a|w] iff v = w for any v,w € L. L4 again holds by
construction. Note that G, does not hold and as a consequence, induction over dual
clauses cannot hold.

It remains to be shown that induction over literals holds.

Take any atom A(X) = ¢; = ty. If neither ¢; nor ¢3 contain X, then A is true in the
whole model or false in the whole model. If only #; contains X, then ¢3! is constant.
Note the following: If t;(nil)™ # ¢ and t;(nil)™ # d, then t,([a|nil])™ # ti(nil). If
tM = ¢, then ty([a|nil])™ # t1(nil)™. Analogously for t;(nil)™ = d. In any case,
ME A(nil) A VeV X (A(X) — A([z] X]))

We are left with the case that both sides contain X. Assume that A(nil) and A(X) —
A([x|X]) hold. Again, since + is associative in this model, we can write the terms as
sums t = >, Y; and tp = Z;nzl Zj;, where at least one of the Y; and Z; is identical X.
W.lo.g., we assume that every second Y; and Z; is identical to X. Assume Y7 = X and
71 # X. W.lLo.g., we can assume that M E Z; # cand M E Z; # d, as we could pull it
to the next term otherwise. Thus, (Z1)™ starts with either a or b and either M ¥ A(b)
or M ¥ A(a). Assume that neither Y7 nor Z; is identical to X. Then Y3 = Z5 = X.
Assume that M F Y] # Ys. By choosing X as a or b appropriately, we can again conclude
that M ¥ A(a) or M ¥ A(b). In summary, we have shown that M E Y} = Z;. Since left-
cancellation holds in our model, it follows that M F A(X) — 33", Yi(X) = X270, Z;(X).
By proceeding inductively, we can assume w.l.o.g. that ¢t; = X. However, if {; = X and
A(nil) holds, to = X as well. Thus, M E VX : A(X).

'Note that ¢ and d are not elements of ¢.

6.5. Concatenation and a Size Function

Now, take any negated atom L(X) = t; # to. Again, we can exclude the case that
neither ¢; nor to contains X. Assume that exactly one term, say t;, contains X and
that L(nil) holds. If there is some element B s.t. M ¥ L(B), then there is some C
and ¢ s.t. B = [¢|C] and by similar reasoning as above, t;(C)™ # t;(B)™ = t5. Thus,
M E LHS(L).

We are left with the case that both terms contain X. Assume that L(nil) and L(X) —
L([x]|X]) both hold. From this assumption, it follows that M E L(B) for any standard
element B in LM. If there is some element non-standard element B in LM s.t. M ¥ L(B),
then M ¥ L(c) or M ¥ L(d) since one of them is a predecessor of B. Assume that this
is the case.

Again, since + is associative in this model, we can write the terms as sums t; = > | Y;
and to = ZT:l Zj, where at least one of the Y; and Z; is identical to X. W.lo.g., we
assume that every second Y; and Z; is equal to X. Assume Y; = X and Z; # X.
W.lo.g., we can assume that M F Z; # ¢ and M F Z; # d, as we could pull it
to the next term otherwise. Consider Y,, and Z,,. Assume that Y, = X # Z,,. If
M ¥ L(c), then M ¥ L(d) as well. However, in that case (Z,,)™ would have to
end with ¢ and d, which is not possible. Now assume that Y, # X # Z,,, then
M E tl(C) = tl(nil) #* tQ(TLil) = tQ(C) and M FE tl(d) = tl(m'l) #* tg(nil) = tg(d),
which contradicts our assumption. Lastly, assume that Y, = X = Z,,,. Assume that
M E L(c). Then M F ti(c) = ti(c) + ¢ = th(c) + ¢ = ta(c), where t; is just the
term ¢; cut off s.t. the last summand not identical to X. M ¥ L(d) as well and
M E t(d) + d = ty(d) + d. Now note that since the last summand of ¢, is not X, we
have that M F t}(nil) = ti(c) = ti(d) = t} for i € {1,2}. Thus, M F] + c=1t5 + c and
M E tf +d = t5 + d, which can only be the case if M F t] = t5 = nil. In that case,
however, t; = to = X and M FE t1(nil) = t2(nil), which contradicts the assumption that
M E L(nil). |

6.5 Concatenation and a Size Function

We proceed analogously to Section 6.3: We consider the language consisting of the
symbols 0, s, +Nat, nil, [-|-], +1 and [. Since it is always clear from the context, whether
+Nat Or +7, is used, we usually just write +.

