
Grammatical Complexity of Finite
Languages

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Simon Peter Wolfsteiner
Registration Number 00705422

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr. Stefan Hetzl

The dissertation has been reviewed by:

Markus Holzer Cezar Câmpeanu

Vienna, 3rd June, 2020
Simon Peter Wolfsteiner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Simon Peter Wolfsteiner
Wiedner Hauptstraße 8–10
A-1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Juni 2020
Simon Peter Wolfsteiner

iii

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my advisor Stefan
Hetzl who offered me a position in his research group and, moreover, guided me—with
great patience—through this journey called PhD. I am also very grateful for the vast
amount of time he has spent on proofreading and discussing my work. His valuable
suggestions and comments definitely made me a better and more precise researcher and
the thesis would not be in the current shape without him. Finally, I also want to thank
Stefan for his understanding and giving me the possibility to work from Upper Austria
from time to time during the time of my mother’s illness.

Next, I want to thank Markus Holzer for giving me the opportunity to visit his research
group in Giessen on numerous occasions. He has also taught me a lot regarding scientific
writing and doing research in the field of formal language theory. In some sense, he
has also been an unofficial second advisor of mine, since quite a few of the results in
this thesis are based on papers that we wrote together. I also enjoyed our numerous
discussions that went beyond the scope of science. Of course, I also want to thank all
the other people at the Institut für Informatik in Giessen for their hospitality: Andreas,
Bianca, Heinz, Martin, Matthias, Simon, and Susanne. Furthermore, I want to thank
Hermann Gruber for a great collaboration together with Markus Holzer that culminated
in a DLT paper.

A great thank you also goes to my master’s thesis advisor Alex Leitsch who has encouraged
me to continue with a PhD. On top of that, he has also played a vital role in shaping my
understanding of doing science, and of science in general.

Special thanks also go to my office colleagues: Jan Bydžovský, Gabriel Ebner, Jannik
Vierling, and Sebastian Zivota.

I am also very grateful to Sonja Rees who has been a huge help regarding the tedious
bureaucratic stuff that accompanies scientific day-to-day routine.

Also, I want to thank Cezar Câmpeanu and, again, Markus Holzer for agreeing to act as
reviewers for this thesis—a task that clearly takes a lot of time and effort. Their comments
and suggestions were of great value and definitely lead to an improvement in the overall
shape of the thesis.

As a PhD student it is vital that you take your mind off of scientific things from time to
time. Therefore, I want to thank the following friends (in no particular order) for great

v

times during and beyond my time as a PhD student: Alex, André, Anela, Bene, Joachim,
Jony, Laura, Lukas, Manuel, Matthias, Phipo, Simone, Steines, Surni, Thomas, Toby, Vali,
and Viola.

Of course, I want to mention the latest and most wonderful addition to my life: Charlotte,
thank you for being the most loving and lovable human being there is.

Last but not least, I want to thank my family for always believing in me and being
there no matter how tough times have been. Thank you Adrian, Daniela, Fabia, Junior,
Markus, and Sonja. My greatest thanks go to my late parents Leopold and Monika who,
unfortunately, were not able to witness the completion of my PhD studies. I therefore
dedicate this thesis to the both of you, since it surely would not have happened without
the two of you.

To my parents Leopold and Monika

Kurzfassung

Die vorliegende Arbeit beschäftigt sich – aus den Blickwinkeln der Beschreibungskom-
plexität sowie der Komplexitätstheorie – mit endlichen formalen Sprachen, welche von
verschiedenen Arten von kontextfreien Grammatiken erzeugt werden. Insbesondere wer-
den verschiedene Aspekte der exakten Komplexität und der Überdeckungskomplexität
von endlichen Sprachen untersucht: was ist die minimale Anzahl an Produktionen die
eine kontextfreie Grammatik benötigt um eine gegebene endliche Sprache genau zu
erzeugen bzw. zu überdecken? Aus der komplexitätstheoretischen Perspektive werden vor
allem folgende Varianten des Smallest Grammar Problem betrachtet: welche symbolische
Komplexität bzw. welche Anzahl an Produktionen hat eine minimale kontextfreie Gram-
matik, welche eine gegebene endliche Sprache erzeugt? Wir werden beweisen, dass weder
die minimale symbolische Komplexität noch die minimale Anzahl an Produktionen einer
kontextfreien Grammatik, welche eine gegebene endliche Sprache erzeugt, bis auf einen
gewissen Faktor approximiert werden kann, solange P = NP nicht gilt. Zusätzlich wer-
den wir auch Probleme unter der Annahme der sogenannten Exponentialzeithypothese
untersuchen. Ferner betrachten wir die exakte Komplexität sowie die Überdeckungskom-
plexität von verschiedenen Sprachoperationen, angewandt auf endliche Sprachen, aus
dem Blickwinkel der Beschreibungskomplexität. Zu guter Letzt werden wir verschiedene
Komplexitätsmaßtypen basierend auf der Anzahl der Produktionen vergleichen, sodass
sich jeweils eine auf Grammatik- sowie eine auf Maßtypen basierende Klassifikation
ergibt.

x

Abstract

In this thesis, we will investigate finite languages which are generated by different types
of context-free grammars from the points of view of descriptional and computational
complexity. Specifically, we will study several aspects of the exact and cover complexity
of finite languages, i.e., the minimal number of productions a grammar needs in order
to generate and cover, respectively, a given finite language. From the point of view
of computational complexity, we will consider the following variants of the smallest
grammar problem: what is the size or number of productions of a minimal grammar
that generates a given finite language? It will be shown that both the minimal size and
the minimal number of productions needed in order to generate a given finite language
cannot be approximated within certain factors, unless P = NP. In addition, we will also
consider problems under the assumption of the so-called Exponential Time Hypothesis.
Moreover, from a mere descriptional complexity point of view, we will investigate the
exact and cover complexity of different language operations on finite languages. Finally,
we will give a relative succinctness classification of several grammar as well as several
complexity measure types based on the number of productions.

xi

Contents

KurzfassungKurzfassung x

AbstractAbstract xi

ContentsContents xiii

1 Introduction1 Introduction 1

2 Preliminaries2 Preliminaries 11
2.1 Formal Language Theory2.1 Formal Language Theory . 11
2.2 Automata2.2 Automata . 18
2.3 Computational Complexity2.3 Computational Complexity . 21

3 Complexity Measures3 Complexity Measures 27
3.1 Exact and Cover Complexity3.1 Exact and Cover Complexity . 27
3.2 Unboundedness of Cover Complexity Measures3.2 Unboundedness of Cover Complexity Measures 30
3.3 Unboundedness of Grammatical Cover Complexity3.3 Unboundedness of Grammatical Cover Complexity 34
3.4 Computing Cover Complexity from Exact Complexity3.4 Computing Cover Complexity from Exact Complexity 39

4 Bounds on Production Complexity4 Bounds on Production Complexity 45
4.1 Basic Bounds on Production Complexity4.1 Basic Bounds on Production Complexity 45
4.2 Lower Bounds on Exact Production Complexity4.2 Lower Bounds on Exact Production Complexity 55
4.3 Lower Bounds on Cover Production Complexity4.3 Lower Bounds on Cover Production Complexity 62

5 Relating Finite and Infinite Complexity Measures5 Relating Finite and Infinite Complexity Measures 69
5.1 Infinite Complexity Measures5.1 Infinite Complexity Measures . 71
5.2 Relating Grammar Types5.2 Relating Grammar Types . 75
5.3 Relating Measure Types5.3 Relating Measure Types . 96

6 Bounds on Language Operations6 Bounds on Language Operations 121
6.1 Intersection6.1 Intersection . 123
6.2 Union6.2 Union . 125
6.3 Concatenation6.3 Concatenation . 131

xiii

7 Complexity of The Smallest Grammar Problem for Finite Languages7 Complexity of The Smallest Grammar Problem for Finite Languages 145
7.1 Inapproximability of the Minimal Number of Productions7.1 Inapproximability of the Minimal Number of Productions 146
7.2 The Smallest Grammar Problem for Finite Languages7.2 The Smallest Grammar Problem for Finite Languages 161
7.3 The Uniform-Length Universality Problem and the ETH7.3 The Uniform-Length Universality Problem and the ETH 165

8 Conclusion8 Conclusion 169

List of FiguresList of Figures 175

Index of Notation and AbbreviationsIndex of Notation and Abbreviations 177

BibliographyBibliography 181

CHAPTER 1
Introduction

C
OMPLEXITY is, in general, a highly ambiguous noun that carries—especially
in the context of science—several different meanings. This particular issue is
also emphasised by physicist Neil F. Johnson in his book “Simply Complexity:
A Clear Guide to Complexity Theory”:

“Well, unfortunately, Complexity is not easy to define. Worse still, it can mean
different things to different people. Even among scientists, there is no unique
definition of Complexity.” [Joh09Joh09, p. 24]

Even if we restrict the meaning of complexity only to notions within the realm of
theoretical computer science, we are still confronted with several different definitions
of complexity. Consider, for instance, the areas of computational and descriptional
complexity. While, in the former, one deals with the asymptotic worst-case time and space
complexity of algorithms that solve a specific given decision problem, in the latter, one
deals with complexity in the sense of the smallest description—by means of a descriptional
system such as Turing machines, automata, grammars, etc.—of a given formal language
or string. As the title of this thesis already suggests, we are concentrating on questions
regarding the complexity of context-free grammars that approximate (i.e., generate,
cover, etc.) a given finite language in various finite ways. Due to the fact that we will
be dealing with problems regarding context-free grammars from both a descriptional
and computational complexity point of view, the ambiguity of the term (grammatical)
complexity will also shine through in this thesis.

Since the advent of computer science, the field of descriptional complexity has been the
subject of intensive research. Besides investigating various different complexity measures
for descriptional systems, this broad field is also concerned with the relative succinctness
of these systems, i.e., with the question of which systems allow for a more concise

1

1. INTRODUCTION

description of a given formal language than others.11 A prominent and well-studied
example of a problem in descriptional complexity is the so-called Smallest Grammar
Problem. This elegant problem asks for the smallest (in terms of grammar size) context-
free grammar that generates exactly a single given word, and has ties to several different
lines of research such as approximation algorithms, computational complexity theory,
data compression, and Kolmogorov complexity [CLL+05CLL+05]. In [CLL+05CLL+05], it was shown
that the smallest grammar problem has an approximation ratio of at least

8569
8568

,

unless P = NP, and, moreover, that its decision version is NP-complete. Its relation to
grammar-based compression [ZL78ZL78, NM96NM96, NMW97NMW97, KY00KY00, KYNC00KYNC00, YK00YK00] is reflected
in the fact that instead of storing a long string, one can also store a small grammar that
generates this string. Afterwards, one can reconstruct the string from that grammar when
needed [CLL+05CLL+05]. The field of grammar-based compression has a similar relation to
descriptional complexity as the field of algorithm design has to complexity theory in the
following sense: while words that can be compressed by grammars give rise to grammar-
based compression algorithms for these words, tractable computational problems give
rise to efficient algorithms that solve this problem. The size of the smallest context-
free grammar that generates a given word can be viewed as a natural, but computable
version of Kolmogorov complexity. For a given word w, the Kolmogorov complexity
of w is the description size of the smallest Turing machine (or computer program) that
outputs w [CLL+05CLL+05, LV08LV08].

As already mentioned, we are mainly interested in the grammatical complexity of a
language, i.e., in the minimal (w.r.t. a specific complexity measure) context-free grammar
that approximates a given formal language. Depending on the type of grammar and the
notion of complexity, one obtains a variety of different grammatical complexity measures.
Historically, the systematic study of grammatical complexity of context-free languages
can be traced back to [Gru67Gru67], where, among other things, it was shown that context-
free definability with n nonterminals forms a strict hierarchy. This line of research was
continued and surveyed in [Gru69Gru69, Gru71Gru71, Gru72Gru72] and [Gru76Gru76], respectively, where,
among others, the number of productions of a context-free grammar was considered as
complexity measure. The concept of orthogonality of two complexity measures22 with
respect to the class of context-free languages was introduced and studied in [Geo96Geo96].
There, among other results, it was shown that the exact production complexity measure
is orthogonal to the exact nonterminal complexity measure, but not vice versa.

In our investigations, we are focusing on the complexities of different types of context-free
grammars that describe finite languages. The complexity measures that we are mostly

1For an introductory survey of the main aspects and results regarding the field of descriptional complexity,
see, e.g., [HK11HK11].

2For two context-free grammar-based complexity measures µ1 and µ2, we say that µ1 is orthogonal to µ2
if there is some n0 such that for every n ≥ n0, there is some kn such that for every m ≥ kn, there is some
context-free language L such that µ1(L) =m and µ2(L) = n.

2

dealing with are the minimal number of productions of a grammar G that

(i) generates a finite language, i.e., L(G) = L (exact complexity), and

(ii) covers a finite language, i.e., L(G) ⊇ L and L(G) is finite (cover complexity).

The theory of the grammatical complexity of finite languages in terms of the number
of productions was initiated in [BMCIW81BMCIW81], where a relative succinctness classification
for various kinds of context-free grammars was given. Further results along these lines
can be found in, e.g., [Buc81Buc81, AER83AER83, BMCI83BMCI83, Tuz87Tuz87, DH12bDH12b, Das17Das17]. Every finite
language L can obviously be generated by a trivial grammar, i.e., a grammar with a single
nonterminal S whose productions are given by the set

{S→ w | w ∈ L }.

