
Gödel’s Incompleteness Theorems

Stefan Hetzl
stefan.hetzl@tuwien.ac.at

Vienna University of Technology

Summer Term 2024

stefan.hetzl@tuwien.ac.at

ii

Contents

1 Computability 5

1.1 The partial recursive functions . 5

1.2 Undecidability . 9

1.3 Coding pairs, tuples, and trees . 10

1.4 The enumeration theorem . 13

1.5 Recursively enumerable sets . 17

2 Arithmetical definability 19

2.1 The arithmetical hierarchy . 19

2.2 Coding finite sets and sequences . 22

2.3 Definability and computability . 24

2.4 Coding formulas . 26

2.5 On the definability of truth . 29

3 Arithmetical theories 33

3.1 Theories . 33

3.2 Robinson’s minimal arithmetic Q . 36

3.3 Representing computation in Q . 39

3.4 Coding proofs . 42

3.5 The first incompleteness theorem . 43

3.6 Open induction . 45

3.7 Σ1 induction . 47

3.8 The derivability conditions . 49

3.9 The second incompleteness theorem . 51

4 Further Topics 55

4.1 Provability logic . 55

4.2 Presburger arithmetic . 57

iv

Introduction

Gödel’s incompleteness theorems are among the most important results in mathematical logic.
In order to fully appreciate their significance, it is necessary to explain the historical background.
At the turn from the 19th to the 20th century, several paradoxes surfaced in the foundations
of mathematics, leading to increasing uncertainty concerning the solidity of these foundations.
There have been a number of reactions to that situation, the most far-reaching of them was
Hilbert’s.

At the beginning of the 1920ies, Hilbert put forward a proposal for the foundations of math-
ematics which is now called “Hilbert’s programme”. This programme is based on a simple
but striking observation which underlies all formalisation efforts, in particular also Russel and
Whitehead’s Principia Mathematica: in mathematics we talk about infinite sets, real numbers,
real-valued functions, operators transforming such functions, etc. in short: about abstract, in-
finite objects. However, we do so in an inherently finite way; every proof is a finite sequence
of symbols, taken from some finite set, every theory is a finite succession of such proofs. What
we say and prove about such objects is thus inherently finite. For Hilbert, the part of mathe-
matics which deals with elementary properties of finite sequences of symbols was relying only
on a purely intuitive basis. Their elementary properties and relations are immediate and not
mediated by logic. Therefore they are not susceptible to the possibility of a contradiction.
Elementary statements about such sequences thus form a secure basis for the foundations of
mathematics. Hilbert proposed to use this basis for giving an axiomatic formalisation of all of
mathematics and to prove this formalisation consistent, i.e., to show that no contradiction can
arise based on consideration of finite sequences of symbols alone. Thus, so Hilbert thought, one
could justify the use of abstract concepts in mathematics.

However, this hope was shattered by Gödel’s incompleteness theorems, which were published
in 1931. Informally, they can be stated as follows:

Theorem (First Incompleteness Theorem). Let T be a consistent and axiomatisable theory
“containing arithmetic”, then there is a sentence σ s.t. T ⊬ σ and T ⊬ ¬σ.

Theorem (Second Incompleteness Theorem). Let T be a consistent and axiomatisable theory
“containing arithmetic”, then T ⊬ ConT .

Without explaining these statements in detail, let us just note that the conditions imposed on T
in these two theorems are not identical but, in both cases, encompass all situations envisaged by
Hilbert in his programme to prove consistency statements. The second incompleteness theorem
destroys Hilbert’s programme, for if a theory cannot prove its own consistency, then an even
weaker theory, for example one that speaks only about finite sequences of symbols, cannot prove
it either. Thus, after publication of the incompleteness theorems, Hilbert’s programme had to
be given up.

Nevertheless, the investigation of the logical foundations of mathematics that has been carried

1

out since, while not leading to consistency proofs as envisaged by Hilbert, has led to an improve-
ment of our understanding which was sufficient for dissipating doubts about the consistency of
mathematical reasoning. Gödel’s incompleteness theorems have become a cornerstone of logic
(in mathematics, philosophy, and computer science). The proof techniques introduced by Gödel
in these results, arithmetisation (also called “Gödelisation”) in conjunction with diagonalisation,
have become central for many results in mathematical logic.

This course is designed as a second course in mathematical logic, centred around the incomplete-
ness theorems. We are assuming passive and active knowledge of first-order logic, in particular,
the syntax and semantics of formulas, proof calculi, models, and the completeness theorem.
We will take the incompleteness theorems as central aims of this course. However, we will not
proceed there in the most direct way possible. Instead, we take them as occasion to study
important notions and results surrounding them, in particular, in computability theory and
formal theories of arithmetic.

The proof techniques of arithmetisation and diagonalisation form the backbone of this course.
Along this backbone we will proceed with topics of increasing complexity culminating in strong
versions of the incompleteness theorems. We will start with studying basic computability theory
in Chapter 1. On the one hand, this allows to present these proof techniques in a comparatively
simple context. On the other hand, the results of this chapter lay imporant groundwork for later
chapters. In the first chapter we will not yet speak about logic in the narrow sense. In particular,
formulas will only enter the picture once we start with Chapter 2. Chapter 2 is centred around
the question which sets can be defined by (which classes of) arithmetical formulas. Naturally,
this leads us to working with formulas, but not yet with proofs. Consequently the only model
of interest here will be the standard model N of the natural numbers. In the main chapter of
this course, Chapter 3 on arithmetical theories, we will also work with proofs and non-standard
models of arithmetic. We will study several arithmetical theories in order of increasing strength
and harvest various versions of the incompleteness theorems as we go. The final Chapter 4
collects some additional results and remarks that provide complementary perspectives on the
topics treated in this course.

As further literature, [4] can be recommended as a compact presentation of the incompleteness
theorems and [1] as a comprehensive reference on theories of arithmetic. Furthermore, [2]
provides a more model-theoretic perspective on theories of arithmetic and [6, 3] are useful for
background in computability theory. [5] is a good introduction to provability logic. These
lecture notes owe a debt to all of these sources.

2

Bibliography

[1] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Springer, 1993.

[2] Richard Kaye. Models of Peano Arithmetic, volume 15 of Oxford Logic Guides. Clarendon
Press, 1991.

[3] Piergiorgio Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., 1989.

[4] Craig Smorynski. The Incompleteness Theorems. In J. Barwise, editor, Handbook of Math-
ematical Logic, pages 821–865. North-Holland, 1977.

[5] Craig Smoryński. Modal logic and self-reference. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, pages 1–53. Springer, 2004.

[6] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer, 1987.

3

4

Chapter 1

Computability

Computability theory is, along with proof theory, set theory, and model theory, one of the four
main areas of mathematical logic. The incompleteness theorems are strongly connected, both
historically and mathematically, to central notions and techniques of computability theory. We
will therefore start this lecture on the former with a brief introduction to the latter. The aim
of this chapter is to prove the existence of a recursively enumerable but undecidable set. From
this result we will soon be able to obtain a weak version of the first incompleteness theorem
as a corollary. As we go along, we pick up some notions, in particular concerning coding, also
called arithmetisation or “Gödelisation”, that will be useful later on.

1.1 The partial recursive functions

One approach to defining the set of functions which are computable in the intuitive sense is to
start “from below”: define some functions which are obviously computable, then define closure
operators which transform computable functions in computable functions. We will follow this
approach here.

Definition 1.1. The basic functions are:

1. the constant (nullary function) 0 ∈ N,

2. the successor function S : N → N, x 7→ x+ 1,

3. for all k ≥ 1, 1 ≤ i ≤ k, the projection function Pki : Nk → N : (x1, . . . , xk) 7→ xi.

All of the basic functions are obviously computable.

Definition 1.2. Let f : Nn → N, g1 : Nk → N, . . . , gn : Nk → N. Then the function obtained
by composition of f with g1, . . . , gn is

h = Cn[f, g1, . . . , gn] : Nk → N, x 7→ f(g1(x), . . . , gn(x)).

If n = 1, then Cn[f, g] is usually written as f ◦g. If f, g1, . . . , gn are computable, then so is h: in
order to compute h, we first compute yi = gi(x) for i = 1, . . . , n which is possible by assumption
and then we compute f(y1, . . . , yn) which is, again, possible by assumption. Another way to
put the above definition is to say that, for k, n ∈ N, Cnkn is an operator, transforming functions
into functions, i.e., Cnkn is of type (Nn → N)× (Nk → N)n → (Nk → N).

5

Definition 1.3. Let f : Nk → N and g : Nk+2 → N. Then the function obtained by primitive
recursion of f and g is Pr[f, g] = h : Nk+1 → N defined by

h(x, 0) = f(x), and

h(x, y + 1) = g(x, y, h(x, y)).

If f and g are computable then so is h. Let x ∈ Nk. We argue, informally, by induction on
y ∈ N: if y = 0 then, by assumption, f(x) can be computed and thus h(x, y) can be computed.
If y > 0, say y = y′ + 1, we can compute z = h(x, y′) by induction hypothesis and then
h(x, y) = g(x, y′, z) from it by assumption.

Definition 1.4. A function f : Nk → N is called primitive recursive if it can be obtained
from the basic functions by a finite number of applications of the operators composition and
primitive recursion. A relation R ⊆ Nk is called primitive recursive if χR : Nk → {0, 1} is
primitive recursive.

Example 1.5. Consider the functions f = P1
1 : N → N and g : N3 → N, (x, y, z) 7→ z + 1. Then

g = S ◦ P3
3. By primitive recursion on f and g we obtain the function h : N2 → N defined by

h(x, 0) = P1
1(x) = x, and

h(x, y + 1) = g(x, y, h(x, y)) = h(x, y) + 1.

In other words, h is the addition of natural numbers which is hence primitive recursive. This
fact can also be written as + = Pr[P1

1,Cn[S,P
3
3]].

Lemma 1.6. The following functions are primitive recursive

1. addition (x, y) 7→ x+ y,

2. the constant function ckz : Nk → N, (x1, . . . , xk) 7→ z,

3. multiplication (x, y) 7→ x · y

4. truncated predecessor x 7→ p(x) =

{
0 if x = 0

x− 1 if x > 0

5. truncated subtraction (x, y) 7→ x .− y =

{
0 if x ≤ y

x− y if x > y

6. the characteristic function of less than or equal (x, y) 7→ χ≤(x, y) =

{
1 if x ≤ y

0 if x > y

7. the characteristic function of equality (x, y) 7→ χ=(x, y) =

{
1 if x = y

0 if x ̸= y

Proof. 1. has been shown in Example 1.5. For 2., first note that c0z = Cn[S,Cn[S · · ·Cn[S, 0] · · ·]].
For k = 1 we use a trick based on the Pr-operator and define c1z = Pr[c0z,P

2
2]. Then c1z(0) = c0z =

z and c1z(y + 1) = P2
2(y, c

1
z(y)) = c1z(y) = z. For k ≥ 2 we can simply define ckz = Cn[c1z,P

k
1].

For 3. consider that x · 0 = 0 and x · (y + 1) = x · y + x, i.e., · = Pr[f, g] where f(x) = 0 and
g(x, y, z) = z + x, i.e., f = c10 and g = Cn[+,P3

3,P
3
1]. For 4. we can simply define p = Pr[0,P2

1].
For 5. we use a primitive recursive definition based on x .− 0 = x and x .− (y + 1) = p(x .− y).
For 6. observe that χ≤(x, y) = 1 .− (x .− y). For 7. note that χ=(x, y) = χ≤(x, y) · χ≤(y, x).

6

At this point one may start to wonder: are the primitive recursive functions all computable
functions? did we miss some? The following informal argument shows that there are computable
functions which are not primitive recursive. Every primitive recursive function can be defined
by a finite string of symbols that conforms to certain simple rules on the arity of the involved
functions. Thus all such definitions can be effectively listed. Let fn be the n-th function in
that list and define g(n) = fn(n) + 1. Then g cannot be in this list, for suppose it were, i.e.,
g = fe, then g(e) = fe(e) = fe(e) + 1, contradiction. So g is not primitive recursive. However,
g is computable in the intuitive sense. This kind of argument, diagonalisation, will reappear at
several central places in this course. This argument applies to every set of total functions which
can be effectively enumerated. However, diagonalisation is not an obstacle for partial functions,
since fe(e) may simply be undefined. This motivates the following considerations.

Definition 1.7. A partial function from Nk to N, in symbols f : Nk ↪→ N, is a function
f : D → N for some D ⊆ Nn.

If x ∈ D, we say that f is defined on x and write f(x) ↓. Analogously, if x ∈ Nk \D, we say that
f is not defined on x, in symbols: f(x) ↑. If, for a partial function f : Nk ↪→ N and a k ∈ N, we
write f(x) = k this includes f(x) ↓. Similarly, given a second partial function g : Nk ↪→ N, if
we write f = g, then this includes both the statement that the domain of g is equal to that of
f and that f and g have the same value on every element of their domain. The definitions of
composition and primitive recursion generalise naturally to partial functions (where a result of
a function is only defined if all results required for computing it by the respective operator are
defined).

Example 1.8. If f : N ↪→ N, x 7→

{
x
2 if x is even

undefined otherwise
and g : N ↪→ N is defined by

g = Cn[·, c10, f], then g(x) =

{
0 if x is even

undefined otherwise
.

In all programming languages there are constructs that allow to start a recursion or an iteration
without knowing in advance how often it will be repeated. Instead a condition is given which
decides when to terminate the recursion/iteration, for example while- or repeat ... until-
loops in imperative programming languages. Functions defined using such loops are clearly
computable in the intuitive sense. However, in such constructs we do not have a guarantee
that the condition will eventually be met. The computation may not terminate. In case of
non-termination the value of the function that is computed is not defined. In our setting of
operator terms, this behaviour is modelled with the minimisation operator.

Definition 1.9. Let f : Nk+1 ↪→ N, then the function obtained from minimisation of f is
Mn[f] = g : Nk ↪→ N, defined as

g(x) =

{
y if f(x, y) = 0 and ∀y′ < y f(x, y′) ↓ and f(x, y′) ̸= 0

undefined if there is no such y
.

If f is computable, then so is g: we compute g by computing f(x, 0), f(x, 1), . . . until we find a y
with f(x, y) = 0. If one of the computations f(x, y′) does not terminate, then the computation
of g does not terminate. If all the computations of f(x, y′) terminate but none of them yields
0, then the computation of g does not terminate.

We will often use the following notation: for an f : Nk+1 ↪→ N we write µy f(x, y) for the

7

function

x 7→

{
the smallest y s.t. f(x, y) = 1 and f(x, y′) = 0 for all y′ < y if such a y exists

undefined otherwise

In particular, this notation will be useful if f is the characteristic function of a relation R. Then
µy χR(x, y) is the smallest y s.t. R(x, y), if there exists one. Because of this notation, Mn is
often also referred to as µ-recursion.

Definition 1.10. A partial recursive function is a partial function f : Nn ↪→ N that can
be obtained from the basic functions by a finite number of applications of the operators of
composition, primitive recursion, and minimisation.

A recursive function is a partial recursive function which is total.

At this point we can pause again to ask whether we have characterised the set of computable
functions (by the set of partial recursive functions). It is now important to observe that this
statement cannot be proven mathematically since the notion “computable (in the intuitive
sense)” is not mathematical. However, there exists a large number of formalisms for modelling
computation which are based on different paradigms for machines or programs which all turn
out to be equivalent in the sense that they can compute exactly the partial recursive functions.
This situation has led to the Church-Turing thesis: a partial function is computable (in the
intuitive sense) iff it is partial recursive. We can thus claim with reasonable confidence that we
have characterised the computable functions.

We turn back to more technical matters now. A syntactic expression involving 0, S, Pnk , Cn, Pr,
and Mn that is formed according to the rules of Definitions 1.1, 1.2, 1.3, 1.9 is called operator
term. We write O for the set of all operator terms and, for k ∈ N, Ok for the set of all operator
terms defining a k-ary function. For example, Pr[P1

1,Cn[S,P
3
3]] ∈ O2. The primitive recursive

(partial recursive) functions are closed under definition by cases:

Lemma 1.11. If g, f0, . . . , fn : Nk ↪→ N are primitive recursive (partial recursive), then so is
h : Nk ↪→ N,

x 7→



f0(x) if g(x) = 0

f1(x) if g(x) = 1
...

fn−1(x) if g(x) = n− 1

fn(x) if g(x) ≥ n

and h(x) is undefined if any of g(x), f0(x), . . . , fn(x) is undefined.

Proof. We have h(x) = χ=(g(x), 0)·f0(x)+· · ·+χ=(g(x), n−1)·fn−1(x)+χ≥(g(x), n)·fn(x).

Example 1.12. min,max : N2 → N are primitive recursive, since

min(x, y) =

{
x1 if x1 ≤ x2

x2 otherwise
, and

max(x, y) =

{
x1 if x1 ≥ x2

x2 otherwise
.

8

1.2 Undecidability

Definition 1.13. A relation R ⊆ Nk is called decidable if χR : Nk → {0, 1} is recursive.

Theorem 1.14. There are undecidable sets.

Proof. Every operator term is a finite string of symbols which are taken from a countable set.
Therefore, there are only countably many operator terms, hence there are only countably many
partial recursive functions, and thus, only countably many decidable relations. On the other
hand, there are uncountably many A ⊆ N.

The above proof is not very satisfactory because it does not give a concrete example of an
undecidable set. We will now define the halting problem and prove it undecidable. The halting
problem plays an important role in computability theory. In order to do that, we make some
preliminary observations first: since O1 is countable, there is a bijection from some subset C of
N, the set of “codes”, to O1. For e ∈ C we will write φe for the partial recursive function defined
by the operator term with code e. For the time being, it is irrelevant which set C and which
mapping e 7→ φe we pick. In Section 1.4 it will become relevant and we will give a concrete
definition of C and the mapping e 7→ φe.

Definition 1.15. The halting problem is H = {(e, x) ∈ C × N | φe(x) ↓}. Moreover, we define
K = {e ∈ C | φe(e) ↓}.

Theorem 1.16. K is undecidable.

Proof. Define f : N ↪→ N by

f(n) =

{
0 if n /∈ K

undefined if n ∈ K

Suppose that K is decidable, i.e., χK is recursive, then f is partial recursive. Let e ∈ N be s.t.
f = φe. Then we have

e ∈ K
Def. f⇐⇒ f(e) is undefined ⇐⇒ φe(e) is undefined

Def. K⇐⇒ e /∈ K

which is a contradiction.

Corollary 1.17. H is undecidable.

Proof. Suppose χH : N2 → N would be recursive, then so would be χK : N → N because
χK(x) = χH(x, x).

The main aim of the rest of this chapter is to prove that K is recursively enumerable, i.e., that
there is a total recursive function f : N → N s.t. f(N) = K. The existence of a recursively
enumerable and undecidable set will then allow to obtain a first, weak, version of the first
incompleteness theorem. In order to establish recursive enumerability of K we will have to
code operator terms and computations as natural numbers. This technique, arithmetisation or
“Gödelisation”, in particular when used in conjunction with diagonalisation, is central, not only
for the proof of the incompleteness theorems but for many results in mathematical logic.

9

1.3 Coding pairs, tuples, and trees

We will develop our coding machinery on a sufficiently general level to allow its reuse later
when we code formulas and proofs. We start in this section with coding pairs, tuples, and trees.
Before we do so, we need some more closure properties of the primitive recursive functions.

Lemma 1.18. If f : Nk+1 → N is primitive recursive, then so are:

1. (x, z) 7→
∑z

y=0 f(x, y),

2. (x, z) 7→
∏z
y=0 f(x, y),

3. (x, z) 7→ min{f(x, y) | 0 ≤ y ≤ z}, and

4. (x, z) 7→ max{f(x, y) | 0 ≤ y ≤ z}.

Assuming in addition that f : Nk+1 → {0, 1}, so are:

5. (x, z) 7→ ∀y ≤ z f(x, y) =

{
1 if for all y ∈ {0, . . . , z}: f(x, y) = 1

0 if there is y ∈ {0, . . . , z} s.t. f(x, y) = 0
,

6. (x, z) 7→ ∃y ≤ z f(x, y) =

{
1 if there is y ∈ {0, . . . , z} s.t. f(x, y) = 1

0 if for all y ∈ {0, . . . , z}: f(x, y) = 0
, and

7. (x, z) 7→ (µy ≤ z)f(x, y) =

{
the least y ≤ z s.t. f(x, y) = 1 if such a y exists

0 otherwise
.

Proof. For 1., note that the finite sum can be defined with primitive recursion as

0∑
y=0

f(x, y) = f(x, 0)

z+1∑
y=0

f(x, y) =
(z∑
y=0

f(x, y)
)
+ f(x, z + 1).

where f ′ : Nk → N, x 7→ f(x, 0) can be defined by Cn[f,Pk1, . . . ,P
k
k, c

k
0]. For 2., 3., and 4.

proceed analogously. If f : Nk+1 → {0, 1}, then ∀y ≤ z f(x, y) = min{f(x, y) | 0 ≤ y ≤ z} and
∃y ≤ z f(x, y) = max{f(x, y) | 0 ≤ y ≤ z} which shows 5. and 6. For 7. define f ′ : Nk+1 → N as

f ′(x, z) =

{
1 if f(x, z) = 1 and ∀z′ < z f(x, z′) = 0

0 otherwise

and observe that (µy ≤ z)f(x, y) =
∑z

y=0 y · f ′(x, y).