We define the following additional axioms:

Ad. 2+ 0==x
A5. x+ sy = s(z+y)
E3 (X +Y) = I(X) + (Y)

Definition 6.5.1. 7] = T) + {Al, A3a, A4, A5, E1, E2, E3} over the language L} =
{nil7 [|]7 +1,0, 8, +Nats l}

85

6. LisTs

The main result will be the following:

Theorem 6.5.2.

Ty < T7 + Ix(Atom) Ty
< T} + Iy(Literal)

Ty + I (Atom)

=
< T7 + Iy (I Literal)

This yields the following (partial) Hasse Diagram:

T{ + 11 (Open)

T] + I1(Clause) T{ + I1(DClause)

T] 4+ I2(Clause) T] 4+ I2(DClause)

N ’
N ’

N ’

N ’
N ’

T] + 11 (Literal)
T] + I2(Literal)
T} + 11 (Atom)

T] 4+ I2(Atom)

86

6.5. Concatenation and a Size Function

Lemma 6.5.3. The following holds:

o T1 +Ix(Atom) - X +nil = X

e T1 +Ix(Atom) - X+ Y +2)=(X+Y)+Z
e T+ Ly(Literal) - X +Y =X+ Z >Y = Z
o T| + Ia(Literal) - X =nil v Y3y : X = [y|Y]
e T1+SURF X +Y =nil > X =nil AY = nil

e T{ + I2(ILiteral) + Gy,

Proof. This follows directly from the Sections 6.4 and 6.3 and 4.4 since 7] 2 T} and the
formulas above only contain symbols that are part of the original language. |

Lemma 6.5.4. T + Iy(Literal) -z =0v Jy: sy =x
Proof. This follows directly from Lemma 5.4.7. |

The following lemma is not very important here, but it is a nice example of how the
second sort Nat can come in handy: Using only lists, we failed to show the following
property. Using the additional sort Nat, it becomes almost trivial.

Lemma 6.5.5. Let t(X) be any term that contains X. Then T] + I Literal - t(X) #
t([x| X]) for any non-empty tuple .

Proof. Let n be the length of T and m the number of occurrences of X in ¢. From asso-
ciativity and commutativity of +nat (cf. Section 4.6) and A5 it follows that [(¢([Z| X])) =
s"™(1(t(X))). By assumption n # 0 # m and thus, by By, [(t([Z]|X])) # {(¢t(X)). Since
[is a function symbol, ¢([Z|X]) and ¢(X) cannot coincide either. |

Lemma 6.5.6. T ¥ I2(Atom)

Proof. Tt suffices to give a model M of T}, where +yj¢ is not commutative. Consider the
following model M:

- M=

o« IM=N

o Nat™ = Nu {a,b}
e nitM =0eLM

o [1n] =n

87

6.

LisTs

88

e l(n)=n

o The symbols 0, s, + are interpreted as in Ny

MET], but M ¥ (Vz: Nat)(Vy : Nat)(z +y = y + x) |
Lemma 6.5.7. T} + Iy (Atom) ¥ Ia(Literal)

Proof. By Lemma 6.5.3 it suffices to give a model of Ty + Iy (Atom), where SUR does
not hold.

Consider the following model M: The sort ¢ is interpreted as {1}, L is interpreted as
{0,1} x N and Nat is interpreted as N. We interpret the function symbols in the following
way:

e nil = (0,0), 0 =0

o [1|(n,m)] = (n+1,m)

e (z,y)+ (a,b) = (x + a,y + b mod 2)
e sn=n-+1

ent+tm=n+m

e l(n,m)=mn

The axioms of T} clearly hold. Also, the element (0,1) is not in the image of [|-] and not
nil either. It follows that SUR and thus induction over literals cannot hold.