Therefore, we are interested in the question of whether a given finite language L can
be compressed or cover-compressed, that is, whether there exists a context-free gram-
mar G with L(G) = L (i.e., G generates L) or L(G) ⊇ L (i.e., G covers L) and L(G) is
finite, respectively, such that G has fewer productions than there are words in L. Some
finite languages were already shown to be incompressible by certain types of grammars
in [BMCIW81BMCIW81, Buc81Buc81, BMCI83BMCI83].

Our interest in the cover complexity of a finite language L—i.e., the minimal number of
productions of a grammar G such that L(G) is finite and L(G) ⊇ L—is primarily motivated
by applications in proof theory. As was shown in [Het12Het12], there is an intimate relationship
between a certain class of formal proofs (i.e., proofs with Π1-cuts) in first-order predicate
logic and a certain class of grammars (i.e., totally rigid acyclic tree grammars). In
particular, the number of production rules in the grammar characterises the number
of certain inference rules in the proof. This relationship was exploited for a number
of results in proof theory and automated deduction. In [HLW12HLW12], a method based
on the aforementioned relationship between proofs and grammars was presented that
allows the compression of a proof in first-order logic by the introduction of a lemma.
This method was then extended to the introduction of an arbitrary number of lemmas,
and to first-order logic with equality in [HLRW14HLRW14, HLR+14HLR+14, EHL+19EHL+19]. Furthermore, an
application to inductive theorem proving was presented in [EH15bEH15b]. By constructing a
sequence of cover-incompressible languages, the authors of [EH15aEH15a, EH18EH18] employed
the connection between proofs and grammars in order to obtain a lower bound on the
size of a certain class of proofs. A practically efficient algorithm that cover-compresses a
finite tree language by a special type of tree grammar was devised in [EEH17EEH17]. Moreover,
in [EEH18EEH18], it was shown that the minimal cover problem for acyclic regular grammars
with a fixed bound on the number of nonterminals is NP-complete. The minimal cover
problem is defined as follows: given a finite language L and a non-negative integer k,
is there an acyclic regular grammar G such that G has at most k productions and
satisfies L(G) ⊇ L? However, the computational complexity of this problem for an
arbitrary number of nonterminals is still open.

3

1. INTRODUCTION

Note that the condition L(G) ⊇ L used in the definition of grammatical cover complex-
ity of a finite language L is similar to (but different from) the one imposed on cover
automata [CSY99CSY99, CSY01CSY01]. There, an automaton A is sought such that L(A) ⊇ L, but,
in addition, it is required that L(A) \ L consists solely of words longer than any word
in L. The importance of cover automata for the representation of finite languages is
rooted in the fact that a minimal deterministic finite cover automaton (DFCA) for a finite
language L usually has a smaller size than a minimal deterministic finite automaton
(DFA) that accepts the same language L [CSY99CSY99]. In [CSY01CSY01], the authors presented
an efficient algorithm that, for a given finite language L (which is either given as a DFA
or a DFCA), constructs a minimal cover automaton for L. On top of that, in the same
paper, algorithms for the Boolean operations intersection, union, symmetric difference,
and difference on DFCAs, that is, on the finite languages they represent, were given.
In [PSY01PSY01, CPY02CPY02], an algorithm for the construction of a minimal DFCA was presented
which runs in time and space O

(
n2

)
and thus outperforms the O

(
n4

)
-time and -space

algorithm of [CSY01CSY01], where n is the number of states of the given DFA. The O (n · logn)-
time and O (n)-space algorithm devised in [Kör03aKör03a, Kör03bKör03b] outperforms both of these
previous algorithms. All of the aforementioned algorithms for constructing minimal DFCA
for a given finite language are not incremental, but in [CPS06aCPS06a, CPS06bCPS06b] this gap was
closed by giving the first incremental algorithm for this endeavour. A comparison on
a specific finite language between implementations of the incremental algorithm and
the algorithm of [Kör03aKör03a, Kör03bKör03b] even showed that the former algorithm constructs
automata with less states and needs both less memory and less time than the latter.
The aforesaid algorithms for the construction of a minimal cover automaton from a
given DFA are based on the so-called similarity relation.33 Since the similarity relation
is not an equivalence relation, the minimal DFCA for a finite language is usually not
unique [CP03bCP03b]. This raised the question of how many distinct DFCAs a minimisation
algorithm can yield which is based on the notion of similarity relation. The answer to
this question for k-ary alphabets with k ≥ 2 is bounded above by

k0!
(2 · k0 −n+ 1)!

,

where n is the number of states in the given minimal DFA and k0 =
⌈

4·n−9+
√

8·n+1
8

⌉
. For

unary alphabets the bound is n− 1, and both of these bounds are tight, as was shown
in [CP03aCP03a, CP03bCP03b]. In [CKP05CKP05, CP05CP05], a lower bound on the maximum state complexity
of deterministic finite cover automata was obtained from nondeterministic finite automata
with n states defined over binary alphabets. Additionally, it was shown that the result of
transforming an n-state NFA that accepts a finite language over a binary alphabet into an
equivalent minimal DFCA has at least 2d

n
2e−2 fewer states than the number of states in the

minimal DFA that is obtained by a transformation from the NFA. As was shown in [Câm14Câm14,
Câm15Câm15], nondeterministic finite cover automata allow a more compact representation of

3Let w,v ∈ Σ∗. Then the similarity relation ∼L on words is defined as: w ∼L v if, for all u ∈ Σ∗, it holds
that wu ∈ L iff vu ∈ L [CP03bCP03b].

4

finite languages than both NFAs and DFCAs. Moreover, in [Câm14Câm14, Câm15Câm15], it was also
shown that minimising NFCAs can be as hard as minimising NFAs for regular languages.
In [GHJ15GHJ15, GHJ17GHJ17], the authors studied how to adapt well-established lower bound
techniques in order to be applicable to NFCAs. That particular paper also contains,
alongside an investigation of the average size of finite cover automata, an investigation
of the trade-off between DFCAs and NFCAs as well as between finite cover automata and
ordinary finite automata. Further results related to finite cover automata can be found in,
e.g., [CSY00CSY00, CGH05CGH05, CMR11CMR11, JM11JM11, Ipa12Ipa12, CMR16CMR16].

In this thesis, we will explore and gain new insights into the very nature of finite languages
from both a descriptional and computational complexity theoretic point of view. However,
the focus will be on the descriptional complexity side of things, where we will address
several problems that have received only little attention so far. We will investigate the
notion of cover complexity of finite languages on three different levels of generality. In
particular, we will consider the notion of cover complexity from an abstract point of
view for arbitrary complexity measures and characterise the situations in which these
measures collapse to a bounded measure. In a less general sense, we will also consider
the cover complexity of a finite language L as the minimal number of productions a
grammar needs in order to cover L with a finite language. More precisely, we will show
that a cover complexity measure is unbounded if it is induced by a certain restricted class
of context-free grammars in which the right-hand side of each production contains a
bounded number of nonterminals. An analogous result will also be shown for strict linear
and strict regular grammars. For these restricted types of context-free grammars, we
obtain that the cover complexity of a finite language L can be reduced to the minimum
of the exact complexities of a finite number of supersets L′ of L. Furthermore, we
will investigate the grammatical cover-complexity of the classic language operations
intersection, union, and concatenation on finite languages for strict regular, strict linear,
regular, and linear grammars. By generalising the cover-incompressible sequence of finite
languages constructed in [EH15aEH15a, EH18EH18], we will obtain a new cover-incompressible
sequence that allows us to show a lower bound on the cover-complexity of union with
respect to a fixed alphabet.

Similarly to the relative succinctness classification with respect to the nonterminal com-
plexity in [DP89DP89] (which is based on four different categories of complexity gaps), we
will give, for strict regular (SREG), strict linear (SLIN), regular (REG), linear (LIN), and
context-free (CF) grammars, a relative succinctness classification with respect to the
production complexity of finite languages. In particular, for all grammar types X ∈
{SREG,SLIN,REG,LIN,CF}, we will consider the complexity measures Xc, Xcc, and Xsc,
that is, with respect to the grammar type X, the exact, cover, and scattered complexity,
respectively. The X scattered complexity of a finite language L is defined as the number
of productions of a minimal grammar G of type X such that L(G) ≥ L and L(G) is finite,
where ≥ refers to the scattered subword relation. Additionally, we will also consider
corresponding infinite complexity measures, which are inspired by the earlier mentioned
condition imposed on cover automata. The infinite measures Xc∞, Xcc∞, and Xsc∞ are

5

1. INTRODUCTION

obtained from Xc, Xcc, and Xsc, respectively, by dropping the requirement that, for a
minimal grammar G of type X, L(G) is finite, and, moreover, replacing, for � ∈ {=,⊇,≥},
the condition L(G) � L by L(G)∩Σ≤` � L, where the non-negative integer ` refers to the
length of a longest word in L. All of these complexity measures will then be compared
with each other according to the taxonomy introduced in [DP89DP89] by

(i) fixing the grammar type and varying the measure type,44 and

(ii) fixing the measure type and varying the grammar type.

As a byproduct of this succinctness classification, we will also show that there are
languages that need an exponential number of productions in order to be generated by a
grammar of a certain type. More precisely, we will show that the language of even length
palindromes

Pn = {w$wR | w ∈ {a,b}≤n }

needs at least 2n many regular productions. This is done by showing that the sublanguage
of fixed-length palindromes

P ′n = {w$wR | w ∈ {a,b}n }

is regular incompressible. Moreover, it will also be shown that the language of triples

Tn = {w$w#w | w ∈ {a,b}n }

is regular, linear, and context-free incompressible.

From the point of view of computational complexity theory and approximation algorithms,
we will consider the following variant of the smallest grammar problem: what is the
grammatical complexity of a smallest grammar that generates a given finite language? In
this regard, it will be shown that, for fixed alphabets consisting of at least 5 elements,
given an arbitrary context-free grammar with p productions that generates a finite
language L, the minimal number of productions necessary to generate L cannot be
approximated within a factor of

o
(
p1/6

)
,

unless P = NP. Since the size of a context-free grammar depends on the number of its
productions, the above result also implies that, given an arbitrary context-free grammar
with size s that generates a finite language L, the minimal size necessary to generate L
with a context-free grammar cannot be approximated within a factor of

o
(
s1/7

)
,

unless P = NP. The latter result is related to the aforementioned result of [CLL+05CLL+05] that
any approximation algorithm for the classic version of the smallest grammar problem

4The considered measure types are: exact (c), cover (cc), infinite exact (c∞), infinite cover (cc∞), and
infinite scattered (sc∞) complexity.

6

cannot achieve a better ratio than about 1.00012. The proofs of our inapproximability
results rely on estimates on the exact complexity of union and concatenation of finite
languages. Therefore, we will study the exact complexity of the operations union and
concatenation of finite languages. This also complements the results obtained in [DH12bDH12b,
Das17Das17] regarding these operations on infinite languages. Inspired by investigations of
problems on finite automata under the assumption of the so-called Exponential Time
Hypothesis in [FK17FK17], we will study the uniform-length universality problem under the
assumption of this hypothesis. Roughly speaking, the Exponential Time Hypothesis is a
conjecture which expresses that the 3-SAT problem cannot be decided in deterministic
subexponential time and was introduced in the paper [IP99IP99] (see also [CFK+15CFK+15]). The
previously mentioned uniform-length universality problem asks, for a given context-free
grammar G = (N,Σ, P ,S) and an integer ` ≥ 0, whether L(G) generates all words of
length ` over Σ, that is, whether L(G) = Σ`. In particular, we will show that, under the
assumption of the Exponential Time Hypothesis, there is no deterministic algorithm that
decides uniform-length universality in time55

O∗
(
2o(p

1/4)
)
,

where p is the number of productions of the given grammar. Additionally, we will
also show that under the assumption of the Exponential Time Hypothesis, there is no
deterministic algorithm that decides the uniform-length universality problem in time

O∗
(
2o(s

1/4)
)
,

where s is the size of the given grammar.

Structure of the Thesis. This thesis is organised as follows:

• Subsequent to this introductory chapter, in Chapter 22, we will introduce the basic
notions of formal language theory, context-free grammars, automata, and computa-
tional complexity theory which are relevant to this thesis.

• In Chapter 33, we will consider the notions of exact and cover complexity of finite
languages from both an abstract and a grammatical point of view. In particular, we
will give a characterisation of the situations in which arbitrary cover complexity
measures collapse to a bounded complexity measure. Moreover, for a restricted class
of context-free grammars as well as for strict regular and strict linear grammars, it
will be shown that the corresponding cover complexity measures for finite languages
are unbounded. Finally, for these kinds of context-free grammars, it will be shown
that the cover complexity of a finite language L can be computed from the exact
complexities of a finite number of finite languages L′ with L′ ⊇ L.

5Note that the O∗-notation suppresses polynomial factors measured in the input length.

7

1. INTRODUCTION

• Chapter 44 is devoted to proving several upper and lower bounds on various produc-
tion complexity measures for finite languages. For some finite languages, it will be
shown that they are incompressible with respect to certain complexity measures.
In particular, we will construct a regular cover-incompressible sequence of finite
languages that generalises a previously known one from [EH15aEH15a, EH18EH18].

• A relative succinctness classification of several different complexity measures for
finite languages will be given in Chapter 55. In particular, we will consider several
different production complexity measures for finite languages with respect to
different interpretations of approximation (i.e., equivalence, cover, and scattered
cover), where the underlying grammar either generates a finite or an infinite
language. If the underlying grammar generates an infinite language, then the
intersection with all words up to a certain length has to be considered. These
measures will then be related according to a group of relations that are inspired
by the taxonomy with respect to nonterminal complexity which was introduced
in [DP89DP89].