We want to encode a pair of natural numbers as a single natural number. One option for doing
that would be, e.g., to code (x, y) as 2x3y. However, we would like to i) avoid exponentiation
and ii) obtain a bijection. Therefore we use the mapping illustrated in the following diagram:

10

y

x
0 1 2 3 · · ·

0

1

2

3

...

0 1

2

3

4

5

6

7

8

9

. .
.

This mapping from N2 to N is obviously bijective. Now we want to define it symbolically. To
that aim, observe that pairs with the same sum are put on the same chain of arrows. Moreover,
there is one pair with sum 0, two pairs with sum 1, etc. In general, there are i + 1 pairs with
sum i. Therefore, there are

∑x+y−1
i=0 (i + 1) =

∑x+y
i=1 i pairs with a sum less than x + y. On a

fixed chain of arrows the code of the pair grows as the y-coordinate of the pair does. So we can
define this bijection symbolically by

⟨x, y⟩ = (

x+y∑
i=1

i) + y =
(x+ y)(x+ y + 1)

2
+ y.

Note that ⟨x1, y1⟩ < ⟨x2, y2⟩ iff x1 + y1 < x2 + y2 or (x1 + y1 = x2 + y2 and y1 < y2).
Moreover, observe that x, y ≤ ⟨x, y⟩ and that, if (x, y) /∈ {(0, 0), (1, 0)}, then x < ⟨x, y⟩ and
y < ⟨x, y⟩. Another noteworthy feature of this pairing function is that it permits a definition
in the usual language of arithmetical theories (which contains addition and multiplication but
not exponentiation) as z = ⟨x, y⟩ iff 2z = (x+ y)(x+ y + 1) + 2y. We define the inverses of the
pairing function l : N → N, ⟨x, y⟩ 7→ x and r : N → N, ⟨x, y⟩ 7→ y. Based on this pairing function
we can now proceed to code tuples.

Definition 1.19. For k ≥ 3 define ⟨·, . . . , ·⟩ : Nk → N as ⟨x1, . . . , xk⟩ = ⟨x1, ⟨x2, . . . , xk⟩⟩. For
k = 1 define ⟨·⟩ : N → N as the identity function.

For fixed k ≥ 1, the function ⟨·, . . . , ·⟩ is bijective. The union over these functions is not bijective,
consider, e.g., 0 = ⟨0, 0⟩ = ⟨0, 0, 0⟩ = · · ·

Lemma 1.20. The following functions are primitive recursive:

1. for k ≥ 1: ⟨·, . . . , ·⟩ : Nk → N, (x1, . . . , xk) 7→ ⟨x1, . . . , xk⟩

2. π : N3 → N, (k, i, x) 7→

{
xi if k ≥ 1, 1 ≤ i ≤ k, and x = ⟨x1, . . . , xk⟩
0 if k = 0, i = 0, or i > k

Proof. We first show 1. If k = 1, then ⟨·⟩ = P1
1 is primitive recursive. If k = 2, observe that,

for an even number z, z2 = (µz0 ≤ z) 2 · z0 = z. Therefore the pairing function ⟨·, ·⟩ : N2 → N is
primitive recursive. For k ≥ 3, we obtain ⟨·, . . . , ·⟩ : Nk → N by composing the pairing function
with itself a suitable number of times.

For 2., note that

l(z) = (µx ≤ z)(∃y ≤ z) ⟨x, y⟩ = z and

r(z) = (µy ≤ z)(∃x ≤ z) ⟨x, y⟩ = z.

11

So both l and r are primitive recursive. Therefore, also (j, z) 7→ rj(z) is primitive recursive. We
have

π(k, i, x) =


ri−1(x) if k ≥ 1 and i = k

l(ri−1(x)) if k ≥ 1 and 1 ≤ i < k

0 otherwise

and therefore also π is primitive recursive.

Now that we have primitive recursive tuples we can show another useful closure property: the
primitive recursive functions are closed under course-of-value recursion. To that aim define first:

Definition 1.21. Let h : Nk+1 → N. The history function ĥ : Nk+1 → N of h is defined as
ĥ(x, y) = ⟨h(x, y), . . . , h(x, 0)⟩.

Lemma 1.22. If f : Nk → N and g : Nk+2 → N are primitive recursive, then so is the function
h : Nk+1 → N defined by:

h(x, 0) = f(x) and

h(x, y + 1) = g(x, y, ĥ(x, y)).

Proof. It suffices to show that ĥ is primitive recursive because h(x, y) = π(y+ 1, 1, ĥ(x, y)). To
this aim, note that

ĥ(x, 0) = h(x, 0) = f(x) and

ĥ(x, y + 1) = ⟨h(x, y + 1), ĥ(x, y)⟩ = ⟨g(x, y, ĥ(x, y)), ĥ(x, y)⟩.

As a next step, we want to encode finite ordered trees, i.e., the order of subtrees is significant,
whose vertices are labelled by natural numbers. Each such tree T will be encoded as a natural
number #T . We use our tuple encoding and define the code of a tree by induction on the
structure of the tree: a tree of the form T =

v

T1

· · ·
Tn

is encoded as #T = ⟨v, n,#T1, . . . ,#Tn⟩ where #Ti is the code of the subtree Ti. Note that
this definition includes the case ⟨v, 0⟩ for a leaf. Also note that # is just a function from trees to
natural numbers without any a priori connection to primitive recursion or computability theory.

Example 1.23. The code of the ordered labelled tree

2

5 0

4 7

12

is ⟨2, 2, ⟨5, 0⟩, ⟨0, 2, ⟨4, 0⟩, ⟨7, 0⟩⟩⟩ which is the 84-digit natural number

120443650830443822950654392810134061331537938301945868395455743743602923276498173998.

If the natural number m = ⟨v, n,m1, . . . ,mn⟩ is given, then v = l(m) and n = l(r(m)). There-
fore, v, n, m1, . . ., mn are determined uniquely by m. Furthermore, n > 0 implies that mi < m
for i = 1, . . . , n. So, by induction, we can conclude that the mapping # from ordered labelled
trees to N is bijective. Moreover, the functions m 7→ n and (m, i) 7→ mi are primitive recursive.

Lemma 1.24 (Tree recursion). If f : N → N and g : N4 → N are primitive recursive, then so
is h : N → N, defined by

h(⟨v, n, x1, . . . , xn⟩) =

{
f(v) if n = 0

g(v, n, ⟨x1, . . . , xn⟩, ⟨h(x1), . . . , h(xn)⟩) if n > 0

Proof. First note that v, n, x1, . . . , xn are all well-defined since # from ordered trees to N is injec-
tive. Moreover, they can be computed by primitive recursive functions from ⟨v, n, x1, . . . , xn⟩.
Since # is also surjective, h is a total function. Furthermore, note that, for n > 0, xi <
⟨v, n, x1, . . . , xn⟩ for all i ∈ {1, . . . , n}. Therefore ⟨h(x1), . . . , h(xn)⟩ can be computed by a
primitive recursive function, based on the projection π, from the value ĥ(⟨v, n, x1, . . . , xn⟩) of
the history function of h. So, by course-of-values recursion, h is primitive recursive.

1.4 The enumeration theorem

The key to our proof of the recursive enumerability of the halting set K is the enumeration
theorem. The enumeration theorem shows the existence of a universal partial recursive function,
i.e., a single partial recursive function that, given the code of any partial recursive function f
and some input x for f can compute f(x). Our proof will proceed via Kleene’s normal form
theorem which also entails that a single use of the minimisation operator is enough to compute
any partial recursive function. In order to prove these results, we first have to code operator
terms. To that aim, given that we know how to code labelled trees, it is sufficient to assign
unique codes to the operators.

Definition 1.25. We assign codes to operators as follows:

#0 = ⟨0, 0, 0⟩ #Cn = ⟨3, 0, 0⟩
#S = ⟨1, 0, 0⟩ #Pr = ⟨4, 0, 0⟩

#Pki = ⟨2, k, i⟩ #Mn = ⟨5, 0, 0⟩

The code of an operator term is given by a function # : O → N and is defined, by induction on
the structure of t ∈ O, as the code of the tree whose labels are determined by the operators.

Example 1.26. In Example 1.5 we have seen that + = Pr[P1
1,Cn[S,P

3
3]]. As a tree this is

Pr

P1
1 Cn

S P3
3

⟨4, 0, 0⟩

⟨2, 1, 1⟩ ⟨3, 0, 0⟩

⟨1, 0, 0⟩ ⟨2, 3, 3⟩

13

with operators on the left and their codes on the right. The code of this tree is the natural
number

⟨⟨4, 0, 0⟩, 2, ⟨⟨2, 1, 1⟩, 0⟩, ⟨⟨3, 0, 0⟩, 2, ⟨⟨1, 0, 0⟩, 0⟩, ⟨⟨2, 3, 3⟩, 0⟩⟩⟩.

The mapping # : O → N is injective since t ∈ O uniquely determines its tree. However, it is
not surjective anymore since there are operator-labelled trees which do not correspond to an
operator term, e.g.,

0

P2
1

We can now make precise the set of codes C of unary functions and the injective function e 7→ φe
that was mentioned in Section 1.2. For C we simply take #O1.

Definition 1.27. For e ∈ #Ok we write φe for the partial recursive function from Nk to N
defined by the operator term #−1(e).

Lemma 1.28. The characteristic function χ#O : N → {0, 1}, the function (k,m) 7→ χ#Ok
(m),

and the function ar : N → N,m 7→

{
k if m ∈ #Ok

0 if m /∈ #O
are primitive recursive.

Note that ar(m) = 0 is an ambiguous case since it is not clear whether m ∈ #O0 or m /∈ #O.
Nevertheless the function ar is quite natural as it computes the arity of an operator term. The
ambiguity is resolved by using ar only on suchm where we have checked that χ#O(m) = 1 before.
This is analogous to the use of bounded minimisation together with the bounded existential
quantifier.

Proof. It suffices to show that ar′ : N → N,m 7→

{
k + 1 if m ∈ #Ok

0 if m /∈ #O
is primitive recur-

sive because χ#O(m) =

{
1 if ar′(m) ≥ 1

0 otherwise
, χ#Ok

(m) =

{
1 if ar′(m) = k + 1

0 otherwise
, and ar(m) =

p(ar′(m)). The function ar′ is defined via tree recursion from the following f : N → N:

v 7→


1 if v = #0

2 if v = #S

k + 1 if v = #Pki
0 otherwise

and g : N4 → N:

(v, n, ⟨m1, . . . ,mn⟩, ⟨ar′(m1), . . . , ar
′(mn)⟩) 7→



k + 1 if v = #Cn, ar′(m1) = n, and

ar′(m2) = · · · = ar′(mn) = k + 1

ar′(m1) + 1 if v = #Pr, n = 2, and

ar′(m1) + 2 = ar′(m2)

ar′(m1)− 1 if v = #Mn, n = 1, and

ar′(m1) ≥ 2

0 otherwise

.

14

The next, and for this chapter: final, type of objects we want to encode are computation trees.

Definition 1.29. Let k ∈ N, t ∈ Ok, x1, . . . , xk ∈ N, and y ∈ N. We will encode the equation
t(x1, . . . , xk) = y as the tuple ⟨#t, x1, . . . , xk, y⟩. A computation tree for an equation is a tree
whose vertices are codes of equations subject to the following conditions:

1. A computation tree for 0 = 0 consists of the single node

⟨#0, 0⟩

2. A computation tree for S(x) = x+ 1 consists of the single node

⟨#S, x, x+ 1⟩

3. A computation tree for Pki (x1, . . . , xk) = xi consists of the single node

⟨#Pki , x1, . . . , xk, xi⟩

4. A computation tree for Cn[t, u1, . . . , un](x1, . . . , xk) = y is of the form

⟨#Cn[t, u1, . . . , un], x1, . . . , xk, y⟩

· · ·
µ1 µn τ

where µi is a computation tree for ui(x) = yi for some yi ∈ N and τ is a computation tree
for t(y1, . . . , yn) = y.

5. A computation tree for Pr[t, u](x1, . . . , xk, 0) = z is of the form

⟨#Pr[t, u], x1, . . . , xk, 0, z⟩

τ0

where τ0 is a computation tree for t(x1, . . . , xk) = z.

A computation tree for Pr[t, u](x1, . . . , xk, y + 1) = z is of the form

⟨#Pr[t, u], x1, . . . , xk, y + 1, z⟩

τr τs

15

where τr is a computation tree for Pr[t, u](x, y) = z′ for some z′ ∈ N and τs is a compu-
tation tree for u(x, y, z′) = z.

6. A computation tree for Mn[t](x) = z is of the form

⟨#Mn[t], x, z⟩

· · ·

τ0 τz−1 τz

where, for i ∈ {0, . . . , z}, τi is a computation tree of t(x, i) = yi for some yi ∈ N, yz = 0
and, for i ∈ {0, . . . , z − 1}, yi > 0.

It is straightforward to verify that t(x) = y iff there is a computation tree for t(x) = y. Note that,
if t(x) ↑, then some Mn-node cannot finish its computation based on finitely many subtrees.
Since all our trees are finite, the existence of a computation tree implies termination of the
computation.

Lemma 1.30. The set T = {n ∈ N | n is code of a computation tree} is primitive recursive.

Proof. The characteristic function χT : N → {0, 1} is obtained from tree recursion as

χT (⟨v, n, x1, . . . , xn⟩) =

{
f(v) if n = 0

g(v, n, ⟨x1, . . . , xn⟩, ⟨χT (x1), . . . , χT (xn)⟩) if n > 0

from primitive recursive functions f : N → N and g : N4 → N. The function f returns 1
if v is a label of a leaf according to Definition 1.29/1.-3. and 0 otherwise. The function g
first makes a case distinction: if there is an i ∈ {1, . . . , n} s.t. χT (xi) = 0 then return 0. If
χT (x1) = · · · = χT (xn) = 1, then g returns 1 if v is label of the root of a computation tree with
immediate subtrees x1, . . . , xn according to Definition 1.29/4.-6. and 0 otherwise.

Theorem 1.31 (Kleene’s normal form theorem). There is a primitive recursive function P :
N → N and, for each k ≥ 0, a primitive recursive predicate Tk ⊆ Nk+2 s.t. for all e ∈ #Ok and
all x1, . . . , xk ∈ N:

φe(x1, . . . , xk) = P (µy Tk(e, x1, . . . , xk, y)).

Proof. Let

Tk = {(e, x1, . . . , xk, y) ∈ Nk+2 | e = #t for some t ∈ Ok and y is code of a

computation tree of t on input x1, . . . , xk}

and observe that Tk is primitive recursive. P first computes l = ar(e) and then obtains the
l+2-nd element of the label of the root of its input y. This is a definition of a primitive recursive
function. When applied to a y s.t. (e, x1, . . . , xk, y) ∈ Tk, this yields the value of φe on input
x1, . . . , xk.

16

Corollary 1.32 (Enumeration theorem). For every k ≥ 0 there is a partial recursive function
Uk : Nk+1 ↪→ N s.t. for all e ∈ #Ok and all x1, . . . , xk ∈ N:

φe(x1, . . . , xk) = Uk(e, x1, . . . , xk).

The enumeration theorem states one of the central properties of the partial recursive functions:
the existence of a universal function, i.e., a function capable of computing the value of any partial
recursive function (with the right arity) on any input. There are (at least) two perspectives on
this result: mathematically, this is a uniformity property. From the point of view of computer
science, a universal function is just an interpreter: a program that executes another program.

1.5 Recursively enumerable sets

Definition 1.33. A relation R ⊆ Nk is called recursively enumerable (r.e.) if R is the domain
of a partial recursive function.

The terminology “recursively enumerable” is explained by the following property:

Lemma 1.34. Let A ⊆ N, then the following are equivalent:

1. A is r.e.

2. A is the range of a partial recursive function

3. A = ∅ or A is the range of a primitive recursive function

Proof. For 1. ⇒ 2. let f : N ↪→ N with dom(f) = A and define g : N ↪→ N by the operator term
corresponding to x 7→ x+ 0 · f(x), i.e., g = Cn[+,P1

1,Cn[·, c10, f]]. Then g(x) ↓ iff f(x) ↓ and in
that case: g(x) = x. Therefore rng(g) = dom(f) = A.

For 2. ⇒ 3. let f : N ↪→ N with rng(f) = A. If A = ∅ we are done. So let A ̸= ∅, let a ∈ A.
Remember from the proof of the normal form theorem that the relation

T1 = {(e, x, y) ∈ N3 | e ∈ #O1 and y is code of a computation tree of

#−1(e) on input x}

and the output function P are primitive recursive. Let c ∈ #O1 be a code of (an operator term
computing) f . Define g : N → N by

g(⟨x, k⟩) =

{
P (k) if (c, x, k) ∈ T1

a otherwise

which satisfies rng(g) = rng(f) = A and is primitive recursive.

For 3. ⇒ 1. observe that ∅ is the domain of the partial recursive function that is defined nowhere.
If A ̸= ∅, let A = rng(f) for a primitive recursive f : N → N. Define g : N ↪→ N, y 7→ µx f(x) = y
and observe that dom(g) = rng(f) = A.

In the previous lemma we have restricted our attention to subsets A of N. As the following
observation shows, this is not a significant restriction.

Definition 1.35. For R ⊆ Nk we write ⟨R⟩ for the set {⟨x1, . . . , xk⟩ | (x1, . . . , xk) ∈ R} ⊆ N.

17

Lemma 1.36. R ⊆ Nk is primitive recursive (decidable, r.e.) iff ⟨R⟩ is.

Proof. This follows immediately from the observation that

χR(x1, . . . , xk) = χ⟨R⟩(⟨x1, . . . , xk⟩) and χ⟨R⟩(x) = χR(π(k, 1, x), . . . , π(k, k, x)).

A fundamental property of r.e. sets is the following

Lemma 1.37. R ⊆ Nk is decidable iff both R and Nk \R are r.e.

Proof. For the left-to-right direction note that, if χR : Nk → {0, 1} is recursive, then so are χ+
R :

Nk ↪→ N, x 7→

{
0 if χR(x) = 1

undefined if χR(x) = 0
and χ−

R : Nk ↪→ N, x 7→

{
undefined if χR(x) = 1

0 if χR(x) = 0
.

Moreover, R = dom(χ+
R) and Nk \R = dom(χ−

R).

For the right-to-left direction we can, by Lemma 1.36, assume that k = 1. So R ⊆ N and
there are recursive functions f+, f− : N → N s.t. rng(f+) = R and rng(f−) = N \ R. Define
g(x) = µy (f+(y) = x or f−(y) = x) and note that g : N → N is total. Moreover

χR(x) =

{
1 if f+(g(x)) = x

0 if f−(g(x)) = x

which is a well-formed case distinction because, for every x ∈ N, exactly one of f+(g(x)) = x
and f−(g(x)) = x is true.

In particular, the above lemma entails that every decidable set is r.e. The converse is not true.
In Section 1.2 we have defined the halting set K = {e ∈ C | φe(e) ↓} without defining either
C nor e 7→ φe concretely. Later we have made the mapping e 7→ φe concrete as the partial
recursive function defined by the operator term #−1(e) where # is our specific coding. We have
also made C concrete as C = #O1, so

K = {e ∈ #O1 | φe(e) ↓}

and we obtain

Corollary 1.38. K is recursively enumerable and undecidable.

Proof. Undecidability has already been shown in Theorem 1.16. For recursive enumerability,
consider the universal function U1 : N2 ↪→ N, (e, x) 7→ φe(x). U1 is partial recursive by the
enumeration theorem, thus so is V : N ↪→ N, e 7→ U1(e, e) = φe(e) and K = dom(V).

18

Chapter 2

Arithmetical definability

2.1 The arithmetical hierarchy

We will now start to consider formulas in first-order predicate logic. We work in first-order logic
with equality. The language of arithmetic is LA = {0, s,+, ·,≤}. An LA formula is also called
arithmetical formula. A formula without free variables is called sentence. Consequently, an
arithmetical formula without free variables is called arithmetical sentence. We will often write
φ(x1, . . . , xk) for a formula whose free variables are among {x1, . . . , xk}. Unless otherwise stated,
we do not assume that all xi occur in φ. For terms t1, . . . , tk which do not contain any variable
bound in φ we then write φ(t1, . . . , tk) for the result of substituting all xi by ti in parallel.
We use an analogous notational convention for terms writing t(x1, . . . , xk) and t(t1, . . . , tn).
For terms s and t we write s ̸= t as abbreviation of ¬s = t. For a formula φ(x, z) we write
∃!xφ(x, z) as an abbreviation for ∃x (φ(x, z) ∧ ∀y (φ(y, z) → x = y)). We write ≡ for syntactic
equality of formulas and terms. For i ∈ N and a term t we define the term si(t) by s0(t) :≡ t
and si+1(t) :≡ s(si(t)). For n ∈ N the numeral n is defined as the term sn(0). If M is an L
structure, where L is some first-order language, then Th(M) = {σ is an L sentence | M |= σ}.
In particular, Th(N) is the set of LA sentences which are true in N. For arithmetical sentences
σ, we will often simply say “σ is true” instead of “σ is true in N”.

