
Abstrakte Beweisstrukturen
Ein einheitliches Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Andreas Humenberger
Matrikelnummer 1026602

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ass.Prof. Dr.techn. Stefan Hetzl

Wien, 25. August 2016
Andreas Humenberger Stefan Hetzl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract Proof Structures
A uniform framework

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Andreas Humenberger
Registration Number 1026602

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ass.Prof. Dr.techn. Stefan Hetzl

Vienna, 25th August, 2016
Andreas Humenberger Stefan Hetzl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Andreas Humenberger
Tigergasse 33/5
1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. August 2016
Andreas Humenberger

v

Acknowledgements

First and foremost, I would like to thank my supervisor Stefan Hetzl. Not only did he
introduce me to this very interesting topic, he also spent a vast amount of time discussing
my work and providing help. It was also Stefan, who encouraged me to consider various
aspects of my thesis from different points of view which made working on this thesis even
more interesting. This is also the main non-math related insight I gained while working
on this thesis.

I am also very grateful to my family, especially to my parents Maria and Maximilian,
who continuously supported me in every possible way. I would not be at this great point
in my life without their support.

Last but not least, I would like to thank my friends and my dear Sophie for making
the wonderful time during my studies even better.

vii

Kurzfassung

Abstraktionen von formalen Beweisen, sogenannte abstrakte Beweisstrukturen, dienen als
anerkanntes Werkzeug um Struktur und Eigenschaften von formalen Beweisen zu unter-
suchen. Für einen Beweis in einem Sequentialkalkül existieren verschiedenste Abstrak-
tionen, wie Beweisskelett, Beweisnetz und Logischer Flussgraph (im speziellen Atomarer
Flussgraph). Diese abstrakten Beweisstrukturen haben ihren Ursprung in verschiede-
nen Gebieten der Beweistheorie und eine gründliche Untersuchung der Zusammenhänge
dieser existiert noch nicht.

Durch die Definition einer Tupel-Darstellung von LK -Beweisen wird die Grundlage
eines einheitlichen Rahmens zur Untersuchung von Beweisstrukturen im Sequentialkalkül
LK gelegt. Diese Tupel-Darstellung erlaubt es, die oben genannten abstrakten Beweis-
strukturen geeignet darzustellen und zu untersuchen.

Wir zeigen, dass es bei geeigneter Behandlung der Abschwächung für jedes Paar der
oben genannten Abstraktionen eine Struktur gibt, sodass beide zu dieser reduziert wer-
den können. Neben den Einblicken in die Zusammenhänge der Beweisstrukturen entsteht
ein Rahmen zur Verallgemeinerung von Resultaten und Algorithmen. So definierten etwa
Krajíček und Pudlák [9] einen Algorithmus zur Herleitung von Schranken bezüglich der
minimalen Größe von Beweisen. Durch Verallgemeinerung dieses Algorithmus ergeben
sich dieselben Schranken für Beweisnetze.

Außerdem untersuchen wir die Kardinalitäten der Äquivalenzklassen, welche von den
Abstraktionen generiert werden. Wir zeigen, dass es endlich viele Beweise gibt, welche
dasselbe Beweisnetz (denselben Atomaren Flussgraphen) besitzen. Für Beweisskelette
gibt es im Allgemeinen unendlich viele dazugehörige Beweise.

ix

Abstract

Abstractions of formal proofs, so-called abstract proof structures, serve as a well-accepted
tool for studying structure and properties of formal proofs. Given a sequent calculus
proof, there are various abstractions including proof skeleton, proof net and logical flow
graph (in particular atomic flow graph). These abstract proof structures emerged in
different areas of proof theory and a thorough investigation of their interrelationship
does not exist so far.

By introducing a tuple-based representation of proofs, which allows a suitable rep-
resentation of the before-mentioned abstractions, we establish a uniform framework for
classical first-order logic which clarifies the relationship between these proof structures
in the context of the sequent calculus LK .

We show that, in case of a suitable treatment of the weakening rules, there exists a
structure for every pair of the above-mentioned abstractions such that both abstractions
can be reduced to it. Besides the gained insights of the interrelationship by defining
this uniform framework, we get a framework for generalizing results and algorithms. For
instance, Krajíček and Pudlák [9] introduced an algorithm defined on proof skeletons for
deriving bounds on the minimal size of proofs. We generalize this result to proof nets by
generalizing the algorithm to proof net skeletons. A proof net skeleton is an abstraction
of both, proof nets and proof skeletons.

Furthermore, we investigate the cardinalities of the equivalences generated by the
abstractions. We show that there exist finitely many proofs having the same proof net
(atomic flow graph). For proof skeletons there exists an infinite number of associated
proofs.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Preliminaries 5
2.1 First-order predicate calculus . 5
2.2 A survey of abstract proof structures . 8

3 A Uniform Framework 13
3.1 Proof . 13
3.2 Abstractions . 20

4 Relationships Between Proof Structures 29
4.1 Commutation . 29
4.2 Annotated weakening . 34
4.3 Equivalence classes . 37

5 Most General Proof Nets 41
5.1 Unification . 41
5.2 Computing a most general proof net with a cut-free net skeleton 42

6 Conclusion 47

Bibliography 49

xiii

CHAPTER 1
Introduction

Abstractions of formal proofs, so-called abstract proof structures, serve as a well-accepted
tool for studying structure and properties of formal proofs. For instance, Orevkov [11]
showed, for a large class of Hilbert-type calculi, that it is undecidable whether a given
formula has a proof with a given proof skeleton where a proof skeleton is a formal proof
without formulas. Krajíček and Pudlák [9] proved a similar result for LK , namely, that
it is undecidable whether a given sequent has an LK -proof with a given skeleton. In
[9], Krajíček and Pudlák also gave upper bounds on the depth of terms in LK -proofs by
using proof skeletons.

The investigations of Orevkov and Krajíček and Pudlák were motivated by work in
the context of Kreisel’s conjecture [10]: If Peano arithmetic (PA) proves A(Sn0) with
a proof of ≤ k lines for all n then PA proves ∀xA(x). This well-known conjecture gave
also rise to work on the k-provability problem: Given a first-order formula F and an
integer k, does there exist a proof of F consisting of ≤ k lines. Buss [1] showed that the
k-provability problem for LK is undecidable by means of logical flow graphs. A logical
flow graph is a directed graph tracing the influence of formulas in a proof. In contrast
to proof skeletons, a logical flow graph is a labelled graph not containing any inferences.

A proof net is a proof without the specific order of rule applications. For a proof net
we only consider causal dependencies between inferences, that is, two inferences which
are not dependent on each other can be seen as parallel. Girard [6] introduced proof
nets in the context of normalization considerations for linear logic. In linear logic, proofs
are seen as programs which involves normal form theorems and considerations about the
equality of normal forms. Later, Robinson [12] extended proof nets to classical logic.

The above-mentioned abstract proof structures, viz. proof skeletons, logical flow
graphs and proof nets, were used and studied independently from each other, and there-
fore no work about their relationship to each other exists so far. We want to take a first
step in this direction.

The two main issues we want to address here are: First, the introduction of a uniform
framework for abstract proof structures. Second, relating these abstract proof structures

1

1. Introduction

by means of the before-mentioned uniform framework. Both in the context of first-order
logic and a sequent calculus LK .

The former task is about introducing a tuple-based representation of proofs. From
this point of view, a proof is a mathematical object consisting of elements, such that
every element represents a specific type of explicit information contained in a proof. The
advantage of this separation of information is the effortless representation of abstractions.
To be more precise, we introduce a tuple 〈F, I,4, d·e〉 which represents a proof provided it
obeys certain conditions. However, the contribution of d·e is the integration of formulas,
that is, we have a separation of the proof and the formulas involved. By removing this
element from the tuple we get a proof skeleton 〈F, I,4〉.

The second task is about defining transformations and functions from one proof
structure to another. We will show that there do not exist functions between the above-
mentioned abstract proof structures, for instance, in general the proof skeleton of a proof
P cannot be transformed into the proof net of P . However, we can define a so-called
proof net skeleton which is an abstraction of both, proof skeleton and proof net. In
fact, we can define such an abstraction for all pairs of proof structures if we consider a
variant of LK with annotated weakening rules. In this sequent calculus we annotate the
weakening rules with so-called formula skeletons of the weakening formulas, which can
be seen as the syntax tree of a formula without the atomic formulas. The existence of
a base abstraction for all pairs of proof structures implies that there exists a structure
such that every abstract proof structure in our considerations can be reduced to it. We
call this structure reduced atomic flow graph skeleton which is a topologically reduced
version of an atomic flow graph without formulas.

This framework of proof structures can also be characterized as a partially ordered
set of equivalence relations which are defined on proofs, and where the partial order
is given by a refinement relation: informally, ∼f is finer than ∼g if X ∼f Y implies
X ∼g Y for all X and Y . By using this framework, it is possible to put newly defined
equivalence relations on a map, that is, relate it to other already defined relations.

Another question we will answer is, how many proofs induce the same abstract proof
structure. We distinguish between finitely and infinitely many, and define equivalence
classes based on the previously described abstractions and transformations. In general,
there infinitely many proofs having the same proof skeleton. For proof nets and atomic
flow graphs we show that there exists a finite number of corresponding proofs.

The last part of this thesis is an application of the uniform framework to the gener-
alization of an algorithm defined by Krajíček and Pudlák [9]. The authors of [9] reduced
the existence of a proof having a given proof skeleton and a given end-sequent to a uni-
fication problem with certain restrictions. By deriving bounds on the maximal depth of
unified terms from an algorithm for finding most general unifiers, Krajíček and Pudlák
gave bounds on the depth of terms in a proof. This also proves the existence of a most
general proof with a cut-free skeleton. We aim at generalizing this result to proof nets.
We will see that we cannot retain the reduction from the existence of a proof with a
given proof net skeleton and a given end-sequent to the unification problem. However,
we show that the existence of a most general proof net with a given cut-free net skeleton

2

still holds, and that we can still apply the before-mentioned bounds on the depth of
terms in a proof net.

This thesis is organized as follows: After introducing our sequent calculus LK and
giving a survey of proof skeletons, proof nets and atomic flow graphs in Chapter 2, we will
start by defining the tuple-based representation of LK -proofs in Chapter 3, in particular
in Section 3.1. Based on that we define the abstractions in the same tuple-based manner
in Section 3.2.

Chapter 4 is about the relationship between the introduced proof structures. First,
we show the existence or non-existence of certain functions obeying commutation in
Section 4.1. One example of the non-existence of a function is from proof net skeletons
to the reduced atomic flow graph skeleton. We circumvent this fact in Section 4.2 by
defining a variant of LK with annotated weakening rules. Furthermore, we show that
these relations can be characterized as a partially ordered set of equivalence relations.
In Section 4.3 we define equivalence relations based on the abstractions and investigate
the cardinalities of their classes.

In Chapter 5 we introduce basic notions of unification in Section 5.1 before we gen-
eralize the algorithm of Krajíček and Pudlák [9] in Section 5.2.

3

CHAPTER 2
Preliminaries

2.1 First-order predicate calculus

2.1.1 Syntax

Definition 1. The language of first-order logic is comprised of the following symbols.

1. Constants:

1.1. Constant symbols: k0, k1, k2, . . .

1.2. Function symbols with n arguments: fn0 , fn1 , . . . , gn0 , gn1 , . . . , hn0 , hn1 , . . .
1.3. Predicate symbols with n arguments: Pn0 , Pn1 , . . . , Qn0 , Qn1 , . . . , Rn0 , Rn1 , . . .

If the number of arguments is clear from the context, we omit the superscript of
the function and predicate symbols.

2. Variables:

2.1. Free variables: a0, a1, . . . , b0, b1, . . . , c0, c1, . . .

2.2. Bound variables: x0, x1, . . . , y0, y1, . . . , z0, z1, . . .

3. Logical symbols:

3.1. Propositional: ¬ (not), ∧ (and), ∨ (or) and ⊃ (implies)
3.2. Quantifiers: ∀ (for all) and ∃ (exists)

4. Auxiliary symbols: (,) (parentheses) and , (comma)

Definition 2 (Term). We define the set of terms T as follows.