• Chapter 66 is dedicated to proving, with respect to (strict) regular, (strict) linear,
and context-free grammars, upper and lower bounds on both the exact and the
cover complexity of applying the classic language operations intersection, union,
and concatenation.

• The penultimate Chapter 77 deals with problems regarding context-free grammars
that belong to the realms of computational complexity theory and approximation
algorithms. In particular, we will show that, for fixed alphabets of cardinality
at least 5, given an arbitrary context-free grammar G with p productions that
generates a finite language L, the minimal number of productions necessary to
generate L with a context-free grammar cannot be approximated within a factor
of o

(
p1/6

)
, unless P = NP. In addition, we will show that, given an arbitrary

context-free grammar G with size s that generates a finite language L, the minimal
size of a context-free grammar that generates L cannot be approximated within a
factor of o

(
s1/7

)
, unless P = NP. Furthermore, we will also show that, under the

assumption of the Exponential Time Hypothesis, there is no algorithm that decides

the uniform-length universality problem in time O∗
(
2o(p

1/4)
)
, where p is the number

of productions of the given grammar. We will also show that, under the assumption
of the Exponential Time Hypothesis the uniform-length universality problem cannot

be decided by an algorithm that runs in time O∗
(
2o(s

1/4)
)
, where s is the size of the

given grammar.

• This thesis will come to a conclusion in the final Chapter 88.

8

Publications. This thesis is partially based on the following publications:

[GHW18] Hermann Gruber, Markus Holzer, and Simon Wolfsteiner. On Minimal Gram-
mar Problems for Finite Languages. In Mizuho Hoshi and Shinnosuke Seki,
editors, Proceedings of the 22nd International Conference on Developments in
Language Theory (DLT 2018), volume 11088 of Lecture Notes in Computer
Science, pages 342–353, Cham, 2018. Springer.

[HW18a] Stefan Hetzl and Simon Wolfsteiner. Cover Complexity of Finite Languages.
In Stavros Konstantinidis and Giovanni Pighizzini, editors, Proceedings of the
20th IFIP WG 1.02 International Conference on Descriptional Complexity of
Formal Systems (DCFS 2018), volume 10952 of Lecture Notes in Computer
Science, pages 139–150, Cham, 2018. Springer.

[HW18b] Markus Holzer and Simon Wolfsteiner. On the Grammatical Complexity of
Finite Languages. In Stavros Konstantinidis and Giovanni Pighizzini, editors,
Proceedings of the 20th IFIP WG 1.02 International Conference on Descriptional
Complexity of Formal Systems (DCFS 2018), volume 10952 of Lecture Notes in
Computer Science, pages 151–162, Cham, 2018. Springer.

[HW19] Stefan Hetzl and Simon Wolfsteiner. On the cover complexity of finite
languages. Theoretical Computer Science, 798:109–125, 2019.

The following two publications also came into being during the course of the PhD, but
are beyond the scope of this thesis:

[EHR+16] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner,
and Sebastian Zivota. System Description: GAPT 2.0. In Nicola Olivetti and
Ashish Tiwari, editors, Proceedings of the 8th International Joint Conference
on Automated Reasoning (IJCAR 2016), volume 9706 of Lecture Notes in
Computer Science, pages 293–301, Cham, 2016. Springer.

[CLRW17] David Cerna, Alexander Leitsch, Giselle Reis, and Simon Wolfsteiner. Ceres
in intuitionistic logic. Annals of Pure and Applied Logic, 168(10):1783–1836,
2017.

9

CHAPTER 2
Preliminaries

E
VEN though we assume that the reader is familiar with the basic notions
of formal language theory, context-free grammars, automata, and computa-
tional complexity theory, we will—in order to fix notation and terminology—
introduce the basic notions of these areas which are relevant to this thesis in

this chapter. In Section 2.12.1, we will introduce the relevant notions from formal language
theory and context-free grammars. Section 2.22.2 contains the definitions of both finite
automata and finite cover automata. Finally, in Section 2.32.3, we will introduce the ba-
sic notions of propositional logic, computational complexity theory, and approximation
algorithms.

2.1 Formal Language Theory

In this section, we will introduce the basic notions of formal language theory and context-
free grammars.

All definitions in this section are based on [Woo87Woo87, HMU01HMU01, Sha08Sha08, HW18aHW18a, HW18bHW18b,
GHW18GHW18, HW19HW19].

2.1.1 Sets

We denote the number of elements or cardinality of a finite set S by |S |. The empty set is
denoted by ∅. For two sets A and B, we write A∩B, A∪B, A]B, A×B, and A \B, for the
intersection, union, disjoint union, Cartesian product, and set difference, respectively, of A
and B. Finally, P (A) and Pfin(A) denote the power set (i.e., the set of all subsets of A) and
the set of all finite subsets of A, respectively.

Some special sets of numbers that we consider include: N = {0,1,2, . . .}, the set of natural
numbers, Z = {. . . ,−2,−1,0,1,2, . . .}, the set of integers, and R, the set of real numbers.
By R+, we denote the set of all non-negative real numbers.

11

2. PRELIMINARIES

Let S be a set. Then we write idS for the identity function on S, that is,

idS(x) = x,

for each element x ∈ S.

2.1.2 Alphabets, Words, and Languages

An alphabet, frequently denoted by Σ, is a non-empty set of symbols. The symbols of an
alphabet are also referred to as letters. Throughout this thesis, if not stated otherwise,
alphabets are finite sets. An alphabet Σ is called unary, binary, and n-ary, for n ≥ 3,
if |Σ| = 1, |Σ| = 2, and |Σ| = n, respectively.

A word (or string) is a finite sequence of symbols chosen from some alphabet. The empty
word is denoted by ε. Let

w = a1a2 . . . an

be a word. Then the natural numbers 1,2, . . .n are called the positions of w . Furthermore,
we say that a sequence

aiai+1 . . . aj ,

where 1 ≤ i ≤ j ≤ n, occupies the positions i through j within w. The length of a word w,
i.e., the number of occurrences of symbols in w, written as |w|, is defined inductively
as follows: the length of the empty word ε is 0, i.e., |ε| = 0, and if w = aw′, where a is
a single symbol and w′ is a word, then |w| = |w′ |+ 1. If a is a symbol and w is a word,
then |w|a denotes the number of occurrences of the symbol a in w. For an alphabet Σ,
the set of all words of length k ≥ 0, each of whose symbols is in Σ, is denoted by Σk.
Furthermore, we define

Σ≤k =
k⋃
i=0

Σi , Σ+ =
⋃
i≥1

Σi , and Σ∗ = Σ+ ∪ {ε} =
⋃
i≥0

Σi .

In particular, Σ+ is the set of all non-empty and Σ∗ the set of all words over the alphabet Σ.
The language Σ∗ is also called the universal language.

Remark. Typically, symbols are denoted by digits or lower-case letters at the beginning
of the alphabet, e.g., a,b,c,a1,b1, a

′ ,b′ , . . ., and words by lower-case letters near the end
of the alphabet, e.g., u,v,w,x,y,z,u1,v1,u

′ ,v′, etc.

We say that a word u is a subword of a word w, denoted by

u v w,

if there exist words v1 and v2 such that

w = v1uv2.

12

2.1. Formal Language Theory

If u is a subword of w, we say that w contains u and that u is contained in w. A word u is
called a prefix of w if there exists a word v such that

w = uv.

A prefix is called proper if v , ε and non-trivial if u , ε. Similarly, we say that u is a suffix
of w if there exists a v such that

w = vu.

A suffix is called proper if v , ε and non-trivial if u , ε.

One of the most fundamental operations on words is concatenation. Let w1 and w2 be
words. Then

w1w2

denotes the concatenation (or product) of w1 and w2. For any word w, we have that

wε = εw = w,

i.e., ε is the identity for concatenation. Moreover, concatenation is associative, but not
commutative. In general, concatenation is treated notationally like multiplication, for
instance,

wn

denotes the string
ww · · ·w (n times).

If
w = a1a2 · · ·an

is a word, then by
wR,

we denote the reversal of the word w, that is,

wR = anan−1 · · ·a2a1.

Note that
εR = ε and (w1w2)R = wR2w

R
1 .

A word w is called a palindrome if w = wR.

Let Σ be an alphabet. If L is a (finite or infinite) subset of Σ∗, then L is called a language
over Σ. Particularly, an element L of Pfin(Σ) is called a finite language over Σ. For every
finite language L over Σ, there is some k ≥ 0 such that L ⊆ Σ≤k. If all words in a
language L over Σ have the same length, then L is called a uniform language over Σ.
Moreover, a language L over an alphabet Σ with |Σ| = 1 is called a unary language over Σ.
We omit the term “over Σ” if the alphabet of the language is clear from the context.

13

2. PRELIMINARIES

Remark. If not stated otherwise, we always assume that if L is a language over some
alphabet Σ, then Σ is the smallest alphabet with L ⊆ Σ∗, i.e., Σ does not contain letters
that are not occurring in L.

Example 2.1.1. Some examples of languages are

C = {ww | w ∈ {0,1}∗ } the copy language over {0,1},
E = {w ∈ {0,1}∗ | |w|0 = |w|1 } the set of words with an equal number of each letter,

P = {w ∈ {0,1}∗ | w = wR } the language of palindromes over {0,1}.

Let L1 and L2 be languages over some alphabet Σ. Then we define the concatenation (or
product) of L1 and L2, denoted by L1L2, as follows:

L1L2 = {w1w2 | w1 ∈ L1,w2 ∈ L2 }.

Moreover, if L ⊆ Σ∗, then the reversal of L, denoted by LR, is defined as

LR = {wR | w ∈ L }.

For languages L1,L2 ⊆ Σ∗, the right and left quotient of L1 with L2 is defined as

L1L
−1
2 = {v ∈ Σ∗ | there is some w ∈ L2 such that vw ∈ L1 } and

L−1
1 L2 = {v ∈ Σ∗ | there is some w ∈ L1 such that wv ∈ L2 },

respectively.

Remark. We also use the notation
L1 ·L2

for the concatenation of the languages L1 and L2. Moreover, we omit braces if L1 or L2 is
a singleton, i.e., for w1,w2 ∈ Σ∗, we write

L1w2 and w1L2

instead of
L1{w2} and {w1}L2,

respectively. Similarly, we write

L1w
−1
2 and w−1

1 L2

instead of
L1{w2}−1 and {w1}−1L2,

respectively.

14

2.1. Formal Language Theory

2.1.3 Context-Free Grammars

A context-free (CF) grammar is a quadruple G = (N,Σ, P ,S), where

• N and Σ are disjoint finite sets of nonterminals and terminals, respectively,

• P is a finite set of production rules (or productions for short) of the form

A→ α,

where A ∈N and α ∈ (N ∪Σ)∗, and

• S ∈N is the start symbol (or axiom).

Henceforth, we will often abbreviate the term “context-free grammar” as CFG.

Let G = (N,Σ, P ,S) be a CF-grammar and let A ∈ N . Then a production with A on its
left-hand side is called an A-production. We write PA for the subset of P consisting of
all A-productions, that is,

PA = {A→ α | A→ α ∈ P }.

For N ′ ⊆N , we define
PN ′ =

⋃
A∈N ′

PA.

A production of the form
A→ ε

is called ε-production. If P contains no ε-productions, then G is called ε-free. For A,B ∈N ,
a production of the form

A→ B

is called unit production. An element of the set (N ∪Σ)∗ is called a word over N ∪Σ. The
length of a word α over N ∪Σ, written as |α|, is the number of occurrences of terminal
and nonterminal symbols in α.

Remark. We typically denote nonterminals by upper-case Latin letters A,B,A1,B1, etc.,
and words over N ∪Σ by lower-case Greek letters α,β,α1,β1, etc. Moreover, we often
write the productions of a context-free grammar by listing each nonterminal A once and
then listing all the right-hand sides of A-productions separated by vertical bars. That is,
instead of

A→ α1,A→ α2, . . . ,A→ αn,

we write
A→ α1 | α2 | . . . | αn.

A context-free grammar is called trivial if it only contains a single nonterminal and the
right-hand side of each production consists of terminals only.

15

2. PRELIMINARIES

Definition 2.1.2 (Trivial Grammar). Let G = (N,Σ, P ,S) be a context-free grammar. A
production of the form

S→ w,

for w ∈ Σ∗, is called trivial; all other productions are called non-trivial. We define Gt =
(N,Σ, Pt,S), where Pt is the set of trivial productions of G, i.e.,

Pt = {S→ w ∈ P | w ∈ Σ∗ }.

If G = Gt, then G is called trivial and non-trivial otherwise.

We will also consider various restricted variants of context-free grammars. These re-
strictions mainly arise from the way in which the right-hand sides of productions are
restricted.

Definition 2.1.3 (CFG Restrictions). A context-free grammar G = (N,Σ, P ,S) is called

• linear context-free (LIN) if all productions in G are of the form

A→ α with α ∈ Σ∗(N ∪ {ε})Σ∗;

• right-linear if all productions in G are of the form

A→ α with α ∈ Σ∗(N ∪ {ε});

• left-linear if all productions in G are of the form

A→ α with α ∈ (N ∪ {ε})Σ∗;

• regular (REG) if G is either right-linear or left-linear;

• strict linear (SLIN) if all productions are of the form

A→ aBb or A→ c with B ∈N and a,b,c ∈ Σ≤1;

• strict right-linear if all productions are of the form

A→ aB or A→ b with B ∈N and a,b ∈ Σ≤1;

• strict left-linear if all productions are of the form

A→ Ba or A→ b with B ∈N and a,b ∈ Σ≤1;

• strict regular (SREG) if G is either strict right-linear or strict left-linear.