Definition 2.1. Let R ⊆ Nk, an arithmetical formula φ(x1, . . . , xk) defines R if

N |= φ(n1, . . . , nk) iff (n1, . . . , nk) ∈ R.

A relation R ⊆ Nk is called arithmetically definable if there is a formula φ(x1, . . . , xk) which
defines R.

Example 2.2. The set of even numbers is defined by the arithmetical formula

Even(x) ≡ ∃y y · 2 = x.

The set of prime numbers is defined by the arithmetical formula

Prime(x) ≡ ∀y (∃z z · y = x→ y = 1 ∨ y = x) ∧ x ̸= 1.

The set of prime numbers can also be defined by the arithmetical formula

φ(x) ≡ ∀y1∀y2 (∃z z · x = y1 · y2 → (∃z z · x = y1 ∨ ∃z z · x = y2)) ∧ x ̸= 1 ∧ x ̸= 0.

19

So we see that a single set can be defined by different formulas. Thus there is a certain arbi-
trariness in fixing a particular formula as a definition, much as there is in picking a particular
operator term for computing a function. In order to distinguish between a set or relation and
the particular arithmetical formula we pick for defining it, we will use sans-serif font for the
formula. We say that two formulas φ1(x) and φ2(x) are equivalent if they define the same
relation, i.e., if N |= ∀x (φ1(x) ↔ φ2(x)). We say that φ1(x) and φ2(x) are logically equivalent
if the formula ∀x (φ1(x) ↔ φ2(x)) is valid.

Definition 2.3. If t is a term which does not contain x and φ a formula, we define ∃x ≤ t φ
as abbreviation for ∃x (x ≤ t ∧ φ) and ∀x ≤ t φ as abbreviation for ∀x (x ≤ t→ φ). ∃x ≤ t and
∀x ≤ t are called bounded quantifiers.

Occasionally we will also write x < y which is an abbreviation for the formula x ≤ y ∧ x ̸= y.
Correspondingly, ∃x < tφ is an abbreviation for ∃x ≤ t (x ̸= t ∧ φ) and ∀x < tφ is an
abbreviation of ∀x ≤ t (x ̸= t→ φ).

Definition 2.4. A formula is called bounded if all its quantifiers are bounded. We define
Σ0 = Π0 = the set of bounded formulas. Moreover, for n ≥ 0 we define the sets of formulas
Σn+1 = {∃xφ | φ ∈ Πn} and Πn+1 = {∀xφ | φ ∈ Σn}.

Definition 2.5. Let n ≥ 0 and R ⊆ Nk. Then R is called Σn-definable if there is a Σn-
formula which defines R and Πn-definable if there is a Πn-formula which defines R. R is called
∆n-definable if it is both Σn- and Πn-definable.

We also refer to the bounded formulas as ∆0 formulas. The following lemma entails, in partic-
ular, that every LA formula is equivalent to a Σn formula for some n ∈ N as well as to a Πm
formula for some m ∈ N.

Lemma 2.6. If n ≥ 0, then:

1. If R ⊆ Nk is Σn-definable (Πn-definable), then Nk \R is Πn-definable (Σn-definable).

2. The ∆n-definable relations are closed under complementation.

3. The Σn+1-definable relations are closed under existential quantification.

4. The Πn+1-definable relations are closed under universal quantification.

5. The Σn-, Πn-, and ∆n-definable relations are closed under union and intersection.

6. The Σn-, Πn-, and ∆n-definable relations are closed under bounded quantification.

Proof. 1. follows from the observation that, for any Σn formula φ, the formula ¬φ is logically
equivalent to a Πn formula and vice versa. 2. is an immediate corollary of 1.

We prove 3. and 4. simultaneously by induction on n. Let ∃z φ(x, y, z) be Σn+1, i.e., φ(x, y, z)
is Πn. Then ∃y∃z φ(x, y, z) is equivalent to

ψ(x) ≡ ∃u∀y∀z (u = ⟨y, z⟩ → φ(x, y, z))

as well as to

ψb(x) ≡ ∃u∀y ≤ u∀z ≤ u (u = ⟨y, z⟩ → φ(x, y, z))

20

where u = ⟨y, z⟩ is an abbreviation for 2 ·u = (y+ z) · (y+ z+1)+2 · z. If n = 0, then φ(x, y, z)
is Π0 and ψb(x) is a Σ1 formula. If n > 0, then φ(x, y, z) is a Πn formula and thus ψ(x) is
equivalent, due to the quantifier shifts in predicate logic and the induction hypothesis, to a Σn+1

formula. For 4. let φ(x, y) be a Πn+1 formula, then ∀y φ(x, y) defines a relation R ⊆ Nk which
is also defined by ¬∃y¬φ(x, y). Now, as in 1., ¬φ(x, y) is equivalent to a Σn+1 formula, so by
the case for Σn+1, ∃y¬φ(x, y) is equivalent to a Σn+1 formula, so, again as in 1., ¬∃y¬φ(x, y)
is equivalent to a Πn+1-formula.

For 5., first observe that the statement is trivial for n = 0, so let n > 0. If ∃y φ(x, y) and
∃z ψ(x, z) are Σn formulas, then ∃y φ(x, y)∧∃z ψ(x, z) is logically equivalent to ∃y∃z (φ(x, y)∧
ψ(x, z)) which is equivalent to a Σn formula by 3. Similarly, ∃y φ(x, y) ∨ ∃z φ(x, z) is logically
equivalent to ∃y (φ(x, y)∨ψ(x, y)) which is Σn too. The cases for Πn are analogous. The cases
for ∆n follow from those of Σn and Πn.

For 6., proceed by induction on n. The case n = 0 is trivial. For n ≥ 1 first note that
∃y ≤ t∃z φ(x, y, z) is logically equivalent to ∃z∃y ≤ t φ(x, y, z) and similarly for two universal
quantifiers. Let φ0(x1, . . . , xk, y, z) be Πn, then ∃z φ0(x1, . . . , xk, y, z) is a Σn+1 formula and we
claim that

φ(x1, . . . , xk) ≡ ∀y ≤ t(x1, . . . , xk) ∃z φ0(x1, . . . , xk, y, z)

is equivalent to

ψ(x1, . . . , xk) ≡ ∃w ∀y ≤ t(x1, . . . , xk) ∃z ≤ wφ0(x1, . . . , xk, y, z).

For proving the claim first observe that ∀x1 · · · ∀xk (ψ(x1, . . . , xk) → φ(x1, . . . , xk)) is valid. For
the other direction, let N |= φ(n1, . . . , nk) and let m ∈ N s.t. N |= t(n1, . . . , nk) = m. Then, for
every i ∈ {0, . . . ,m}, there is a qi ∈ N s.t. N |= φ0(n1, . . . , nk, i, qi). Let q = max{qi | 0 ≤ i ≤ n},
then N |= ∀y ≤ t(n1, . . . , nk)∃z ≤ q φ0(n1, . . . , nk, y, z), i.e., N |= ψ(n1, . . . , nk). By induction
hypothesis, ∀y ≤ t(x1, . . . , xk)∃z ≤ wφ0(x1, . . . , xk, y, z) is equivalent to a Πn formula and
therefore ψ(x1, . . . , xk) and hence φ(x1, . . . , xk) are equivalent to a Σn+1 formula.

For the remaining case, let φ0(x1, . . . , xk, y, z) be Σn, then ∀z φ0(x1, . . . , xk, y, z) is Πn+1 and
φ(x1, . . . , xk) ≡ ∃y ≤ t(x1, . . . , xk) ∀z φ0(x1, . . . , xk, y, z) is logically equivalent to ¬φ′(x1, . . . , xk)
where φ′(x1, . . . , xk) ≡ ∀y ≤ t(x1, . . . , xk) ∃z ¬φ0(x1, . . . , xk, y, z) and φ

′ is Σn+1 by the previous
case. Then, by 6., φ is equivalent to a Πn+1-formula.

Since both, the Σn- and the Πn-definable relations are closed under both bounded quantifiers,
so is ∆n.

The Σn-, Πn-, and ∆n-definable sets form the arithmetical hierarchy, see Figure 2.1 for a
graphical representation. We will later show that the arithmetical hierarchy is strict, i.e., each
two nodes represent different sets. An arrow from a node X to a node Y indicates that all X
sets are Y sets but not vice versa, i.e., X ⊂ Y . Subset inclusions that follow from transitivity
are left implicit. The arithmetical hierarchy is intimately tied to computability theory through
Post’s theorem. We will neither formulate nor prove this result here but instead continue this
course in its direction towards logic. We merely need a part of a special case of Post’s theorem
here, the result that the Σ1-definable sets are the r.e. sets. This will entail directly that the
∆1-definable sets are the decidable sets.

21

...

...

...

∆0 = Σ0 = Π0

∆1 = decidable

Π1Σ1 = r.e.

∆2

Π2Σ2

Figure 2.1: The arithmetical hierarchy

2.2 Coding finite sets and sequences

A crucial ingredient for the clarification of the relation between arithmetical definability and
computability is a definition of sequences of arbitrary length by an arithmetical formula. We
already have the pairing function ⟨·, ·⟩ which allows to express z = ⟨x, y⟩ as the arithmetical
formula 2 · z = (x + y) · (x + y + 1) + 2 · y. Iterating this allows to give, for every k ≥ 2,
an arithmetical formula φk which defines the codes of k-tuples. What we want, however, are
two formula Seq(w, v) and φ(w, u, x) which uniformly, i.e., independently of k, define “w is a
sequence of length v” and “the u-th element of w is x”. In order to simplify the notation we
will notate φ(w, u, x) as (w)u = x. For the purposes of this chapter it would be enough to use
Σ1 formulas. However, in Chapter 3 we will need ∆0 formulas. There are suitable ∆0 formulas,
but they require a subtle construction. We start with reducing the problem of codings lists to
the problem of coding finite sets.

Definition 2.7. A coding of finite sets is an arithmetical formula φ(x, y) which, for convenience,
is written as x ∈ y, s.t. N satisfies

∃w∀xx /∈ w (W1)

∀w, x∃w′∀y (y ∈ w′ ↔ (y ∈ w ∨ y = x)) (W2)

(W1) asserts the existence of the empty set. (W2) ensures that we can add an element to a set.
Together, (W1) and (W2) entail the existence of any finite set.

Definition 2.8. A coding of finite lists is a pair of arithmetical formulas Seq(w, v) and φ(w, u, x)
which, for convenience, is written as (w)u = x, s.t. N satisfies

Seq(w, v) → ∀u < v∃!x (w)u = x (S1)

∃w Seq(w, 0) (S2)

Seq(w, v) → ∀x∃w′ (Seq(w′, s(v)) ∧ ∀u < v∀y ((w′)u = y ↔ (w)u = y) ∧ (w′)v = x) (S3)

22

Keep in mind that that (w)u = x is not an equation, it is merely a suggestive notation for a
formula φ(w, u, x) with the free variables w, u, x. (S1), (S2), and (S3) can be considered axioms
of a theory of lists. (S1) ensures that Seq(w, v) and (w)u = x have their intended interpretations.
(S2) asserts the existence of the empty sequence. (S3) ensures that we can append an element
to a sequence. In particular, (S2) and (S3) together entail the existence of any finite list.

Example 2.9. Applying (S2) and (S3) to the finite sequence 2, 3, 5, 7 yields an m ∈ N which, by
(S1), satisfies:

N |= Seq(m, 4),

N |= (m)0 = x↔ x = 2,

N |= (m)1 = x↔ x = 3,

N |= (m)2 = x↔ x = 5, and

N |= (m)3 = x↔ x = 7.

Lemma 2.10. If there is a ∆0 encoding of finite sets with N |= x ∈ y → x ≤ y then there is a
∆0 encoding of finite sequences.

Proof. Define

(w)u = x ≡ ⟨u, x⟩ ∈ w and

Seq(w, v) ≡ (∀u < v∃!x ≤ w ⟨u, x⟩ ∈ w) ∧ (∀u ≤ w∀x ≤ w (⟨u, x⟩ ∈ w → u < v)).

Then, since N |= x ∈ y → x ≤ y, we have

N |= Seq(w, v) ↔ (∀u < v∃!x ⟨u, x⟩ ∈ w) ∧ (∀u∀x (⟨u, x⟩ ∈ w → u < v)).

Then N |= (S1) by definition. Letting w be the empty set, whose existence is asserted by (W1),
we see that N |= (S2). In order to show that N |= (S3), let w, v ∈ N s.t. Seq(w, v). Then, for a
given x ∈ N, apply (W2) to obtain a w′ ∈ N s.t.

N |= ∀y (y ∈ w′ ↔ (y ∈ w ∨ y = ⟨v, x⟩)).

Lemma 2.11. There is a ∆0 encoding of finite sets with N |= x ∈ y → x ≤ y.

Proof. We develop a (non-unique) ∆0 encoding of finite sets based on the dyadic representation
of the natural numbers: for n ∈ N let (n)d = εk−1 · · · ε1ε0 where k ∈ N, εi ∈ {1, 2} for all
i < k and n =

∑k−1
i=0 εi2

i. We write {1, 2}∗ for the set of strings of 1’s and 2’s of finite length
including the empty string. For representing a finite set S ⊆ N by some q ∈ N we will pick an
m ∈ N s.t. every string of 2’s occurring in an (n)d for an n ∈ S is shorter than m. We will the
use M = 2 · · · 2 (m times) as separator by representing “n ∈ S” by “M1(n)d1M is a substring
of (q)d”.

In more detail, we proceed as follows: First, note that n 7→ (n)d is a bijection from N to {1, 2}∗.
The set of powers of 2 has the ∆0 definition

Pow2(x) ≡ ∀y ≤ x (y > 1 ∧ y | x→ 2 | y)

where y | x ≡ ∃z ≤ x z · y = x. We have (n)d = 2 · · · 2 (k times) iff n = 2k+1 − 2. Therefore, the
set of x with (x)d being a string of twos has the ∆0 definition

Twos(x) ≡ Pow2(s(s(x))).

23

For defining concatenation note that (x)d · (y)d = (z)d iff z = 2l · x+ y where l is the length of
the dyadic representation of y. Moreover, note that |(n)d| = k iff 2k < n+ 2 ≤ 2k+1. Therefore
(x)d · (y)d = (z)d has the ∆0 definition

Concat(x, y, z) ≡ ∃q < y + 2 (z = q · x+ y ∧ Pow2(q) ∧ y + 2 ≤ 2 · q)

The formula for concatenation can be iterated to obtain, for every k ≥ 2, a ∆0 definition
Concatk(x1, . . . , xk, y) of “(x1)d · · · · · (xk)d = (y)d”. This allows, in particular to define “(x)d is
a substring of (y)d” by

Substring(x, y) ≡ ∃z1 ≤ y∃z2 ≤ y Concat3(z1, x, z2, y).

We can now finally define

x ∈ y ≡ ∃M ≤ y
(
Twos(M) ∧ ∀z ≤ y (Substring(z, y) ∧ Twos(z) → z ≤M)∧
∃z ≤ y (Substring(z, y) ∧ Concat5(M, 1, x, 1,M, z)

)
Then we show that N |= (W1) by picking w = 2 for the empty set. For showing N |= (W2) let
w, x ∈ N, let M be the s.t. (M)d is the longest string of 2’s in w. Pick M ′ ≥ M sufficiently
large to act as separator for w and x. In order to obtain w′, replace M by M ′ in (the dyadic
representation of) w and append x to the end.

We will henceforth use the ∆0 encoding of finite sequences conctructed in the above proofs.

2.3 Definability and computability

We proceed to study the relationship between arithmetical definability and computability. Our
main results in this section will be that a relation is Σ1-definable iff it is r.e. and decidable iff
it is ∆1. To that aim we first observe:

Lemma 2.12. If φ(x1, . . . , xk) is a ∆0 formula, then the function χφ : Nk → N defined by

χφ(n1, . . . , nk) =

{
1 if N |= φ(n1, . . . , nk)

0 if N ̸|= φ(n1, . . . , nk)

is primitive recursive.

Proof. By induction on the logical complexity of φ. W.l.o.g. φ does not contain implications. If
φ is an atom s(x1, . . . , xk) = t(x1, . . . , xk) or s(x1, . . . , xk) ≤ t(x1, . . . , xk), then χφ is primitive
recursive because 0, S, +, and ·, as well as χ= and χ≤ are primitive recursive. For the connectives
∧ and ∨ it suffices to observe that

χφ1∧φ2(n1, . . . , nk) = min{χφ1(n1, . . . , nk), χφ2(n1, . . . , nk)} and

χφ1∨φ2(n1, . . . , nk) = max{χφ1(n1, . . . , nk), χφ2(n1, . . . , nk)}.

because min and max are primitive recursive. If φ = ¬φ0 we have χφ(n1, . . . , nk) = 1 .−
χφ0(n1, . . . , nk) and both the constant 1-function as well as .− are primitive recursive. For
the bounded quantifiers, let φ(x) be Qy ≤ t(x)φ0(x, y) and note that, since, by induction
hypothesis, χφ0 : Nk+1 → N is primitive recursive, so is χφ : Nk → N by Lemma 1.18/5.
and 6.

24

Definition 2.13. Let f : Nk ↪→ N. The graph of f is the set Γf = {(x1, . . . , xk, y) ∈ Nk+1 |
f(x1, . . . , xk) = y}. We say that an arithmetical formula φ(x1, . . . , xk, y) defines f if it defines
Γf .

Theorem 2.14. f : Nk ↪→ N is recursive iff f is Σ1-definable.

Proof. For the right-to-left direction, assume that ∃z φ(x1, . . . , xk, y, z) is a Σ1 definition of Γf ,
i.e., φ is Σ0 and

f(n1, . . . , nk) = m iff N |= ∃z φ(n1, . . . , nk,m, z).

Let g : Nk ↪→ N, (n1, . . . , nk) 7→ (µu)χφ(n1, . . . , nk, π(2, 1, u), π(2, 2, u)). Then f(n1, . . . , nk) =
π(2, 1, g(n1, . . . , nk)). Since φ is Σ0, by Lemma 2.12, χφ is primitive recursive and so are the
other constructors except the µ-recursion. Therefore f is partial recursive.

For the left-to-right direction, we will show that the set of partial functions whose graph has a
Σ1 definition contains the basic functions and is closed under composition, primitive recursion,
and minimisation. The graph of the nullary zero function is defined by φ(y) ≡ y = 0, the graph
of the successor function by φ(x, y) ≡ y = s(x), and the graph of the projection function Pki by
φ(x1, . . . , xk, y) ≡ y = xi.

If the graphs of f : Nn ↪→ N and g1, . . . , gn : Nk ↪→ N have Σ1 definitions φ(y1, . . . , yn, z) and
ψi(x1, . . . xk, yi) for 1 ≤ i ≤ n, then the graph of Cn[f, g1, . . . , gn] is defined by

∃y1 · · · ∃yn (
n∧
i=1

ψi(x1, . . . , xn, yi) ∧ φ(y1, . . . , yn, z))

which is equivalent to a Σ1 formula.

If h = Pr[f, g] : Nk+1 ↪→ N where the graphs of f : Nk ↪→ N and g : Nk+2 ↪→ N have Σ1

definitions φ(x1, . . . , xk, y) and ψ(x1, . . . , xk, y, z, w) respectively, then we define the graph of h
via the existence of the finite sequence h(x, 0), h(x, 1), . . . , h(x, y) of intermediate results in the
computation of h(x, y). This is expressed by the formula

χ(x, y, z) ≡ ∃w
(
Seq(w, y + 1) ∧ ∃v ((w)0 = v ∧ φ(x, v)) ∧ (w)y = z ∧
∀u < y∃r∃r′ ((w)u = r ∧ (w)s(u) = r′ ∧ ψ(x, u, r, r′))

)
which, by Lemma 2.6, is equivalent to a Σ1 formula.

If g = Mn[f] : Nk ↪→ N where the graph of f : Nk+1 ↪→ N has a Σ1 definition φ(x, y, z), then
the graph of g is defined by

ψ(x, y) ≡ φ(x, y, 0) ∧ ∀u < y∃z (φ(x, u, z) ∧ z ̸= 0).

By Lemma 2.6, ψ(x, y) is equivalent to a Σ1 formula.

Theorem 2.14 can be extended from functions to sets as follows.

Corollary 2.15. R ⊆ Nk is r.e. iff R is Σ1-definable.

Proof. For the left-to-right direction let R ⊆ Nk be r.e. Then there is f : Nk ↪→ N s.t.
dom(f) = R. By Theorem 2.14 there is a Σ1 formula ψ(x1, . . . , xk, y) that defines Γf . Therefore
φ(x1, . . . , xk) ≡ ∃y ψ(x1, . . . , xk, y) is equivalent to a Σ1 formula that defines R.