1. Every constant is a term.

5

2. Preliminaries

2. Every free variable is a term.
3. If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a

term.

Definition 3 (Formula). Let P be an n-ary predicate symbol and t1, . . . , tn terms,
then P (t1, . . . , tn) is an atomic formula. The set of atomic formulas is denoted as A.
Furthermore, we define the set of formulas F as follows.

1. Every atomic formula is a formula.
2. If F is a formula, then (¬F) is a formula.
3. If F and G are formulas, then (F ∧G), (F ∨G) and (F ⊃G) are formulas.
4. If F is a formula and x a variable, then ∀xF and ∃xF are formulas.

2.1.2 Sequent calculus

Definition 4 (Indexed formula, sequent). A pair (F, i) is called indexed formula where
F is a formula and i ∈ N. Furthermore, we call Γ ` ∆ an indexed sequent where Γ and
∆ are sets of indexed formulas s.t. all indices in Γ ` ∆ are pairwise distinct.

Given an (indexed) sequent Γ ` ∆, we call Γ the antecedent and ∆ the succedent of
the sequent. Furthermore, Γ ` ∆ is an axiom if it is of the form F i ` F j s.t. F is an
atomic formula and i 6= j. In addition to axioms the calculus LK exhibits the following
rules.

1. Structural rules:

1.1. Weakening:

Γ ` ∆ wl
(F, k),Γ ` ∆

Γ ` ∆ wr
Γ ` ∆, (F, k)

1.2. Contraction:

(F, i), (F, j),Γ ` ∆
cl

(F, k),Γ ` ∆
Γ ` ∆, (F, i), (F, j)

cr
Γ ` ∆, (F, k)

1.3. Cut:

Γ ` ∆, (F, i) (F, j),Γ ′ ` ∆′
cut

Γ ,Γ ′ ` ∆,∆′

The formulas (F, i) and (F, j) in the upper sequents of the rules above are called
auxiliary formulas, the (F, k) in the lower sequent is called principal formula, and
the formulas in Γ ,Γ ′,∆ and ∆′ are called side formulas of the respective inference.

6

2.1. First-order predicate calculus

The formulas (F, i) and (F, j) in cut are called cut-formulas. Note that, the
weakening rules do not have auxiliary formulas, whereas the cut rule does not
have a principal formula.

2. Logical rules:

2.1. Propositional rules:

Γ ` ∆, (F, i) ¬l
(¬F, k),Γ ` ∆

(F, i),Γ ` ∆ ¬r
Γ ` ∆, (¬F, k)

(F, i), (G, j),Γ ` ∆
∧l

(F ∧G, k),Γ ` ∆
Γ ` ∆, (F, i) Γ ′ ` ∆′, (G, j)

∧r
Γ ,Γ ′ ` ∆,∆′, (F ∧G, k)

(F, i),Γ ` ∆ (G, j),Γ ′ ` ∆′
∨l

(F ∨G, k),Γ ,Γ ′ ` ∆,∆′
Γ ` ∆, (F, i), (G, j)

∨r
Γ ` ∆, (F ∨G, k)

Γ ` ∆, (F, i) (G, j),Γ ′ ` ∆′
⊃l

(F ⊃G, k),Γ ,Γ ′ ` ∆,∆′
(F, i),Γ ` ∆, (G, j)

⊃rΓ ` ∆, (F ⊃G, k)

The formulas (F, i) and (F, j) in the rules above are the auxiliary formulas,
whereas the formulas in the lower sequent are the principal formulas of the
respective inference. The formulas in Γ ,Γ ′,∆ and ∆′ are the side formulas.

2.2. Quantifier rules:

(F (t), i),Γ ` ∆
∀l(∀xF (x), k),Γ ` ∆

Γ ` ∆, (F (a), i)
∀rΓ ` ∆, (∀xF (x), k)

(F (a), i),Γ ` ∆
∃l(∃xF (x), k),Γ ` ∆

Γ ` ∆, (F (t), i)
∃rΓ ` ∆, (∃xF (x), k)

Again, the formulas in the upper sequent are the auxiliary formulas, the
formulas in the lower sequent are the principal formulas, and the formulas
in Γ and ∆ are the side formulas. The variable a in ∀r and ∃l is called
eigenvariable and must not occur in the lower sequent of the inference.

We call an LK -rule binary if it has two upper sequents and unary if it has one upper
sequent.

The indices of the auxiliary and principal formulas in the rules above are meant to
be different, e.g. i, j, k are pairwise distinct in cl. That is, all auxiliary and principal

7

2. Preliminaries

formulas of an inference have distinct indices, whereas the indices of the side formulas
are propagated from the upper to the lower sequent. Furthermore, k does not occur in
the subproofs above, and for binary rules we have that the set of indices occurring in
the subproofs are disjoint.
Remark 1. Note that having indexed formulas and indexed sequents allows us to relin-
quish the exchange rules usually defined in other variants of LK .

For simplicity we use F i instead of (F, i) from now on.

Definition 5 (LK -proof). An LK-proof is directed tree whose vertices are labelled with
indexed sequents, and edges are labelled with rules. Additionally, the leaves of the tree
must be axioms, and the edges are oriented towards the axioms. An LK -proof where no
edge is labelled with cut is called cut-free.

2.2 A survey of abstract proof structures
In this section we give an overview of the proof structures we are investigating. Therefore
we will have a look at the basic idea, motivation and the usage of proof skeletons, proof
nets and atomic flow graphs.

Proof skeletons and atomic flow graphs were introduced in the context of the k-
provability problem: Given a first-order formula F and an integer k, does F has a proof
in less than or equal k lines? Proof nets were introduced for normalization studies in
linear logic by Girard.

To illustrate these proof structures we will use the following LK -proof. We will
also refer to this proof for illustrating the concepts we are introducing in the upcoming
sections.

A1 ` A2
¬r

` A2,¬A3
¬l

¬A4 ` ¬A3 B5 ` B6
⊃l

¬A4,¬A⊃B7 ` B6

(Π])

Furthermore, we distinguish between two different measurements of the size of a
proof. First, the number of lines in a proof, also called length of a proof. Second, the
actual size of a proof meaning the number of symbols involved.

2.2.1 Proof skeletons

A proof skeleton is an LK -proof without formulas. That is, given an LK -proof, the
actual formulas involved are removed whereas the structure and the applied LK -rules
remain. Furthermore, information about the active formulas is kept which means for our
LK -calculus that we keep the indices to know the active formula occurrences for each
LK -inference. Hence, we get the following proof skeleton for Π].

8

2.2. A survey of abstract proof structures

· 1 ` · 2
¬r

` · 2, · 3
¬l

· 4 ` · 3 · 5 ` · 6
⊃l

· 4, · 7 ` · 6

Proof skeletons were introduced in the context of the k-provability problem by
Orevkov [11]. Orevkov showed for a large class of Hilbert-type calculi that it is un-
decidable whether a given formula has a proof with a given proof skeleton.

Despite the fact that a proof skeleton has an infinite number of corresponding proofs,
Krajíček and Pudlák [9] showed that given an end-sequent Γ ` ∆ and a skeleton S of a
cut-free proof, there is a most general proof of Γ ` ∆ with skeleton S such that every
proof of Γ ` ∆ with S is an instance of it. The main purpose, however, was to give
bounds on the minimal size of proofs. More specifically, given a sequent Γ ` ∆ of size
m with an LK -proof having k lines, the aim was to find bounds on the size of a minimal
proof of Γ ` ∆ depending on m and k.

By a reduction to the first-order unification problem an exponential bound in k+m
for cut-free proofs was proven, i.e. given a cut-free proof skeleton of Γ ` ∆ of size m with
k proof lines, there exists a proof of Γ ` ∆ whose size is bounded by an exponential in
k+m. The bound is obtained by an estimate of the depth of the most general unifier. In
general, i.e. for proofs with cut, Krajíček and Pudlák showed a primitive recursive bound
in k + m, as a cut-free proof has to be obtained from the proof first. It is unknown,
whether there exists a fixed times iterated exponential bound.

Furthermore, the authors of [9] investigated the problem whether a given sequent
has a proof with a given proof skeleton. This problem was shown to be undecidable by a
reduction from the second-order unification problem which was proven to be undecidable
in [8].

2.2.2 Proof nets

A proof net is a geometric representation of a proof which enables a view of proof identity
closer to the intuitive meaning. To be more precise, proof nets are immune to a certain
kind of rule permutations, i.e. proofs which only differ by simple rule transpositions
exhibit the same proof net. For instance, transposing the first and the second inference
of Π] yields the following proof net, so does Π] itself.

9

2. Preliminaries

ax

¬r ¬lax

⊃l

A1 A2

¬A3
B5

¬A4¬A⊃B7 B6

Rule applications in sequent calculi proofs have to be sequentialized which has the
disadvantage that two proofs might be formally different but intuitively the same. In
certain aspects of proof theory it is desirable to have a device which neglects this dif-
ferences. In case of (a suitable selection of logical connectives in) intuitionistic logic,
natural deduction plays this role w.r.t. a sequent calculus, where natural deduction has
a strong correspondence to the simply typed lambda calculus which is interesting from
a computational point of view.

Girard [6] was faced with the same problem concerning linear logic. In the context of
this considerations he developed the concept of proof nets for the multiplicative fragment
of linear logic (MLL). That is, proof nets play the same role for linear logic as simply
typed lambda terms do for intuitionistic logic. The work of Girard also involves a normal
form theorem. Normalization in the context of proof nets is the process of eliminating
cuts, and he showed that proof nets are strongly normalizing. Furthermore, the reduction
satisfies the Church-Rosser property, i.e. the order of cuts to eliminate does not matter.

Such a device is certainly desirable for classical logic as well. Robinson [12] extended
the notion of proof net to classical logic. Unlike for MLL proof nets do not behave as
satisfactory for classical logic. In contrast to MLL, sequent calculi for classical logic
contain contraction and weakening rules which yields the question of where to attach
the weakening rules (cf. Straßburger [13]).

2.2.3 Atomic flow graphs

An atomic flow graph (AFG) is a special case of a logical flow graph, which is a directed
graph whose set of vertices consists of all subformula occurrences in the proof, whereas
the edges track the influence of the subformulas. As the name suggests, an atomic flow
graph is a subgraph of the logical flow graph containing only the atomic subformulas.
The following graph on the right is the atomic flow graph of Π].

10

2.2. A survey of abstract proof structures

A1 ` A2

` A2,¬A3

¬A4 ` ¬A3 B5 ` B6

¬A4,¬A⊃B7 ` B6

A A

A A

A A

A A

B B

B B

Buss [1] introduced logical flow graphs in the context of the k-provability problem.
In particular, the author showed that the k-provability problem is undecidable for LK .
To do so, he reduced the second-order unification problem with partial substitution to
the k-provability problem. The undecidability of the second-order unification problem
was proven in [8] and was extended to partial substitution in [1], which yields the unde-
cidability of the k-provability problem.

Logical flow graphs, in particular atomic flow graphs, were used by Carbone and
Semmes [4] for investigating the geometric aspects of cut-elimination. In particular, they
studied the patterns emerging during the process of cut-elimination. The motivation in
doing so lies in the fact that proofs can be made essentially smaller by introducing cuts.
Hence, these cuts must capture some essential patterns of the underlying proof structure.
Let Π be a proof and Π ′ a cut-free version of it obtained by a particular method for
cut-elimination. In [2], Carbone showed that certain subgraphs of the AFG of Π ′ are
contained in the AFG of Π , and both subgraphs correspond to the same sequent. This
locality property is then used to derive results about the complexity of interpolants.
Furthermore, it is shown in [2] that cut-free proofs have acyclic atomic flow graphs, and
the same holds for contraction-free proofs. In other words, only proofs containing both,
cut and contraction, may contain cycles. In [3] it was shown by Carbone that there exist
arbitrarily complex non-oriented graphs G such that G can be embedded in a proof,
i.e. G is topologically contained in the AFG of a proof.

11

CHAPTER 3
A Uniform Framework

In order to compare abstract proof structures, a suitable representation of proofs and
their abstractions is needed. Therefore we introduce a tuple-based representation of
proofs where abstractions can be performed and denoted effortless.