Remark. Unless explicitly stated otherwise, we implicitly assume that all (strict) regular
grammars considered in this thesis are (strict) right-linear.

16

2.1. Formal Language Theory

We will write SREG, REG, SLIN, LIN, and CF for the sets of strict regular, regular, strict
linear, linear, and context-free, respectively, grammars and define the sets of grammar
types as

Γ = {REG,LIN,CF}, Γs = {SREG,SLIN}, and ∆ = Γ ∪ Γs.

If a grammar G is an element of some set X ∈ ∆, then we say that G is an X-grammar or,
equivalently, that G is a grammar of type X.

Next, we will formally define the notion of derivability in a grammar.

Definition 2.1.4 (Derivation). Let G = (N,Σ, P ,S) be a context-free grammar. Then we
write

αAβ⇒G αγβ,

for α,β,γ ∈ (N ∪Σ)∗, if there is a production A→ γ ∈ P . The derivation relation ⇒∗G
is the reflexive and transitive closure of ⇒G, that is, we write α ⇒∗G β if there are
words α = α0,α1, . . . ,αn = β over N ∪Σ such that

α0⇒G α1⇒G · · · ⇒G αn.

If
δ : α⇒∗G β,

then we say that δ is a derivation of β from α or, equivalently, that β is derivable from α.
In particular, if α = S, then δ is called a G-derivation of β (or derivation of β in G). If the
grammar is clear from the context, we often omit the subscript G.

Remark. Note that the derivation in Definition 2.1.42.1.4

α0⇒G α1⇒G · · · ⇒G αn

consists of n derivation steps. So, for k ≥ 0, we sometimes write

α⇒k
G β, α⇒≤kG β, or α⇒≥kG β

if β can be derived from α in exactly k, at most k, or at least k steps, respectively.
Moreover, if α⇒≥1

G β, then we also write α⇒+
G β.

Let G = (N,Σ, P ,S) be a context-free grammar and A,B ∈ N . If α is an element of the
set (N ∪Σ)∗, then α is called a sentential form if S ⇒∗G α. We say that B is reachable
from A if

A⇒+
G α1Bα2,

where α1,α2 ∈ (N ∪Σ)∗.

Based on the notion of derivability, we can finally define the language of a context-free
grammar.

17

2. PRELIMINARIES

Definition 2.1.5 (Language of a Nonterminal/Grammar). Let G = (N,Σ, P ,S) be a
context-free grammar and let A ∈N . Then the language of A in G, denoted by LA(G), is
defined as

LA(G) = {w ∈ Σ∗ | A⇒∗G w }.

The language of G is then defined as L(G) = LS(G).

A language L ⊆ Σ∗ is called regular, linear, or context-free if there exists a regular, linear,
or context-free, respectively, grammar G such that L(G) = L.

Remark. Note that all finite languages are regular, since any finite language L can be
generated by a trivial grammar that simply lists all words in L using only the start symbol.

We say that two context-free grammars G1 and G2 are equivalent if L(G1) = L(G2).

Let G = (N,Σ, P ,S) be a context-free grammar. Then we write |G| for the number of
productions in G, i.e., |G| = |P |. Furthermore, we write |G|s for the size of (or the number
of symbols in) G. That is,

|G|s =
∑

A→α∈P
(|α|+ 2).

2.2 Automata

Now, we will introduce deterministic and nondeterministic finite automata in the classic
sense as well as deterministic and nondeterministic finite cover automata.

All definitions in this section are based on [Woo87Woo87, CSY99CSY99, HMU01HMU01, Sha08Sha08, Câm14Câm14].

Definition 2.2.1 (Deterministic Finite Automaton). A deterministic finite automaton
(or DFA for short) is a quintuple A = (Q,Σ,δ,q0,F), where

• Q is a finite non-empty set of states,

• Σ is a finite non-empty input alphabet,

• δ :Q ×Σ→Q is a transition function,

• q0 ∈Q is the start or initial state, and

• F ⊆Q is the set of final states.

The transition function δ can be extended to a transition function

δ∗ :Q ×Σ∗→Q

as follows:

• δ∗(q,ε) = q, for all q ∈Q, and

• δ∗(q,wa) = δ(δ∗(q,w), a), for all q ∈Q, w ∈ Σ∗, and a ∈ Σ.

18

2.2. Automata

Since δ∗ agrees with δ on the domain of δ, we often just write δ instead of δ∗.

Moreover, we write L(A) for the language accepted by the DFA A, which is defined as
follows:

L(A) = {w ∈ Σ∗ | δ∗(q0,w) ∈ F }.

Definition 2.2.2 (Nondeterministic Finite Automaton). A nondeterministic finite au-
tomaton (or NFA for short) is a quintuple A = (Q,Σ,δ,q0,F), where

• Q is a finite non-empty set of states,

• Σ is a finite non-empty input alphabet,

• δ :Q ×Σ→P (Q) is a transition function,

• q0 ∈Q is the start or initial state, and

• F ⊆Q is the set of final states.

The extended transition function

δ∗ :Q ×Σ∗→P (Q)

is defined as follows:

• δ∗(q,ε) = {q}, for all q ∈Q, and

• δ∗(q,wa) =
⋃

r∈δ∗(q,w)
δ(r,a), for all q ∈Q, w ∈ Σ∗, and a ∈ Σ.

Moreover, we write L(A) for the language accepted by the NFA A, which is defined as
follows:

L(A) = {w ∈ Σ∗ | δ∗(q0,w)∩F , ∅}.

Let A = (Q,Σ,δ,q0,F) be a DFA or an NFA. Then we say that an element of QΣ∗ is a
configuration of A. It represents the current state as well as the remaining input of A.

Remark. A configuration of a finite automaton A contains all the information necessary
to continue A’s computation. Initially, A is in configuration q0w, where w is the input
word. Finally, when A has read all letters of its input, A is in a configuration q, for some
state q [Woo87Woo87].

Definition 2.2.3. Let A = (Q,Σ,δ,q0,F) be a DFA. If pw and qv are two configurations
of A, then we write

pw A qv (one execution step of A on pw),

if w = av, for some a ∈ Σ, and δ(p,a) = q. For k ≥ 1, we write

pw A
k
qv (k execution steps of A on pw)

19

2. PRELIMINARIES

if either k = 1 and pw A qv, or k > 1 and there exists a configuration ru such that

pw A ru and ru A
k−1

qv.

Moreover, we write
pw A

+
qv

if pw A
k
qv, for some k ≥ 1. Similarly, we write

pw A
∗
qv

if either pw = qv or pw A
+
qv.

If, on the other hand, A is an NFA, then we write

pw A qv

if w = av, for some a ∈ Σ and q ∈ δ(p,a). The binary relations A
k

, for k ≥ 1, A
+

, and A
∗

for NFAs are defined just as for DFAs.

In addition to ordinary finite automata, we will also consider both deterministic and
nondeterministic finite cover automata (DFCA and NFCA, respectively, for short) in this
thesis. Deterministic cover automata have first11 been introduced in [CSY99CSY99] and are
used particularly for finite languages. In contrast to an ordinary finite automaton, a cover
automaton for a given finite language L is allowed to accept—in addition to the words
in L—other words having a length longer than the length of a longest word in L. To
make this acceptance condition more precise, we will formally define cover automata as
follows:

Definition 2.2.4 (Deterministic Finite Cover Automaton). Let L ⊆ Σ≤` be a finite
language with ` = max{ |w| | w ∈ L } and let A be a DFA. Then A is called a deterministic
finite cover automaton for L (or DFCA for L for short) if

L(A)∩Σ≤` = L.

Similarly to the deterministic case, one can also define nondeterministic cover automata
with the help of the modified acceptance condition.

Definition 2.2.5 (Nondeterministic Finite Cover Automaton). Let L ⊆ Σ≤` be a finite
language with ` = max{ |w| | w ∈ L } and let A be an NFA. Then A is called a nondetermin-
istic finite cover automaton for L (or NFCA for L for short) if

L(A)∩Σ≤` = L.

1However, as stated in [CSY99CSY99, Yu07Yu07], concepts similar to finite cover automata have already been
studied before in different contexts, see, for instance, [BDG85BDG85, DS90DS90, KF90KF90, SB96SB96].

20

2.3. Computational Complexity

2.3 Computational Complexity

We will assume that the reader is familiar with the syntax and semantics of classical
propositional logic as well as the basic concepts of computational complexity theory as
covered in, e.g., the books [Pap95Pap95, AB09AB09, Sip13Sip13].

Let f : {0,1}∗→ {0,1} be a Boolean function. Then, we identify the function f with the
language

Πf = { I ∈ {0,1}∗ | f (I) = 1 } ⊆ {0,1}∗

and call such sets Πf decision problems. An instance I of a decision problem Π is called a
yes-instance of Π if I ∈Π. If, on the other hand, I <Π, then I is called a no-instance of Π.
We identify the problem of computing f (i.e., given I , compute f (I)) with the problem of
deciding the language Πf (i.e., given I , decide whether I ∈Πf).

Remark. It is not a real restriction to consider only functions that operate on bit strings,
since encodings can be used to represent different objects such as integers, pairs of
integers, graphs, matrices, etc. as words over {0,1} [AB09AB09].

By |I |, we denote the size of an instance I . As usual in complexity theory, by P and NP, we
denote the classes of problems that are decidable in polynomial time on a deterministic
and nondeterministic, respectively, Turing machine. The complexity class coNP contains
the problems which are complements of problems in NP, that is, a problem Π is in coNP
if and only if its complement coΠ is in NP. A decision problem Π is called NP-hard if
every problem in NP is polynomial-time many-one reducible to Π. If Π is both in NP
and NP-hard, then Π is called NP-complete. The canonical NP-complete problem is the
satisfiability (or SAT for short) problem and it was the first decision problem that was
shown to be NP-complete [Coo71Coo71]. Before we can define the satisfiability problem, we
need to introduce some basic notions of classical propositional logic:

In the following, we denote the set of propositional variables by

V = {x1,x2, . . .}.

The set of propositional formulae is the smallest set such that:

(i) all propositional variables are propositional formulae, and

(ii) if ϕ1 and ϕ2 are propositional formulae, then so are ¬ϕ1, ϕ1 ∧ϕ2, and ϕ1 ∨ϕ2.

We write var(ϕ) for the set of variables occurring in a propositional formula ϕ and
expressions of the form x and ¬x, for x ∈ V , are called literals. A clause

`1 ∨ `2 ∨ . . .∨ `n

is a finite disjunction of literals `1, `2, . . . , `n. Similarly, a conjunctive clause

`1 ∧ `2 ∧ . . .∧ `n

is a finite conjunction of literals `1, `2, . . . , `n.

21

2. PRELIMINARIES

Remark. For the sake of convenience, we will identify a conjunctive clause C = `1∧`2∧`3
also with a set of literals C = {`1, `2, `3}.

For an integer k ≥ 1, we say that a formula ϕ is in k-CNF (k-conjunctive normal form) if it
is of the form

ϕ = C1 ∧C2 ∧ . . .∧Cm,

where each clause Ci , for 1 ≤ i ≤ m, consists of at most k literals. Similarly, for an
integer k ≥ 1, we say that a formula ϕ is in k-DNF (k-disjunctive normal form) if it is of
the form

ϕ = C1 ∨C2 ∨ . . .∨Cm,

where each conjunctive clause Ci , for 1 ≤ i ≤m, consists of at most k literals.

As usual, a truth assignment σ is a mapping

σ : V → {0,1}

from propositional variables to the truth values 0 (false) and 1 (true). We can inductively
extend σ from variables to formulae using truth tables. Then σ (ϕ) denotes the truth
value of the propositional formula ϕ under σ . To identify truth assignments with words
over {0,1}, we extend σ (by a slight abuse of notation) to a mapping

σ : Vn→ {0,1}n, (x1,x2, . . . ,xn) 7→ σ (x1)σ (x2) . . .σ (xn),

that is,
σ (x1,x2, . . . ,xn) = σ (x1)σ (x2) . . .σ (xn).

We extend the mapping σ : Vn→ {0,1}n to formulae ϕ as follows:

σ (x1,x2, . . . ,xn)(ϕ) = σ (ϕ).

We write
σ |= ϕ and σ (x1,x2, . . . ,xn) |= ϕ

if
σ (ϕ) = 1 and σ (x1,x2, . . . ,xn)(ϕ) = 1,

respectively. Similarly, we write

σ 6|= ϕ and σ (x1,x2, . . . ,xn) 6|= ϕ

if
σ (ϕ) = 0 and σ (x1,x2, . . . ,xn)(ϕ) = 0,

respectively.

A propositional formula ϕ is called satisfiable if there is a truth assignment σ such
that σ |= ϕ, otherwise it is called unsatisfiable. We say that ϕ is a tautology if, for every
truth assignment σ , we have that σ |= ϕ.

Now, we are ready for the definition of the SAT problem:

22

2.3. Computational Complexity

SATISFIABILITY

INSTANCE: A propositional formula ϕ.
QUESTION: Is ϕ satisfiable?

In order to show that problems are NP-hard, it is often convenient to reduce from a
variant of the SAT problem in which all instances are in k-CNF. This leads to the k-SAT
problem:

k-SATISFIABILITY

INSTANCE: A propositional formula ϕ in k-CNF.
QUESTION: Is ϕ satisfiable?

Note that k-SAT is NP-complete only for k ≥ 3.

A coNP-complete problem that is very important for showing the results in Chapter 77 is
the tautology problem.22

TAUTOLOGY

INSTANCE: A propositional formula ϕ in 3-DNF.
QUESTION: Is ϕ a tautology?