For the right-to-left direction, let φ(x1, . . . , xk) be a Σ1 definition of an R ⊆ Nk. Define

f : Nk ↪→ N, (n1, . . . , nk) 7→

{
0 if N |= φ(n1, . . . , nk)

undefined otherwise

25

then dom(f) = R. Furthermore ψ(x1, . . . , xk, y) ≡ y = 0 ∧ φ(x1, . . . , xk) is equivalent to a Σ1

formula defining f and so, by Theorem 2.14, f is partial recursive and hence R is r.e.

Corollary 2.16. R ⊆ Nk is decidable iff R is ∆1-definable.

Proof. R ⊆ Nk is decidable iff both R and Nk \R are r.e. iff both R and Nk \R are Σ1-definable,
i.e., R is Σ1-definable and Π1-definable, i.e., ∆1-definable.

Corollary 2.17. There is a Σ1-definable set that is not ∆1-definable.

Proof. The halting set K is r.e. but not decidable, i.e., Σ1-definable but not ∆1-definable.

Theorem 2.14 and Corollaries 2.15 and 2.17 can be strengthened considerably based on the fol-
lowing famous result, the MRDP theorem, named after Y. Matiyasevič, J. Robinson, M. Davis,
and H. Putnam.

Theorem 2.18. For every arithmetical Σ1 formula φ(x1, . . . , xk) there is an equivalent formula

∃y1 · · · ∃yn ψ(x1, . . . , xk, y1, . . . , yn)

where ψ is quantifier-free.

The crucial point of this result is that ψ does not even contain bounded quantifiers. A proof of
this theorem is beyond the scope of this course. The last part of its proof was completed in 1970
thus providing an answer to Hilbert’s 10th problem which was posed in 1900: does there exist an
algorithm which, given a Diophantine equation, i.e., an equation of the form p(x1, . . . , xk) = 0
where p ∈ Z[x1, . . . , xn] is a polynomial in the variables x1, . . . , xn, determines whether it has
an integer solution, i.e., whether there are a1, . . . , ak ∈ Z s.t. p(a1, . . . , ak) = 0. If there was
such an algorithm, then it could be modified to decide an arbitrary r.e. set, in particular the
halting set.

2.4 Coding formulas

Just as we have considered operator terms that receive (codes of) operator terms as input in
Chapter 1, we now want to consider formulas that talk about (codes of) formulas. To that aim,
we will develop an encoding of formulas. We code formulas in a language L having for each
n ≥ 0 the n-ary function symbols fn0 , f

n
1 , . . . and the n-ary relation symbols Rn0 , R

n
1 , The

only propositional connectives are ¬ and →, the only quantifier is ∀. The other connectives
and the existential quantifier are considered to be abbreviations. The variables appearing in
formulas are taken from the fixed set {xi | i ∈ N}. For coding formulas we essentially proceed
as we did for operator terms: by using trees. We write T (L) for the set of terms in the language
L and F(L) for the set of formulas in the language L.

Definition 2.19. We assign codes to variables and to function symbols of L as follows.

xi 7→ ⟨0, i⟩ fni 7→ ⟨n+ 1, i⟩

The code of a term is given by a function # : T (L) → N which is defined as code of the tree
whose labels are determined by variables and function symbols.

We assign codes to logical symbols and predicate symbols of L as follows.

¬ 7→ ⟨0, 0⟩ → 7→ ⟨1, 0⟩ ∀ 7→ ⟨2, 0⟩ Rni 7→ ⟨n+ 3, i⟩

26

The code of a formula is given by a function # : F(L) → N which is defined as code of the tree
whose labels are determined by the logical connectives. A universal quantifier induces a node
with two children: the first being the variable, the second the formula. An atom with predicate
symbol Rni induces a node with n children, the i-th being the tree representing the i-th term.

Example 2.20. For the language L = {=/2,∈/2} = {R2
0, R

2
1} of set theory, the L-formula

∀x0 ¬x0 ∈ x0 is encoded as:

∀

x0 ¬

∈

x0 x0

⟨2, 0⟩

⟨0, 0⟩ ⟨0, 0⟩

⟨5, 1⟩

⟨0, 0⟩ ⟨0, 0⟩

Example 2.21. For LA = {0, s,+, ·,≤} = {f00 , f10 , f20 , f21 , R2
0} the first two numerals are encoded

as

0 = f00 = ⟨1, 0⟩

which has the code ⟨⟨1, 0⟩, 0⟩ = 1, i.e., #0 = 1, and

s

0
=

f10

f00

=

⟨2, 0⟩

⟨1, 0⟩

which has the code ⟨⟨2, 0⟩, 1, ⟨⟨1, 0⟩, 0⟩⟩ = 32, i.e., #1 = 32.

Definition 2.22. A set of terms (formulas) is said to be recursively enumerable, decidable,
primitive recursive if its set of codes is.

The set of (codes of) numerals is primitive recursive (just use tree recursion to check if the
encoded term has the required form). The function which maps a formula to its set of free
variables (based on the ∆0 coding of finite sets developed in Section 2.2) is primitive recursive.
The set of L-formulas is primitive recursive, the set of L-sentences is primitive recursive, just
check if the set of free variables of the given formula φ is ∅. Checking whether a formula is Σn
(Πn), for any n ≥ 0, is primitive recursive.

Definition 2.23. Let xi be a variable, t be a term. The application of the substitution [xi\t]
to a term is defined by:

fnj (t1, . . . , tn)[xi\t] = fnj (t1[xi\t], . . . , tn[xi\t]) xj [xi\t] =

{
t if i = j

xj otherwise

Definition 2.24. Let xi be a variable, t be a term, and φ a formula s.t. t does not contain a
variable that occurs bound in φ. Then φ[x\t], the application of the substitution [x\t] to φ, is
defined by:

Rnj (t1, . . . , tn)[xi\t] = Rnj (t1[xi\t], . . . , tn[xi\t]) (¬ψ)[xi\t] = ¬ψ[xi\t]

(ψ → χ)[xi\t] = ψ[xi\t] → χ[xi\t] (∀xj ψ)[xi\t] =

{
∀xj ψ if i = j

∀xj ψ[xi\t] if i ̸= j

27

Note that these definitions are primitive recursive. Therefore there is a Σ1 formula Subst(x, y, z, u)
which defines substitution, i.e., N |= Subst(m,n, k, l) iff m = #φ, n = #xi, k = #t, and
l = #φ[xi\t]. It is often useful to abbreviate #a, the numeral of the code of some object a, as
⌜a⌝. For example, we have N |= Subst(⌜φ⌝, ⌜xi⌝, ⌜t⌝, ⌜φ[xi\t]⌝). Note that #a, the numeral of
the code of some object a, is different from #n, the code of the numeral of some n ∈ N.

Remark 2.25. It is possible to define substitution without the condition of t not containing any
variable that is bound in φ. However, this definition, requiring renaming of bound variables, is
a little more cumbersome and the present one suffices for our purposes. Since we want to work
with the formalised definition we will therefore use this simpler one.

Based on our coding of formulas and the existence of a recursively enumerable but undecidable
set, we are now in a position to prove our first result with some impact on the foundations of
mathematics.

Theorem 2.26. Th(N) is not recursively enumerable.

Proof. Let A be r.e. but undecidable, then A has a Σ1 definition φ(x), i.e., A = {n ∈ N | N |=
φ(n)}. Let B = {n ∈ N | N ̸|= φ(n)} = {n ∈ N | N |= ¬φ(n)}, then A ⊎B = N. Suppose Th(N)
is r.e., then also B is r.e. (just check whether the value of the recursive enumeration function
of Th(N) is of the form ¬φ(n)), so, by Lemma 1.37, A would be decidable. Contradiction.

This result is a semantic, and thus weaker, variant of the first incompleteness theorem. It
impacts the foundations of mathematics in that it shows that truth in the natural numbers
cannot be axiomatised in a reasonably simple way, or, put differently, every reasonably simple
attempt at an axiomatisation of the natural numbers is incomplete. What does “attempt at an
axiomatisation” mean here? At the very least we would like our set of axioms to be sound, i.e.,
true in N. What does “reasonably simple” mean here? For the following argument it is enough
to make the modest request that the set of axioms shall be recursively enumerable. Then, if A
is a r.e. set of true arithmetical sentences, then {σ | A ⊢ σ} is incomplete, i.e., there is a true
arithmetical sentence τ s.t. A ⊬ τ . For suppose, for the sake of contradiction, that A ⊢ τ for
all true arithmetical sentences τ , then, since N |= A, we would even have {σ | A ⊢ σ} = Th(N).
Since A is r.e. there is a recursive enumeration of all proofs from axioms of A and hence of all
formulas provable from A, i.e., of the set {σ | A ⊢ σ} = Th(N), contradicting Theorem 2.26.

For the foundations of mathematics this result has the consequence that, at least in principle,
we have to consider a third possibility when we deal with a mathematical statement σ based
on some fixed axiomatisation T . In addition to being provable in T and to being refutable in
T , i.e., ¬σ being provable in T , it may be the case that neither σ nor ¬σ are provable in T .
A famous example for such a situation is the independence of the continuum hypothesis, the
statement that there is no set whose cardinality is strictly between that of the natural numbers
and that of the real numbers, from ZFC, Zermelo Fraenkel set theory with the axiom of choice.
In how far this incompleteness phenomenon impacts the daily work of mathematicians is still a
subject of current research.

Beyond the result of Theorem 2.26 itself, also its proof is of considerable interest to us. We
will encounter variants of this proof repeatedly in this course. It transfers our main result on
computability, the existence of a set which is r.e. but not decidable, to a logical context in
order to obtain a negative result there. The first incompleteness theorem that we will see later
is stronger than Theorem 2.26 which still has the following weaknesses: on the one hand it
is non-constructive in the sense that it does not yield a particular sentence which is true but
unprovable. On the other hand it is semantic in the sense that it talks about the standard model.

28

We will see later that incompleteness is a very general phenomenon that also occurs in unsound
theories. But also on the purely semantic layer a much stronger result than Theorem 2.26 is
true: not only is there no Σ1 definition of Th(N), there is no arithmetical formula whatsoever
that defines Th(N). However, for showing this stronger result, carrying out a diagonalisation
on the level of the halting problem is not enough. Instead we have to diagonalise in the setting
of arithmetical formulas.

2.5 On the definability of truth

In this section we will study the arithmetical definability of the set Th(N). The main result
will be Tarski’s theorem: Th(N) is not arithmetically definable. However, it will turn out that
for all n ∈ N the set {σ ∈ Th(N) | σ is a Σn formula} is arithmetically definable. For showing
Tarski’s theorem we will prove a first, semantic, version of the fixed point lemma, or diagonal
lemma, which will later also play a central role in the proofs of the incompleteness theorems.
The version we prove now is restricted in that it only applies to truth in the standard model N.
Later we will prove an extension to a large class of formal theories of arithmetic.

Lemma 2.27 (Fixed point lemma). Let φ(x) be an arithmetical formula. Then there is an
arithmetical sentence σ s.t. N |= σ ↔ φ(⌜σ⌝). Moreover, if φ(x) is Σn for some n ≥ 1, then σ
can be chosen to be Σn.

The sentence σ is a fixed point of the mapping χ 7→ φ(⌜χ⌝) modulo equivalence in N, hence
the name of the lemma. Note that σ refers to itself in the sense that, up to equivalence in N, it
states: “I have the property φ”.

Proof. The key to this result is the definition of a formula ψ(x) that acts like φ(x) on any
formula χ(x) except that it applies its argument to itself first, i.e.,

N |= ψ(⌜χ(x)⌝) ↔ φ(⌜χ(⌜χ(x)⌝)⌝) (*)

for all formulas χ(x). Then, applying ψ(x) to itself, we obtain

N |= ψ(⌜ψ(x)⌝) ↔ φ(⌜ψ(⌜ψ(x)⌝)⌝)

thus using the duplication ability of the outer ψ on the inner ψ (on the left-hand side) to
reproduce ψ applied to itself (on the right-hand side). Therefore, by letting σ ≡ ψ(⌜ψ(x)⌝), we
have

N |= σ ↔ φ(⌜σ⌝).

It remains to define ψ and to show (*). To that aim first define f : N → N by

n 7→

{
#χ(⌜χ(x)⌝) if n = #χ(x) for a formula χ(x)

0 otherwise

and note that f is primitive recursive (on input n, check whether n = #χ and FV(χ) = {x}
for some formula χ and some variable x, if yes return χ[x\n]). So, by Theorem 2.14, there is a
Σ1 definition F (x, y) of f . We define ψ(x) as, or, if necessary, as a Σn formula equivalent to,
∃y (F (x, y) ∧ φ(y)) and obtain

N |= ψ(⌜χ(x)⌝) ↔ ∃y (F (⌜χ(x)⌝, y) ∧ φ(y))
↔ ∃y (y = f(#χ(x)) ∧ φ(y))
↔ ∃y (y = ⌜χ(⌜χ(x)⌝)⌝ ∧ φ(y))
↔ φ(⌜χ(⌜χ(x)⌝)⌝).

29

Example 2.28. Applying the fixed point theorem to Even(x) we obtain a sentence σ s.t. N |=
σ ↔ Even(⌜σ⌝), i.e., up to equivalence in N, σ states “My code is an even number.”. This does
not tell us whether σ is true in N, it merely tells us that σ is true in N iff #σ is even.

Typically we will apply the fixed point theorem to properties of sentences rather than numbers.
Then the meaning of the sentence does not refer to codes (explicitly).

Theorem 2.29 (Undefinability of truth (Tarski)). Th(N) is not arithmetically definable.

Proof. Suppose that Tr(x) is an arithmetical formula that defines the true arithmetical sen-
tences, i.e., N |= Tr(n) iff n = #σ for some arithmetical sentence σ with N |= σ. So, for
every sentence σ, N |= σ ↔ Tr(⌜σ⌝). Then, by the fixed point lemma applied to ¬Tr(x),
there is a sentence τ s.t. N |= τ ↔ ¬Tr(⌜τ⌝), i.e., τ expresses “I am not true”. Then
N |= Tr(⌜τ⌝) ↔ ¬Tr(⌜τ⌝), contradiction.

Even though, as we have just seen, a (complete) truth definition is impossible, partial truth
definitions are possible in the sense that the truth of Σn, or Πn, sentences is arithmetically
definable for all n ≥ 0. In order to show this, we start by quickly recalling the definition
of the satisfaction relation. If M = (M, I) is an L structure, φ is an L formula, and v is a
variable evaluation for M and φ, i.e., v is a mapping from variables to elements of M with
dom(v) = FV(φ), then (M, I, v) |= φ is defined. In particular, if φ starts with a quantifier, we
have:

(M, I, v) |= ∀xψ iff for all m ∈M : (M, I, v[x\m]) |= ψ

(M, I, v) |= ∃xψ iff there is an m ∈M s.t. (M, I, v[x\m]) |= ψ

Our strategy for obtaining a partial truth definition will be to follow this inductive definition
of the satisfaction relation |=. Since we are interested in arithmetical truth, (M, I) is fixed to
N, so we have to define a binary relation on codes of formulas and codes of variable evaluations
for N. We have already developed an encoding of formulas in Section 2.4. A primitive recursive
encoding of variable evaluations is sufficient for our purposes and can be developed in a quite
straightforward way by relying on the existing encoding of variables and considering a variable
evaluation for N as a finite set of variable/number-pairs. From now on, we assume a fixed such
coding of variable evaluations for N.

Definition 2.30. For n ≥ 0 we define the relation SatΣ,n ⊆ N× N as follows:

(k, l) ∈ SatΣ,n iff k = #φ for some Σn formula φ,

l = #v for some variable evaluation v for N and φ, and

(N, v) |= φ.

The relation SatΠ,n ⊆ N× N is defined analogously.

Theorem 2.31. For all n ≥ 1: SatΣ,n is Σn-definable and SatΠ,n is Πn-definable.

We will exhibit formulas SatΣ,n and SatΠ,n which define SatΣ,n and SatΠ,n respectively. To this
aim it suffices to follow the usual inductive definition of the satisfaction relation as outlined
above.

30

Proof. In Lemma 2.12 we have shown that, if ψ(x1, . . . , xn) is a Σ0 formula, then

χψ : Nn → N, (k1, . . . , kn) 7→

{
1 if N |= ψ(k1, . . . , kn)

0 if N ̸|= ψ(k1, . . . , kn)

is primitive recursive by an induction on the logical complexity of ψ(x). Therefore also

⟨χψ⟩ : N → N, k 7→

{
1 if N |= ψ(k1, . . . , kn) where k = ⟨k1, . . . , kn⟩
0 if N ̸|= ψ(k1, . . . , kn) where k = ⟨k1, . . . , kn⟩

is primitive recursive. By repeating this proof as definition of a recursive algorithm we obtain
a primitive recursive function

f : N → N, k 7→

{
e if k = #ψ(x), ψ is a ∆0 formula, φe = ⟨χψ⟩
0 otherwise

where φe : N → N is primitive recursive. Now,

(k, l) ∈ SatΣ,0 iff k = #ψ(x1, . . . , xn) for a Σ0 formula ψ,

l = #v for a variable evaluation v = [x1\m1, . . . , xn\mn] for m1, . . . ,mn ∈ N, and
(N, v) |= ψ(x1, . . . , xn).

and (N, v) |= ψ(x1, . . . , xn) iff U1(f(k), ⟨m1, . . . ,mn⟩) = 1 where U1 is the universal partial
recursive function. Therefore SatΣ,0 = SatΠ,0 is decidable and hence ∆1-definable.

We proceed by induction on n and observe that

(k, l) ∈ SatΠ,n+1 iff k = #∀xφ for some Σn formula φ,

l = #v for some variable evaluation v for N and ∀xφ, and
for all m: if v′ = v[x\m], then N, v′ |= φ.

This can be written as the formula

χ(k, l) ≡ ∃u ≤ k∃k′ ≤ k
(
UniQ(u, k′, k) ∧ ΣnFormula(k′) ∧ VarEvalFor(l, k)

∀m∀l′ (VarEvalAdd(l, u,m, l′) → SatΣ.n(k
′, l′)

)
where UniQ(u, v′, v) iff u = #x for some variable x, v′ = #φ for some formula φ and v = #∀xφ,
etc. All of these predicates are decidable and hence ∆1-definable. Therefore, since SatΣ,n is
a Σn formula by induction hypothesis, χ(k, l) is equivalent to a Πn+1 formula which we call
SatΠ,n+1(k, l). The proof for SatΣ,n+1 is analogous.

Corollary 2.32. For all n ≥ 1: the set of true Σn sentences is Σn-definable and the set of true
Πn sentences is Πn-definable.

Proof. σ is a true Σn sentence iff (#σ,#∅) ∈ SatΣ,n where ∅ denotes the empty variable eval-
uation. Therefore TrΣ,n(x) ≡ SatΣ,n(x, ⌜∅⌝) is a Σn definition of the set of true Σn sentences.
The proof for Πn sentences is analogous.

On the other hand, the set of true Σn sentences is not Πn-definable. In order to show this it
suffices to repeat the proof of Tarski’s result of the undefiablity of truth on every level of the
arithmetical hierachy.

31

Theorem 2.33. Let n ≥ 1. Then the set of true Σn sentences is not Πn-definable.

Proof. Suppose that there is a Πn formula φ(x) s.t. N |= φ(x) ↔ TrΣ,n(x). Then ¬φ(x)
is equivalent to a Σn formula. So, by the fixed point lemma, there is a Σn sentence σ s.t.
N |= ¬φ(⌜σ⌝) ↔ σ. But then N |= ¬TrΣ,n(⌜σ⌝) ↔ σ and, since TrΣ,n(x) is a definition of the
true Σn sentences we have N |= TrΣ,n(⌜σ⌝) ↔ σ, and thus N |= ¬TrΣ,n(⌜σ⌝) ↔ TrΣ,n(⌜σ⌝),
contradiction.

Corollary 2.34. The arithmetical hierachy is strict.

Proof. Let n ≥ 1. Theorems 2.31 and 2.33 show that there is an An ∈ Σn \ Πn. Let Bn =
N \ An. Then Bn ∈ Πn \ Σn. Since Σn−1 ⊆ Πn we have An ∈ Σn \ Σn−1 and, symmetrically,
Bn ∈ Πn \Πn−1. The sets ∆m are closed under complement, i.e., {N \X | X ∈ ∆m} = ∆m but
Σn and Πn are not, hence Σn ̸= ∆m and Πn ̸= ∆m for all m ≥ 0. Moreover, An ∈ Σn ⊆ ∆n+1

but An /∈ Πn so An /∈ ∆n and therefore ∆n ⊂ ∆n+1.