3.1 Proof
Making the abstractions convenient in terms of notation, requires a separation of the
information contained in an LK -proof. On the one hand we have to distinguish formula
occurrences and formulas for dealing with proof skeletons, on the other hand we have
to distinguish between inferences and their specific order of application to be able to
characterize proof nets. The former can be established by distinguishing formulas and
their indices.

Definition 6 (Formula index). Let F i be an indexed formula. Then i is the formula
index (or index for short) of F i.

Definition 7 (Inference). Let xi = xi,1, . . . , xi,ki and y = y1, . . . , yl be pairwise distinct
indices for i = 1, . . . , n. Then r(x1; . . . ; xn; y) is an inference where r is an n-ary LK -rule
with k = Σn

i=1ki auxiliary formulas and l principal formulas.

Example 1. Translating the LK -proof Π] we get the following set of inferences where
the indices used in the inferences are the formula indices of the formulas in the proof.

⊃l(3; 5; 7)

ax(∅; 5, 6)¬l(2; 4)

¬r(1; 3)

ax(∅; 1, 2)

13

3. A Uniform Framework

Note that in our sequent calculus LK we have k ∈ {0, 1, 2} and l ∈ {0, 1}. Given an
inference ι = r(x1; . . . ; xn; y), x1; . . . ; xn correspond to the auxiliary formulas of r and y
to the principal formulas. In particular the formulas in xi are the formulas contained in
the i-th upper sequent denoted by Auxi(ι) = {xi}. Furthermore, Aux(ι) =

⋃n
i=1Auxi(ι)

and Princ(ι) = {y} denote the auxiliary and principal formulas of ι respectively.
Note that every inference r(x1; . . . ; xn; y) induces an LK -inference with upper se-

quents S1, . . . , Sn and one lower sequent S. Furthermore, every LK -rule r uniquely
determines whether a given auxiliary or principal formula is in the antecedent or the
succedent of a sequent. Thus, we have that r uniquely determines whether x ∈ {xi} is
in the antecedent or the succedent of Si, and whether y ∈ {y} is in the antecedent or
succedent of S.

Accordingly we can define a notion of polarity for formula indices. We say an index
x occurs negatively (positively) in an inference ι if x occurs in the antecedent (succedent)
of the corresponding sequent involved in ι.

Definition 8 (Well-polarization). Given a set of inferences I, we call I well-polarized
if there exists no formula index x such that x occurs positively (negatively) in ι1 and
negatively (positively) in ι2 for ι1, ι2 ∈ I.

Intuitively, well-polarization ensures that a formula cannot jump from the antecedent
to the succedent or vice versa. This concept assures the applicability of inferences.

Example 2. Assume we have a set of inferences I containing two inferences ax(∅; 1, 2)
and ¬l(1; 3). On the one hand, the LK -rule ax expects the index 1 to be in the an-
tecedent of the sequent. On the other hand, ¬l expects the index 1 to be in the succedent
of the sequent. That is, in the former case the index 1 occurs negatively, whereas in
the latter case it is positive, i.e. the polarities do not coincide. In conclusion, I is not
well-polarized.

Definition 9. Given a partial order 4 over some set P , then 4 is a tree order over P if

(i) 4 has a smallest element r (called root), and

(ii) for each y ∈ P where y < r there exists a unique path from r to y.

Since it is possible to transpose independent rules in an LK -proof without changing
the end-sequent, an order of the inferences is crucial to uniquely determine an LK -proof.
As defined in Definition 5, a proof is a tree. Hence, a set of inferences I must be partially
ordered by a tree order 4, in particular 4 must be an inference order (see below). As
usual, we write ι ≺ κ if ι 4 κ and ι 6= κ, and ι ≺1 κ if ι ≺ κ and there exists no κ′
s.t. ι ≺ κ′ ≺ κ.

Definition 10 (Inference order). Given a set of inferences I, a tree order 4 over I is
called inference order over I if

14

3.1. Proof

(i) for every n-ary inference ι = r(x1; . . . ; xn; y) ∈ I there exist exactly n distinct in-
ferences κ1, . . . , κn s.t. κ1, . . . , κn �1 ι and for every x ∈ {xi} there exists precisely
one inference κ′i < κi where x ∈ Princ(κ′i), and

(ii) for every inference ι ∈ I and x ∈ Princ(ι) there exists at most one κ ∈ I s.t. κ ≺ ι
and x ∈ Aux(κ).

An inference order ensures that a formula occurrence is introduced by some infer-
ence, i.e. it is a principal formula occurrence of some inference. Furthermore, a formula
occurrence cannot be auxiliary for more than one inference.

Example 3. The order of inferences given by the LK -proof Π] yields an inference order.
Note that the minimal element of the order is the last inference in Π] and all maximal
elements are axioms.

⊃l(3; 5; 7)

ax(∅; 5, 6)¬l(2; 4)

¬r(1; 3)

ax(∅; 1, 2)

So far, we only used formula indices, that is, we require the integration of actual
formulas. Therefore, a mapping d·e : F → F from indices to formulas is used.

Definition 11 (Formula map). A map d·e : F → F is called formula map where F is a
set of indices and F is a set of formulas.

Before defining the tuple representing an LK-proof we have to ensure that for a given
set of inferences I the formula map exhibits correct inferences w.r.t. LK .

Let d·e be a formula map. For simplicity, we denote the indexed formula dxex as
dxe where x is an index. Furthermore, for a list of indices x = x1, . . . , xn, we write dxe
instead of dx1e, . . . , dxne.

Definition 12 (Correct map). We call a formula map d·e correct w.r.t. an inference ι if
dye is the result of applying r to dx1e, . . . , dxne for ι = r(x1; . . . ; xn,y). The map d·e is
called correct w.r.t. a set I of inferences if d·e is correct w.r.t. κ for all κ ∈ I.

Example 4. Let ι = ⊃l(3; 5; 7) ∈ I be an inference and let the formula maps d·e1 and
d·e2 be defined as follows.

d3e1 = A d3e2 = ¬A
d5e1 = B d5e2 = B

d7e1 = ¬A⊃B d7e2 = ¬A⊃B.

15

3. A Uniform Framework

Then d·e1 and d·e2 applied to ι translate into

Γ1 ` ∆1, A B,Γ2 ` ∆2⊃l Γ1,Γ2,¬A⊃B ` ∆1,∆2
and Γ1 ` ∆1,¬A B,Γ2 ` ∆2⊃l Γ1,Γ2,¬A⊃B ` ∆1,∆2

respectively. The former is obviously not a valid LK -inference, whereas the result of
d·e2 yields a valid LK -inference. Therefore, d·e2 is correct w.r.t. ι, and d·e1 is not.
Consequently, d·e1 is not correct w.r.t. I, and d·e2 is correct w.r.t. I if d·e2 is correct
w.r.t. to all other inferences κ ∈ I as well.

The notions and concepts introduced so far, viz. well-polarization, inference order and
correct maps, suffice to characterize propositional LK -proofs. For first-order LK -proofs
we have to deal with the eigenvariable condition. Therefore, we restrict the formula map
s.t. the eigenvariables in strong quantifier inferences, viz. ∃l and ∀r, do not occur free
in the side formulas of the strong quantifier inference.

In general, side formulas of a given inference ι are recognized as those formulas
introduced above ι which are neither auxiliary for any inference above ι nor for ι itself.

Definition 13 (Eigenvariable-preserving map). Let 〈I,4〉 be a partially ordered set of
inferences and d·e a formula map. We call d·e eigenvariable-preserving w.r.t. 〈I,4〉 if for
every strong quantifier inference ι ∈ I where {x} = Aux(ι) and dxe = F (a) the following
holds: a does not occur free in dye for every y ∈ Princ(κ) s.t. κ � ι and y 6∈ Aux(λ) for
all λ < ι.

Example 5. Consider the following proof skeleton and the corresponding inferences,
and a formula map d·e.

ax .= ι1· 1 ` · 2
∃r

.= ι2· 1 ` · 3
wl

.= ι3· 4, · 1 ` · 3
∃l

.= ι4· 4, · 5 ` · 3

Now the eigenvariable of the strong quantifier inference ι4 must not occur free in d4e and
d3e, as the indices 3 are 4 are not auxiliary for any inference < ι4. In other words, as
the indices 1 and 2 are auxiliary for some inference < ι4, the eigenvariable might occur
free in d1e or d2e.

With the notion of eigenvariable-preserving maps present, we can represent first-order
LK -proofs as quadruples satisfying certain restrictions.

Definition 14 (Proof). Let F be a set of formula indices, I a set of inferences, 4 a
partial order over I and d·e a formula map. Then 〈F, I,4, d·e〉 is a proof if

(i) F =
⋃
ι∈I Aux(ι) ∪ Princ(ι),

(ii) I is well-polarized,

16

3.1. Proof

(iii) 4 is an inference order and its maximal elements are axioms,

(iv) d·e is correct w.r.t. I, and

(v) d·e is eigenvariable-preserving w.r.t. 〈I,4〉.

Example 6. The tuple P] = 〈F, I,4, d·e〉 representing the LK -proof Π] is defined as
follows where F = {1, . . . , 7} and I = {ι1, . . . , ι5}.

ι1 = ax(∅; 1, 2)
ι2 = ¬r(1; 3)
ι3 = ¬l(2; 4)
ι4 = ax(∅; 5, 6)
ι5 = ⊃l(3; 5; 7)

ι5

ι4ι3

ι2

ι1 d1e = d2e = A

d3e = d4e = ¬A
d5e = d6e = B

d7e = ¬A⊃B

We use PLK and P to denote the set of LK -proofs and proofs respectively. Before
continuing with defining the abstractions based on the definition of a proof, it is necessary
to show that Definition 14 indeed captures the properties of an LK -proof. Therefore, we
define maps πLK : P →PLK and π : PLK →P, and by showing that they are inverse
to each other we obtain the equivalence of proofs and LK -proofs.

Let S1 = Γ1 ` ∆1 and S2 = Γ2 ` ∆2 be sequents. Then S1 ∪S2 = Γ1 ∪Γ2 ` ∆1 ∪∆2
and S1 \ S2 = Γ1 \ Γ2 ` ∆1 \∆2. Furthermore, let ι = r(x1; . . . ; xn; y) be an inference
and d·e : F → F a formula map. As r uniquely determines whether a given auxiliary or
principal formula of ι is in the antecedent or the succedent of a sequent, we can write
S1 ∪ {dz1ez1 , . . . , dzmezm} and S1 \ {dz1ez1 , . . . , dzmezm} without being ambiguous for
{z1, . . . , zm} ⊆ Aux(ι) ∪ Princ(ι).

Transformation 1. Given a proof 〈F, I,4, d·e〉, the associated LK -proof is constructed
inductively as follows:

1. For every axiom ι = ax(∅; y1, y2) ∈ I create a sequent Sι = dy1e ` dy2e.
2. Let ι = r(x1; . . . ; xn; y) ∈ I be an n-ary inference where {x} = Aux(ι), and
κ1, . . . , κn �1 ι. Then Sι = ((Sκ1 ∪ · · · ∪ Sκn) \ {dxe})∪ {dye} is the lower sequent
of r and Sκ1 , . . . , Sκn are the upper sequents.

Transformation 2. Given an LK -proof Π , the associated proof 〈F, I,4, d·e〉 is con-
structed inductively as follows:

1. For every initial sequent S = Ay1 ` Ay2 in Π create an inference ιS = ax(∅; y1, y2),
and let dy1e = dy2e = A.

2. For every n-ary LK -inference S1 . . . Sn
r

S
:

Let Axi,1i,1 , . . . , A
xi,ki
i,ki

be the indexed formulas in Si \S and By1
1 , . . . , B

yl
l the indexed

formulas in S \ (S1 ∪ · · · ∪ Sn). Then create an inference ιS = r(x1; . . . ; xn; y), and
let dxi,1e = Ai,1, . . . , dxi,kie = Ai,ki and dyje = Bj for 1 ≤ i ≤ n and 1 ≤ j ≤ l.

17

3. A Uniform Framework

3. Let 4 be the reflexive, transitive closure of ≺1 where ≺1 is defined as follows:
ιS2 ≺1 ιS1 iff there exists an LK -inference in Π s.t. S1 is an upper sequent and S2
the lower sequent.