Next, we will briefly recap the well-known big O notation: Let f and g be functions from
N to R+. Then we write

f (n) = O (g(n))

if there are natural numbers c and n0 such that, for all natural numbers n ≥ n0, we have
that

f (n) ≤ c · g(n).

If
f (n) = O (g(n)) ,

then we say that f grows as fast as g or slower and that g(n) is an (asymptotic) upper
bound for f (n). Conversely, if

g(n) = O (f (n)) ,

then we write
f (n) = Ω(g(n))

and we say that f grows at least as fast as g and g(n) is an (asymptotic) lower bound
for f (n). In the case that we have both

f (n) = O (g(n)) and f (n) = Ω(g(n)),

2The coNP-completeness of tautology follows from the NP-completeness of 3-SAT. For a proof w.r.t. the
variant for arbitrary propositional formulae, we refer the reader to [AB09AB09].

23

2. PRELIMINARIES

we write
f (n) = Θ(g(n))

and say that f and g have the same rate of growth. Finally, we write that

f (n) = o (g(n))

if

lim
n→∞

f (n)
g(n)

= 0.

Equivalently,
f (n) = o (g(n))

means that, for any real number c > 0, there exists a natural number n0 such that, for
all n ≥ n0, we have that

f (n) < c · g(n).

If
f (n) = o (g(n)) ,

then we say that f grows slower than g, that is, f is asymptotically less than g.

In Chapter 77, we will also make use of a modified big O notation which suppresses
polynomial factors measured in the input length. Following [Woe08Woe08], for a function
f : N→ R+, we write

O∗(f (n))

for a time complexity of the form

O (f (n) · poly(n)) ,

where poly(n) is a polynomial in n.

The following part on hardness of approximation of NP-optimisation problems is based
on [Cre97Cre97, WS11WS11, DKH11DKH11].

An NP-optimisation problem (NPO) Π is a quadruple (I ,Fsol,costΠ, type) such that

• I is the set of instances of Π which is recognisable in polynomial time,

• for each instance I ∈ I , Fsol(I) denotes the set of feasible solutions of I . The size of
these solutions is polynomial in the size of I , and the feasibility of a solution can be
decided in polynomial time.

• for each instance I ∈ I and each feasible solution s ∈ Fsol(I), costΠ(I, s) denotes the
positive integer cost function of s which is computable in polynomial time.

• type ∈ {min,max}.

24

2.3. Computational Complexity

If type = min, then Π is called a minimisation problem, and if type = max, then Π is
called a maximisation problem.

The goal of an NPO w.r.t. a given instance I is to find an optimal solution of I , i.e., to find
a feasible solution s of I such that

costΠ(I, s) = optΠ(I) = type{costΠ(I, s′) | s′ ∈ Fsol(I) }.

Remark. If not stated otherwise, we will assume that all considered NP-optimisation
problems Π = (I ,Fsol,costΠ, type) are minimisation problems, i.e., type = min.

An approximation algorithm for an NPO produces solutions for a given instance whose
cost is guaranteed to differ only within a certain factor from the cost of an optimal
solution for that particular instance.

Definition 2.3.1 (Approximation Algorithm). Let Π = (I ,Fsol,costΠ, type) be an NPO,
let A be a polynomial-time algorithm, and let α be a positive real number. We say that A
is an α-approximation algorithm for Π if, for all instances I ∈ I , it holds that

• A(I) is a feasible solution for I , i.e., the algorithm A run on instance I produces a
feasible solution for I , and

• if type = min, then α ≥ 1 and costΠ(I,A(I)) ≤ α ·optΠ(I),

• if type = max, then α ≤ 1 and costΠ(I,A(I)) ≥ α ·optΠ(I).

The factor α is also called the approximation factor or approximation ratio of an α-
approximation algorithm A for Π.

An NP-optimisation problem Π is called inapproximable within factor α (or α-inapproximable)
if there is no α-approximation algorithm A for Π.

Now, we will introduce a useful tool for showing inapproximability within a certain factor
for some NP-minimisation problems.

Definition 2.3.2 (Gap-Reduction). Let Π be an NP-minimisation problem and Π′ an NP-
hard decision problem. Then a polynomial-time many-one reduction f from Π′ to Π is
called gap-reduction from Π′ to Π if there are positive real numbers γ1 and γ2 with 0 <
γ1 < γ2 such that

1. if I is a yes-instance of Π′, then optΠ(f (I)) ≤ γ1, and

2. if I is a no-instance of Π′, then optΠ(f (I)) > γ2.

If such a gap-reduction from an NP-hard decision problem to Π exists, then we say that Π
has an NP-hard gap of γ2

γ1
.

We conclude this section with a theorem that shows that gap-reductions are indeed a
useful tool for proving that some NP-minimisation problems are inapproximable within a
certain factor.

25

2. PRELIMINARIES

Theorem 2.3.3 ([DKH11DKH11, Lemma 10.2]). Let Π be an NP-optimisation problem with
an NP-hard gap of γ2

γ1
, where 0 < γ1 < γ2. Then Π is inapproximable within the factor γ2

γ1
,

unless P = NP.

PROOF. We only prove the case for minimisation problems—the proof for maximisation
problems is analogous. To this end, assume that f is a gap-reduction from an NP-
hard decision problem Π′ to Π with gap γ2

γ1
, i.e., γ1 and γ2 are positive real numbers

with 0 < γ1 < γ2 such that

1. if I is a yes-instance of Π′, then optΠ(f (I)) ≤ γ1, and

2. if I is a no-instance of Π′, then optΠ(f (I)) > γ2.

Towards contradiction, assume that there is a polynomial-time γ2
γ1

-approximation al-
gorithm A for problem Π. Then, based on A, we could construct an algorithm A′ to
decide Π′ in polynomial time as follows:

1. On input instance I of Π′, compute instance f (I) of problem Π.

2. Run algorithm A on instance f (I) and compute solution A(f (I)) for Π.

3. Return yes if and only if costΠ(f (I),A(f (I))) ≤ γ2.

If I is a yes-instance of Π′, then

optΠ(f (I)) ≤ γ1,

by definition of f . As a consequence,

costΠ(f (I),A(f (I))) ≤
γ2

γ1
·optΠ(f (I)) ≤

γ2

γ1
·γ1 = γ2.

If, on the other hand, I is a no-instance of Π′, then

optΠ(f (I)) > γ2,

by definition of f . As a consequence,

costΠ(f (I),A(f (I))) ≥ optΠ(f (I)) > γ2.

Thus, A′ returns yes if and only if I is a yes-instance of Π′, that is, A′ decides the NP-
complete problem Π′ in polynomial time. This, in turn, implies P = NP. Therefore, Π
cannot be approximated within the factor γ2

γ1
, unless P = NP. �

26

CHAPTER 3
Complexity Measures

I
N this chapter, we will consider the notions of exact and cover complexity of finite
languages both on an abstract and on a grammatical level. The emphasis will,
however, be on questions regarding cover complexity measures. In particular, we will
give a characterisation of the situations in which arbitrary cover complexity measures

collapse to a bounded complexity measure. Moreover, for a restricted class of context-free
grammars as well as for strict regular and strict linear grammars, we will show that the
corresponding cover complexity measures for finite languages are unbounded. For these
kinds of context-free grammars, we will then show that the cover complexity of a finite
language L can be computed from the exact complexities of a finite number of finite
covers L′ ⊇ L.

Some of the results in this chapter have been published in [HW18aHW18a, HW19HW19].

3.1 Exact and Cover Complexity

In this section, we will define several complexity measures for finite languages, and also
what it means that a given finite language is (in)compressible w.r.t. a certain type of
context-free grammar. Finally, we will give examples of grammar types that induce a
bounded cover complexity measure as well as of those that induce an unbounded one.

Let us start with the introduction of abstract notions of exact and cover complexity
measures for finite languages w.r.t. a given alphabet.

Definition 3.1.1 ([Cover] Complexity Measure). Let Σ be an alphabet. Then a function

µ : Pfin(Σ∗)→ N

is called Σ-complexity measure. For a Σ-complexity measure µ, the cover complexity
measure induced by µ is the Σ-complexity measure µc defined as

µc(L) = min{µ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

27

3. COMPLEXITY MEASURES

If the alphabet is irrelevant or clear from the context, we will just speak about a complexity
measure.

Remark. Note that the minimum is well-defined even though there are infinitely many
languages L′ ∈ Pfin(Σ∗) with L ⊆ L′, since µ maps to the natural numbers.

By definition of µc, we have µc(L) ≤ µ(L), for all L ∈ Pfin(Σ∗). Moreover, for every
language L ∈ Pfin(Σ∗), there is an L′ ⊇ L such that µc(L) = µ(L′). A Σ-complexity measure µ
is called bounded if there is a k ∈ N such that µ(L) ≤ k, for all L ∈ Pfin(Σ∗), and unbounded
otherwise.

Now, we will define, for a given grammar type X ∈ ∆, the exact grammatical X-complexity
of a finite language. Similarly to the more abstract definition above, we can then obtain
the X cover complexity of L based on the exact X-complexities of finite supersets L′ of L.

Definition 3.1.2 (X-Complexity). Let L ∈ Pfin(Σ∗) and X ∈ ∆. Then the (exact) X-
complexity of L is defined as

Xc(L) = min{ |G| | G ∈ X and L = L(G) }.

Clearly, Xc is a complexity measure and induces the X cover complexity measure

Xcc(L) = min{Xc(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }.

Remark. Note that the X cover complexity Xcc can also be defined as

Xcc(L) = min{ |G| | G ∈ X,L ⊆ L(G), and L(G) finite }.

Here, it is crucial that the language of the covering grammar is finite. Otherwise, we
could always use the grammar that generates Σ∗ in order to cover any language over Σ
with a grammar whose number of productions is constant in the cardinality of L.

In order to illustrate the above definitions of grammatical complexity measures, we give
a small example, which we literally take from [BMCIW81BMCIW81]:

Example 3.1.3. Let Σ = {a1, a2, . . . , an}, for n ≥ 2, and L be the finite language

L = {aiaj | i , j and 1 ≤ i, j ≤ n }.

How many context-free productions are needed in order to generate L? Since the lan-
guage L contains n · (n−1) words, n · (n−1) productions surely suffice. Already 4n−6 pro-
ductions are enough, as shown by the grammar G = (N,Σ, P ,S) with N = {S,A2, . . . ,An−1}
whose set of productions P contains the rules

S→ aiAi+1 | Ai+1ai for 1 ≤ i ≤ n− 2,

Ai → Ai+1 | ai for 2 ≤ i ≤ n− 2,

An−1→ an−1 | an,
S→ an−1an | anan−1.

28

3.1. Exact and Cover Complexity

Thus, CFc(L) ≤ 4n−6. With a more elaborate construction, 2n+O
(
n1/2

)
productions were

shown to be sufficient for the language L in [BMCI83BMCI83]. Later, it was shown in [AER83AER83]
that 2n+

⌈
2n1/2

⌉
context-free productions are necessary, for every n ≥ 6.

What about the context-free cover complexity of L? In order to obtain an upper bound
for CFcc(L), one can use the language Σ2 with Σ = {a1, a2, . . . , an}, which is obviously
a superset of L. Clearly, this language is generated by the context-free grammar G =
({S,A},Σ, P ,S) with the productions

S→ AA

A→ a1 | a2 | . . . | an.

Thus, CFcc(L) ≤ n+ 1.

Let τ be a measure type (e.g., the exact complexity c or the cover complexity cc) and X,Y ∈
∆. Then we define

X ≤τ Y if and only if Xτ(L) ≤ Yτ(L), for all finite languages L.

In the case that X ≤τ Y, we say that X is more succinct than Y w.r.t. the measure type τ. By
definition, the following relations hold for τ ∈ {c,cc}:

CF ≤τ LIN ≤τ REG ≤τ SREG and CF ≤τ LIN ≤τ SLIN ≤τ SREG. (3.1)

For X ∈ ∆ and G ∈ X, we say that G is a minimal X-grammar covering (or generating) the
finite language L if L(G) ⊇ L and |G| = Xcc(L) (or L(G) = L and |G| = Xc(L), respectively).
In general, there can be more than one minimal X-grammar for a given finite language L.

A finite language L is called X-incompressible, for X ∈ Γ , if any X-grammar generat-
ing L contains at least as many productions as there are words in L. The notion of
(in)compressibility can also be extended to sequences of finite languages as well as to the
cover formulation of grammatical complexity.

Definition 3.1.4. Let L be a finite language and X ∈ Γ . Then L is called X-compressible
(or X cover-compressible), if Xc(L) < |L| (or Xcc(L) < |L|, respectively) and X-incompressible
(or X cover-incompressible, respectively) otherwise.

A sequence (Ln)n≥1 of finite languages is called X (cover-)incompressible, for X ∈ Γ , if there
is an M ∈ N such that for all n ≥ M, the language Ln is X (cover-)incompressible. A
sequence (Ln)n≥1 of finite languages is called X (cover-)compressible if for every M ∈ N,
there is an n ≥M such that Ln is X (cover-)compressible.

Remark. Note that the above definition of (in)compressibility is not well-suited for strict
regular and strict linear grammars, as the number of productions needed to generate or
cover a given language also depends on the length of a longest word in the language
under consideration.

29

3. COMPLEXITY MEASURES

By definition of the strict grammar types, Xτ(L) ≤ |L|, for X ∈ Γs and τ ∈ {c,cc}, does not
hold for all finite languages L, as the following example demonstrates:

Example 3.1.5. Let L = {a3}. Then

SREGcc(L) = SREGc(L) = 3 > 1 = |L| and SLINcc(L) = SLINc(L) = 2 > 1 = |L|.