32

Chapter 3

Arithmetical theories

3.1 Theories

We start this chapter by recalling some standard notions about first-order logic. For a set of
sentences Γ and a sentence σ we write Γ ⊢ σ if σ is provable from Γ and Γ |= σ if σ is true in all
models of Γ. A theory is a deductively closed set of sentences T , i.e., T ⊢ σ implies σ ∈ T . An
axiomatisation of a theory T is a set of sentences A s.t. A ⊢ σ iff T ⊢ σ. We are working in first-
order logic with equality, i.e., = is considered a logical symbol and we assume that every theory
T contains the sentences ∀xx = x, ∀x∀y (x = y → y = x), ∀x∀y∀z (x = y → y = z → x = z), as
well as ∀x∀y (

∧n
i=1 xi = yi → f(x) = f(y)) for every n-ary function symbol f in the language of

T and ∀x∀y (
∧n
i=1 xi = yi → R(x) → R(y)) for every n-ary relation symbol R in the language

of T . These axioms for equality will henceforth not be mentioned explicitly when defining a
theory. We assume familiarity with proofs and models in first-order logic as well as knowledge
of the following two results and their proofs.

Theorem 3.1 (Soundness). If T ⊢ φ, then T |= φ.

Theorem 3.2 (Completeness). If T |= φ, then T ⊢ φ.
Definition 3.3. Let T be a theory. T is called complete if for every sentence σ: T ⊢ σ or
T ⊢ ¬σ. T is called consistent if there is no sentence σ s.t. T ⊢ σ and T ⊢ ¬σ.

If a theory T is inconsistent, then it proves every sentence: Assume T ⊢ σ and T ⊢ ¬σ and let
τ be an arbitrary sentence, then, since σ → ¬σ → τ is a tautology, T ⊢ τ . Since an inconsistent
T proves every sentence, also T ⊢ ⊥. In the other direction, if T ⊢ ⊥, then T proves every
sentence (ex falso quodlibet), so T is inconsistent. Therefore T is inconsistent iff T ⊢ ⊥.

A theory T is consistent and complete iff for every sentence σ, T proves exactly one of σ and
¬σ. A theory of the form Th(M) = {σ | M |= σ} is consistent and complete since every σ has
a uniquely determined truth value which is the negation of the truth value of ¬σ. On the other
hand, if T is a consistent theory, then T has a model, for suppose T would not have a model,
then every M with M |= T would also make M |= ⊥, hence T |= ⊥ and, by the completeness
theorem, T ⊢ ⊥, i.e., T would be inconsistent. If T is both consistent and complete then this
M even makes Th(M) = {σ sentence | T ⊢ σ}. So we see that the theories that are consistent
and complete are exactly the theories of the form Th(M).

Let T be a theory which is consistent but incomplete, then there is a sentence σ s.t. T ⊬ σ
and T ⊬ ¬σ. Then both T + σ and T + ¬σ are consistent, for assume, say, T + σ would be
inconsistent, then T + σ ⊢ ⊥, so T ⊢ ¬σ which contradicts the assumption that T ⊬ ¬σ. For
T + ¬σ we can proceed analogously. Therefore both, T + σ and T + ¬σ have models.

33

Definition 3.4. Let T be a theory in a language L, then a theory T ′ in a language L′ is called
extension of T if L′ ⊇ L and, for every L-formula φ, T ⊢ φ implies T ′ ⊢ φ.
Example 3.5. Let LM = {e/0, ◦/2} and let TM be defined by the following set of axioms (writing
◦ in infix notation):

∀x∀y∀z x ◦ (y ◦ z) = (x ◦ y) ◦ z
∀x (x ◦ e = x ∧ e ◦ x = x)

Then TM is the theory of monoids. Let LG = LM ∪{·−1/1} and let TG be defined by the above
axioms together with (writing the unary function symbol ·−1 as superscript):

∀x (x ◦ x−1 = e ∧ x−1 ◦ x = e).

Then TG is the theory of groups which is an extension of TM .

Often we would like to relate two theories which are not as similar. To that aim, theory
interpretations are a central tool.

Definition 3.6. Let L, L′ be languages, let T be an L theory and let T ′ be an L′ theory. An
interpretation of L in T ′ is given by:

1. an L′ formula χ(x) s.t. T ′ ⊢ ∃xχ(x)

The formula χ(x) will serve as a definition of the domain of T in T ′.

2. for each n-ary predicate symbol P of L an L′ formula ψP (x1, . . . , xn)

3. for each n-ary function symbol f of L an L′ formula ψf (x1, . . . , xn, y) s.t.

T ′ ⊢
n∧
i=1

χ(xi) → ∃!y (χ(y) ∧ ψf (x1, . . . , xn, y)),

including the case n = 0 for constant symbols.

An interpretation of L in T ′ induces a mapping ∗ : F(L) → F(L′) as follows: first, for each L
term t with free variables x1, . . . , xn we define an L′ formula ψt(x1, . . . , xn, y) by induction as
follows:

1. If t = x then ψt(x, y) ≡ y = x.

2. If t = f(t1, . . . , tn) with free variables x, then ψt(x, y) ≡ ∃z (ψf (z, y)
∧n
i=1 ψti(x, zi)),

including the case n = 0 for constant symbols.

It is then easy to show by induction on t that

T ′ ⊢
n∧
i=1

χ(xi) → ∃!y (χ(y) ∧ ψt(x1, . . . , xn, y))

The translation of a formula with free variables x is then defined by

(P (t1, . . . , tk))
∗ ≡ ∃y1 · · · ∃yk (ψt1(x, y1) ∧ · · · ∧ ψtk(x, yk) ∧ ψP (y1, . . . , yk)),

(t1 = t2)
∗ ≡ ∃y (ψt1(x, y) ∧ ψt2(x, y)),

(φ→ ψ)∗ ≡ φ∗ → ψ∗,

(∀xφ)∗ ≡ ∀x (χ(x) → φ∗),

and similarly for the other logical symbols. We say that an interpretation of L in T ′ is an
interpretation of T in T ′ if T ⊢ σ implies T ′ ⊢ σ∗.

34

Lemma 3.7. Let T be an L theory, let A be an axiomatisation of T , let T ′ be an L′ theory, let
I be an interpretation of L in T ′ and let ∗ be the formula translation induced by I. If T ′ ⊢ α∗

for all α ∈ A then I is an interpretation of T in T ′.

Proof Sketch. We show that T ⊢ σ implies T ′ ⊢ σ∗ by induction on the length of a T -proof of σ,
applying ∗ line by line and showing that ∗ transforms logical axioms into valid formulas of first-
order logic, theory axioms into provable sentences, and rule applications into rule applications.

If T ′ is an extension of T then there is a straightforward interpretation of T in T ′. We say that T ′

contains T if there is an interpretation of T in T ′. In general there are different interpretations
of T in T ′. However, as a notational convention, when we say “T ′ contains T” we consider
this interpretation to be fixed and do not write ∗ explicitly. Where to add ∗ is clear from the
context, i.e., the language of the involved formula.

A theory T is called arithmetical if the language of T is the language of arithmetic LA =
{0, s,+, ·,≤}.

Definition 3.8. The arithmetical theory Q consists of the universal closures of the following
formulas:

s(x) ̸= 0 (Q1)

s(x) = s(y) → x = y (Q2)

x ̸= 0 → ∃y x = s(y) (Q3)

x+ 0 = x (Q4)

x+ s(y) = s(x+ y) (Q5)

x · 0 = 0 (Q6)

x · s(y) = (x · y) + x (Q7)

x ≤ y ↔ ∃z z + x = y (Q8)

Example 3.9. Zermelo-Fraenkel set theory ZF is a theory in the language L′ = {∈/2} which
interprets Q as follows:

χ(x) ≡ x ∈ ω,

where, as usual in set-theoretic notation, ω is the least non-zero limit ordinal,

ψ0(y) ≡ y = ∅,
ψs(x, y) ≡ y = x ∪ {x},

corresponding to the usual von Neumann definition of the natural numbers in set theory. Addi-
tion and multiplication on elements of ω are defined recursively in ZF yielding functions p and
t and hence

ψ+(x1, x2, y) ≡ y = p(x1, x2),

ψ·(x1, x2, y) ≡ y = t(x1, x2).

The order is defined by simply translating its defining axiom

ψ≤(x1, x2) ≡ ∃z (z ∈ ω ∧ p(z, x1) = x2).

Then it is straightforward to show that ZF ⊢ σ∗ for all σ ∈ {(Q1), . . . , (Q8)}.

35

3.2 Robinson’s minimal arithmetic Q

In this section we will study Robinson’s minimal arithmetic Q, which is an important basic
arithmetical theory, in more detail.

Definition 3.10. An arithmetical theory T is called sound if N |= T .

Lemma 3.11. Q is sound, i.e., N |= Q.

Proof. A quick glance suffices to convince oneself that every axiom of Q is true in N.

We start by establishing the provability of some simple statements in Q.

Definition 3.12. Let t be a variable-free arithmetical term. We define val(t) ∈ N by induction
on t as follows:

val(0) = 0, val(s(t)) = val(t) + 1, val(t+ s) = val(t) + val(s), val(t · s) = val(t) · val(s).

Lemma 3.13.

1. For all m,n ∈ N: Q ⊢ m+ n = m+ n.

2. For all m,n ∈ N: Q ⊢ m · n = m · n.

3. For all variable-free terms t: Q ⊢ t = val(t).

4. For all m,n ∈ N with m ̸= n: Q ⊢ m ̸= n.

5. Q ⊢ x+ y = 0 → x = 0 ∧ y = 0.

6. For all n ∈ N: Q ⊢ s(x) ≤ n+ 1 → x ≤ n.

7. For all n ∈ N: Q ⊢ x ≤ n↔ x = 0 ∨ x = 1 ∨ · · · ∨ x = n.

8. For all m,n ∈ N with m ≤ n: Q ⊢ m ≤ n.

9. For all m,n ∈ N with m > n: Q ⊢ ¬m ≤ n.

10. For all n ∈ N: Q ⊢ x+ n+ 1 = s(x) + n.

11. For all n ∈ N: Q ⊢ x ≤ n ∨ n+ 1 ≤ x.

Proof. For 1. we proceed by induction1 on n. For n = 0 one application of (Q4) suffices. For
the induction step, assume we already have Q ⊢ m+n = m+ n and work in Q: m+ s(n) =(Q5)

s(m+ n) =(IH) s(m+ n) = m+ n+ 1.

For 2. we proceed by induction on n. If n = 0, one application of (Q6) suffices. For the induction
step, assume we already have Q ⊢ m · n = m · n and work in Q: m · s(n) =(Q7) m · n+m =(IH)

m · n+m =1. m(n+ 1).

3. follows immediately from 1. and 2. by induction on the structure of t.

For 4. let m,n ∈ N with m ̸= n. Let m > n and proceed by induction on n. If n = 0, then we
are done by a single application of (Q1). In the induction step we have m > n > 0 and hence
there are m′, n′ ∈ N s.t. n = n′+1, m = m′+1, and thus m′ > n′. So, by induction hypothesis,

1Note that this is an induction on the meta-level. Q does not have an induction axiom.

36

Q ⊢ m′ ̸= n′ and the contraposition of (Q2) yields Q ⊢ m ̸= n. If n > m we have Q ⊢ n ̸= m
by the above and obtain Q ⊢ m ̸= n from symmetry of equality in Q.

For 5. work in Q: if y ̸= 0, then, by (Q3), there is a z s.t. y = s(z). Thus x+ y = x+ s(z) =(Q5)

s(x+ z) ̸=(Q1) 0. If y = 0 ∧ x ̸= 0, then x+ y =(Q4) x ̸= 0.

For 6. work in Q: if s(x) ≤ n+ 1, then, by (Q8), there is a z s.t. z + s(x) = n+ 1, so, by (Q5),
s(z + x) = s(n), hence, by (Q2), z + x = n and thus, again by (Q8), x ≤ n.

For 7. we proceed by induction on n. For n = 0 work in Q: if x ≤ 0 then, by (Q8), there is a
z s.t. z + x = 0 and then, by 5., x = z = 0. If x = 0, then x ≤ 0 by (Q8) and (Q4). For the
induction step work in Q, assuming x ≤ n ↔ x = 0 ∨ · · ·x = n. For the left-to-right direction
assume y ≤ n+ 1. If y = 0, we are done. If y ̸= 0, then, by (Q3), there is an x s.t. y = s(x), so
s(x) ≤ n+ 1, so by 6., x ≤ n. Thus x = 0 ∨ · · · ∨ x = n and therefore y = 1 ∨ · · · ∨ y = n+ 1.
For the right-to-left direction assume y = 0∨ · · · ∨ y = n+ 1 and make a case distinction on the
value of y: for y = i we have n− i+ 1 + y = n+ 1 by (Q5) and (Q4) so, by (Q8), y ≤ n+ 1.

For 8., let m ≤ n. Then, by 7., Q ⊢ m ≤ n ↔ m = 0 ∨ · · · ∨m = n and, since m ≤ n, the
equation m = m is among these cases.

For 9., let m > n. Then, by 7., Q ⊢ ¬m ≤ n ↔ m ̸= 0 ∧ · · · ∧m ̸= n, and, since m > n, Q
proves all conjuncts by 4..

For 10. we proceed by induction on n. If n = 0 work in Q: x+s(0) = s(x+0) = s(x) = s(x)+0.
For the induction step work in Q: x+ n+ 2 = s(x+ n+ 1) =IH s(s(x) + n) = s(x) + n+ 1.

For 11., because of 7., it suffices to show that Q ⊢ x = 0 ∨ · · · ∨ x = m− 1 ∨ m ≤ x by
induction on m. If m = 0, then Q ⊢ 0 ≤ x because Q ⊢ ∃z z + 0 = x. If m > 0, we have
Q ⊢ x = 0 ∨ · · · ∨ x = m− 2 ∨m− 1 ≤ x by induction hypothesis. Work in Q: if x = 0 we are
done, . . ., if x = m− 2 we are done. If m− 1 ≤ x, then there is z s.t. z +m− 1 = x. Make a
case distinction on z by (Q3): if z = 0, then, by 1., x = m− 1 and we are done. If there is z′

s.t. z = s(z′), then, by 10., z′ +m = x, i.e., m ≤ x and we are done.

However, there are also many simple true sentences which Q does not prove, for example the
commutativity of addition. The standard method for showing non-provability is to construct a
(counter-)model. We will therefore first clarify some basic facts about models of Q. To that aim
let M |= Q and consider the mapping f : N → M, n 7→ nM. We claim that f is an embedding,
i.e., an injective homomorphism (w.r.t. LA). For injectivity, let m,n ∈ N with m ̸= n, then, by
Lemma 3.13/4., Q ⊢ m ̸= n, so M |= m ̸= n, i.e., mM ̸= nM, thus f(m) ̸= f(n). We now show
that f is a homomorphism w.r.t. LA. First we have f(0) = 0M = 0M and f(n+1) = n+ 1M =
sM(nM) = sM(f(n)), so f is a homomorphism w.r.t. zero and successor. For addition, observe
that f(m+ n) = m+ nM =Lem. 3.13/1. mM +M nM = f(m) +M f(n). We proceed analogously
for multiplication where f(m · n) = m · nM =Lem. 3.13/2. mM ·M nM = f(m) ·M f(n). For the
order, let m ≤ n and observe that, by Lemma 3.13/8., Q ⊢ m ≤ n and therefore f(m) ≤M f(n).

So every model M of Q contains a countably infinite subset, rng(f), which is isomorphic to N.
These elements of M are called standard numbers. For the sake of notational simplicity we will
usually identify rng(f) and N. But M may contain other elements in addition, these are called
nonstandard numbers.

It is helpful to think of the domain of M as being partitioned into the connected components
of the graph obtained by drawing a directed edge from a to b if sM(a) = b. First we observe
that the component which contains the standard numbers contains only the standard numbers:
suppose, for the sake of contradiction, that there is a nonstandard a and a standard n s.t. i)
sM(a) = n or ii) sM(n) = a. In case i) n ̸= 0M by (Q1) and then, by (Q2), a = n − 1 which
cannot be both, standard and nonstandard. In case ii), since n is standard, so is sM(n) = a

37

which cannot be both, standard and nonstandard. Now, let C be a connected component of M
which is different from N. Then, since 0M /∈ C, every element of C has a predecessor by (Q3).
By (Q2) the predecessor is unique. So every element of C has exactly one successor and exactly
one predecessor. The only shapes that satisfy this condition are circles of any finite length or a
line which is infinite in both directions. Every structure different from N which is a model of Q
is called nonstandard model.

We will now construct a concrete nonstandard model M. The successor graph of M is:

· · ·
0 1 2 3

a b

Since 0 is not a successor, (Q1) is true. Since every element has at most one predecessor, (Q2)
is true. Since every nonzero element has a predecessor, (Q3) is true. The table for addition is

+ 0 1 2 · · · a b

0 b a
1 b a
2 b a
...

...
...

a a a a · · · a a
b b b b · · · b b

Since Q ⊢ x+n = sn(x), the standard area of the last two rows is fixed by the successor graph.
By (Q5) and the definition of the successor we have e+ a = e+ s(a) = s(e+ a) for all e ∈ M
and, similarly, e+ b = s(e+ b) for all e ∈ M. Our choice for the last two columns satisfies this
condition, so M satisfies (Q4) and (Q5). The table for multiplication is

· 0 1 2 · · · a b

0 b a
1 b a
2 b a
...

...
...

a 0 b b · · · a a
b 0 a a · · · b b

Since Q ⊢ ∀xx·n = (· · · ((0+x)+x) · · · · · ·+x), the standard area of the last two rows is fixed by
the table for addition. By (Q7) and the definition of successor we have e · a = e · s(a) = e · a+ e
for all e ∈ M and, similarly, e · b = e · b + e. Our choice for the last two columns satisfies
this condition, so M satisfies (Q6) and (Q7). This model shows that Q ⊬ ∀x∀y x+ y = y + x,
Q ⊬ ∀x 0 + x = x, Q ⊬ ∀x∀y x · y = y · x, Q ⊬ ∀x 0 · x = 0, Q ⊬ ∀x∀y (x ≤ y ∧ y ≤ x → x = y),
. . .

Note that these results show that Q is not complete: Since it is sound it only proves sentences
which are true in N. For example Q ⊬ ¬∀x∀y x+ y = y + x. On the other hand, as the above
model shows, Q ⊬ ∀x∀y x + y = y + x. So the incompleteness of Q is not a deep result. The
first incompleteness theorem will be formulated for any consistent theory containing Q.

38

Definition 3.14. An arithmetical theory T is called Σ1-complete if N |= σ implies T ⊢ σ for
every Σ1 sentence σ.

Lemma 3.15. Q is Σ1-complete.

Proof. Consider a Σ1 sentence ∃xφ(x), then φ(x) is ∆0. W.l.o.g. φ is in negation normal form,
i.e., φ does not contain implication and negation occurs only immediately above atoms. If
N |= ∃xφ(x), then there is an n ∈ N s.t. N |= φ(n) and it suffices to show that Q ⊢ φ(n).
We show that Q proves every true ∆0-sentence σ by induction on σ. If σ is an atom, then σ is of
the form i) t = s or ii) t ≤ s. In case i), if N |= t = s, then val(t) = val(s), so Q ⊢ val(t) = val(s)
and therefore, by Lemma 3.13/3., Q ⊢ t = s. In case ii), if N |= t ≤ s, then val(t) ≤ val(s), so,
by Lemma 3.13/8., Q ⊢ val(t) ≤ val(s) so, by Lemma 3.13/3., Q ⊢ t ≤ s.

If σ is a negated atom, it is of the form i) t ̸= s or ii) ¬ t ≤ s. In case i), if N ̸|= t = s, then
val(t) ̸= val(s), so, by Lemma 3.13/4., Q ⊢ val(t) ̸= val(s) and, by Lemma 3.13/3., Q ⊢ t ̸= s.
In case ii), if N ̸|= t ≤ s, then val(t) > val(s), so, by Lemma 3.13/9., Q ⊢ ¬ val(t) ≤ val(s), so,
by Lemma 3.13/3., Q ⊢ ¬ t ≤ s.

If σ ≡ σ1 ∧ σ2, then N |= σ1 ∧ σ2 implies N |= σ1 and N |= σ2, so, by induction hypothesis,
Q ⊢ σ1 and Q ⊢ σ2 and hence Q ⊢ σ1 ∧ σ2. If σ ≡ σ1 ∨ σ2, we proceed analogously.

If σ ≡ ∃x ≤ t ψ(x) and N |= σ, then there is n ∈ N s.t. n ≤ val(t) and N |= ψ(n). Then, by
induction hypothesis, Q ⊢ ψ(n) and by Lemma 3.13/8., Q ⊢ n ≤ val(t) so, by Lemma 3.13/3.,
Q ⊢ n ≤ t and therefore Q ⊢ ∃x ≤ t ψ(x).

If σ ≡ ∀x ≤ t ψ(x) and N |= σ, then N |= ψ(n) for all n ≤ val(t). Then, by induction
hypothesis, for all n ≤ val(t), Q ⊢ ψ(n), so, by Lemma 3.13/7., Q ⊢ x ≤ val(t) → ψ(x) and, by
Lemma 3.13/3., Q ⊢ x ≤ t→ ψ(x) and therefore Q ⊢ ∀x ≤ t ψ(x).