Next, we have to show that Transformations 1 and 2 indeed define maps from P to
PLK and vice versa.

Lemma 1. Transformation 1 defines a map πLK : P →PLK.

Proof. Let P = 〈F, I,4, d·e〉 be a proof and πLK(P) = Π . We prove by induction on the
number of inferences in I that Π indeed is an LK -proof.

Case 1. I contains a single inference of the form ax(∅;x1, x2). As d·e is correct
w.r.t. I, πLK(P) yields an LK -proof of the form Ax1 ` Ax2 .

Case 2. Assume the smallest element w.r.t.4 is an n-ary inference ι = r(x1; . . . ; xn; y)
s.t. κ1, . . . , κn �1 ι. By the induction hypothesis there exist LK -proofs Π1, . . . ,Πn with
end-sequents Sκ1 , . . . , Sκn . As 4 is an inference order, in particular because of Def-
inition 10 (i) and (ii), we have that dxie is contained in Sκi . Furthermore, as I is
well-polarized, every x ∈ {xi} is on the side of the sequent Sκi where r expects it to be,
and r is by definition an n-ary LK -rule, i.e. r can be applied. As d·e is correct w.r.t. I
we get an LK -inference

Sκ1 . . . Sκn
r

Sι
.

Furthermore, if ι is a strong quantifier inference. Then ι is of the form r(x; y) and
the last LK -inference in Π is of the form Sκ

Sι
where κ �1 ι. Let dze be an arbitrary

formula in Sκ where z 6= x. Then there exists an inference λ < κ s.t. z ∈ Princ(λ).
As dze is contained in Sκ there exists no κ′ < κ s.t. z ∈ Aux(κ′). Therefore, as d·e is
eigenvariable-preserving w.r.t. 〈I,4〉, the eigenvariable of ι does not occur free in dze.

Eventually, as 4 is a tree order, we get a tree-shaped LK -proof πLK(P).

Lemma 2. Transformation 2 defines a map π : PLK →P.

Proof. Analogous to the previous lemma, we have to show that Transformation 2 indeed
constructs a proof. Let Π be an LK -proof and π(Π) = 〈F, I,4, d·e〉.

Note that, due to the definition of the LK -rules, no indexed formula changes its
polarity within a proof. As a consequence, and by definition of Transformation 2, no
formula occurrence in π(Π) changes its polarity, i.e. I is well-polarized.

As Π is a tree and by definition of 4 it follows that 4 is a tree order. Furthermore,
if a formula F i occurs as an auxiliary formula of some LK -inference, then F i does not
occur below that LK -inference, i.e. Definition 10 (ii) is satisfied. Now let J be an n-
ary LK -inference and F j an auxiliary formula of J contained in the i-th upper sequent
Si. Then, by definition of LK , there exists precisely one LK -inference J ′ above Si
s.t. F j is a principal formula of J ′. Consequently, and by definition of Transformation 2,
condition (i) of Definition 10 is satisfied.

Furthermore, by inspection of Transformation 2, it is clear that π yields a mapping
d·e : F → F which is correct w.r.t. I.

18

3.1. Proof

Now let ιS ∈ I be a strong quantifier inference obtained by Transformation 2. Fur-
thermore let y ∈ Princ(λ) for some λ < ιS . If there does not exist an inference κ < ιS
s.t. y ∈ Aux(κ), then dye has to be contained in S. Since Π satisfies the eigenvariable
condition, the eigenvariable of ιS is not contained free in dye. Hence, d·e is eigenvariable-
preserving w.r.t. 〈I,4〉.

Theorem 1. π is the inverse of πLK, i.e. πLK(π(Π)) = Π .

Proof. We proceed by induction on the number of LK -inferences in Π .
Case 1. Π is of the formAy1 ` Ay2 . Then π(Π) = 〈{y1, y2}, {ι = ax(∅; y1, y2)}, {(ι, ι)},

d·e}〉 where dy1e = A and dy2e = A. Therefore πLK(π(Π)) consists of a single axiom
Ay1 ` Ay2 .

Case 2. Assume the last LK -inference in Π is of the following form:

S1 . . . Sn
r

S

By the induction hypothesis, each subproof with end-sequent S1, . . . , Sn retranslates
to itself. It remains to show that the last LK-inference is reconstructed. Let S̄ =
S1 ∪ · · · ∪Sn. By definition of π, ιS = r(x1; . . . ; xn; y) s.t. dxie are the formulas in Si \S
and dye are the formulas in S \ S̄. Let X̄ = {dx1e} ∪ · · · ∪ {dxne}, then

X̄ = (S1 \ S) ∪ · · · ∪ (Sn \ S) = S̄ \ S.

Putting pieces together we get SιS = S:

SιS = ((SιS1
∪ · · · ∪ SιSn) \ X̄) ∪ {dye} (by definition of πLK)

= (S̄ \ X̄) ∪ {dye} (by induction hypothesis Si = SιSi)
= (S̄ \ (S̄ \ S)) ∪ (S \ S̄) (by replacing X̄ and {dye})
= S

Before establishing the equivalence of LK -proofs and proofs by proving the next
result, we introduce a notion of subproofs analogous to LK -subproofs. As for LK -proofs
we can locate subproofs of a proof P by restricting P to a certain set of inferences.

Proposition 1. Let P = 〈F, I,4, d·e〉 be a proof, and let P �ι be the proof P restricted
to the inferences in {κ | κ < ι}. Then P �ι is a proof for any ι ∈ I.

Proof. Conditions (ii), (iii), (iv) and (v) of Definition 14 follow immediately from the
fact that P is a proof, i.e. as these conditions hold for P they must hold for P �ι. As F
is restricted to indices occurring in some inference κ < ι, condition (i) holds as well.

Theorem 2. πLK is the inverse of π, i.e. π(πLK(P)) = P .

19

3. A Uniform Framework

Proof. We proceed by induction on the number of inferences in P .
Case 1. P consists of a single inference ι = ax(∅; y1, y2). Then πLK(P) is of the

form Ay1 ` Ay2 , and clearly π(πLK(P)) = P .
Case 2. The smallest inference ι = r(x1; . . . ; xn; y) in P is n-ary, i.e. there exist

inferences κ1, . . . , κn <1 ι. Then, by induction hypothesis, we have π(πLK(P �κi)) = P �κi
for 1 ≤ i ≤ n. It remains to show that ι = ιSι . Let S̄ = S1 ∪ · · · ∪ Sn where Si
is the end-sequent of πLK(P �κi), and let X̄ = {dx1e} ∪ · · · ∪ {dxne}. By definition in
Transformation 1 we have that Sι = (S̄ \ X̄)∪{dye}. Then, ιSι = r(u1; . . . ; un; v) where

{duie} = Si \ Sι
= Si \ ((S̄ \ X̄) ∪ {dye})
= Si \ (S̄ \ X̄)
= Si \ (Si \ X̄)
= Si \ (Si \ {dxie})
= {dxie}

and

{dve} = Sι \ S̄ = ((S̄ \ X̄) ∪ {dye}) \ S̄ = {dye}.

3.2 Abstractions
Based on the tuple representation of LK -proofs in Definition 14, we are now able to
characterize the abstract proof structures of interest.

We will see that, from a different point of view, these abstractions can be treated as
equivalence relations on proofs. To be more precise, these equivalence relations form a
partially ordered set and our abstract proof structures can be seen as reference points
for classifying a newly defined equivalence relation on proofs.

3.2.1 Partially ordered equivalence relations

We will show that a set of equivalence relations can be partially ordered by means of
the refinement relation.

Definition 15 (Refinement). Let ∼1 and ∼2 be equivalence relations on a set A . Then
∼1 is finer than ∼2, denoted ∼1 � ∼2, if X ∼1 Y implies X ∼2 Y for all X,Y ∈ A .

Proposition 2. Let E be a set of equivalence relations on a fixed set and � the refine-
ment relation on E. Then 〈E,�〉 is a partially ordered set.

Proof. Let ∼1, ∼2 and ∼3 be equivalence relations.
(Reflexivity) Clearly we have X ∼1 Y implies X ∼1 Y and therefore ∼1 � ∼1.

20

3.2. Abstractions

(Antisymmetry) Assume ∼1 � ∼2 and ∼2 � ∼1, then X ∼1 Y implies X ∼2 Y and
vice versa for all X,Y . Therefore ∼1 = ∼2.

(Transitivity) Assume ∼1 � ∼2 and ∼2 � ∼3, then X ∼1 Y implies X ∼2 Y implies
X ∼3 Y . Therefore ∼1 � ∼3.

A function induces an equivalence relation as follows.

Definition 16 (Equivalence relation). Let f : A → B be a function and X,Y ∈ A .
Then X ∼f Y if f(X) = f(Y).

Next we show that ∼f is finer than ∼g if and only if g is a composition of f and
some other function.

Proposition 3. Let f : A → B and g : A → C be functions. Then ∼f � ∼g iff
g = h ◦ f for some function h : B → C .

Proof. (⇒) Assume ∼f � ∼g. Then X ∼f Y implies X ∼g Y for every X,Y . Thus
there do not exist elements X0, Y0 s.t. X0 ∼f Y0 and X0 �g Y0 holds. Hence there must
be a function h s.t. g = h ◦ f .

(⇐) Assume X ∼f Y . Then by definition of ∼f we have f(X) = f(Y) and clearly
h(f(X)) = h(f(Y)). Therefore X ∼g Y .

In the following, we will discuss the partially ordered set (poset) of equivalence
relations on the set of proofs, i.e. we consider various equivalence relations on proofs
induced by the respective abstract proof structure. Note that the least element, and
therefore finest equivalence relation in this poset is ∼id where id is the identity function.

Definition 17 (Equivalence class). Let f : A → B be a function and X ∈ A . Then
[X]f = {Y | Y ∼f X} denotes the equivalence class of X w.r.t. f .

Note that for any equivalence relation ∼f on a set A we have that the set of equiv-
alence classes [X]f is a partition of A . Moreover, being a refinement is equivalent to all
equivalence classes being subsets:

Proposition 4. Let ∼f and ∼g be equivalence relations on A . Then [X]f ⊆ [X]g for
every X ∈ A iff ∼f � ∼g.

Proof. By definition of refinement and equivalence classes.

3.2.2 Proof skeleton and proof net

Distinguishing between formula indices and actual formulas in a proof makes it straight-
forward to obtain a proof skeleton from a given proof. In addition, we separated infer-
ences from their specific order of application, i.e. a proof net can be defined as simply
as a proof skeleton.

Definition 18 (Proof skeleton). Let F be a set of indices, I a set of inferences and 4
a partial order over I. Then 〈F, I,4〉 is called proof skeleton if

21

3. A Uniform Framework

(i) F =
⋃
ι∈I Aux(ι) ∪ Princ(ι)

(ii) I is well-polarized, and

(iii) 4 is an inference order and its maximal elements are axioms.

Definition 19 (Proof net). Let F be a set of indices, I a set of inferences and d·e : F → F
a formula map. Then 〈F, I, d·e〉 is called proof net if

(i) F =
⋃
ι∈I Aux(ι) ∪ Princ(ι)

(ii) I is well-polarized, and

(iii) d·e is correct w.r.t. I.

What we refer to as proof nets is usually called pre-net or proof-structure in the
literature (cf. Girard [6, 7] and Robinson [12]). In contrast to the definition of Girard
and Robinson we do not impose any soundness criterion on proof nets. That is, we are
only interested in the structure itself, not in characterizing which of them correspond to
proofs.

Note that Definitions 18 and 19 are projections of Definition 14, that is, the elegance
of this tuple representation lies in the fact that we define proof nets and proof skeletons of
a proof by eliminating an element from the tuple. Thus, given a proof P = 〈F, I,4, d·e〉,
we call 〈F, I,4〉 the proof skeleton of P , and 〈F, I, d·e〉 the proof net of P . Analogously,
we call 〈F, I〉 the proof net skeleton of P . A proof net skeleton serves as a common base
for proof nets and proof skeletons, and is defined as follows.

Definition 20 (Proof net skeleton). Let F be a set of indices and I a well-polarized set
of inferences. Then 〈F, I〉 is called proof net skeleton.