The following result shows the existence of regular cover-incompressible sequences of
finite languages (w.r.t. a fixed alphabet) and has been proved in [EH15aEH15a, EH18EH18].

Theorem 3.1.6. There is an alphabet Σ such that, for all n ≥ 1, there is a language Ln ⊆ Σ∗

with |Ln| = n = REGcc(Ln).

On the other hand, for every finite language L, there is a context-free grammar covering L
with a constant number of productions:

Theorem 3.1.7. Let L ∈ Pfin(Σ∗), then CFcc(L) ≤ |Σ|+ 2.

PROOF. Let Σ = {a1, a2, . . . , an}, ` = max{ |w| | w ∈ L }, and consider the grammar G consist-
ing of the productions

S→ A`,

A→ a1 | a2 | · · · | an | ε.

Then L(G) = Σ≤` ⊇ L and |G| = |Σ|+ 2. �

A close inspection of the statements of Theorems 3.1.63.1.6 and 3.1.73.1.7 reveals that the regular
cover complexity measure is unbounded, while, on the other hand, the context-free cover
complexity measure is bounded.

3.2 Unboundedness of Cover Complexity Measures

As we have seen in the previous section, some grammar types induce an unbounded,
whereas others induce a bounded cover complexity measure. Therefore, in this section,
we will characterise the situations in which a cover complexity measure collapses to a
bounded complexity measure. Before we can give this characterisation, we need some
auxiliary results on “almost inverting” functions from N to N. These will be provided in
Lemmas 3.2.13.2.1 and 3.2.23.2.2.

A function f : N → N is called bounded if there is a k ∈ N such that f (n) ≤ k, for
all n ∈ N, and unbounded otherwise. Moreover, a function f is called monotonic if n ≤m
implies f (n) ≤ f (m).

The two subsequent lemmas show that for every monotonic and unbounded function
from N to N, there exist corresponding “almost inverse” functions.

30

3.2. Unboundedness of Cover Complexity Measures

Lemma 3.2.1. Let f : N→ N be both monotonic and unbounded, and define

g : N→ N,n 7→min{ i ∈ N | n ≤ f (i) }.

Then g is well-defined, monotonic, unbounded, and for all x,y ∈ N, we have that

g(x) ≤ y iff x ≤ f (y).

PROOF. The function g is well-defined because, due to unboundedness of f , there is at
least one i ∈ N with f (i) ≥ n.

Moreover, g is unbounded, for suppose there would be a k ∈ N such that

g(n) = min{ i ∈ N | n ≤ f (i) } ≤ k,

for all n ∈ N. Then, in particular by monotonicity of f ,

g(f (k + 1)) = min{ i ∈ N | f (k + 1) ≤ f (i) } = k + 1,

which contradicts g(n) ≤ k, for all n ∈ N.

Also, g is monotonic, for if n ≤m, then for any x ∈ N with m ≤ f (x), we also have n ≤ f (x)
and thus g(n) ≤ x, in particular for x = g(m).

Let x,y ∈ N. If x ≤ f (y), then g(x) = min{ i ∈ N | x ≤ f (i) } ≤ y. On the other hand,
if g(x) ≤ y, then f (g(x)) ≤ f (y) and f (g(x)) = f (min{ i ∈ N | x ≤ f (i) }) ≥ x. �

Lemma 3.2.2. Let g : N→ N be both monotonic and unbounded, and define

f : N→ N,n 7→max{ i ∈ N | g(i) ≤ n }.

Then f is well-defined, monotonic, unbounded, and for all x,y ∈ N, we have

g(x) ≤ y iff x ≤ f (y).

PROOF. The function f is well-defined because, for each n ∈ N, there are only finitely
many i ∈ N with g(i) ≤ n, for suppose there would be infinitely many such i, then, by
monotonicity, g(j) ≤ n, for all j after a certain j0 ∈ N. This, however, contradicts the
unboundedness of g.

Moreover, f is unbounded, for suppose there is a k ∈ N such that

f (n) = max{ i ∈ N | g(i) ≤ n } ≤ k,

for all n ∈ N. Then, in particular by monotonicity of g,

f (g(k + 1)) = max{ i ∈ N | g(i) ≤ g(k + 1) } = k + 1,

which contradicts f (n) ≤ k, for all n ∈ N.

Also, f is monotonic, for if n ≤m, then for any x ∈ N with g(x) ≤ n, we have g(x) ≤m and
thus f (m) ≥ x, in particular for x = f (n).

Now, let x,y ∈ N. If g(x) ≤ y, then f (y) = max{ i ∈ N | g(i) ≤ y } ≥ x. On the other hand,
if x ≤ f (y), then g(x) ≤ g(f (y)) = g(max{ i ∈ N | g(i) ≤ y }) ≤ y. �

31

3. COMPLEXITY MEASURES

Examples for “almost inverting” functions on the natural numbers are the exponential
function 2n and the function that applies the ceiling function to the binary logarithm of n:

Example 3.2.3. Let f : N→ N and g : N→ N be functions defined as follows:

f (n) = 2n and g(n) =
{

0 if n = 0,⌈
logn

⌉
if n > 0.

Clearly, both f and g are monotonic and unbounded functions that, moreover, satisfy

f (n) = max{ i ∈ N | g(i) ≤ n } and g(n) = min{ i ∈ N | n ≤ f (i) }.

Thus, by Lemmas 3.2.13.2.1 and 3.2.23.2.2, it holds that

g(x) ≤ y iff x ≤ f (y),

for all x,y ∈ N.

The following notion of reference complexity measure is inspired by the fact that Xc(L),
for X ∈ Γ , is trivially bounded by the number of words occurring in a finite language L.
Thus, what we have in mind for reference complexity measures are, e.g., the number of
words |L| in a language or their cumulated lengths ‖L‖ =

∑
w∈L |w|.

Definition 3.2.4 (Reference Complexity Measure). A complexity measure

ρ : Pfin(Σ∗)→ N

is called reference complexity measure if ρ is unbounded and L1 ⊆ L2 implies ρ(L1) ≤ ρ(L2).

Let µ be a complexity measure, then a reference complexity measure ρ is called reference
complexity measure for µ if µ(L) ≤ ρ(L), for all finite languages L.

Typical examples for the above definitions include: µ = Xc, for X ∈ Γ , and ρ(L) = |L|, or µ
is the minimal size, that is, symbolic complexity of an X-grammar and ρ(L) = ‖L‖.

In the following theorem, a characterisation of the unboundedness of a cover complexity
measure µc in terms of the existence of a relation between µ and a reference complexity
measure ρ for µ is provided.

Theorem 3.2.5. Let µ be an unbounded Σ-complexity measure and let ρ be a reference
complexity measure for µ. Then the following conditions are equivalent:

1. µc is unbounded

2. there is a monotonic and unbounded function f : N→ N such that

ρ(L) ≤ f (µ(L)),

for all L ∈ Pfin(Σ∗).

32

3.2. Unboundedness of Cover Complexity Measures

3. there is a monotonic and unbounded function g : N→ N such that

g(ρ(L)) ≤ µ(L),

for all L ∈ Pfin(Σ∗).

PROOF. The direction 22.⇒ 33. has been shown in Lemma 3.2.13.2.1, and 33.⇒ 22. in Lemma 3.2.23.2.2.

For the direction 33. ⇒ 11., let L ∈ Pfin(Σ∗). Then, by definition of µc, there is some
language L′ ∈ Pfin(Σ∗) such that L ⊆ L′ and µc(L) = µ(L′). Therefore,

µc(L) = µ(L′) ≥ g(ρ(L′)) ≥ g(ρ(L)),

where the first inequality follows from the assumption of condition 3., and the second
one follows by definition of ρ as well as from the fact that g is a monotonic function. This
shows the unboundedness of µc based on the unboundedness of g and ρ.

For showing 11.⇒ 33., we argue by contraposition. Assume that every function g : N→ N
with g(ρ(L)) ≤ µ(L), for all L ∈ Pfin(Σ∗), is bounded or not monotonic. In particular,
consider

h : N→ N,n 7→min{µ(L) | ρ(L) ≥ n and L ∈ Pfin(Σ∗) }

and note that—due to the unboundedness of ρ—h is well-defined. Moreover, we
have h(ρ(L)) ≤ µ(L). Now, we prove that h is monotonic and thus, by assumption,
must be bounded. For monotonicity, let n ≤m. Then we have

{L ∈ Pfin(Σ∗) | ρ(L) ≥m ≥ n } ⊆ {L ∈ Pfin(Σ∗) | ρ(L) ≥ n }.

Therefore,

h(n) = min{µ(L) | ρ(L) ≥ n,L ∈ Pfin(Σ∗) } ≤min{µ(L) | ρ(L) ≥m,L ∈ Pfin(Σ∗) } = h(m).

Thus h is bounded, i.e., there is a k ∈ N and (Ln)n∈N such that n 7→ ρ(Ln) is unbounded,
but µ(Ln) ≤ k, for all n ∈ N. Since µc(Ln) ≤ µ(Ln) ≤ k, µc is bounded too. �

The subsequent theorem states that the cover complexity of a finite language L can be
obtained from the minimum over the exact complexities of finite supersets of L whose
reference complexity is bounded by a certain constant.

Theorem 3.2.6. Let µ be a complexity measure and ρ be a reference complexity measure
for µ. Then, for every finite language L, there is some b ∈ N such that

µc(L) = min{µ(L′) | L ⊆ L′ ∈ Pfin(Σ∗) and ρ(L′) ≤ b }.

PROOF. If µc is bounded by k, let b = k. If µc is unbounded, then, by Theorem 3.2.53.2.5,
there is a monotonic and unbounded function g : N→ N such that

g(ρ(K)) ≤ µ(K),

33

3. COMPLEXITY MEASURES

for all finite languages K, and, by Lemma 3.2.23.2.2, there is a monotonic and unbounded
function f : N→ N such that

g(x) > y iff x > f (y),

for all x,y ∈ N. Let b = f (ρ(L)) and L′′ ⊇ L with ρ(L′′) > f (ρ(L)), then g(ρ(L′′)) > ρ(L), and,
since µ(L′′) ≥ g(ρ(L′′)), we obtain µ(L′′) > ρ(L). Moreover, since ρ(L) ≥ µ(L) ≥ µc(L), we
have µ(L′′) > µc(L). �

The above theorem expresses µc in terms of µ and ρ. Depending on ρ, the set of finite
covers L′ of L that is used to determine µc(L) may or may not be a finite set. We will
analyse the reduction of µc(L) to the value of µ(·) on a finite set more thoroughly in
Section 3.43.4.

3.3 Unboundedness of Grammatical Cover Complexity

After dealing with complexity measures in an abstract sense in the previous section, we
will now come back to applications in the realm of context-free grammars. In particular,
we will apply Theorem 3.2.53.2.5 to the number of productions in various types of context-free
grammars. Hence, we will fix ρ(L) = |L| as reference complexity measure. The main result
of this section is that any class of context-free grammars with a bound on the number of
nonterminals allowed on the right-hand side of each production induces an unbounded
cover complexity measure.

The subsequent lemma was already shown in [BMCIW81BMCIW81] and implies in conjunction
with Theorem 3.2.53.2.5 that Xcc, for X ∈ {SREG,REG,SLIN,LIN}, is an unbounded complexity
measure.

Lemma 3.3.1 ([BMCIW81BMCIW81, Lemma 2.3]). Let G be a linear grammar with n productions
generating a finite language, then |L(G)| ≤ 2n−1.

Corollary 3.3.2. The measures SREGcc, REGcc, SLINcc, and LINcc are unbounded.

PROOF. Define the function f : N→ N,n 7→ 2n. Clearly, f is both monotonic and un-
bounded. By Lemma 3.3.13.3.1, for all finite languages L ∈ Pfin(Σ∗), we have

ρ(L) = |L| ≤ 2LINc(L)−1 ≤ 2LINc(L) = f (LINc(L))

and hence, by Theorem 3.2.53.2.5, LINcc is unbounded. The unboundedness of the mea-
sures SREGcc, REGcc, and SLINcc follows from the facts that

LINcc(L) ≤ SLINcc(L) ≤ SREGcc(L) and LINcc(L) ≤ REGcc(L),

for all finite languages L ∈ Pfin(Σ∗). �

The following definition of class of CFGs in terms of closure under identifying nontermi-
nals, omission of productions, and containment of all trivial grammars is motivated by
the subsequent proofs of Lemmas 3.3.83.3.8 and 3.4.13.4.1.

34

3.3. Unboundedness of Grammatical Cover Complexity

Definition 3.3.3 (Class of CFGs). A set X of context-free grammars is called class of
context-free grammars if

1. (N,Σ, P ,S) ∈ X and p ∈ P implies (N,Σ, P \ {p},S) ∈ X,

2. X is closed under identifying two nonterminals, and

3. for each finite language L, X contains the trivial grammar generating L.

A grammar in which every nonterminal derives at least one non-empty word is said to be
in pruned normal form. More formally, this is defined as follows:

Definition 3.3.4 (Pruned Normal Form). A context-free grammar G = (N,Σ, P ,S) is in
pruned normal form (PNF) if, for all nonterminals A ∈N \ {S}, we have that

• LA(G)* {ε}, and

• there are α1,α2 ∈ (N ∪Σ)∗ and a word w ∈ L(G) such that S⇒∗G α1Aα2⇒∗G w.

Remark. Note that if LA(G) = ∅, then there is no A-production that derives a string that
solely consists of terminal symbols, i.e., no A-production contributes to the derivation of
a word in L(G). By definition, a grammar in pruned normal form does not contain such
useless nonterminals.

We now show that any context-free grammar can be transformed into an equivalent
context-free grammar in PNF without increasing the number of productions.