3.3 Representing computation in Q

In Chapter 2 we have seen how to represent computation in N by Σ1 formulas. Here it will turn
out that Q, which is much weaker than Th(N), already suffices for that purpose.

Definition 3.16. Let T be an arithmetical theory and R ⊆ Nk. An arithmetical formula
φ(x1, . . . , xk) defines R in T if

(n1, . . . , nk) ∈ R iff T ⊢ φ(n1, . . . , nk)

This notion generalises arithmetical definability in the sense that R is arithmetically definable
iff R is definable in the theory Th(N).

Definition 3.17. An arithmetical theory T is called Σ1-sound if, for every Σ1 sentence σ, T ⊢ σ
implies N |= σ.

Note that, since there are false Σ1 sentences, Σ1 soundness implies consistency.

In this entire chapter we will only work with formulas in the language of arithmetic. However,
the results we will prove extend straightforwardly to theories in other languages via theory in-
terpretations. It will therefore be convenient to continue our slight abuse of notation concerning
theory interpretations as follows. If T is a theory that contains an arithmetical theory and ∗
is the formula interpretation induced by this interpretation, we will say that an arithmetical
formula φ(x1, . . . , xk) defines a relation R ⊆ Nk in T if (n1, . . . , nk) ∈ R iff T ⊢ φ(n1, . . . , nk)∗.

39

Similarly we will say that T is Σ1-sound if T ⊢ σ∗ implies N |= σ for all arithmetical Σ1 sen-
tences, regardless of the quantifier complexity of σ∗. Analogous conventions apply to other
notions and will not be mentioned explicitly anymore.

Lemma 3.18. Let T be a Σ1-sound theory containing Q, then every r.e. relation is definable
by a Σ1 formula in T .

Proof. If R ⊆ Nk is r.e., then there is a Σ1 formula φ(x1, . . . , xk) s.t. (n1, . . . , nk) ∈ R iff N |=
φ(n1, . . . , nk). Now, if N |= φ(n1, . . . , nk), then, by Σ1 completeness of Q, Q ⊢ φ(n1, . . . , nk)
and, since T contains Q, T ⊢ φ(n1, . . . , nk). In the other direction, if T ⊢ φ(n1, . . . , nk), then
by Σ1 soundness of T , N |= φ(n1, . . . , nk).

The definability of r.e. relations in Q has a number of consequences, the most immediate of
which is the undecidability of Q.

Theorem 3.19. Q is undecidable.

Proof. Let A ⊆ N be r.e. but undecidable, then, by Lemma 3.18, there is a definition φ(x)
of A in Q, i.e., n ∈ A iff Q ⊢ φ(n) for all n ∈ N. If Q was decidable, then so would A be,
contradiction.

Corollary 3.20. Validity in first-order logic is undecidable.

Proof. Suppose it was decidable, then, since ⊢ Q → φ iff Q ⊢ φ, also Q would be decidable,
contradiction.

This corollary is a negative solution to Hilbert’s Entscheidungsproblem (decision problem) that
was posed in 1928: does there exist an algorithm which, given a first-order formula as input,
determines whether that formula is valid? The historically first solutions to the decision problem
where given by Turing and Church in 1936. In the form of the above corollary it follows
straightforwardly from the representability of computation in Q.

So far in this section we have defined r.e. sets in Q. We now turn our attention to partial
recursive functions. The graph Γf of a partial function f : Nk ↪→ N satisfies the uniqueness
condition, i.e., for all x ∈ Nk and y, y′ ∈ N: if (x, y) ∈ Γf and (x, y′) ∈ Γf then y = y′. If
f : Nk → N is total then, in addition, Γf satisfies the existence condition, i.e. for all x ∈ Nk
there is a y ∈ N s.t. (x, y) ∈ Γf .

Observe that a partial f : Nk ↪→ N is recursive iff Γf is r.e. So, Lemma 3.18 entails that, for
every partial recursive function f : Nk ↪→ N, there is a Σ1 formula φ(x, y) s.t.

Q ⊢ φ(n1, . . . , nk,m) iff m = f(n1, . . . , nk)

for all (n1, . . . , nk) ∈ dom(f). We will now show that this equivalence can be proved in Q. In
order to achieve this stronger statement we use the following, slightly more complex, construc-
tion.

Lemma 3.21. Let f : Nk ↪→ N be recursive, then there is a Σ1 formula φ(x1, . . . , xk, y) s.t. for
all (n1, . . . , nk) ∈ dom(f):

Q ⊢ φ(n1, . . . , nk, y) ↔ y = f(n1, . . . , nk).

40

Proof. Since f : Nk ↪→ N is recursive, there is a Σ1 formula ψ(x1, . . . , xk, y) that defines f . Let
ψ(x1, . . . , xk, y) ≡ ∃z ψ0(x1, . . . , xk, y, z), then ψ0 is a ∆0-formula and define

φ(x1, . . . , xk, y) ≡ ∃z φ0(x1, . . . , xk, y, z)

≡ ∃z
(
ψ0(x1, . . . , xk, y, z) ∧ ∀u ≤ y∀v ≤ y (u ̸= y → ¬ψ0(x1, . . . , xk, u, v))

∧ ∀u ≤ z∀v ≤ z (u ̸= y → ¬ψ0(x1, . . . , xk, u, v))
)
.

One can think of φ0(x1, . . . , xk, y, z) as expressing that “z is a witness for f(x1, . . . , xk) = y and
there is no smaller witness”.

Let (n1, . . . , nk) ∈ dom(f), m = f(n1, . . . , nk), and p ∈ N s.t. N |= ψ0(n1, . . . , nk,m, p). First
observe that, since f is a function and Q is Σ1-complete, we have

Q ⊢ ψ0(n1, . . . , nk,m, p) and

Q ⊢ ¬ψ0(n1, . . . , nk, l, q) for all l ̸= m and all q ∈ N.

Therefore Q ⊢ φ0(n1, . . . , nk,m, p) and thus Q ⊢ y = m→ φ(n1, . . . , nk, y).

For showing the implication in the other direction, work in Q and suppose towards a contradic-
tion that y ̸= m and φ(n1, . . . , nk, y), i.e., φ0(n1, . . . , nk, y, z). Since, by Lemma 3.13/11, we have
∀x (x ≤ max{m, p} ∨max {m, p} ≤ x), we can make the case distinction in i) max{m, p} ≤ y
or max{m, p} ≤ z or ii) y, z ≤ max{m, p}.
In case i) start from φ0(n1, . . . , nk, y, z) and let u = m and v = p to obtain ¬ψ0(n1, . . . , nk,m, p)
and hence a contradiction.

In case ii) note that we already have φ0(n1, . . . , nk,m, p), i.e.,

ψ0(x1, . . . , xk,m, p) ∧ ∀u ≤ m∀v ≤ m (u ̸= m→ ¬ψ0(n1, . . . , nk, u, v))

∧ ∀u ≤ p∀v ≤ p (u ̸= m→ ¬ψ0(n1, . . . , nk, u, v)).

and, from the case assumption, letting u = y and v = z, we obtain ¬ψ0(n1, . . . , nk, y, z) which
is a contradiction.

Therefore Q ⊢ φ0(n1, . . . , nk, y, z) → y = m, i.e., Q ⊢ φ(n1, . . . , nk, y) → y = m.

Note that the above lemma only shows that uniqueness is proven numeralwise. In general,

Q ⊬ ∀x∀y∀y′ (φ(x, y) ∧ φ(x, y′) → y = y′)

for a Σ1 definition φ(x, y) of a partial recursive function.

Example 3.22. Let φ(x1, x2, y) ≡ x1 = x2 + y ∨ x2 = x1 + y. Then φ(x1, x2, y) defines the
function (m1,m2) 7→ |m1 − m2| in N. However, Q does not prove the uniqueness property,
because, letting M be the model considered in Section 3.2, we have M |= φ(a, a, a) because
M |= a+ a = a and M |= φ(a, a, b) because M |= a+ b = a.

An analogous observation can be made for totality. Letting φ(x, y) be a Σ1 definition of a total
recursive function f we have Q ⊢ φ(n1, . . . , nk, f(n1, . . . , nk)) for all n1, . . . , nk ∈ N. On the
other hand, in general,

Q ⊬ ∀x∃y φ(x, y).

It turns out that Q only proves the totality of very few functions. In fact, the question which
total recursive functions are provably total in a theory is an important approach to classifying the
strength of theories with deep connections to the second incompleteness theorem. Concerning
Q we have for example:

41

Theorem 3.23. Let Exp(x, y) be a Σ1 definition of the total recursive function x 7→ 2x, then
Q ⊬ ∀x∃y Exp(x, y).

Without Proof.

3.4 Coding proofs

We will now start to consider formal proofs. Which calculus we use is not essential for the
results we discuss in this lecture (as long as it is sound and complete for first-order logic). It
will however be practical to use a calculus whose definition is as simple as possible, even at the
expense of rendering actual proofs in this calculus cumbersome.

Definition 3.24. The logical axioms are:

φ→ (ψ → φ) (L1)

(φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ)) (L2)

(¬ψ → ¬φ) → (φ→ ψ) (L3)

∀xφ→ φ[x\t] if t does not contain a variable that is bound in φ (L4)

The rules are:

modus ponens:
φ φ→ ψ

ψ
(MP)

generalisation:
φ→ ψ[x\y]
φ→ ∀xψ if y is not free in φ→ ∀xψ and y is not bound in ψ (G)

Definition 3.25. Let T be a theory, let φ be a formula. A T -proof of φ is a sequence φ1, . . . , φn
of formulas s.t. φn ≡ φ and for all i = 1, . . . , n: 1. φi is a logical axiom, 2. φi is a T -axiom, 3. φi
is obtained from φj and φk with j, k < i by modus ponens, or 4. φi is obtained from some φj
with j < i by the generalisation rule.

Since we already have a ∆0 encoding of finite sequences and an encoding of formulas, the code
#π of the proof π = φ1, . . . , φn can be straightforwardly defined as the code of the sequence
#φ1, . . . ,#φn of natural numbers.

Definition 3.26. A theory T is called axiomatisable if there is a decidable axiomatisation A of
T . A theory T is called decidable if the set of sentences {σ | T ⊢ σ} is decidable.

Note that in an axiomatisable theory, only the set of axioms is decidable. This does not entail
that {σ | T ⊢ σ} is decidable. However, the following definition shows that {σ | T ⊢ σ} is r.e.

Definition 3.27. Let T be an axiomatisable theory. Then there is a decidable axiomatisation
A of T . Let AxiomA(x) be a Σ1 definition of A. Let LAxiom(x) be a Σ1 definition of the set of
logical axioms, let MPRule(x, y, z) be a Σ1 definition of the modus ponens rule, and let GRule
be a Σ1 definition of the generalisation rule. Towards the definition of the provability predicate
we define PA(x, y) ≡

∃u
(
Seq(y, u+ 1) ∧ (y)u = x ∧

∀i ≤ u
(
LAxiom((y)i) ∨ AxiomA((y)i) ∨
∃j < i∃k < iMPRule((y)j , (y)k, (y)i) ∨

∃j < iGRule((y)j , (y)i)
))
.

42

By Lemma 2.6 the formula ∃y PA(x, y) is equivalent to a Σ1 formula ProvA(x) ≡ ∃y ProofA(x, y).
Usually, the choice of A will be clear from the context and we will simply write ProvT (x) instead
of ProvA(x). ProvT (x) is called provability predicate of the theory T .

Thus, for every axiomatisable theory T , we have obtained a Σ1 definition ProvT (x) of the set
of formulas provable in T . This entails that {σ | T ⊢ σ} is r.e.

3.5 The first incompleteness theorem

For proving the first incompleteness theorem in full strength we will need a syntactic version of
the fixed point lemma. In Section 2.5 we have shown the fixed point lemma for N. A crucial
prerequisite for doing so was the definability of partial recursive functions by Σ1 formulas in
N. Now that we have obtained the definability of partial recursive functions by Σ1 formulas in
Q we can, essentially by repeating the same proof, obtain a fixed point lemma for any theory
containing Q.

Lemma 3.28 (Fixed point lemma). Let T be a theory that contains Q and let φ(x) be a formula.
Then there is a sentence σ s.t. T ⊢ σ ↔ φ(⌜σ⌝).

Proof. Given φ(x) we want to define a formula ψ(x) s.t.

T ⊢ ψ(⌜χ(x)⌝) ↔ φ(⌜χ(⌜χ(x)⌝)⌝) (*)

for all formulas χ(x). Then, applying ψ(x) to itself we obtain

T ⊢ ψ(⌜ψ(x)⌝) ↔ φ(⌜ψ(⌜ψ(x)⌝)⌝)

and, by letting σ ≡ ψ(⌜ψ(x)⌝), we have

T ⊢ σ ↔ φ(⌜σ⌝).

It remains to define ψ and to show (*). To that aim we define the function f : N → N by

n 7→

{
#χ(⌜χ(x)⌝) if n = #χ(x) for a formula χ(x)

0 otherwise

and note that f is primitive recursive. So, by Lemma 3.21, there is a Σ1 formula F (x, y) s.t.
for all n ∈ N: Q ⊢ F (n, y) ↔ y = f(n) and hence T ⊢ F (n, y) ↔ y = f(n). We define
ψ(x) ≡ ∃y (F (x, y) ∧ φ(y)) and obtain

T ⊢ ψ(⌜χ(x)⌝) ↔ ∃y (F (⌜χ(x)⌝, y) ∧ φ(y))
↔ ∃y (y = f(#χ(x)) ∧ φ(y))
↔ ∃y (y = ⌜χ(⌜χ(x)⌝)⌝ ∧ φ(y))
↔ φ(⌜χ(⌜χ(x)⌝)⌝).

Definition 3.29. Let T be an axiomatisable theory containing Q. By the fixed point lemma
there is a sentence GT satisfying T ⊢ GT ↔ ¬ProvT (⌜GT ⌝). This sentence is called Gödel
sentence of T .

43

The Gödel sentence GT is a fixed point of the negation of the provability predicate of T . It
can be understood as expressing “I am not T -provable” in Q. The Gödel sentence GT is a
sentence in the language of T which is equivalent to the interpretation of a Π1-sentence, namely
¬ProvT (⌜GT ⌝), in T . Whether this is still of the form ∀xφ(x) for φ(x) a translation of a ∆0

formula depends on the interpretation. We can now give the first constructive variant of the
first incompleteness theorem.

Theorem 3.30. Let T be an axiomatisable theory containing Q. If T is consistent, then T ⊬ GT .
If T is Σ1-sound, then T ⊬ ¬GT .

Proof. If T ⊢ GT , then T ⊢ ¬ProvT (⌜GT ⌝). On the other hand, then also N |= ProvT (⌜GT ⌝), so,
by Σ1-completeness of Q, T ⊢ ProvT (⌜GT ⌝) and thus T is inconsistent.

If T ⊢ ¬GT , then T ⊢ ProvT (⌜GT ⌝) and, by Σ1-soundness of T , N |= ProvT (⌜GT ⌝), i.e., T ⊢ GT ,
and thus T is inconsistent.

We will now prove the first incompleteness theorem in its full strength. By replacing the
assumption of Σ1 soundness by that of consistency it will become fully syntactic while remaining
constructive in the sense of explicitly proving a sentence which is neither provable nor refutable.
It has been shown by Rosser in 1936 as an improvement of Gödel’s original result from 1931.
Let neg : N → N be defined by

neg(n) =

{
#¬φ if n = #φ for some formula φ

0 otherwise

Then neg is primitive recursive. Let Neg(x, y) be a Σ1 definition of neg and, for an axiomatisable
theory T , consider the formula

ρ(x) ≡ ∃y (Neg(x, y) ∧ ProvT (y)).

Then ρ(x) expresses the existence of a T -refutation of the formula with code x and is equivalent
to a Σ1 formula ∃y RefT (x, y) where RefT (x, y) is ∆0.

Definition 3.31. Let T be an axiomatisable theory, then the Rosser provability predicate is

ProvRT (x) ≡ ∃y (ProofT (x, y) ∧ ∀z < y ¬RefT (x, z)).

Since T is axiomatisable, its provability predicate is ∃y ProofT (x, y) where ProofT (x, y) is a ∆0

formula. Therefore ProvRT (x) is a Σ1 formula. ProvRT (x) expresses that there is a proof of the
formula with code x below which there is no refutation of the formula with code x. Note that,
for a consistent theory T , we have N |= ProvT (x) ↔ ProvRT (x). Moreover, note that ¬ProvRT (x)
is logically equivalent to

∀y (¬ProofT (x, y) ∨ ∃z < y RefT (x, z))

which can be read as the implication: “for every proof of x there is a smaller refutation of x”.

Definition 3.32. Let T be an axiomatisable theory containing Q. By the fixed point lemma
there is a sentence RT satisfying T ⊢ RT ↔ ¬ProvRT (⌜RT ⌝). This sentence is called Rosser
sentence of T .

Theorem 3.33 (First incompleteness theorem). Let T be a consistent and axiomatisable theory
containing Q, then T ⊬ RT and T ⊬ ¬RT .

44

Proof. If T ⊢ RT , then T ⊢ ¬ProvRT (⌜RT ⌝). On the other hand, there is p ∈ N s.t. N |=
ProofT (⌜RT ⌝, p). Moreover, since T is consistent, T ⊬ ¬RT , so, for all r ∈ N, N |= ¬RefT (⌜RT ⌝, r).
By Σ1-completeness of Q we have T ⊢ ProofT (⌜RT ⌝, p) and, for all r ∈ N, T ⊢ ¬RefT (⌜RT ⌝, r).
Hence T ⊢ ∀z ≤ p¬RefT (⌜RT ⌝, z) and so T ⊢ ProvRT (⌜RT ⌝), contradiction.

If T ⊢ ¬RT , then T ⊢ ProvRT (⌜RT ⌝). On the other hand, there is r ∈ N s.t. N |= RefT (⌜RT ⌝, r).
Moreover, since T is consistent, T ⊬ RT , so, for all p ∈ N, N |= ¬ProofT (⌜RT ⌝, p). By Σ1-
completeness of Q we have T ⊢ RefT (⌜RT ⌝, r) and, for all p ∈ N, T ⊢ ¬ProofT (⌜RT ⌝, p). So we
obtain T ⊢ y ≤ r → ¬ProofT (⌜RT ⌝, y) and T ⊢ r + 1 ≤ y → ∃z < y RefT (⌜RT ⌝, z) and, since
Q ⊢ y ≤ r ∨ r + 1 ≤ y, we have

T ⊢ ∀y
(
¬ProofT (⌜RT ⌝, y) ∨ ∃z < y RefT (⌜RT ⌝, z)

)
i.e., T ⊢ ¬ProvRT (⌜RT ⌝), contradiction.

A theory is called essentially undecidable if all its consistent extensions are undecidable. The
following corollary shows that Q is essentially undecidable, even in the slightly stronger sense
of interpretability instead of extension.

Corollary 3.34. Let T be a consistent theory containing Q, then T is undecidable.

Proof. First observe that, if S is a consistent theory and σ a sentence, then at least one of
S ∪ {σ} and S ∪ {¬σ} is consistent for suppose S, σ ⊢ ⊥ and S,¬σ ⊢ ⊥, then S ⊢ ¬σ and
S ⊢ ¬¬σ, hence S would be inconsistent.

Let L be the language of T and let σ0, σ1, . . . be a recursive enumeration of the set of L sentences.
Let T0 = T , define

Tn+1 = Tn ∪ {αn} where αn =

{
σn if Tn ∪ {σn} is consistent

¬σn otherwise

for n ≥ 0 and T ∗ =
⋃
n≥0 Tn. By induction on n all Tn are consistent. But then also T ∗ is

consistent, for suppose T ∗ ⊢ ⊥, then there would be an n s.t. Tn ⊢ ⊥. Moreover, T ∗ is complete
because, for every n, either σn or ¬σn is an axiom of T ∗.

Now, for the sake of contradiction, suppose that T is decidable. First note that Tn ∪ {σn} is
consistent iff T ⊬

∧n−1
i=0 αi∧σn → ⊥. So, if T is decidable, then the function n 7→ αn is recursive.

Therefore A = {αi | i ∈ N} is decidable: given a sentence σ find an n with σ ≡ σn. If αn ≡ σn
then σ ∈ A. If αn ≡ ¬σn then σ /∈ A. Therefore, the axiomatisation {σ | T ⊢ σ} ∪ A of T ∗ is
decidable. So T ∗ would be a consistent, complete, and axiomatisable theory containing Q; this
contradicts the first incompleteness theorem.

3.6 Open induction

A key for proving the second incompleteness theorem is to formalise proofs of several statements
whose truth we have relied on for the first incompleteness theorem in a weak arithmetical base
theory: in particular we will have to prove equivalences of formulas to Σn- and Πn-formulas and
deal with the encoding of sequences. To that aim we now start to consider arithmetical theories
with induction axioms.