It remains to be shown that induction over atoms does hold. For this take an arbitrary
atom A(z, X) = t; = ty with the variables x € Nat and X € L. We make the following
observation: Both +nat and +; are commutative and associative. Now, make a case
distinction:

1. Assume that both terms are of the sort Nat. Then, we can write each term t; =
nil(X) + miz + t;, where n; and m; can potentially be 0. Assume that M F LHS(A).
If A(0,nil) holds, it follows that ¢ = t5. In our model, right cancellation holds and thus
nil(X) + miz = nal(X) + mox. Since A is closed under successors, we conclude that
A(0, [1|ndl]) and A(s0,nil) both have to hold. This, in turn, entails that n; = ny and
m1 = me. Thus, A holds in the whole model and induction over it works.

2. Assume that both terms are of the sort L. We can write each term ¢; as n; X +tfi. Assume
that M F LHS(A). From A(0,nil), we obtain ¢} = t5. And from right cancellation and
A(0,[1]nil]), we obtain n; = ng. Thus, A holds in the whole model.

Since A was arbitrary, induction over all atoms holds in this model.]

6.5. Concatenation and a Size Function

Open Problem 6.5.8. In previous sections, we used the approach to add a simple
inductive data type, which is well understood, to a more complicated one, in order to
understand it better. This worked to some extent, but it could be formalized and extended.
Theorems of the form Ty + IDClause - F < T + I Literal — F have not been shown,

but could be true.

89

CHAPTER

K-ary Trees

In this chapter, we will deal with the structure of k-ary trees. Again, we will see that
trees are more complicated than arithmetics. Moreover, we will include the structures of
natural numbers.

7.1 General Frame

In the following, we will use a two sorted logic with the sorts ¢ and T, where ¢ is the
sort of the labels of the nodes of the trees and T is the sort of the trees. Again, to avoid
confusion, we will capitalize variables of sort T. Variables of sort ¢ will be written in
lowercase letters.

The language £ consist of the function symbols nil € T and ¢ : T* x ¢ — T. The intention
is that nil is the empty tree and the function c takes k trees X1,..., X} and an element
z in ¢ and maps them to the tree that has a root node labelled by z with the children
Xi,...,Xk. Then the axioms are as follows:

T1. nil # c(X1,..., Xp, 2)
T2. ¢(X1,.., Xp,21) = c(Viyo o Vi, 22) = 21 =20 A Aoy Xi = Y5

We define the scheme of induction similarly as in the previous chapters:

k

LHS(p(X,%)) ¢(nil,z) AVXy,... ,Xk,y(/\ o(X;,2) = ple(X1, ..., Xk, y), 2))
i=1

I(¢(X,Z)) LHS(¢(X,Zz) > VX : p(X,2))

For the sake of readability, we will often refrain from writing the parameters of a formula
explicitly. If not explicitly stated otherwise, all our formulas in this chapter may possibly
contain parameters.

91

7. K-ARY TREES

92

We define some important axioms (cf. Chapter 3):

Gi. X #t(X) forany te S

SUR. X =nil v3IXy,... X3z X =¢(Xq,...,Xg, 2)

7.2 Constructors only

As usual, we start with the theory Ty = {T'1,72} and the full language nil, c.

Implicitly, we have already dealt with this case in Chapter 3. By applying Theorem 3.4.3
to this case, we obtain the following result:

Theorem 7.2.1.