Example 7. The graphical representation of the proof net skeleton of P] is the following.
Note that we have formula indices instead of indexed formulas.

ax

¬r ¬lax

⊃l

1 2

3
5

47 6

In terms of the before-mentioned poset of equivalence relations, we have here three
different equivalence relations defined on proofs: Let σP (νP) be the projection from
a proof to its proof skeleton (proof net), and σN (νS) the projection from a proof net

22

3.2. Abstractions

(proof skeleton) to its proof net skeleton. First, we have ∼σP denoting the relation of
two proofs having the same proof skeleton. Second, ∼νP for having the same proof nets.
Third, ∼νS◦σP if proofs have the same proof net skeleton. Note that in the strict sense
we would also have ∼σN◦νP , however, in Section 4.1 we show that νS ◦ σP = σN ◦ νP .
Furthermore, we have by Proposition 3 that ∼σP and ∼νP are finer than ∼νS◦σP and
∼σN◦νP .

3.2.3 Atomic flow graph

This section is about formally defining AFGs and defining a transformation from proofs
to AFGs. This transformation is divided into pieces which makes it possible to use these
transformations in a more modular fashion, e.g. it is possible to define a transformation
from proof nets to topologically reduced AFGs.

Definition 21 (Atomic flow graph). Let F [x/t] denote the formula where every occur-
rence of the variable x is replaced by the term t. An atomic flow graph 〈V,E, d·eA〉 is a
directed graph where V is a set of vertices, E a set of edges and d·eA : V → A a map
from vertices to atomic formulas. Furthermore, for every pair of adjacent vertices u and
v there must exist a variable x and a term t s.t. dueA[x/t] = dveA[x/t].

Note that in the propositional case we have that adjacent vertices have to exhibit
the same formula as there are no variables involved, that is, in the definition above we
would have dueA = dveA.

Let xpι denote a vertex x which is annotated with the polarity p and inference ι,
where either p = + or p = −. Furthermore, p̄ denotes the dual of p, i.e. +̄ = − and
−̄ = +. If V is a set of annotated vertices, then V p

ι ⊆ V is the set of those vertices in V
annotated with polarity p and inference ι.

The following construction of an annotated graph serves as the basis for transforming
a proof into an atomic flow graph. Intuitively, this first transformation just considers
occurrences of active formulas. That is, we get edges between auxiliary and principal
formulas only. To get the full AFG, additional vertices have to be inserted according
to the inference order of the proof (cf. Transformation 4). These additional vertices
correspond to the side formulas in the proof.

This modular composition of the following transformations enables us to construct
an AFG from a proof net of a proof P , which is a subdivision of the AFG of P .

Transformation 3. Let I be a set of inferences and d·e : F → F a formula map. We
inductively construct the annotated graph 〈V,E〉 as follows.

1. For every axiom ι = ax(∅;x, y) create vertices x−ι and y+
ι , and an edge from x−ι

to y+
ι .

2. For every weakening inference ι = r(∅;x) and every atomic subformula dye of dxe:
create a vertex y−ι if y occurs negatively in ι, and y+

ι if it occurs positively.

23

3. A Uniform Framework

3. For every ι = r(x1, x2; z) where r is either cl or cr: Let κ1, κ2 be inferences
s.t. x1 ∈ Princ(κ1) and x2 ∈ Princ(κ2). Then for every x ∈ V p

κ1 let y ∈ V p
κ2 be

the vertex corresponding to the same subformula as x. Then create a vertex zpι ,
and an edge from x to zpι and from y to zpι if p = + and vice versa otherwise.

4. For every cut(x1;x2;∅): Let ι, κ be the inferences s.t. x1 ∈ Princ(ι) and x2 ∈
Princ(κ). Then for every x ∈ V p

ι let y ∈ V p̄
κ be the vertex corresponding to the

same subformula as x. Then create an edge from x to y if p = + and vice versa
otherwise.

5. For an n-ary logical inference ι = r(x1; . . . ; xn; y) where {x1, . . . , xk} = Aux(ι):
Let κi be the inference s.t. xi ∈ Princ(κi) for i = 1, . . . , k. Then for every x ∈ V p

κi
create a vertex xpι , and an edge from x to xpι if p = + and vice versa otherwise.

Example 8. Applying Transformation 3 to the proof P] yields to following annotated
graph.

1−ι1

1−ι2

2+
ι1

2+
ι3

1−ι5

5−ι4 6+
ι4

5−ι5

Transformation 4. Let 〈V,E〉 be an annotated graph and 4 an inference order. We
create the extended annotated graph as follows.

1. Let λ be the root of 4. For every vertex xpι ∈ V s.t. ι 6= λ and there exists no
(xpι , yqκ) ∈ E or (yqκ, xpι) ∈ E: Create a vertex xpλ; and if p = + create an edge
(xpι , x

p
λ), otherwise create (xpλ, xpι).

2. For every edge e = (xpι , yqκ) ∈ E: Let λ1, . . . , λn be inferences s.t. ι ≺1 λ1 ≺1 · · · ≺1

λn ≺1 κ or κ ≺1 λ1 ≺1 · · · ≺1 λn ≺1 ι. Then remove e, create vertices zpλ, . . . , z
p
λn

and edges (xpι , z
p
λ1

), (zpλ1
, zpλ2

), . . . , (zpλn , y
q
κ).

As already mentioned above, the vertices created in Transformation 3 correspond to
active formulas only, i.e. occurrences for side formulas are not considered. Therefore,
the intuitive meaning of the first step in Transformation 4 is to create an occurrence
for every side formula of the last inference. As a second step the edges have to be
expanded according to the number of inferences in which the formulas have not been
active, i.e. the number of inferences between its use as principal and auxiliary index (or
the last inference of the proof if it is not auxiliary for any inference).

Example 9. Applying Transformation 4 to the graph depicted in Example 8 yields the
following extended annotated graph. The circled vertices were introduced by step 1 of
the transformation, and the rectangular vertices are the result of step 2.

24

3.2. Abstractions

1−ι1

1−ι2

1−ι3

2+
ι1

2+
ι2

2+
ι3

2+
ι5

1−ι5

5−ι4 6+
ι4

6+
ι5

5−ι5

Transformation 5. Let 〈V,E〉 be an (extended) annotated graph, 4 a partial order
over a set of inferences and d·e : F → F a formula map. We create the labelled (extended)
annotated graph 〈V,E, d·eA〉 as follows.

1. For a vertex xpι where ι = ax(∅;x1, x2), let dxpι eA = dxqe.
2. For a vertex xpι where ι = r(∅;x) is a weakening inference, let dxpι eA be the

associated atomic subformula of dxe.
3. For a vertex ypι where ι = r(x; y) is a quantifier inference, let dypι eA be the associ-

ated atomic subformula of dye.
4. For vertices xpι and yqκ where dyqκeA is defined, ι is a quantifier inference and ι ≺ κ:

Let z1, . . . , zn be the vertices between xpι and yqκ. Then dzieA = dyqκeA for all
i = 1, . . . , n.

5. For adjacent vertices x and y where dxeA is defined and dyeA is not, let dyeA =
dxeA.

Definition 22. The unannotated result of applying Transformations 3, 4 and 5 to a
proof P is the atomic flow graph of P .

Definition 22 defines a function γP transforming a proof into an atomic flow graph.
That is, R ∼γP S holds if the proofs R and S have the same atomic flow graph. Analo-
gously, we can define equivalence relations based on the following abstract proof struc-
tures.

Definition 23 (Atomic flow graph skeleton). An atomic flow graph skeleton 〈V,E〉 is a
directed graph where V is the set of vertices and E the set of edges.

The atomic flow graph relates to the atomic flow graph skeleton as a proof does to
a proof skeleton. Hence, given a proof P and its AFG 〈V,E, d·eA〉, we call 〈V,E〉 the
AFG skeleton of P .

Example 10. The atomic flow graph of P] and its skeleton.

25

3. A Uniform Framework

A

A

A

A

A

A

AA

B B

BB

A

A

A

A

A

A

AA

B B

BB

Note that the partial order in Transformation 5 need not necessarily be an inference
order. As step 4 of the transformation handles the labels of occurrences between axioms
(weakenings) and quantifier inferences, it suffices to know which axioms and weakenings
are consumed by which quantifier inferences. Hence, the partial order induced by the
set of inferences suffices for Transformation 5.

As a consequence, it is possible to construct an atomic flow graph from a proof net,
which will be discussed in more detail in Section 4.1.

Definition 24 (Topological graph reduct). The topological reduct of a directed graph
〈V,E〉 is obtained by contracting adjacent vertices u, v ∈ V where (u, v) ∈ E, (v, u) 6∈ E
and the indegree of v is equal to 1.

In case of a labelled graph with labelling function d·e we have the additional condition
that the vertices exhibit the same label, i.e. due = dve.

Example 11. The original graphs are in the top row and the corresponding reductions
are below.

Besides the already introduced structures, we also consider topologically reduced
versions of the graphs, i.e. reduced AFG and reduced AFG skeleton (of a given proof P).

Example 12. The AFG of P] collapses to two single vertices after reduction.

A B

Example 13. Let P be the proof of the following LK -proof.

A(b) ` A(b)
∃r

A(b) ` ∃xA(x)
∃l∃xA(x) ` ∃xA(x)

26

3.2. Abstractions

Then we have the following AFG (left) and reduced AFG (right) of P .

A(x)

A(b)

A(b) A(b)

A(x)

A(x)

A(x) A(b) A(x)

27

CHAPTER 4
Relationships Between Proof

Structures

4.1 Commutation

In the previous section we introduced various proof structures. The relationship between
some of these structures might be obvious whereas for others it is certainly not. For
instance, the relation between a proof and a proof skeleton is clear as the latter is just
a substructure of the former. However, it is for example not obvious if it is possible to
construct an AFG skeleton from a proof skeleton. We will clarify these relationships.

We say there exists an arrow from A to B, denoted as A → B, if there exists a
function s.t. the respective diagram commutes. Analogously, we say there does not exist
an arrow, denoted as A9 B, if such a function does not exist.

Furthermore, we distinguish proof-based structures (proof, proof skeleton, proof net,
proof net skeleton) and graph-based structures (AFG, AFG skeleton, reduced AFG,
reduced AFG skeleton). We start with the former and show that the natural mappings
commute.

Proposition 5. Let σP (νP) be the projection from a proof to its proof skeleton (proof
net), and σN (νS) the projection from a proof net (proof skeleton) to its proof net skeleton.
Then the following diagram commutes.

Proof Skeleton

Net Net Skeleton

σP

νP νS

σN

Proof. By definition of σP , σN , νP and νS .

29

4. Relationships Between Proof Structures

Proposition 6. Let σG denote the projection from an AFG to its skeleton, and ρG (ρS)
the reduction of a labelled (unlabelled) graph. Furthermore, let σR = ρS ◦ σG. Then the
following diagram commutes.

AFG AFG Skeleton

Reduced AFG Reduced AFG Skeleton

σG

ρG ρS

σR

Proof. As ρG can be seen as a pre-reduction step of ρS , it follows that ρS ◦ σG ◦ ρG =
ρS ◦ σG.

Note that for propositional proofs we would have σR = σG as all vertices of a path
exhibit the same label. In other words, in case of quantifiers we have to reduce the graph
again after skeletonizing (cf. Example 13).

Proposition 7. Let τ1 (τ2, τ3) be the function defined by Transformation 3 (4, 5), and
let the reduction of a labelled graph be denoted by the function ρG. Now let γP = τ3◦τ2◦τ1
and γN = ρG ◦ τ3 ◦ τ1, and let νP be the projection from a proof to its proof net. Then
the following diagram commutes.

Proof AFG

Net Reduced AFG

γP

νP ρG

γN

Proof. We have to show that

ρG ◦ γP = ρG ◦ τ3 ◦ τ2 ◦ τ1 = ρG ◦ τ3 ◦ τ1 ◦ νP = γN ◦ νP

holds. Note that τ2 either attaches a vertex u with indegree 0 to a vertex v s.t. v
then has indegree 1, or inserts vertices with indegree 1. In both cases we have that
the introduced vertices are being contracted in the reduction procedure. Hence, the
reduct of an AFG yields the same result regardless of whether τ2 was applied or not,
i.e. ρG ◦ τ3 ◦ τ2 ◦ τ1 = ρG ◦ τ3 ◦ τ1. Furthermore, as the inference order of a proof is needed
for τ2 only, we have ρG ◦ τ3 ◦ τ1 = ρG ◦ τ3 ◦ τ1 ◦ νP .