45

Definition 3.35. Let φ(x, z) be an arithmetical formula, then the induction axiom for φ w.r.t.
x is the sentence

Ixφ ≡ ∀z
(
φ(0, z) → ∀y (φ(y, z) → φ(s(y), z)) → ∀xφ(x, z)

)
IOpen denotes the theory axiomatised by Q∪{Ixφ | φ is a quantifier-free arithmetical formula}.
For k ≥ 0, IΣk is the theory axiomatised by Q ∪ {Ixφ | φ is a Σk-formula}. Peano arithmetic,
PA, is the theory axiomatised by Q ∪ {Ixφ | φ is an arithmetical formula}.

Now, for any k ≥ 0, IΣk is an extension of Q, IΣk+1 is an extension of IΣk and PA is an extension
of IΣk. All these extensions take place in the same language LA. A natural and convenient (but
not the minimal) choice for a base theory for the second incompleteness theorem is IΣ1. Before
formalising various results in IΣ1 we first study the weaker theory IOpen in this section.

Lemma 3.36. IOpen proves the following formulas

1. x+ y = y + x

2. x+ (y + z) = (x+ y) + z

3. x · y = y · x

4. x · (y · z) = (x · y) · z

5. x · (y + z) = x · y + x · z

Proof. For 1 we first show 0+x = x (*) in IOpen by induction2 on x: 0+0 = 0 follows from (Q4).
If 0 + x = x, then 0 + s(x) =(Q5) s(0 + x) =IH s(x). Next we show s(x) + y = s(x+ y) (**) in
IOpen by induction on y: for the induction base, we have s(x)+0 =(Q4) s(x) =(Q4) s(x+0). For
the induction step, we have s(x)+s(y) =(Q5) s(s(x)+y) =IH s(s(x+y)) =(Q5) s(x+s(y)). Now
we show x+ y = y + x in IOpen by induction on y. If y = 0 we have x+ 0 =(Q4) x =(*) 0 + x.
For the induction step we have x+ s(y) =(Q5) s(x+ y) =IH s(y + x) =(**) s(y) + x.

2-5: without proof.

For showing 2-5 in the above lemma one proceeds similarly to the proof of 1: it suffices to
formalise natural symbolic proofs up to a level of detail that allows to see that all inductions
are quantifier-free and, beyond that, only axioms of Q and lemmas which are provable in IOpen
have been used. From this point on, we will generously leave out details of formalised proofs
and only mention crucial turning points. Filling out these details can be done as in the above
proof of Lemma 3.36/1.

We will now show closure properties of arithmetically definable relations along the lines of
Lemma 2.6 in IOpen. This will strengthen the results of Lemma 2.6 by replacing (arithmetical)
equivalence by provable equivalence in IOpen. Note that, for any sound theory T , provable
equivalence in T implies (arithmetical) equivalence and is implied by logical equivalence. We
start by developing our encoding of pairs in IOpen. As usual we write z = ⟨x, y⟩ as abbreviation
for the LA-formula 2 · z = (x+ y) · (x+ y + 1) + 2 · y.

Lemma 3.37. IOpen proves the following formulas:

1. ∀x∀y∃!z z = ⟨x, y⟩
2Note that (*) is quantifier-free.

46

2. ∀z∃!(x, y) z = ⟨x, y⟩, i.e.,
∀z∃x∃y(z = ⟨x, y⟩ ∧ ∀x′∀y′(z = ⟨x′, y′⟩ → x′ = x ∧ y′ = y))

3. ∀x∀y∀z (z = ⟨x, y⟩ → x ≤ z ∧ y ≤ z)

Without proof.

Lemma 3.38. For all n ≥ 0, the Σn+1 formulas are closed under existential quantification in
IOpen and the Πn+1 formulas are closed under universal quantification in IOpen.

Proof. We follow the proof of Lemma 2.6/3 and 4: we proceed by induction on n. Let
∃z φ(x, y, z) be Σn+1, i.e., φ(x, y, z) is Πn. Define

ψ(x) ≡ ∃u∀y∀z (u = ⟨y, z⟩ → φ(x, y, z)) and

ψb(x) ≡ ∃u∀y ≤ u∀z ≤ u (u = ⟨y, z⟩ → φ(x, y, z)).

Now we claim that IOpen ⊢ ∃y∃z φ(x, y, z) ↔ ψ(x). Work in IOpen: for the left-to-right
direction assume φ(x, y, z), then, by Lemma 3.37, there is a u s.t. u = ⟨y, z⟩ and, moreover,
∀y′∀z′ (u = ⟨y′, z′⟩ → y′ = y ∧ z′ = z). Since φ(x, y, z) and u = ⟨y, z⟩, we obtain ∀y′∀z′ (u =
⟨y′, z′⟩ → φ(x, y′, z′)). For the right-to-left direction let u be s.t. ∀y∀z (u = ⟨y, z⟩ → φ(x, y, z)),
then, by Lemma 3.37, there are y, z s.t. u = ⟨y, z⟩ and thus φ(x, y, z). Furthermore we also
have IOpen ⊢ ∃y∃z φb(x, y, z) ↔ ψ(x) because, by Lemma 3.37, IOpen ⊢ ψ(x) ↔ ψb(x). The
rest of this proof is exactly as in that of Lemma 2.6/3 and 4.

Lemma 3.39. For all n ≥ 0: the Σn-, Πn-, and ∆n-definable relations are closed under union
and intersection in IOpen.

Proof. The statement is trivial for n = 0, so let n > 0. If ∃y φ(x, y) and ∃z ψ(x, z) are Σn
formulas, then ∃y φ(x, y) ∧ ∃z ψ(x, z) is logically equivalent to ∃y∃z (φ(x, y) ∧ ψ(x, z)) which
is equivalent to a Σn formula in IOpen by Lemma 3.38. Similarly, ∃y φ(x, y) ∨ ∃z ψ(x, z) is
logically equivalent to ∃y (φ(x, y) ∨ ψ(x, y)) which is a Σn formula too. The cases for Πn are
analogous. The cases for ∆n follow from those of Σn and Πn.

So while IOpen, by virtue of its induction axioms, considerably extends Q, it still has quite
narrow limits. Several closure properties of arithmetically definable relations require stronger
induction axioms, see Section 3.7. In terms of concrete mathematical statements, IOpen does,
for example, not prove the irrationality of

√
2, which is expressed by the arithmetical sentence

¬∃x∃y (y ̸= 0 ∧ 2y2 = x2).

Remark 3.40. It is still open whether the following problem, which is related to the MRDP
theorem, is decidable: given a Diophantine equation p(x) = q(x) for p(x), q(x) ∈ N[x], does
there exist an M |= IOpen with M |= ∃x p(x) = q(x). The corresponding problem for Q
has been shown to be decidable. For theories slightly stronger than IOpen it is known to be
undecidable.

3.7 Σ1 induction

In this section we study IΣ1, minimal arithmetic Q together with induction for Σ1 formulas.
We start by establishing the provable closure of Σ1-definable sets under bounded quantifiers.

47

Definition 3.41. Let φ(x, y, z) be an arithmetical formula. Then we define the collection axiom
for φ as

Bφ ≡ ∀z∀u
(
∀x ≤ u∃y φ(x, y, z) → ∃v∀x ≤ u∃y ≤ v φ(x, y, z)

)
In preparation of the next proof, note that, if φ(x) is equivalent in IΣ1 to a Σ1 formula, then
IΣ1 ⊢ Ixφ(x).

Lemma 3.42. Let φ(x, y, z) be a ∆0 formula, then IΣ1 ⊢ Bφ.

Proof. We work in IΣ1: given z and u assume that ∀x ≤ u∃y φ(x, y, z). We show

u′ ≤ u→ ∃v∀x ≤ u′∃y ≤ v φ(x, y, z) (*)

by induction3 on u′. If u′ = 0, let y0 be s.t. φ(0, y0, z) and set v = y0. Then ∀x ≤ 0∃y ≤
v φ(x, y, z). For the induction step make a case distinction: if s(u′) > u then we are done. So
let s(u′) ≤ u and assume (*) for u′, so there is a v0 s.t. ∀x ≤ u′∃y ≤ v0 φ(x, y, z). Let y0 be s.t.
φ(u′ + 1, y0, z) and set v1 = max{v0, y0}, then ∀x ≤ s(u′)∃y ≤ v1 φ(x, y, z). So we have (*) for
all u′, in particular for u′ = u which is what we wanted to show.

Lemma 3.43. IΣ1 proves collection for Σ1 formulas.

Proof. Let φ(x, y1, z) be a Σ1 formula, let φ(x, y1, z) ≡ ∃y2 ψ(x, y1, y2, z), then ψ(x, y1, y2, z) is
a Σ0 formula. Work in IΣ1: given z and u, assume ∀x ≤ u∃y1∃y2 ψ(x, y1, y2, z). Then, as in the
proof of Lemma 3.38, we have

∀x ≤ u∃y∀y1 ≤ y∀y2 ≤ y (y = ⟨y1, y2⟩ ∧ ψ(x, y1, y2, z))

and thus, by Σ0 collection, we have

∃v∀x ≤ u∃y ≤ v∀y1 ≤ y∀y2 ≤ y (y = ⟨y1, y2⟩ ∧ ψ(x, y1, y2, z)),

so, by Lemma 3.37,
∃v∀x ≤ u∃y1 ≤ v∃y2 ≤ v ψ(x, y1, y2, z).

Lemma 3.44. Σ1 formulas are closed under bounded quantification in IΣ1.

Proof. Let ∃y φ(x, y, z) be a Σ1 formula, then ∃x ≤ t∃y φ(x, y, z) is logically equivalent to
∃y ∃x ≤ t φ(x, y, z). Moreover, by Σ0 collection, ∀x ≤ t∃y φ(x, y, z) is equivalent in IΣ1 to
∃v∀x ≤ t∃y ≤ v φ(x, y, z) which is a Σ1 formula.

Now we can come back to the provability predicate. In Section 3.4 we have defined the formula
PA(x, y) ≡

∃u
(
Seq(y, u) ∧ x = (y)u−1∧

∀i < u
(
LAxiom((y)i) ∨ AxiomA((y)i)∨
∃j < i∃k < iMPRule((y)j , (y)k, (y)i)∨

∃j < iGRule((y)j , (y)i)
))
.

and have observed that ∃y PA(x, y) is (arithmetically) equivalent to a Σ1 formula ProvA(x) ≡
∃y ProofA(x, y). By Lemmas 3.38, 3.39, and 3.44 we even have IΣ1 ⊢ ∃y PA(x, y) ↔ ∃y ProofA(x, y).

3Note that (*) is equivalent to a Σ1 formula in IΣ1.

48

This equivalence is a crucial prerequisite for proving properties of ProvA(x), i.e., of ProvT (x) in
IΣ1.

Order induction, just like course-of-values recursion, is frequently a helpful tool. It is available
in IΣ1 for Σ1 formulas.

Definition 3.45. Let φ(x, z) be a Σ1 formula. The order induction axiom for φ is

I<x φ ≡ ∀z
(
∀x (∀y < xφ(y, z) → φ(x, z)) → ∀xφ(x, z)

)
Lemma 3.46. Let φ(x, z) be a Σ1 formula, then IΣ1 ⊢ I<x φ(x, z).

Proof. Let ψ(x, z) ≡ ∀y < xφ(y, z), then ψ(x, z) is equivalent to a Σ1 formula in IΣ1 by Σ1

collection. Therefore IΣ1 proves Ixψ(x, z), i.e.,

∀y < 0φ(y, z) ∧ ∀x (∀y < xφ(y, z) → ∀y < s(x)φ(y, z)) → ∀x∀y < xφ(y, z). (*)

But IΣ1 ⊢ ¬∃y y < 0, IΣ1 ⊢ y < s(x) ↔ y = x ∨ y < x, and IΣ1 ⊢ ∀x∀y < xφ(y, z) ↔ ∀xφ(x),
so (*) is equivalent in IΣ1 to

I<x φ(x, z) ≡ ∀x (∀y < xφ(y, z) → φ(x, z)) → ∀xφ(x, z)

IΣ1 allows to work with finite sequences in a comfortable way. For our encoding of finite
sequences consisting of the ∆0 formulas Seq(w, v) and (w)u = x we obtain:

Lemma 3.47. IΣ1 proves the sequence axioms

Seq(w, v) → ∀u < v∃!x (w)u = x (S1)

∃w Seq(w, 0) (S2)

Seq(w, v) → ∀x∃w′ (Seq(w′, s(v)) ∧ ∀u < v∀y ((w′)u = y ↔ (w)u = y) ∧ (w′)v = x) (S3)

as well as:

1. Seq(x, u) ∧ Seq(y, v) → ∃z (Seq(z, u+ v) ∧ ∀i < u (z)i = (x)i ∧ ∀i < v (z)u+i = (y)i)

2. Seq(w, s(u)) → ∃w′(Seq(w′, u) ∧ ∀i < s(u)∃x ((w′)i = x ∧ (w)i = x))

Without Proof.

3.8 The derivability conditions

The following derivability conditions allow for an elegant abstract presentation of the second
incompleteness theorem with deep connections to other areas of logic, see Section 4.1.

Definition 3.48. Let T be an axiomatisable theory. The derivability conditions for ProvT are:

If T ⊢ σ then T ⊢ ProvT (⌜σ⌝) (D1)

T ⊢ ProvT (⌜σ⌝) → ProvT (⌜ProvT (⌜σ⌝)⌝) (D2)

T ⊢ ProvT (⌜σ⌝) ∧ ProvT (⌜σ → τ⌝) → ProvT (⌜τ⌝) (D3)

for all sentences σ and τ .

49

The provability conditions (D1), (D2), (D3) are the key properties required for a provability
predicate for the second incompleteness theorem to hold. We will first establish them for
axiomatisable theories T which contain IΣ1 and then prove the second incompleteness theorem
from them.

Lemma 3.49 (D1). Let T be an axiomatisable theory containing Q and let σ a sentence. If
T ⊢ σ, then T ⊢ ProvT (⌜σ⌝).

Proof. Since T is axiomatisable, ProvT (⌜σ⌝) is a Σ1 sentence. T ⊢ σ is equivalent to N |=
ProvT (⌜σ⌝), and so, by Σ1 completeness of Q, Q ⊢ ProvT (⌜σ⌝) and hence T ⊢ ProvT (⌜σ⌝).

Lemma 3.50 (D3). Let T be an axiomatisable theory containing IΣ1, and let σ and τ be
sentences. Then T ⊢ ProvT (⌜σ⌝) ∧ ProvT (⌜σ → τ⌝) → ProvT (⌜τ⌝)

Proof. Work in T : assume that there are finite sequences p and q s.t. p is a T -proof of σ and q
is a T -proof of σ → τ . By Lemma 3.47/1 there is a finite sequence r = p; q. Moreover, by (S3),
there is a finite sequence r′ = p; q; ⌜τ⌝. Since p and q are proofs and τ is obtained from modus
ponens from the last element of p and the last element of q, r′ is a T -proof of τ .

Proving the derivability condition (D2) requires more work. First, note that, since ProvT (⌜σ⌝)
is a Σ1 sentence it suffices to show T ⊢ τ → ProvT (⌜τ⌝) for every Σ1 sentence τ . This is
the formalisation of Σ1 completeness of T in T . We will proceed by formalising the proof
of Lemma 3.15. In order to do that we will need to speak about codes of formulas with
free variables and about codes arising from these by substitution. To that aim, consider a
Σ1 formula NumC(x, y) which defines the function n 7→ #n. By Lemma 3.21 we can assume
Q ⊢ NumC(n, y) ↔ y = ⌜n⌝. We have already seen a Σ1 formula Subst(x, y, z, u) s.t. for every
formula φ, every variable x, and every term t: Q ⊢ Subst(⌜φ⌝, ⌜x⌝, ⌜t⌝, u) ↔ u = ⌜φ[x\t]⌝. This
can be generalised to the simultaneous substitution of several variables thus obtaining, for all
k ≥ 1, a Σ1 formula Substk(x, y1, . . . , yk, z1, . . . , zk, u) s.t. for every formula φ, pairwise different
variables x1, . . . , xk and all terms t1, . . . , tk:

Q ⊢ Substk(⌜φ⌝, ⌜x1⌝, . . . , ⌜xk⌝, ⌜t1⌝, . . . , ⌜tk⌝, u) ↔ u = ⌜φ[x1\t1, . . . , xk\tk]⌝

Definition 3.51. For arithmetical formulas φ(x1, . . . , xk) and ψ(y), we define ψ(⌜φ(ẋ1, . . . , ẋk)⌝)
as abbreviation for

∃y′∃x′1 · · · ∃x′k
(
NumC(x1, x

′
1) ∧ · · · ∧ NumC(xk, x

′
k)∧

Substk(⌜φ(x1, . . . , xk)⌝, ⌜x1⌝, . . . , ⌜xk⌝, x
′
1, . . . , x

′
k, y

′) ∧ ψ(y′)
)

Note that ψ(⌜φ(ẋ1, . . . , ẋk)⌝) is an arithmetical formula with free variables x1, . . . , xk. Also
note that, if ψ(y) is equivalent to a Σ1 formula in IΣ1, then so is ψ(⌜φ(ẋ1, . . . , ẋk)⌝). The
formula ψ(⌜φ(ẋ1, . . . , ẋk)⌝) allows to substitute terms from the object level (where ψ lives) into
the object object level (where φ lives). In particular

Q ⊢ ψ(⌜φ(ẋ1, . . . , ẋk)⌝)[x1\n1, . . . , xk\nk] ↔ ψ(⌜φ(n1, . . . , nk)⌝)

for all n1, . . . , nk ∈ N and

IΣ1 ⊢ ψ(⌜φ(ẋ1, . . . , ẋk)⌝)[x1\t1(x), . . . , xk\tk(x)] ↔ ψ(⌜φ(t1(ẋ1, . . . , ẋk), . . . , tk(ẋ1, . . . , ẋk))⌝)

for all LA terms t1(x1, . . . , xk), . . . , tk(x1, . . . , xk).

For formalised Σ1 completeness of Q we start with Lemma 3.13/1 where we have shown that,
for all m,n ∈ N, Q ⊢ m+ n = m+ n. This is formalised as follows:

50

Lemma 3.52. IΣ1 ⊢ ∀m∀nProvQ(⌜ṁ+ ṅ = ż⌝)[z\m+ n]

Proof. Note that ProvQ(⌜ṁ+ ṅ = ż⌝)[z\m+ n] is

∃y′,m′, n′, z′
(
NumC(m,m′) ∧ NumC(n, n′) ∧ NumC(m+ n, z′)∧
Subst3(⌜m+ n = z⌝, ⌜m⌝, ⌜n⌝, ⌜z⌝,m′, n′, z′, y′)∧
ProvQ(y

′)
)
.

Work in IΣ1: Show ProvQ(⌜ṁ+ ṅ = ż⌝)[z\m+ n] by induction on n. If n = 0 then m+n = m
and work in Q: by (Q4) we have m + 0 = m. Now, back in IΣ1, for the induction step we
have ProvQ(⌜ṁ+ ṅ = ż⌝)[z\m+ n] as induction hypothesis (IH) and we have to show that
ProvQ(⌜ṁ+ ṅ = ż⌝)[z\m+ n][n\s(n)], i.e., ProvQ(⌜ṁ+ s(ṅ)) = ż⌝)[z\m+ n+ 1]. Work in Q:
We have m+ s(n) =(Q5) s(m+ n) =(IH) s(m+ n) = m+ n+ 1.

We proceed similarly with the other points of Lemma 3.13 which are necessary for Lemma 3.15,
for example Lemma 3.13/4 is formalised as IΣ1 ⊢ ∀m,n (m ̸= n → ProvQ(⌜ṁ ̸= ṅ⌝)). We then
proceed to show:

Lemma 3.53. Let σ be a Σ1 sentence, then IΣ1 ⊢ σ → ProvQ(⌜σ⌝).

Proof sketch. First one shows

IΣ1 ⊢ φ(x1, . . . , xk) → ProvQ(⌜φ(ẋ1, . . . , ẋk)⌝) (*)

for every ∆0 formula φ(x1, . . . , xk) by induction on the structure of φ(x1, . . . , xk) as in the proof
of Lemma 3.15.

Then one can carry out the following argument in IΣ1 for any Σ1 sentence σ ≡ ∃xφ(x):
Assume σ, then there is an x s.t. φ(x). So, by (*), there is a Q-proof px of φ(x) and hence
qx = px; ⌜φ(x) → σ⌝; ⌜σ⌝ is a Q-proof of σ because φ(x) → σ is an axiom and σ follows from
modus ponens.

Lemma 3.54 (D2). Let T be an axiomatisable theory containing IΣ1 and let σ be a sentence,
then T ⊢ ProvT (⌜σ⌝) → ProvT (⌜ProvT (⌜σ⌝)⌝)

Proof. ProvT (⌜σ⌝) is a Σ1 sentence, so, by Lemma 3.53, IΣ1 ⊢ ProvT (⌜σ⌝) → ProvQ(⌜ProvT (⌜σ⌝)⌝).
Since T contains Q, IΣ1 ⊢ ProvQ(x) → ProvT (x). Thus we obtain IΣ1 ⊢ ProvT (⌜σ⌝) →
ProvT (⌜ProvT (⌜σ⌝)⌝).