Lemma 3.3.5. Let G be a context-free grammar. Then there is a context-free grammar G′

in PNF with |G′ | ≤ |G| and L(G′) = L(G).

PROOF. Let G = (N,Σ, P ,S) be a context-free grammar. If G is already in PNF, let G′ = G;
so assume that G is not in PNF. In the case that L(G) = ∅, let G′ = (N,Σ,∅,S), and
if L(G) = {ε}, let G′ = (N,Σ, {S → ε },S). In both of these cases, we have that G′ is a
context-free grammar in PNF with |G′ | ≤ |G| and L(G′) = L(G).

Thus, assume L(G) * {ε} and that there is some A ∈ N \ {S} such that A does not occur
in any derivation of a word in L(G). We construct a grammar G′ from G by removing
the nonterminal A and all A-productions (i.e., productions in which A occurs on the
left-hand side) as well as all productions in which A occurs on the right-hand side. We
repeat this step until we have constructed a grammar G′′ = (N ′′ ,Σ, P ′′ ,S) such that for
all A ∈N ′′ \ {S}, there are α1,α2 ∈ (N ′′ ∪Σ)∗ and a word w ∈ L(G′′) with

S⇒∗G′′ α1Aα2⇒∗G′′ w.

Then it follows that LA(G) , ∅, for all A ∈ N ′′. It is also easy to see that L(G′′) = L(G)
and |G′′ | ≤ |G|. In the case that there is some nonterminal A ∈N ′′ \ {S} with LA(G′′) = {ε},
we construct a context-free grammar G′′′ by omitting the nonterminal A and all A-
productions, and replacing all occurrences of A on the right-hand sides of the remaining

35

3. COMPLEXITY MEASURES

productions in G′′ by ε. Then, clearly, L(G′′′) = L(G′′) = L(G) and |G′′′ | ≤ |G′′ | ≤ |G|. We
repeat this step until we have constructed a grammar G∗ which contains no nontermi-
nal A , S with LA(G∗) = {ε}. This transformation of G into G∗ clearly terminates as in
each step the number of nonterminals decreases. �

In order to illustrate the construction steps carried out in the proof of Lemma 3.3.53.3.5, we
give the following example of transforming a context-free grammar into pruned normal
form.

Example 3.3.6. Let G = (N,Σ, P ,S) be a context-free grammar with the following set of
productions P :

S→ aA1 | bA1 | B | aBC,
A1→ aA2 | bA2 | B,
A2→ a | b | B,
B→ ε,

C→D.

Clearly, L(G) = {a,b}≤3 * {ε}, and observe that LB(G) = {ε} and LC(G) = LD(G) = ∅.
We follow the proof of Lemma 3.3.53.3.5 in order to construct a context-free grammar in
PNF that is equivalent to G. Thus, we omit all B- and C-productions as well as the
production S→ aBC and replace each occurrence of B by ε in the remaining productions.
This yields a grammar G′ = ({S,A1,A2},Σ, P ′ ,S) with the following set of productions P ′:

S→ aA1 | bA1 | ε,
A1→ aA2 | bA2 | ε,
A2→ a | b | ε.

We clearly have that L(G′) = L(G) = {a,b}≤3 and |G′ | ≤ |G|.

In some cases, it will be helpful to ensure that finite languages can be generated by a
grammar which does not contain nonterminals that are reachable from themselves. This
leads to the notion of an acyclic grammar:

Definition 3.3.7 (Cyclic Grammar). A context-free grammar G = (N,Σ, P ,S) is called
cyclic11 if there is some nonterminal A ∈N such that

A⇒+
G α1Aα2,

for α1,α2 ∈ (N ∪Σ)∗; otherwise G is called acyclic.

1Note that the definition of a cyclic grammar slightly differs from that of a self-embedding one: a
grammar G = (N,Σ, P ,S) is called self-embedding if there is some nonterminal A ∈N such that A⇒∗G α1Aα2,
for α1,α2 ∈ (N ∪Σ)+; otherwise G is called non self-embedding.

36

3.3. Unboundedness of Grammatical Cover Complexity

Next, we show that if a grammar G that generates a finite language belongs to a class of
context-free grammars, then that same class also contains an equivalent acyclic grammar
with at most |G| productions.

Lemma 3.3.8. Let X be a class of context-free grammars or X ∈ Γs. If G ∈ X and L(G) is
finite, then there is an acyclic grammar G′ ∈ X with |G′ | ≤ |G| and L(G′) = L(G).

PROOF. If G is acyclic, then define G′ = G. Therefore, assume that G is cyclic, i.e., there
is some A1 ∈ N and β1,β2 ∈ (N ∪Σ)∗ such that A1 ⇒+

G β1A1β2. By Lemma 3.3.53.3.5, we
can, without loss of generality, assume that G is in PNF, i.e., for all B ∈ N \ {S}, we
have LB(G)* {ε}, and B is both reachable from S and used to derive a word w in L(G):
there are α1,α2 ∈ (N ∪Σ)∗ such that S ⇒∗G α1Bα2 ⇒∗G w. If β1β2 , ε, then, since A1 is
reachable from S and we have A1 ⇒+

G β1A1β2, we can derive infinitely many words,
i.e., L(G) is infinite. Contradiction. On the other hand, if β1β2 = ε, then there is a
derivation of the form

A1⇒G A2⇒G . . .⇒G An⇒G A1,

for A1,A2, . . . ,An ∈ N and n ≥ 1. Note that the case that A1⇒∗G γ ⇒
∗
G A1 with γ ∈ N≥2

is impossible, for otherwise assume that the nonterminals B and C occur in γ and
satisfy, without loss of generality, B⇒∗G A1 and C ⇒∗G ε. Moreover, assume, without
loss of generality, that B occurs to the left of C in γ. Due to G being in PNF, it follows
that LC(G)* {ε}, i.e., there is a word v ∈ Σ∗ such that C⇒∗G v. However, this implies that

A1⇒∗G γ ⇒
∗
G A1v⇒∗G A1v

2⇒∗G . . . ,

i.e., we could derive infinitely many words. Contradiction. We define a new grammar G∗

from G with |G∗| ≤ |G| by identifying the nonterminals A1,A2, . . . ,An with a nontermi-
nal A <N . That is, we replace all Ai in G with 1 ≤ i ≤ n by A. Thus, every G-derivation
can be transformed into a G∗-derivation and, vice versa, every G∗-derivation can be
transformed into a G-derivation by adding suitable productions of the form Ai → Aj .
Consequently, we have L(G∗) = L(G). Note that G∗ still contains a production of the
form A→ A. Let G′ be the grammar obtained from removing the production A→ A
from G∗. Then G′ ∈ X, |G′ | < |G∗| ≤ |G|, and L(G′) = L(G). �

The following result shows that Lemma 3.3.13.3.1 can be generalised from linear to context-
free grammars which contain a bounded number of nonterminals on the right-hand side
of each of their productions:

Lemma 3.3.9. Let G be a grammar with n productions generating a finite language such
that every production of G contains at most k ≥ 0 nonterminals on its right-hand side. Then
the language of G contains at most n(k+1)n words, i.e., |L(G)| ≤ n(k+1)n .

PROOF. We proceed by induction on the number of nonterminals p in G and show
that |L(G)| ≤ n(k+1)p . In light of Lemma 3.3.83.3.8, we can assume that G is acyclic.

37

3. COMPLEXITY MEASURES

• Base case: Assume that p = 1, i.e., the grammar G contains a single nonterminal S.
Since G generates a finite language, S cannot occur on the right-hand side of any
production. Thus, k = 0 and L(G) contains exactly n = n(0+1)1

words.

• Induction step: Assume that G consists of n productions and contains the non-
terminals A1,A2, . . . ,Ap+1 such that every production with left-hand side Ai only
contains nonterminals Aj with j < i on its right-hand side. We can assume the latter,
since, by acyclicity of G, we can fix a linear order on the nonterminals in the above
sense. The nonterminal A1 is clearly minimal, i.e., cannot contain any nonterminals
on the right-hand side of its productions. Thus, the productions with left-hand
side A1 are of the form

A1→ w1 | w2 | . . . | wm

with wi ∈ Σ∗, for 1 ≤ i ≤m ≤ n. Moreover, let B→ α be an arbitrary production of G
with B , A1. We define the grammar G′ from G by replacing

B→ α

by the productions
B→ α1 | α2 | . . . | αm′

such that the αi , for 1 ≤ i ≤ m′, are all possible combinations of replacing the
occurrences of the nonterminal A1 in α by the words w1,w2, . . . ,wm. Clearly, it
holds that m′ ≤mk ≤ nk. Moreover, we remove the nonterminal A1 together with
all A1-productions. Since this step is repeated for all non-minimal nonterminals,
the grammar G′ contains at most n · nk = nk+1 productions and p nonterminals.
Furthermore, we have L(G′) = L(G). By induction hypothesis, we get that

|L(G′)| = |L(G)| ≤ (nk+1)(k+1)p = n(k+1)p+1
.

This concludes the induction.

Since there are at most n nonterminals in such a grammar G, we immediately get
that |L(G)| ≤ n(k+1)n . �

Now, we are finally in the position to prove the main result of this section, namely, that
every class of context-free grammars with a bounded number of nonterminals on the
right-hand side of each production induces an unbounded cover complexity measure.

Corollary 3.3.10. Let X be a class of CFGs with a bounded number of nonterminals occur-
ring on the right-hand side of each production. Then Xcc is unbounded.

PROOF. Let G ∈ X contain n production rules and let k be the bound on the number of
nonterminals occurring on the right-hand side of each production. Define the function

f : N→ N,n 7→ n(k+1)n .

38

3.4. Computing Cover Complexity from Exact Complexity

Clearly, f is both monotonic and unbounded. By Lemma 3.3.93.3.9, we have, for all finite
languages L ∈ Pfin(Σ∗), that

ρ(L) = |L| ≤ Xc(L)(k+1)Xc(L)
= f (Xc(L)).

Hence, by Theorem 3.2.53.2.5, Xcc is unbounded. �

Remark. Note that Corollary 3.3.103.3.10 is in a certain sense a generalisation of Corol-
lary 3.3.23.3.2.

An immediate consequence of Corollary 3.3.103.3.10 is that for the class CNF that consists of
all grammars in Chomsky normal form22 as well as of all trivial grammars, CNFcc is an un-
bounded complexity measure. Moreover, by Lemma 3.3.93.3.9, the number of words generated
by a grammar G in CNF with n productions is bounded above by n3n , i.e., |L(G)| ≤ n3n .

3.4 Computing Cover Complexity from Exact Complexity

We now turn to characterising the cover complexity of a finite language L based on the
exact complexity of a finite set of finite languages related to L. To this end, we first show
that in a minimal context-free grammar which covers a finite language L, the number of
terminals occurring on the right-hand side of each production is bounded by the length
of a longest word in L.

Lemma 3.4.1. Let X be a class of CFGs or X ∈ Γs, and let L be a finite language, ` :=
max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L. Then, for all productions
in G of the form A→ u0B1u1B2 · · ·Bnun with u0,u1, . . . ,un ∈ Σ∗, we have |u0u1 · · ·un| ≤ `.

PROOF. Let G = (N,Σ, P ,S) be an X-grammar and suppose that there is a production

p : A→ u0B1u1B2 · · ·Bnun ∈ P

with |u0 · · ·un| > `. Then there is no G-derivation of a word in L that uses p, and so,
the X-grammar G′ = (N,Σ, P \ {p},S) satisfies both L(G′) ⊇ L and |G′ | < |G|. Contradiction
to the minimality of G. �

Any linear grammar that covers a finite language whose longest word has length ` can
generate only words of length at most the number of words in L times `.

Lemma 3.4.2. Let L be a finite language, ` := max{ |w| | w ∈ L }, and G be a minimal
X-grammar, for X ∈ {REG,LIN}, with L(G) ⊇ L. Then max{ |w| | w ∈ L(G) } ≤ |L| · `.

PROOF. In light of Lemma 3.3.83.3.8, we can assume that G is acyclic. Let w ∈ L(G) be
arbitrary. Then there is a derivation δ of w in G of the form

S⇒G α1⇒G α2⇒G . . .⇒G αn = w,
2A context-free grammar G = (N,Σ, P ,S) is said to be in Chomsky normal form if all productions are of

the form A→ BC, A→ a, or S→ ε, where A,B,C ∈N and a ∈ Σ.

39

3. COMPLEXITY MEASURES

where αi ∈ (N ∪Σ)∗, for 1 ≤ i ≤ n. Due to the fact that G is acyclic, each production
of G can occur at most once in a G-derivation. Thus, by Lemma 3.4.13.4.1 and the fact that
each production contains at most one nonterminal on the right-hand side, it follows that
each derivation step in δ can add at most ` letters to the previous intermediate string,
i.e., |w| ≤ n ∗ `. Since n ≤ |G| ≤ |L|, we get |w| ≤ |L| ∗ `. �

Since, in general, it does not hold that |G| ≤ |L| if G is a minimal X-grammar covering L,
for X ∈ Γs, we get a different bound on the length of a longest word in strict regular and
strict linear grammars. Before we can prove this, we need the following auxiliary result.

Lemma 3.4.3. Let X ∈ Γs and L ⊆ Σ≤`. Then Xc(L) ≤ 1 +
∑`
i=1 i · |Σ|i .