Combining Propositions 5, 6 and 7 we get Diagram 4.1. In fact, the arrows depicted
in the diagram are the only abstractions existing between these proof structures. The
rest of this subsection will be devoted to proving this.

First we show a basic property of commuting squares.

Lemma 3. Let the following diagram commute, and assume B 9 C and C 9 B holds.

A B

C D

30

4.1. Commutation

Proof AFG

Skeleton AFG Skeleton

Net Reduced AFG

Net Skeleton Reduced AFG Skeleton

σP

γP

νP σG

ρG

νS

σN

γN

σR

ρS

Figure 4.1: Abstractions between proof structures for LK .

Then there are no other arrows than those depicted in the diagram and those following
from transitivity.

Proof. First we show that the reverse direction of the depicted arrows do not hold. We
prove only one case, all others are treated analogously. Assume C → A, then we have
C → A→ B which contradicts the assumption that C 9 B.

It remains to show that D 9 A holds. Assume D → A holds, then also D → B
which is a contradiction.

Showing the non-existence of the following arrows, which correspond to diagonals of
Figure 4.1, is the most basic step for proving that there are no other arrows, as most of
the other non-existence results follow from these ones. We will see in the next section
(cf. Lemma 4) that these are the only ones needed provided we have a complete com-
muting cube. As we do not have a complete cube here, we have to give counterexamples
in some more cases.

In the following we will write by X to indicate that something follows from Equa-
tion (X) by a transitivity argument of the following form: If A → B and A 9 C hold,
then B 9 C must hold.

Proposition 8. The following holds:

Net9 AFG Skeleton (4.1)
Skeleton9 Reduced AFG (4.2)

AFG9 Net Skeleton (4.3)

Proof. First we prove (4.1). Let R and S be the proofs associated with the following
LK -proofs.

A1 ` A2
wl

B3, A1 ` A2
¬r

B3 ` A2,¬A4

A1 ` A2
¬r

` A2, A4
wl

B3 ` A2,¬A4

31

4. Relationships Between Proof Structures

Hence, R and S have the same proof net, i.e. νP (R) = νP (S). In contrast, the graph
component in the AFG skeleton of R corresponding to the atomic formula B contains
two vertices, and the AFG skeleton of S contains only one vertex corresponding to B,
i.e. σG(γP (R)) 6= σG(γP (S)).

To prove (4.2) let P and Q be proofs differentiated by the predicate symbols only.
Then, on the one hand, P and Q have the same proof skeleton, i.e. σP (P) = σP (Q). On
the other hand, ρG(γP (P)) 6= ρG(γP (Q)) as P and Q contain different atomic formulas,
i.e. P and Q have different reduced AFGs.

To show (4.3) consider the proofs P and Q associated with the following LK -proofs.

A1 ` A2
wl

B3, A1 ` A2
A1 ` A2

wr
A1 ` A2, B3

Then γP (P) = γP (Q) but σN (νP (P)) 6= σN (νP (Q)) as P and Q do not contain the same
inferences, i.e. they have the same AFG but different net skeletons.

The following propositions, viz. Proposition 10, 9 and 11, show the non-existence
of the diagonal arrows for the diagrams in Proposition 5, 6 and 7 s.t. we can apply
Lemma 3.

Proposition 9. The following holds:

Net9 Skeleton (4.4)
Skeleton9 Net by 4.2 (4.5)

Proof. To show (4.4) consider the proofs R and S from the proof of Proposition 8. Then
σP (R) 6= σP (S) but νP (R) = νP (S).

Proposition 10. The following holds:

AFG Skeleton9 Reduced AFG (4.6)
Reduced AFG9 AFG Skeleton by 4.1 (4.7)

Proof. To prove (4.6) let P and Q be proofs differentiated by the predicate symbols
only. Then, on the one hand, P and Q have the same AFG skeleton, i.e. σG(γP (P)) =
σG(γP (Q)). On the other hand, ρG(γP (P)) 6= ρG(γP (Q)) as P and Q contain different
atomic formulas, i.e. P and Q have different reduced AFGs.

Proposition 11. The following holds:

Net9 AFG by 4.1 (4.8)
AFG9 Net by 4.3 (4.9)

Next we show that the cube in Figure 4.1 is in fact not complete, i.e. we do not have
an arrow from Skeleton (Net Skeleton) to AFG Skeleton (Reduced AFG Skeleton). We
are doing so by showing that two of the diagonals of the front face do not exist, and the
remaining ones follow.

32

4.1. Commutation

Proposition 12. The following holds:

Skeleton9 Reduced AFG Skeleton (4.10)
AFG Skeleton9 Net Skeleton by 4.3 (4.11)

Proof. To prove (4.10) let P and Q be the proofs associated with the following LK -
proofs.

A1 ` A2
wl

B ∧ C3, A1 ` A2

A1 ` A2
wl

B3, A1 ` A2

Then both have the same proof skeleton, however, P and Q have different reduced AFG
skeletons as P contains three atomic formulas and Q just two.

Proposition 13. The following holds:

Skeleton9 AFG Skeleton by 4.10 (4.12)
Net Skeleton9 Reduced AFG Skeleton by 4.10 (4.13)

AFG Skeleton9 Skeleton by 4.11 (4.14)
Reduced AFG Skeleton9 Net Skeleton by 4.11 (4.15)

Net Skeleton9 AFG Skeleton by 4.13 (4.16)
Reduced AFG Skeleton9 Skeleton by 4.15 (4.17)

Next we show that we do not have the diagonals on the top and bottom face of the
diagram.

Proposition 14. The following holds:

Skeleton9 AFG by 4.2 (4.18)
AFG9 Skeleton by 4.3 (4.19)

Net Skeleton9 Reduced AFG by 4.2 (4.20)
Reduced AFG9 Net Skeleton by 4.3 (4.21)

It remains to show that we do not have the reverse directions of Proposition 8, and
that we do not have an arrow from Reduced AFG Skeleton to Proof. Furthermore, we
have to show that AFG Skeleton 9 Proof and Reduced AFG Skeleton 9 Net hold.

Proposition 15. The following holds:

AFG Skeleton9 Net by 4.6 (4.22)
Reduced AFG9 Skeleton by 4.21 (4.23)
Net Skeleton9 AFG by 4.20 (4.24)

Reduced AFG Skeleton9 Proof by 4.17 (4.25)

AFG Skeleton9 Proof by 4.22 (4.26)
Reduced AFG Skeleton9 Net by 4.15 (4.27)

33

4. Relationships Between Proof Structures

Note that the above counterexamples used for showing the non-existence of an arrow
can also be formulated by means of the poset of equivalence relations: For instance, let
P,Q be proofs and f, g functions producing a proof net and an AFG skeleton respectively.
If P ∼f Q and P �g Q then ∼f � ∼g. This is equivalent to saying that there is no
arrow from Net to AFG Skeleton. In fact, we have the following correspondence between
commuting diagrams and the refinement of equivalence relations.

Proposition 16. Assume the following diagram holds. Then B → C iff ∼f � ∼g.

A B

C

g

f

Proof. Follows immediately from Proposition 3: B → C iff g = h ◦ f iff ∼f � ∼g.

4.2 Annotated weakening
As already shown in the previous section, it is not possible to construct an AFG skeleton
from a proof skeleton. This is due to the weakening rules where we abstract information
about the atomic formulas involved in the weakening formula when skeletonizing.

Example 14. Given the following proof and its skeleton where A, B and C are atomic
formulas.

A1 ` A2
wl

B ∧ C3, A1 ` A2

· 1 ` · 2
wl

· 3, · 1 ` · 2

In the proof itself we know how many atomic formulas are involved, whereas for the
proof skeleton we just know that there is a weakening formula, but we do not know the
structure of it. Therefore it is not possible to create a vertex for every occurrence of an
atomic formula when given a proof skeleton.

We can circumvent this issue by considering weakening rules annotated with formula
skeletons.

Definition 25 (Formula skeleton). Let F be a formula. Then deleting the atomic
formulas from the syntax tree of F yields the formula skeleton of F , denoted as ‖F‖.

Example 15. Let the formula F be A⊃ (B⊃C). Then the syntax tree and the formula
skeleton of F are of the following form.

⊃

A ⊃

B C

⊃

· ⊃

· ·

34

4.2. Annotated weakening

Note that in Transformation 3 the mapping d·e is only needed for the weakening
rules to obtain the atomic subformulas. In a calculus where the weakening inferences
are annotated with formula skeletons of the weakening formulas, the mapping d·e would
not be necessary for constructing the graph obtained by Transformation 3. Hence, we
define LK‖·‖ to be the sequent calculus obtained from LK by replacing the weakening
rules with the following annotated weakening rules.

Γ ` ∆
w‖F‖l(F, k),Γ ` ∆

Γ ` ∆
w‖F‖rΓ ` ∆, (F, k)

Note that the logical connectives in the formula skeletons are necessary for deter-
mining the polarity of atomic formulas, which in turn is essential for the direction of the
arcs in an AFG.

Now with the concept of annotated weakening rules we can revoke Equations (4.12)
and (4.13) for LK‖·‖ and prove the following result.

Proposition 17. Let τ1 (τ2) be the function defined by Transformation 3 (4), and let
the reduction of an AFG skeleton denoted by the function ρS. Now let γS = τ2 ◦ τ1
and γNS = ρS ◦ τ1, and let νS be the projection from a proof to its proof net. Then the
following diagram commutes.

Skeleton AFG Skeleton

Net Skeleton Reduced AFG Skeleton

γS

νS ρS

γNS

Proof. We have to show that

ρS ◦ γS = ρS ◦ τ2 ◦ τ1 = ρS ◦ τ1 ◦ νS = γNS ◦ νS

holds. Note that τ2 either attaches a vertex u with indegree 0 to a vertex v s.t. v
then has indegree 1, or inserts vertices with indegree 1. In both cases we have that
the introduced vertices are being contracted in the reduction procedure. Hence, the
reduct of an AFG yields the same result regardless of whether τ2 was applied or not,
i.e. ρS ◦ τ2 ◦ τ1 = ρS ◦ τ1. Furthermore, as the inference order of a proof is needed for τ2
only, we have ρS ◦ τ1 = ρS ◦ τ1 ◦ νP .

Note that the annotated weakening rules add information to skeletonized proof-
based structures only. In case of proofs and proof nets the formula skeleton is implicitly
given by the formula map, and graph-based structures do not contain information about
inferences. Hence, the commutation results of the previous section are still valid, and
combined with Proposition 17 we get the following commutative diagram for LK‖·‖.

Figure 4.2 illustrates three different dimensions of abstraction. First, we have the
σ-functions for abstracting formulas, i.e. skeletonizing proof structures. Second, trans-
formations of proof-based structures into graph-based structures, denoted by the γ-
functions. Third, the ν- and ρ-functions, for abstracting the order of inferences and

35

4. Relationships Between Proof Structures

Proof AFG

Skeleton AFG Skeleton

Net Reduced AFG

Net Skeleton Reduced AFG Skeleton

σP

γP

νP σG

ρG
γS

νS

σN

γN

σR
γNS

ρS

Figure 4.2: Abstractions between proof structures for LK‖·‖.

reducing graphs respectively. Both can be seen as removal of what is called in lit-
erature bureaucracy. As for proof nets, where we do not mind the specific order of
inferences (cf. identity of proofs), we reduce the length of paths for AFGs by applying
the ρ-functions. However, we do not alter the basic structure of the graph.

Note that Proposition 8 still holds for LK‖·‖. Thus, by applying the following
Lemma 4 we get that the arrows depicted in Figure 4.2 are the only ones.

Lemma 4. Let the following diagram commute, and assume A 9 H, G 9 B and
F 9 C.

E F

A B

G H

C D

Then there are no other arrows than those depicted in the diagram and those following
from transitivity.