Ty ~ Ty + [Atom
< Ty + ILiteral
< Ty + IDClause
~ Ty + IOpen
~ Ty + SUR + {G; | t € S}

This yields the following Hasse Diagram:

To + IDClause ~ Ty + [Open ~ Ty + SUR + {G; | t € S}

Ty + IClause

To + I Literal

To ~ Ty + I Atom

7.3 Constructors only and a Size Function

We now add the sort Nat to the lists to represent natural numbers. Additionally, we add
the symbols 0 € Nat, s : Nat — Nat, + : Nat x Nat — Nat,/ : L. — Nat with the following
axioms:

7.3. Constructors only and a Size Function

Al. 0=sz
A3a. st=sy—x =y
A4 z+0=2
A5. z + sy = s(z +y)
El. i(nil) =0
E2. [(¢(X1,..., X, 2)) = s(3F, 1(X)))

We will also need these auxiliary axioms:

Bla. x=0v3dy:xz=sy
B2. 2+ (y+z2)=(x+y)+=2
B3 z+y=y+=x
B4 z+y=z+z—-y==2
Definition 7.3.1. T} = To+{Al, A3a, A4, A5, E1, E2} over the language L' = {nil, c,0, s, +,1}
Definition 7.3.2. T' =T + SUR + {G; | t € S} + Bla + B2 + B3 + B4
Theorem 7.3.3.

Ty < T + Iz (Atom) Ty < Ty + 11 (Atom)
< T4 + Iz(Literal) < Tp + Ii(Literal)
~ T}, + I2(Open) ~ T + I1(Open)
~T ~T

This yields the following Hasse Diagram:
T, + I2(I Literal) ~ T) + 11 (Literal) ~ T + I2(Open) ~ T} + I1(Open)

T} + 11 (Atom)

T} + I2(Atom)

93

7. K-ARY TREES

Proof. This follows directly from Theorem 5.4.3.

94

CHAPTER

Conclusion

We analyzed how open induction behaves in different contexts. The two main questions
considered are:

1. How do the subsystems of open induction relate to each other?

2. Can open induction be axiomatized by other non-induction axioms?

Regarding question 1, we saw that sometimes it is not that straightforward, which theory
proves which theorems. Consider T + I Literal from Section 6.4 (lists with concatenation).
Obviously, there are some literals L (e.g. L(X) = X # [z|X]) s.t. T1+I(L) - VX : L(X)
and thus, T7 + I Litearl - VX : L(X). Less straightforward, yet unsurprising: There are
literals L (e.g. L(X) = X # [x1,22|X]) s.t. every model M of lists satisfies M E L(E)
for any standard element E € L™, but Ty + I Literal ¥ VX : L(X). This is not surprising
since it was shown in [She65] that the irrationality of /2 (which can be expressed by the
open formulap #0 —p-p+p-p # q-q) cannot be shown with open induction.

However, on a more positive note, there are formulas F(X), which are not literals, but
can be proven in I Literal. The most interesting example for this is probably the formula
F(X)=X+Y =nil - X =nil A'Y = nil since it is neither a clause nor a dual clause
and if we write it in CNF as C7 A U9, then the induction variable X appears in both C
and Co. Still Ty + I Literal - VYVX : F(X).

Moreover, we saw two important things: First, depending on the language and base
theory, there often is some level of induction, which is seemingly weaker than open
induction, but entails open induction nonetheless. As an example consider the base
theory Ty from Subsection 4.4 (arithmetics with 0 # sz and injective successor). It holds
that, Ty + I Literal — IOpen. Secondly, this level of induction is not monotone in the
complexity of the language or theory in the following sense: If we consider the, less

95

8.

CONCLUSION

96

complicated, empty theory over the same language as T», then (J + I Literal ¥ IClause.
However, if we make the language and theory more complicated by switching to Ty from
Section 4.7 (arithmetics with addition, multiplication and the usual axioms), we have
that Ts + I Literal ¥ IClause as well.

In particular, we saw in Chapter 5 that adding some inductive data type to another one
drastically increases the complexity of the language and theory, but can have the effect
that the open induction collapses to a lower level than it would if there was only one
data type.

Regarding question 2, the most important discovery is, the connection between open
induction and the sets definable by open formulas in the language at hand. If one can
show that, modulo some theory T, open formulas only define very simple sets, this might
allow one to prove that T' - IOpen. This connection was used in [Sho58| and [She63], but
we saw that this goes deeper than just arithmetics and also works for general inductive
data types (cf. Chapter 3), where all the sets definable with open formulas are even
finite or cofinite. The sets we can define become progressively more complicated if we
add complexity to the language as we could see in Section 4.7. In this case, we could
apply ring theory to show that open induction has an alternative characterization. This
might be more difficult in a non-arithmetical context if the underlying structures are not
as well understood.