3.9 The second incompleteness theorem

Definition 3.55. For an axiomatisable theory T define ConT ≡ ¬ProvT (⌜⊥⌝).

Lemma 3.56. Let T be an axiomatisable theory containing IΣ1, let ProvT be a provability
predicate for T that satisfies the derivability conditions, and let σ be a sentence. Then

1. T ⊢ ¬ProvT (⌜σ⌝) → ConT and

2. T ⊢ ProvT (⌜σ⌝) ∧ ProvT (⌜¬σ⌝) → ¬ConT .

51

Proof. Let τ, ν be any sentences, then τ → ¬τ → ν is a tautology, so T ⊢ τ → ¬τ → ν.
Therefore, by (D1), T ⊢ ProvT (⌜τ → ¬τ → ν⌝). By applying (D3) twice we obtain

T ⊢ ProvT (⌜τ⌝) → ProvT (⌜¬τ⌝) → ProvT (⌜ν⌝).

This immediately entails 2 by letting τ ≡ σ and ν ≡ ⊥. For 1 let τ ≡ ⊥ and ν ≡ σ. Observe
that, since ⊢ ¬⊥, we have T ⊢ ProvT (⌜¬⊥⌝) by (D1). Therefore, T ⊢ ProvT (⌜⊥⌝) → ProvT (⌜σ⌝)
and we obtain 1 by contraposition.

Theorem 3.57 (Second incompleteness theorem). Let T be a consistent and axiomatisable
theory containing IΣ1, then T ⊬ ConT .

Proof. By the first incompleteness theorem for GT we know T ⊬ GT . Therefore it suffices to
show that T ⊢ GT ↔ ConT . We have T ⊢ GT → ¬ProvT (⌜GT ⌝) and so, by Lemma 3.56/1.,
T ⊢ GT → ConT . Conversely, we will show T ⊢ ¬GT → ¬ConT . To that aim, it suffices to show
that T ⊢ ProvT (⌜GT ⌝) → ¬ConT . First, by (D2), we have

T ⊢ ProvT (⌜GT ⌝) → ProvT (⌜ProvT (⌜GT ⌝)⌝).

Moreover, since T ⊢ ProvT (⌜GT ⌝) → ¬GT , by (D1), we have

T ⊢ ProvT (⌜ProvT (⌜GT ⌝) → ¬GT ⌝)

so, by (D3),
T ⊢ ProvT (⌜GT ⌝) → ProvT (⌜¬GT ⌝).

But now, by Lemma 3.56/2., T ⊢ ProvT (⌜GT ⌝) → ¬ConT .

We start the discussion of this result with a few technical remarks. First, observe that ConT is a
Π1 sentence. It can be written as ∀x¬ProofT (⌜0 = 1⌝, x). Each of its instances ¬ProofT (⌜0 = 1⌝, n)
is a ∆0 sentence and, for a consistent theory T , provable already in Q. The difficulty lies in
proving the universally quantified sentence.

Let T be a consistent, axiomatisable theory containing IΣ1, then T ⊬ ConT , and therefore
T ∪ {¬ConT } is consistent. By the completeness theorem, there is a model M |= T ∪ {¬ConT }.
Then M |= T and there is a p ∈ M s.t. M |= ProofT (⌜0 = 1⌝, p). Now, p cannot be a standard
number, for if it were, then N |= ProofT (⌜0 = 1⌝, p) and thus T would be inconsistent. So, even
though T is consistent, M thinks it is not, while, at the same time, being a model of T and, in
this sense, a witness for its consistency.

Note that, if T is inconsistent, then T proves everything, including its own consistency. There-
fore the assumption of consistency of T is necessary in the above theorem. The assumption
of axiomatisability is a very mild one, in particular it applies to all theories that have been
used for formalising mathematics, like PA, ZFC, etc. Moreover, if we want to formalise usual
mathematical reasoning in a logical theory T , then surely T contains IΣ1 since the axioms of Q
are very basic properties of the natural numbers and induction (not just for Σ1 formulas) is an
indispensable reasoning principle in mathematics. Therefore the second incompleteness theorem
applies to any sensible logical theory T that is intended as formalisation of usual mathematical
reasoning and thus shows that T ⊬ ConT .

Coming back to the discussion of the historical context of this result, remember that Hilbert’s
programme called for a proof of consistency of a logical theory T formalising usual mathemat-
ical reasoning based on “finitary mathematics”, i.e., in a theory S formalising the elementary
properties of strings of symbols. Now, if T does not prove ConT , then the much weaker theory

52

S does not prove ConT either. Thus the second incompleteness theorem has put an end to
Hilbert’s programme. Nevertheless, consistency proofs can be carried out in interesting and
useful ways (but necessarily in a theory stronger than the one whose consistency is proven). It
would go beyond the scope of this course to treat consistency proofs in detail, we just give a
short overview of prominent approaches:

1. Ordinal analysis: for proving the consistency of a theory T we define a simple, usually
primitive recursive, proof transformation. The iteration of this proof transformation, “cut-
elimination”, translates an arbitrary T proof into one of which it is possible to establish
with elementary means that it does not prove ⊥. The part that transcends the theory T is
the statement that the iteration terminates. This statement follows from the assumption
of the well-foundedness of a certain ordinal which depends on, and, in a certain sense,
characterises the strength of the theory T .

2. Functional interpretations: the consistency of a first-order theory T is reduced to that of
a quantifier-free proof system which, instead of quantifiers, contains primitive recursion of
higher types. This reduction is achieved by a proof transformation. Such functional inter-
pretations are also useful tools when applied to actual mathematical proofs for obtaining
computational information from them.

3. Reverse mathematics: Instead of proving theorems from axioms, as usual in (formal)
mathematics, one can also prove axioms from (sufficiently strong) theorems in a (weak)
base theory. For example, this allows to establish that the Bolzano Weierstraß theorem
(every bounded sequence of real numbers has an accumulation point) is equivalent to
ACA0, a conservative extension of PA.

4. Relative consistency proofs: the consistency of a theory T is shown under the assumption of
the consistency of some other theory S. A famous example is S = ZF and T = ZFC+CH.

The deeper understanding of the foundations of mathematics obtained since the inception of
Hilbert’s programme, including many results from the above-mentioned approaches, has led to
the dissipation of doubts about the consistency of mathematical reasoning. So, even though
Hilbert’s programme could not be carried out as conceptualised originally, it is fair to say that
its strategic aim has largely been met.

53

54

Chapter 4

Further Topics

4.1 Provability logic

In this section we will have a quick look on provability logic, a modal logic that interprets the box
modality as “provable”. The motivation stems from the observation that, in a suitable syntax
for ProvT , the proof of the second incompleteness theorem from the derivability conditions is
purely propositional.

Definition 4.1. Formulas in modal logic are built from propositional variables p1, p2, . . ., truth
values ⊤,⊥, propositional connective ∧,∨,¬,→, and the modal operator □ (“box”) which, given
any formula φ yields a formula □φ.

Often one considers a second modal operator ♢ (“diamond”) which is dual to □, i.e., ♢φ is
defined as abbreviation of ¬□¬φ. The modal operators □ and ♢ have a variety of different
interpretations in the literature, depending on the intended applications of particular modal
logics. For example, in epistemic logic □φ is interpreted as “I know φ”, in temporal logic
□φ is interpreted as “φ holds at all future points in time”, etc. and the ♢ operator has the
corresponding dual meaning. In the context of provability logic we will think of □φ as the
statement “φ is provable” (in some fixed theory T). Consequently ♢φ expresses that φ is
consistent with T . More precisely:

Definition 4.2. Let T be a consistent and axiomatisable theory containing IΣ1. An arith-
metical interpretation for T is an assignment of modal formulas A to arithmetical sentences A∗

satisfying:

1. If p is atomic then p∗ is an LA sentence.

2. ⊤∗ ≡ 0 = 0 and ⊥∗ ≡ 0 = 1.

3. ·∗ commutes with ∧, ∨, →, and ¬

4. (□A)∗ = ProvT (⌜A∗⌝)

Definition 4.3. The modal logic K4 consists of all formulas derivable from propositional
tautologies together with

(D1) the rule

φ

□φ (necessitation),

(D2) the axiom scheme □φ→ □□φ,

55

(D3) the axiom scheme □φ→ □(φ→ ψ) → □ψ, and

the rule

φ φ→ ψ

ψ (modus ponens)

Note that, under an arithmetical interpretation, the definition of K4 is propsitional logic with
the derivability conditions. In particular, whenever K4 ⊢ φ, then T ⊢ φ∗ since T satisfies
the derivability conditions. This property is also called arithmetical soundness of K4. Since it
encapsulates the derivability conditions, one can formulate our proof of the second incomplete-
ness theorem in this logic. To that aim suppose we have a Gödel sentence, i.e., a propositional
variable G s.t. ⊢ G ↔ ¬□G. The consistency is the formula ¬□⊥ which we abbreviate as C.
Then the second incompleteness theorem can be formulated as follows:

Theorem 4.4. K4 ⊬ C

Proof Sketch. First, Lemma 3.56 is formalised as

1. K4 ⊢ ¬□σ → C

2. K4 ⊢ □σ ∧□¬σ → ¬C

for σ being any propositional variable. This lemma can be proved using the derivability condi-
tions, i.e., the definiton of K4

For Theorem 3.57 we assume that K4 ⊬ G so that it suffices to show that K4 ⊢ G↔ C. For the
left-to-right direction we have K4 ⊢ G↔ ¬□G so, by (D1), K4 ⊢ G→ C. For the right-to-left
direction we have to show K4 ⊢ C → G, i.e., K4 ⊢ C → ¬□G, i.e., K4 ⊢ □G→ ¬C. By (D2)
we have K4 ⊢ □G→ □□G. Moreover, since K4 ⊢ □G→ ¬G, by (D1) we have

K4 ⊢ □(□G→ ¬G).

So, by (D3) we have

K4 ⊢ □G→ □¬G.

So, by 2. we have

K4 ⊢ □G→ ¬C.

The logic K4 thus captures a significant part of reasoning with provability. However, it pays off
to go still one more step further. After consideration of the Gödel sentence GT which expresses
“I am not provable” it is natural to ask about the status of a sentence which expresses “I am
provable”. We are now in a position to clarify its status.

Definition 4.5. Let T be an axiomatisable theory containing Q. By the fixed point lemma
there is a sentence HT satisfying T ⊢ HT ↔ ProvT (⌜HT ⌝). This sentence is called Henkin
sentence of T .

Lemma 4.6. Let T be an axiomatisable theory containing Q, σ be a sentence and T ′ = T ∪{σ},
then

IΣ1 ⊢ ¬ConT ′ → (¬ConT ∨ ProvT (⌜¬σ⌝))

56

Proof. Work in IΣ1: if ¬ConT ′ , then there is a T ′ proof p′ of 0 = 1. If p′ is a T proof, we are
done. If not, obtain1 a T proof p of σ → 0 = 1 from p′ and, by appending a Q proof of 0 ̸= 1
and some propositional reasoning, obtain a T -proof of ¬σ.

Theorem 4.7 (Löb’s Theorem). Let T be a consistent and axiomatisable theory containing IΣ1

and let τ be a sentence. Then T ⊢ ProvT (⌜τ⌝) → τ implies T ⊢ τ .

Note that T ⊢ τ implies T ⊢ ProvT (⌜τ⌝) → τ trivially.

Proof. Let T ′ = T ∪{¬τ} and assume that T ⊢ ProvT (⌜τ⌝) → τ . Then T ⊢ ¬τ → ¬ProvT (⌜τ⌝),
thus T ′ ⊢ ¬ProvT (⌜τ⌝) and, by Lemma 3.56/1, T ′ ⊢ ConT . Moreover, by Lemma 4.6, T ′ ⊢
ConT ∧ ¬ProvT (⌜τ⌝) → ConT ′ and hence T ′ ⊢ ConT ′ . Now, T ′ is axiomatisable and contains
IΣ1, so, by the second incompleteness theorem, T ′ is inconsistent, i.e., T ⊢ τ .

Corollary 4.8. Let T be a consistent and axiomatisable theory containing IΣ1, then T ⊢ HT .

Proof. By definition, T ⊢ ProvT (⌜HT ⌝) → HT , so, by Löb’s Theorem, T ⊢ HT .

Definition 4.9. The logic GL (“Gödel-Löb”) is obtained from K4 by adding the rule

□φ→ φ
φ

Note that this rule is just Löb’s theorem. Just asK4 alsoGL is arithmetically sound. Moreover,
Gödel-Löb logic has a remarkable completeness property w.r.t. arithmetical interpreations.

Theorem 4.10 (Arithmetical Soundness). Let T be a consistent and axiomatisable theory that
contains IΣ1. Let φ be a modal formula. If GL ⊢ φ, then, for all arithmetical interpretations
·∗ for T , T ⊢ φ∗.

Proof. This follows straightforwardly from the fact that T satisfies the derivability conditions
and Löb’s theorem.

Theorem 4.11 (Arithmetical Completeness). Let T be a consistent and axiomatisable theory
that contains IΣ1. Let φ be a modal formula. If, for all arithmetical interpretations ·∗ of T ,
T ⊢ φ∗, then GL ⊢ φ.

Without Proof.

Another remarkable property of GL is that provability in GL is decidable. Therefore, many
questions about which statements about provability are provable are surprisingly easy to settle.

4.2 Presburger arithmetic

In this section we will have a look at arithmetic without multiplication to see that this changes
the situation drastically. In Corollary 3.34 to the first incompleteness theorem, we have seen
that every theory that contains Q is undecidable. In the absence of multiplication, this is no
longer true.

Definition 4.12. We define the structure N+ = (N, 0, s,+,≤).

1Based on the formalisation of the deduction theorem for T , respectively T ′, in IΣ1.

57

The theory Th(N+), being the theory of a model, is consistent and complete. In this chapter
we will show that it is also decidable. This is in stark contrast to Th(N) which is not even
arithmetically definable, cf. Theorem 2.29. The proof technique for showing this decidability
result is quantifier elimination.

A theory T is said to have quantifier-elimination, if, for every formula φ, there is a quantifier-
free formula ψ s.t. T ⊢ φ ↔ ψ. Quantifier elimination is an important technique for proving
decidability results that has been applied successfully in many cases. It is typically used as
follows: if the mapping from φ to ψ is computable and T -provability of quantifier-free formulas
is decidable, then T is decidable.

For showing the decidability of Th(N+) it will be helpful to work in a larger structure.

Definition 4.13. For a, b ∈ Z and m ≥ 2 write a ≡m b if a is congruent to b modulo m.
Define the language L≡ = {0/0, s/1,+/2,−/1, </2,≡2/2,≡3/2, . . .} and the L≡-structure Z≡ =
(Z, 0, s,+,−, <,≡2,≡3, . . .).

Lemma 4.14. There is an algorithm that transforms every L≡-formula φ into a quantifier-free
formula ψ s.t. FV(ψ) ⊆ FV(φ) and Z≡ |= φ↔ ψ.

Proof. By replacing ∀x by ¬∃x¬ we can assume that φ does not contain ∀. We proceed by
induction on the structure of φ. The case of atomic formulas, as well as the induction steps
concerning ∧, ∨, and ¬ are trivial. It thus remains to treat the existential quantifier: by
induction hypothesis φ is equivalent to a formula ∃xψ where ψ is quantifier-free. Using logical
equivalences, ψ can be assumed to be in negation normal form. We obtain a negation-free
formula ψ′ which is Z≡-equivalent to ψ by applying the following equivalences:

Z≡ |= ¬(t = u) ↔ t < u ∨ u < t

Z≡ |= ¬(t < u) ↔ t = u ∨ u < t

Z≡ |= ¬(t ≡m u) ↔ t ≡m s(u) ∨ · · · ∨ t ≡m sm−1(u)

Using logical equivalences, we have

Z≡ |= ∃xψ′ ↔ ∃x
n∨
i=1

ki∧
j=1

Ai,j ↔
n∨
i=1

∃x
ki∧
j=1

Ai,j

where the Ai,j are atoms. So it suffices to eliminate the quantifier from a formula χ1 of the
form ∃x (B1 ∧ · · · ∧Bk).
In Z≡ every equation is equivalent to one of the form nx = t, every <-atom to one of the form
nx < t or nx > t and every modulo-equation to one of the form nx ≡m t where n ∈ N, nx is an
abbreviation for x+ · · ·+x (n times), and t is a term that does not contain x. Thus we obtain a
formula χ2, equivalent to χ1 in Z≡, where all atoms are of this form. Moreover, we can assume
that every atom in χ2 contains x, for if one, say B1, does not, use Z≡ |= ∃x (B1 ∧ · · · ∧ Bk) ↔
B1 ∧ ∃x (B2 ∧ · · · ∧Bk). So,

χ2 ≡ ∃x
(j∧
i=1

nix = ti

k∧
i=j+1

nix > ti

l∧
i=k+1

nix < ti

m∧
i=l+1

nix ≡mi ti
)

where t1, . . . , tm are terms not containing x. Let p be the least common multiple of n1, . . . , nm
and, for i = 1, . . . , n define the term ui =

p
ni
ti. Then

χ3 ≡ ∃x
(j∧
i=1

px = ui

k∧
i=j+1

px > ui

l∧
i=k+1

px < ui

m∧
i=l+1

px ≡mi ui
)

58

is equivalent to χ2 in Z≡. So, in χ3, x only occurs with coefficient p. Therefore, χ3 is equivalent
to

χ4 ≡ ∃y
(j∧
i=1

y = ui

k∧
i=j+1

y > ui

l∧
i=k+1

y < ui

m∧
i=l+1

y ≡mi ui ∧ y ≡p 0
)

and we can set mm+1 = p and um+1 = 0. Now, if j ≥ 1, then χ4 is equivalent to

j∧
i=2

u1 = ui

k∧
i=j+1

u1 > ui

l∧
i=k+1

u1 < ui

m+1∧
i=l+1

u1 ≡mi ui

and we are done. So we assume j = 0 and thus that χ4 is of the form

χ4 ≡ ∃y
(k∧
i=1

y > ui

l∧
i=k+1

y < ui

m+1∧
i=l+1

y ≡mi ui
)

Now let q be the least common multiple of ml+1, . . . ,mm+1. Then a + q ≡mi a for all a ∈ Z,
so the pattern of residues modulo ml+1, . . . ,mm+1 has period q. If there are no upper and no
lower bounds, i.e., l = 0, then χ4 is equivalent to

q∨
d=1

m+1∧
i=1

d ≡mi ui

If there is at least one lower bound, i.e., k ≥ 1, then, if a solution exists, there must be a solution
in [ui + 1, . . . , ui + q] for an i ∈ {1, . . . , k}. So χ4 is equivalent to

k∨
i=1

q∨
d=1

(k∧
i=1

uj + d > ui

l∧
i=k+1

uj + d < ui

m+1∧
i=l+1

uj + d ≡mi ui
)

If also k = 0 but there is at least one upper bound, i.e., l ≥ 1, we proceed symmetrically using
−d instead of +d to obtain

k∨
i=1

q∨
d=1

(l∧
i=1

uj − d < ui

m+1∧
i=l+1

uj − d ≡mi ui
)

which is equivalent to χ4.

Theorem 4.15. Th(Z≡) is decidable.

Proof. In light of the above quantifier-elimination lemma it suffices to observe that the truth of
variable-free atoms in Th(Z≡) is decidable. This is entailed by the decidability of the relations
<, =, ≡m on Z× Z.

Corollary 4.16. Th(N+) is decidable.

59

Proof. We interpret Th(N+) in Th(Z≡) by using N(x) ≡ x = 0 ∨ x > 0 as definition of N
and LEQ(x, y) ≡ x = y ∨ x < y as definition of ≤. The symbols 0, s, and + have trivial
interpretations. Then we can decide Th(N+) as follows: given a {0, s,+,≤} sentence σ we
compute its interpretation σ∗ in Th(Z≡) and apply the decision procedure from Theorem 4.15
to σ∗. Since ∗ is an interpretation, N+ |= σ implies Z≡ |= σ∗. For the converse implication
assume N+ ̸|= σ, then N+ |= ¬σ, so Z≡ |= (¬σ)∗ and, by definition of ∗, Z≡ |= ¬(σ∗), i.e.,
Z ̸|= σ∗.

Quantifier-elimination has been used to show decidability results for many theories, e.g., alge-
braically closed fields, real closed fields, Abelian groups, etc.

60

	Computability
	The partial recursive functions
	Undecidability
	Coding pairs, tuples, and trees
	The enumeration theorem
	Recursively enumerable sets

	Arithmetical definability
	The arithmetical hierarchy
	Coding finite sets and sequences
	Definability and computability
	Coding formulas
	On the definability of truth

	Arithmetical theories
	Theories
	Robinson's minimal arithmetic Q
	Representing computation in Q
	Coding proofs
	The first incompleteness theorem
	Open induction
	Sigma 1 induction
	The derivability conditions
	The second incompleteness theorem

	Further Topics
	Provability logic
	Presburger arithmetic