Proof. The proof idea is to show that the diagonals of every face of the cube do not exist
s.t. we can apply Lemma 3.

We treat only one face of the cube, all others are shown analogously. Assume C → B
holds then G → C → B holds which contradicts the initial assumption. Now assume
B → C holds then F → B → C would hold as well, contradicting the initial assumption.
Hence we have C 9 B and B 9 C, that is, we can apply Lemma 3 to the commuting
square A−B − C −D.

Furthermore, we have to show that the reverse directions of the non-existent arrows
in the assumption do not exist either, viz. H 9 A, B 9 G and C 9 F . As H 9 C

36

4.3. Equivalence classes

holds we have H 9 A. As B 9 C holds we have B 9 G. Finally, as C 9 H holds we
have C 9 F .

It remains to show that D 9 E holds. Assume D → E, then we have D → E → A
contradicting Lemma 3.

4.3 Equivalence classes
This section is about determining the cardinalities of the equivalence classes generated
by the abstractions defined in Section 4.1 and 4.2. Hence, we deal with the question of
how many instances of a given proof structure induce the same abstraction.

For the following results we distinguish between finite (n) and infinite (∞) cardi-
nalities, furthermore we consider the sequent calculus LK‖·‖ with annotated weakening
rules as defined in Section 4.2. Note that the following results also hold for LK except
those where we do not have abstractions in LK , viz. skeleton to AFG skeleton and net
skeleton to reduced AFG skeleton.

Definition 26 (Path graph). A path graph 〈V,E〉 is a tree having the following shape
where V = {v0, . . . , vn} and E = {e1, . . . , en}.

v0
e1−→ v1

e2−→ · · · en−→ vn

Note that in a path graph, all arcs are directed in the same direction.

Lemma 5. Let F be an arbitrary formula and k the number of atomic formulas contained
in F . There exists a proof ΠF of F ` F s.t. the AFG of ΠF is a forest consisting of k
path graphs.

Proof. By induction on the complexity of F .
If F is an atomic formula, then the AFG of ΠF contains a single path graph F −→ F .
Let F be of the form G⊃H where G and H are arbitrary formulas. Then the proof

of F ` F has the following form

ΠG

G ` G

ΠH

H ` H ⊃l
G⊃H,G ` H ⊃r
G⊃H ` G⊃H

where ΠG and ΠH , by the induction hypothesis, consist of kG and kH path graphs
respectively. As the atomic formulas in G and H have the same polarities in ΠF as in
ΠG and ΠH , the path graphs of ΠG and ΠH are just lengthened. That is, the path
graphs of ΠG and ΠH are subgraphs of the AFG of ΠF . Furthermore, the AFG of ΠF

consists of kG + kH path graphs which coincides with the number of atomic formulas in
G⊃H. The connectives ∧, ∨, ¬, ∀ and ∃ are treated analogously.

37

4. Relationships Between Proof Structures

Definition 27. Let ΠF be a proof of F ` F where F is an arbitrary formula. Then ΠF
n

denotes the LK -proof consisting of n consecutive applied cut inferences. The equivalent
proof is denoted as PFn .

n

ΠF

F ` F

ΠF

F ` F cut
F ` F

ΠF

F ` F
cut

F ` F

F ` F

ΠF

F ` F cut
F ` F

Lemma 6. Let F be an arbitrary formula and k the number of atomic formulas contained
in F . The AFG of a proof of PFn is a forest consisting of k path graphs.

Proof. Follows from Lemma 6 and the definition of Transformation 3.

Proposition 18. Let W be an AFG, X an AFG skeleton, Y a proof net and Z a proof
net skeleton.

|[W]ρG | =∞ (4.28)
|[X]ρS | =∞ (4.29)
|[Y]γN | =∞ (4.30)
|[Z]γNS | =∞ (4.31)

Proof. Let Π be an arbitrary proof and let S = Γ ` ∆, F be a sequent in Π where F is
quantifier-free and Π ′ the subproof of Π proving S. Note that such a sequent exists in
every proof since we require atomic axioms. The case for F,Γ ` ∆ is symmetric. Now
consider the following proof Π ′n.

Π ′

Γ ` ∆, F

ΠF
n

F ` F
cut

Γ ` ∆, F
By Lemma 6, the AFG GFn of ΠF

n consists of k path graphs where k is the number
of atomic subformulas in F . In particular, as F is quantifier-free, all adjacent vertices
exhibit the same label, i.e. the reduct of GFn consists of k single vertices. Therefore, the
reducts of the AFGs of Π ′n and Π are equal.

It is clear that there exist infinitely many proofs Π ′n, all exhibiting the same reduced
AFG.

Similar arguments hold for (4.29), (4.30) and (4.31).

38

4.3. Equivalence classes

There is a strong indication that we get finite cardinalities for the equivalence classes
in Proposition 18 for cut-free proofs. This is due to the fact that cut inferences are
needed to construct arbitrarily long path graphs.

Proposition 19. Let W be a proof, X a proof net, Y an AFG and Z a reduced AFG.

|[W]σP | =∞ (4.32)
|[X]σN | =∞ (4.33)
|[Y]σG | =∞ (4.34)
|[Z]σR | =∞ (4.35)

Proof. Since there exist an infinite number of predicate symbols, there are infinitely
many proofs exhibiting the same proof skeleton. Analogous arguments hold for (4.33),
(4.34) and (4.35).

Proposition 20. Let X be a proof and Y a proof skeleton.

|[X]νP | = n (4.36)
|[Y]νS | = n (4.37)

Proof. As the number inferences contained in a proof P is finite, there are only finitely
many permutations of these inferences. Consequently, there are finitely many possible
partial orders of the inferences. An analogous argument holds for (4.37).

Proposition 21. Let X be a proof and Y a proof skeleton.

|[X]γP | = n (4.38)
|[Y]γS | = n (4.39)

Proof. Let G be the AFG of a proof P . Since P is finite, also G is finite, i.e. the
finite number of vertices in G can only result in a finite number of possible sequents.
Furthermore, there are only finitely many permutations of these sequents. An analogous
argument holds for (4.39).

An overview of Propositions 18, 19, 20 and 21 is illustrated in Figure 4.3.

39

4. Relationships Between Proof Structures

Proof AFG

Skeleton AFG Skeleton

Net Reduced AFG

Net Skeleton Reduced AFG Skeleton

∞

n

n ∞
∞n

n

∞

∞

∞
∞

∞

Figure 4.3: Cardinalities of the equivalence classes induced by the abstractions for LK‖·‖.

40

CHAPTER 5
Most General Proof Nets

One of the advantages of defining a uniform framework of proof structures is the ability
to generalize algorithms in an appropriate manner. In this chapter we are doing so by
generalizing an algorithm defined on proof skeletons in [9]. Krajíček and Pudlák defined
an algorithm for constructing a proof from a given cut-free proof skeleton S and a given
end-sequent Γ ` ∆, and derived bounds on the maximal depth of terms used in the
proof. From a different point of view, this algorithm produces a most general proof
s.t. every proof of Γ ` ∆ with skeleton S is an instance of it. We generalize this concept
to proof net skeletons, and get most general proof nets with a cut-free net skeleton.

Before defining the algorithm we have to introduce unification which is needed within
the algorithm.

5.1 Unification

Besides the unification problem itself we define the notions substitution, unifier and most
general unifier as usual.

Definition 28 (Unification problem). A unification problem U is given by a set of pairs
of terms (s1, t1), . . . , (sn, tn).

Definition 29 (Substitution). A substitution is a mapping σ : V → T where V is a set
of variables and T a set of terms s.t. xσ 6= x for finitely many x ∈ V .

Definition 30 (Unifier). A solution of a unification problem U is given by a substitution
σ s.t. sσ = tσ for all (s, t) in U . Then σ is called unifier of U .

Definition 31 (Most general unifier). Let U be a unification problem and σ0 a unifier
of U . Then σ0 is a most general unifier (mgu) of U if every unifier σ of U can be
decomposed into σ = σ0σ1 for some substitution σ1.

41

5. Most General Proof Nets

The following bounds for the maximal depth of unified terms are extracted from an
algorithm for finding most general unifiers (Chang and Lee [5]). For the proof we refer
to [9].

Let t be a term. Then dp(t) denotes the depth of t and |t| the size of t, i.e. the
number of symbols in t.

Proposition 22 (Krajíček and Pudlák [9]). Let U be a unification problem. Let T be
the set of all terms in U and n the number of variables in U . Then every most general
unifier σ of U satisfies the following inequalities:

max
t∈T

dp(tσ) ≤
∑
t∈T
|t| (5.1)

max
t∈T

dp(tσ) ≤ (n+ 1) ·max
t∈T

dp(t) (5.2)

5.2 Computing a most general proof net with a cut-free
net skeleton

The algorithm defined in Krajíček and Pudlák [9] reduces the existence of a proof of a
given sequent with a given cut-free proof skeleton to a unification problem with certain
restrictions. The inequalities in Proposition 22 are then applied to a most general unifier
of the unification problem to get bounds on the maximal depth of terms in a proof with
a given skeleton and a given end-sequent. Such a restricted unification problem U�R is
given by a unification problem U and a set R of pairs (a, c) where a is a variable and c
a constant. A unifier σ of U is a solution of U�R if aσ does not contain c for (a, c) in R.
By adding certain restrictions (a, α) where a is a free variable and α an eigenvariable,
the existence of a proof with a given skeleton and a given end-sequent can be reduced
to a restricted unification problem. However, this set of restrictions is dependent on the
specific inference order. To be more precise, a pair (a, α) is contained in R if α is the
eigenvariable of an LK -inference J and a occurs below J . It is clear, that this set of
restrictions is responsible for satisfying the eigenvariable condition. As a consequence,
we cannot use this concept to find most general proof nets where we do not have an
inference order at hand.

However, we show that the algorithm in [9] for deskeletonizing cut-free proof skeletons
can also be applied to proof net skeletons, and that we can prove, with a slightly different
approach, the same bounds for cut-free proof nets as for cut-free proofs. In contrast to
Krajíček and Pudlák, we use an ordinary first-order unification problem U and show
that every most general unifier of U produces a proof with inferences I, inference order
4 and end-sequent Γ ` ∆ provided there exists a corresponding proof. Note that we do
not have a one-to-one correspondence between the solvability of the unification problem
and the existence of a proof of a given sequent with a given skeleton (see Remark 2).
However, one direction suffices to show the existence of a most general proof net, and to
prove the before-mentioned bounds.

In the following, we will distinguish between terms and semiterms: while terms
contain free variables only, semiterms may also contain bound variables.

42

5.2. Computing a most general proof net with a cut-free net skeleton

Note that we can identify, from a given set of inferences, those indices occurring in
the end-sequent. That is, for a proof P = 〈F, I,4, d·e〉 we define XI to be the set of
indices contained in the end-sequent of P .

Definition 32. Given a set of inferences I we denote the set XI = {x | @κ s.t. x ∈
Aux(κ)} as the end-indices of I.

Given a cut-free set of inferences I and an indexed sequent Γ ` ∆ we can construct
a formula map by assigning the formulas in Γ ` ∆ to the end-indices and propagating
the formulas bottom-up.

Algorithm 1. Let I be a cut-free set of inferences and Γ ` ∆ an indexed sequent. We
construct a formula map d·e as follows:

1. Assign the formulas of Γ ` ∆ to the indices in XI accordingly. If the set of indices
in Γ ` ∆ does not match XI , then there does not exist a proof of Γ ` ∆ with
inferences I.

2. For an inference ι where dye is defined for every y ∈ Princ(ι), set dxe for every
x ∈ Aux(ι) accordingly. If ι is a quantifier inference, introduce a new free variable.

Definition 33 (Variable-distinct map). A formula map is called variable-distinct w.r.t. I
if a new free variable is introduced at every quantifier inference. A free variable intro-
duced at a weak quantifier inference is called weak variable.

If there exists a proof of Γ ` ∆ with inferences I, then Algorithm 1 constructs
a variable-distinct map. Furthermore, it produces a map which is correct w.r.t. all
inferences except axioms.