We did not succeed in giving an alternative axiomatization of open induction for every
base theory, we considered. While there there are theories, for which we believe it to
be unlikely that there is an alternative simple axiomatization of open induction (cf.
Conjecture 3.4.27), there are other theories, for which this seems more likely to us (e.g.
T} from Section 6.5).

There are three major directions, in which future work on this topic could be headed.
The first option is to work with general inductive data types and try to prove obtain
results in the most general setting. A good starting point for this would be to prove
Conjecture 3.4.27. The second option is to consider some data structure in more depth.
Here, one could start by considering lists with concatenation. Lastly, one could consider
the interplay of several data types. We considered a size function for general inductive
data types. The next step could be to connect trees and lists by tree-traversal functions.

Overview of Generative Al Tools
Used

1. The free version of the Overleaf Add-on Writeful (https://www.writefull.
com/writefull-for-overleaf) was used throughout the thesis, to try to
improve the readability of the thesis. Since the free version has a cap on the
suggestions per day, one can see, the extent, to which it was used, is not substantial.

97

https://www.writefull.com/writefull-for-overleaf
https://www.writefull.com/writefull-for-overleaf

[Het24]

[HV24]

[She63]

[She65)

[She67]

[Sho58]

[Vie24]

Bibliography

Stefan Hetzl. Godel’s incompleteness theorems. Lecture Notes, avail-
able at https://www.dmg.tuwien.ac.at/hetzl/teaching/git_2024.
pdf, 2024.

Stefan Hetzl and Jannik Vierling. Quantifier-free induction for lists. Archive for
Mathematical Logic, 63:813-835, 2024.

J.C. Shepherdson. Non-standard models for fragments of number theory. In J.W.
Addison, Leon Henkin, and Alfred Tarski, editors, The Theory of Models, Studies
in Logic and the Foundations of Mathematics, pages 342—-358. North-Holland,
2014 (first published in 1963).

J. C. Shepherdson. A non-standard model for a free variable fragment of number
theory. Journal of Symbolic Logic, 30(3):389-390, 1965.

J. C. Shepherdson. The rule of induction in the three variable arithmetic based
on + and —. Annales scientifiques de I’Université de Clermont. Mathématiques,
35(4):25-31, 1967.

J. R. Shoenfield. Open sentences and the induction axiom. Journal of Symbolic
Logic, 23(1):7-12, 1958.

Jannik Vierling. The limits of automated inductive theorem provers. Phd thesis,
Technische Universitdt Wien, 2024.

99

https://www.dmg.tuwien.ac.at/hetzl/teaching/git_2024.pdf
https://www.dmg.tuwien.ac.at/hetzl/teaching/git_2024.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	General Inductive Data Types
	General Frame
	Useful Models
	The model M*({∞})
	The model M*∞
	Models with cycles
	The model MC
	The model MCu

	Languages with Static Constructors only
	Constructors only
	Constructors and Selectors

	Languages with Dynamic Constructors
	Constructors only
	Constructors and Selectors

	Arithmetics
	General Frame
	Useful models
	The model N∞
	The model Na,b

	0 and Successor only
	Injective Successor
	Adding the Predecessor
	Linear Arithmetic
	Polynomials

	General Inductive Data Types with a Size Function
	General Frame
	The Scheme of Induction
	General Lemmas

	Useful models
	The model M∞u
	The model M∞
	The model Ma,b

	Essentially Unary Constructors Only
	Two Schemes of Induction
	One Combined Scheme of Induction

	Not Only Essentially Unary Constructors
	Two Schemes of Induction
	One Combined Scheme of Induction

	Lists
	General Frame
	Constructors only
	Constructors only and a Size Function
	Concatenation
	Concatenation and a Size Function

	K-ary Trees
	General Frame
	Constructors only
	Constructors only and a Size Function

	Conclusion
	Overview of Generative AI Tools Used
	Bibliography