Definition 34 (Semi-correct map). A formula map d·e is semi-correct w.r.t. I if d·e is
correct w.r.t. ι for every ι ∈ I where ι is not an axiom inference. Furthermore, for an
axiom inference ax(∅;x, y) we require that dxe = P (s1, . . . , sn) and dye = P (t1, . . . , tn).

Proposition 23. If there exists a proof of Γ ` ∆ with a cut-free set of inferences I,
then Algorithm 1 yields a variable-distinct and semi-correct map.

Proof. As every inference uniquely determines the formulas (up to the introduction of
variables) for the auxiliary indices from a given principal formula, we end up with axioms
whose formulas only differ w.r.t. terms, i.e. d·e is semi-correct. Furthermore, as we
introduce a new free variable for every quantifier inference we get a variable-distinct
map.

Now given a cut-free set of inferences and a semi-correct map, we can construct a
unification problem U s.t. U has a solution if there exists a corresponding proof.

For simplicity we use Γ ` ∆ to denote the result of applying d·e to XI where d·e is
a formula map and I a set of inferences.

43

5. Most General Proof Nets

Definition 35. Let d·e be a semi-correct map with end-sequent Γ ` ∆. We construct a
unification problem U as follows:

(i) Eigenvariables, bound variables and free variables of Γ ` ∆ are considered to be
constants.

(ii) Weak variables are the variables of U .
(iii) For every semi-correct axiom P (s1, . . . , sn) ` P (t1, . . . , tn) the pair (si, ti) is con-

tained in U for i = 1, . . . , n.

Lemma 7. Let 4 be a partial order over a cut-free set of inferences I and d·e a semi-
correct and variable-distinct map. If there exists a proof 〈F, I,4, d·eP 〉, then d·eP is
obtained from d·e by replacing weak variables with suitable terms and renaming eigen-
variables.

Proof. As d·e is semi-correct and I is cut-free we have that every formula is uniquely
determined up to the terms introduced at quantifier inferences. Furthermore, as d·e is
variable-distinct we can replace every free variable in d·e by the corresponding term in
d·eP .

Lemma 8. Let 4 be a partial order over a cut-free set of inferences I and d·e a semi-
correct and variable-distinct map. If there exists a proof with I and 4, then there exists
a unifier σ of U .

Proof. Follows from the definition of U and Lemma 7.

Remark 2. Note that the converse direction of Lemma 8 does obviously not hold in
general, just consider the following simple counterexample.

F (a)1 ` F (b)2
∃l
∃xF (x)3 ` F (b)4

∃r
∃xF (x)5 ` ∃xF (x)6

As we already mentioned above, a fine-grained construction of the set of restrictions for
the unification problem is required in order to get the second direction. This construc-
tion is heavily dependent on the specific inference order, and since we are interested in
generalizing this concept to proof net skeletons where we do not have a specific inference
order at hand we avoid such a dependent set of restrictions.

However, if there exists a proof of Γ ` ∆ with a given cut-free set of inferences and
a given inference order, we can show that any most general unifier of the associated
unification problem produces a regular proof.

Definition 36 (Regular map). Let 4 be a partial order over a set of inferences I. A
formula map is called regular w.r.t. 〈I,4〉 if

(i) all eigenvariables are distinct, and

44

5.2. Computing a most general proof net with a cut-free net skeleton

(ii) an eigenvariable α of an inference ι only occurs above ι.

Lemma 9. Let 4 be a partial order over a cut-free set of inferences I. Furthermore, let
d·e be a semi-correct and variable-distinct map with end-sequent Γ ` ∆, U the associated
unification problem and σ a most general unifier of U . If there exists a proof of Γ ` ∆
with I and 4, then d·eσ is eigenvariable-preserving, regular and correct.

Proof. By definition of U we have that d·eσ is correct.
Now assume d·eσ is not eigenvariable-preserving. Then there exist inferences ι ≺ κ

s.t. ι is a strong quantifier inferences with eigenvariable α and there is an index x ∈
Princ(κ) s.t. dxeσ contains α and x is not consumed by ι, i.e. there does not exist a
λ < ι s.t. x ∈ Aux(λ). As d·e is variable-distinct and α is considered to be constant in
U , there exists a weak variable a in dxe s.t. aσ = t(α). As σ is a mgu of U there does not
exist a unifier σ′ of U s.t. aσ′ = t(b) where b is a variable. Hence α must be contained
in aσ in order to unify U and consequently to get correct axioms. This in turn means
that there does not exist a proof with I and 4.

Assume d·eσ is not regular. Note that all eigenvariables are pairwise distinct as d·e
is variable-distinct and eigenvariables are considered to be constants in U . Thus, there
exist inferences κ ≺ ι s.t. ι is a strong quantifier inference with eigenvariable α and α is
contained in dxeσ for some x ∈ Princ(κ). As d·e is variable-distinct and α is considered
to be constant, there must be a weak variable a in dxe s.t. aσ = t(α). As σ is a mgu
of U there does not exist a unifier σ′ of U s.t. aσ′ = t(b) where b is a variable. Thus
α must be contained in aσ in order to unify U and to get correct axioms. However, α
must then be contained in the lower sequent of ι, which cannot be the case as d·eσ is
eigenvariable-preserving.

Lemma 9 shows that there exists a most general proof net with a given cut-free
net skeleton and a given end-sequent. Furthermore, by combining Proposition 23 with
Lemmata 8 and 9 we can apply the inequalities in Proposition 22 to the maximal depth
of terms in proof nets.

Theorem 3. Suppose Γ ` ∆ has a cut-free proof P with proof net skeleton PNS = 〈F, I〉.
Let T be the set of maximal semiterms of Γ ` ∆, let n be the number of inferences in I
and m the number of weak quantifier inferences. Then there exists a proof net P ′N of a
proof P ′ with proof net skeleton PNS s.t. the depth of every semiterm in PN is bounded
from above by

n ·
∑
t∈T
|t| and (5.3)

(m+ 1) ·max
t∈T

dp(t). (5.4)

Proof. Let P = 〈F, I,4, d·e〉. By Algorithm 1 we can construct a variable-distinct map
d·ev from PNS and Γ ` ∆. As PNS is the proof net skeleton of P we have by Lemma 8
that the associated unification problem U is unifiable. Furthermore, by Lemma 9, every

45

5. Most General Proof Nets

mgu of U produces a map d·evσ s.t. P ′ = 〈F, I,4, d·evσ〉 is a proof and P ′N = 〈F, I, d·evσ〉
is the proof net of P ′.

(5.3) As we introduce a new variable at every quantifier inference (and not more com-
plex terms) we have that

∑
t∈T |t| is a bound on the sum of sizes of maximal semiterms

for any possible sequent. Furthermore, as there are n inferences and therefore n sequents
we have that n ·

∑
t∈T |t| is an upper bound on the sum of sizes of the terms in the uni-

fication problem, and by Proposition 22 an upper bound on the maximal depth of the
unified terms.

(5.4) Note that maxt∈T dp(t) is an upper bound on the depth of any semiterm oc-
curring in the variable-distinct map d·ev. Therefore, and since m is equal to the number
of variables in U we have that Proposition 22 implies (m+ 1) ·maxt∈T dp(t).

46

CHAPTER 6
Conclusion

This thesis is about gaining insights into the relationship between proofs, proof skeletons,
proof nets and atomic flow graphs in the context of first-order logic and sequent calculi.
We showed that it is, under certain conditions, useful to deviate from the classical
definition of proofs. To be more precise, in our setting the representation of proofs
as tuples allowed a straightforward definition of abstractions, and led to a first insight
into the relationship between these proof structures. This tuple-based representation
generates a uniform framework consisting of several abstract proof structures such that
every pair of proof structures has a common abstraction. From a different point of view,
this framework can be seen as a lattice where the order is given by the abstractions. The
maximum and minimum of this lattice are given by the proof and the reduced atomic flow
graph skeleton respectively. Note that we have this lattice only if we consider annotated
weakening rules, that is, weakening rules annotated with the formula skeletons of the
weakening formulas. For the standard sequent calculus we have that a proof skeleton
(net skeleton) cannot be transformed into an AFG skeleton (reduced AFG skeleton).

Furthermore, we saw that the defined proof structures generate equivalence relations.
These equivalence relations in combination with a so-called refinement order form a poset
of equivalence relations. Therefore, if in the context of questions around the identity
of proofs one introduces a new equivalence relation ∼ defined on proofs, one can use
this poset in order to relate ∼ to already existing ones. We also saw a correspondence
between commuting diagrams and the refinement order.

These equivalence relations in turn generate equivalence classes. We showed, on the
one hand, that there exists an infinite number of proofs having the same proof skeleton.
On the other hand, for proof nets and atomic flow graphs there exist finitely many
corresponding proofs. Furthermore, we showed that, in general, there are infinitely
many atomic flow graphs having the same topological reduct. We suggested that this
would not be the case for cut-free proofs, however, a proof of that is not in the scope of
this thesis.

47

6. Conclusion

Finally, we saw an application of the uniform framework. We generalized an al-
gorithm defined by Krajíček and Pudlák [9] for proof skeletons to proof net skeletons.
By doing so, we derived the same bounds on the minimal size of cut-free proof nets as
Krajíček and Pudlák showed for cut-free proofs, and we showed that there exists a most
general proof net with a given cut-free proof net skeleton.

Further work in this direction would include studying the properties of the equiva-
lence classes generated by the abstractions. For instance, for proof nets we have that
two proofs induce the same proof net if one can be obtained from the other by certain
rule transpositions. A similar result would interesting for atomic flow graphs, and also
for the rest of the equivalence classes.

A starting point for related work would also be a more fine-grained investigation
of the cardinalities of the equivalence classes. On the one hand, the influence of cuts,
that is, the investigation of the cardinalities in a cut-free setting, on the other hand, the
determination of concrete bounds on the cardinalities.

Another open question concerns the algorithm for computing a most general proof
net. In contrast to Krajíček and Pudlák [9], we used an ordinary unification problem
without restrictions since these restrictions are dependent on the inference order. That
is, there are different sets of restrictions depending on the inference order. However,
does there exist a minimal set of restrictions common to all inference orders, and does
this minimal set of restrictions yield a proof?

48

Bibliography

[1] S. R. Buss. The undecidability of k-provability. Annals of Pure and Applied Logic,
53(1):75–102, 1991.

[2] A. Carbone. Interpolants, cut elimination and flow graphs for the propositional
calculus. Annals of Pure and Applied Logic, 83(3):249–299, 1997.

[3] A. Carbone. Logical structures and genus of proofs. Annals of Pure and Applied
Logic, 161(2):139–149, 2009.

[4] A. Carbone and S. Semmes. A graphic apology for symmetry and implicitness.
Oxford University Press, 2000.

[5] C.-L. Chang and R. C.-T. Lee. Symbolic logic and mechanical theorem proving.
Academic press, 1973.

[6] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.

[7] J.-Y. Girard. Quantifiers in linear logic II. Nuovi problemi della logica e della
filosofia della scienza, 2:1, 1991.

[8] W. D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13(2):225–230, 1981.

[9] J. Krajíček and P. Pudlák. The number of proof lines and the size of proofs in first
order logic. Archive for Mathematical Logic, 27(1):69–84, 1988.

[10] G. Kreisel. Proof theory: some personal recollections. Appendix to [14].

[11] V. P. Orevkov. Reconstitution of the proof from its scheme (russian abstract). 8th
Soviet Conference on Mathematical Logic, 1984.

[12] E. Robinson. Proof nets for classical logic. Journal of Logic and Computation, 13
(5):777–797, 2003.

[13] L. Straßburger. What is the problem with proof nets for classical logic? In Pro-
grams, Proofs, Processes, 6th Conference on Computability in Europe, CiE 2010.
Proceedings, volume 6158 of LNCS, pages 406–416. 2010.

[14] G. Takeuti. Proof theory. North-Holland, 2nd edition, 1987.

49

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	First-order predicate calculus
	A survey of abstract proof structures

	A Uniform Framework
	Proof
	Abstractions

	Relationships Between Proof Structures
	Commutation
	Annotated weakening
	Equivalence classes

	Most General Proof Nets
	Unification
	Computing a most general proof net with a cut-free net skeleton

	Conclusion
	Bibliography