PROOF. Consider the trivial regular grammar G generating L = {w1,w2, . . . ,wn }, i.e., each
production of G is of the form

S→ ai,1ai,2 . . . ai,k

with wi = ai,1ai,2 . . . ai,k and ai,j ∈ Σ ∪ {ε}, for 1 ≤ i ≤ n and 1 ≤ j ≤ k ≤ `. We break
up each of these trivial productions S → ai,1ai,2 . . . ai,k with ai,j ∈ Σ∪ {ε}, for 1 ≤ i ≤ n
and 1 ≤ j ≤ k ≤ `, into the following strict regular productions:

S→ ai,1Ai,2
Ai,2→ ai,2Ai,3

...

Ai,k−1→ ai,k−1Ai,k
Ai,k→ ai,k ,

where, for each i ∈ {1,2, . . . ,n}, the Ai,1,Ai,2, . . . ,Ai,k are fresh nonterminals. Consequently,
if we assume that ` = max{ |w| | w ∈ L }, we get that, for each k ∈ {1,2, . . . , `}, we need at
most

k · |Σ|k

strict regular productions, since there are |Σ|k many words of length k. Taking also the
empty word ε into account, this amounts to

SREGc(L) ≤ 1 +
∑̀
i=1

i · |Σ|i ,

for every finite language L ⊆ Σ≤`. The result for strict linear grammars follows immedi-
ately, since strict linear grammars are more succinct than strict regular ones w.r.t. the
exact complexity. �

Now, we are able to prove an upper bound on the length of a longest word in strict
regular and strict linear grammars which cover a finite language.

40

3.4. Computing Cover Complexity from Exact Complexity

Lemma 3.4.4. Let ` ≥ 0, L ⊆ Σ≤` be a finite language, and G be a minimal X-grammar,
for X ∈ Γs, with L(G) ⊇ L. Then max{ |w| | w ∈ L(G) } ≤ ` + `3 · |Σ|`.

PROOF. The proof is essentially the same as the proof of Lemma 3.4.23.4.2, but instead
of n ≤ |G| ≤ |L|, we have that

n ≤ |G| ≤ 1 +
∑̀
i=1

i · |Σ|i ≤ 1 + `2 · |Σ|`

by Lemma 3.4.33.4.3, since one can show by induction on ` that
∑`
i=1 i · |Σ|i ≤ `2 · |Σ|`. �

In the case of a context-free grammar G that covers a finite language L ⊆ Σ≤` where
the number of nonterminals occurring on the right-hand side of each production in G
is bounded by some k ≥ 2, we get that any such grammar can generate only words of
length at most ` times k|L|.

Lemma 3.4.5. Let X be a class of context-free grammars such that every production in
an X-grammar contains at most k ≥ 2 nonterminals on its right-hand side, let L be a finite
language, ` := max{ |w| | w ∈ L }, and G be a minimal X-grammar with L(G) ⊇ L. Then

max{ |w| | w ∈ L(G) } ≤ ` · k|L|.

PROOF. In light of Lemma 3.3.83.3.8, we can assume that G is acyclic and therefore fix a
linear order on the nonterminals A1,A2, . . . ,Ap in the following sense: every production
with left-hand side Ai only contains nonterminals Aj with j < i on its right-hand side.
We show, by induction on q, that every derivation that starts with an Aj with j ≤ q ≤ p
consists of at most

q−1∑
i=0

ki

steps.

• Base case: If q = 1, then a derivation has at most one step, since A1-productions
do not contain nonterminals on their right-hand sides.

• Induction step: If q > 1, then the first step replaces Aj with at most k occurrences
of nonterminals which are some Ah with h ≤ q−1. By induction hypothesis, each of
them has a derivation of length at most

∑q−2
i=0 k

i and there are at most k of them, so
the total number of steps in the derivation is at most

1 + k
q−2∑
i=0

ki =
q−1∑
i=0

ki .

This concludes the induction.

41

3. COMPLEXITY MEASURES

Moreover, for k ≥ 2, we have
∑q−1
i=0 k

i ≤ kq, since 1 ≤ k − 1 implies kq ≤ kq · (k − 1). As a
consequence, kq

k−1 ≤ k
q and thus

q−1∑
i=0

ki =
kq − 1
k − 1

≤ kq.

The result is then obtained from q ≤ p ≤ |G| ≤ |L|. Similarly as in the proof of Lemma 3.4.23.4.2,
from acyclicity of G and Lemma 3.4.13.4.1, it follows that any word w ∈ L(G) has length at
most ` · k|L|. �

What the following theorem tells us is that, for a certain class of context-free grammars,
we can obtain the cover complexity of a given finite language L in terms of the minimum
over the exact complexities of a finite number of finite covers L′ of L.

Theorem 3.4.6. Let X be a class of CFGs such that every production in an X-grammar
contains at most k nonterminals on its right-hand side. Then there exist functions

f : N→ N and g : N×N→ N

such that, for all finite languages L ⊆ Σ∗, we have that

Xcc(L) = min{Xc(L′) | L ⊆ L′, |L′ | ≤ f (|L|), and max{ |w| | w ∈ L′ } ≤ g(|L|, `) },

where ` = max{ |w| | w ∈ L }.

PROOF. Let G be an arbitrary minimal X-grammar with n productions covering a finite
language L, i.e., Xcc(L) = n, and let ` = max{ |w| | w ∈ L }. Clearly, n ≤ |L|. We distinguish
two cases. In the case that k = 1, G is a linear grammar and we define the functions

f : N→ N,x 7→ 2x−1 and g : N×N→ N, (x,y) 7→ x · y.

Moreover, according to Lemmas 3.3.13.3.1 and 3.4.23.4.2, every X-grammar covering L is an
X-grammar generating a finite language L′ ⊇ L that satisfies both

|L′ | ≤ 2Xc(L′)−1 = 2Xcc(L)−1 ≤ 2|L|−1 = f (|L|) and max{ |w| | w ∈ L′ } ≤ |L| · ` = g(|L|, `).

Since, by definition, Xcc(L) = min{Xc(L′) | L ⊆ L′ ∈ Pfin(Σ∗) }, setting

SL,1 = {L′ ∈ Pfin(Σ∗) | L ⊆ L′ , |L′ | ≤ 2|L|−1, and max{ |w| | w ∈ L′} ≤ |L| · ` }

yields the conclusion that

Xcc(L) = min{Xc(L′) | L′ ∈ SL,1 }.

Similarly, in the case that k ≥ 2, the conclusion

Xcc(L) = min{Xc(L′) | L′ ∈ SL,k }

42

3.4. Computing Cover Complexity from Exact Complexity

follows from Lemmas 3.3.93.3.9 and 3.4.53.4.5 by defining the functions

f : N→ N,x 7→ x(k+1)x and g : N×N→ N, (x,y) 7→ kx · y.

and setting

SL,k = {L′ ∈ Pfin(Σ∗) | L ⊆ L′ , |L′ | ≤ |L|(k+1)|L| , and max{ |w| | w ∈ L′} ≤ k|L| · ` }

Clearly, each of the sets SL,k, for k ≥ 1, satisfies the conditions of Theorem 3.4.63.4.6. �

Both the set of strict regular and the set of strict linear grammars are not classes of
context-free grammars in the sense of Definition 3.3.33.3.3, as both of these sets do not
contain all trivial grammars. Therefore, we have to adapt the proof strategy in order
to arrive at a result for strict regular and strict linear grammars that is analogous to
Theorem 3.4.63.4.6.

Theorem 3.4.7. Let X ∈ Γs. Then there exist functions

f : N×N→ N and g : N×N→ N

such that, for all finite languages L ⊆ Σ∗, we have that

Xcc(L) = min{Xc(L′) | L ⊆ L′, |L′ | ≤ f (`, |Σ|), and max{ |w| | w ∈ L′ } ≤ g(`, |Σ|) },

where ` = max{ |w| | w ∈ L }.

PROOF. Let G be an arbitrary minimal X-grammar with n productions covering a finite
language L ⊆ Σ∗, i.e., Xcc(L) = n, and let ` = max{ |w| | w ∈ L }. First, we define the
functions

f : N×N→ N, (x,y) 7→ 2x
2·yx and g : N×N→ N, (x,y) 7→ x+ x3 · yx.

Since Xcc(L) ≤ Xc(L), for all L ∈ Pfin(Σ∗), and due to Lemma 3.4.33.4.3 and the fact that strict
linear grammars are more succinct than strict regular ones w.r.t. the cover complexity, we
get that

Xcc(L) = n ≤ 1 +
∑̀
i=1

i · |Σ|i ≤ 1 + `2 · |Σ|`.

According to Lemmas 3.3.13.3.1 and 3.4.43.4.4, every X-grammar covering L is an X-grammar
generating a finite language L′ ⊇ L that satisfies both

|L′ | ≤ 2Xc(L′)−1 = 2Xcc(L)−1 ≤ 2`
2·|Σ|` = f (`, |Σ|) and max{ |w| | w ∈ L′ } ≤ `+ `3 · |Σ|` = g(`, |Σ|).

Therefore, by setting

SL = {L′ ∈ Pfin(Σ∗) | L ⊆ L′ , |L′ | ≤ 2`
2·|Σ|` , and max{ |w| | w ∈ L′} ≤ ` + `3 · |Σ|` },

the conclusion follows. Clearly, the set SL satisfies the conditions of Theorem 3.4.73.4.7. �

So, for a class of context-free grammars as in Theorem 3.4.63.4.6 as well as for strict regular
and strict linear grammars, determining the cover complexity of L boils down to com-
puting the exact complexity of finitely many supersets of L that only depend on |L| and `
or |Σ| and `, where ` = { |w| | w ∈ L }.

43

CHAPTER 4
Bounds on Production Complexity

T
HIS chapter is devoted to proving several upper and lower bounds on various
production complexity measures for both arbitrary and some specific finite
languages. In addition to the exact and cover complexity of finite languages,
we consider a third complexity measure—the so-called scattered complexity.

For some finite languages, we do not only prove lower bounds, but we also show that
they are incompressible w.r.t. certain complexity measures. For instance, in Section 4.34.3,
we construct a regular cover-incompressible sequence of finite languages that generalises
a previously known result from [EH15aEH15a, EH18EH18].

Some of the results in this chapter have been published in [HW18bHW18b, GHW18GHW18, HW19HW19].

4.1 Basic Bounds on Production Complexity

For the grammar types in ∆, we prove several bounds on the exact, cover, and scattered
complexity of arbitrary finite languages in this section. Before we can do this, we need
to define the scattered subword and the scattered sublanguage relations as well as the X
scattered complexity. Intuitively, a word w′ is a scattered subword of a word w if w′ can
be obtained from w by simply omitting letters. More formally, the definition reads as
follows:

Definition 4.1.1 (Scattered Subword/Sublanguage). Let Σ be an alphabet and

w = w1u1w2u2 · · ·un−1wn

be a word with wi ,uj ∈ Σ∗, for 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1. Then the word

w′ = w1w2 · · ·wn

is called a scattered subword ofw and we writew′ ≤ w or, equivalently, w ≥ w′. If a wordw1
is not a scattered subword of w2, then we write w1 � w2 or, equivalently, w2 � w1.

45

4. BOUNDS ON PRODUCTION COMPLEXITY

We extend the relations “≤” and “≥” from words to languages L1 and L2 as follows:

L1 ≤ L2 if and only if for all words w1 ∈ L1, there is a word w2 ∈ L2 s.t. w1 ≤ w2,

L2 ≥ L1 if and only if L1 ≤ L2.

If L1 ≤ L2 (or L2 ≥ L1) holds, we say that L1 is a scattered sublanguage of L2 as well as
that L2 is a scattered cover (or scattered superlanguage) of L1. On the other hand, if L1 ≤ L2
does not hold, we also write L1 � L2 or, equivalently, L2 � L1.

In order to illustrate both the scattered subword and the scattered sublanguage relations,
we give the following simple example.

Example 4.1.2. Let Σ = {a,b,c, . . . ,x,y,z, -} and consider the words

w1 = f ree,

w2 = context-f ree, and

w3 = context-sensitive.

Then w1 ≤ w2, but w1 � w3.

Moreover, consider the following languages:

L1 = { logic,auto, f ree },
L2 = { logistics,automata,context-f ree }, and

L3 = { logistics,automata,context-sensitive }.

Here, we have that L1 ≤ L2, but L1 � L3.

Based on the scattered subword relation, we can define an additional production com-
plexity measure on finite languages:

Definition 4.1.3 (X Scattered Complexity). Let L ∈ Pfin(Σ∗) and X ∈ ∆. Then the X
scattered complexity of L is defined as

Xsc(L) = min{ |G| | G ∈ X,L ≤ L(G), and L(G) finite }.

Let X,Y ∈ ∆. Then we define

X ≤sc Y if and only if Xsc(L) ≤ Ysc(L), for all finite languages L.

In the case that X ≤sc Y, we say that X is more succinct than Y w.r.t. the measure type sc.
By definition, the following relations hold:

CF ≤sc LIN ≤sc REG ≤sc SREG and CF ≤sc LIN ≤sc SLIN ≤sc SREG. (4.1)

Similarly as in the case of exact and cover complexity, for X ∈ ∆ and G ∈ X, we say that G
is a minimal X-grammar scatter-covering a finite language L if L ≤ L(G) and |G| = Xsc(L).

46

4.1. Basic Bounds on Production Complexity

First, we prove some easy results on the exact and cover complexity of some frequently
used finite languages, namely, on the set of all words of uniform length as well as on the
set of all words up to a fixed length.

Lemma 4.1.4. Let Σ be an alphabet and X ∈ ∆. Then

Xc(Σ`) ≤ |Σ| · ` and Xc(Σ≤`) ≤ (|Σ|+ 1) · `,

for any integer ` ≥ 1.

PROOF. In light of the fact that strict regular grammars are less succinct than all other
grammar types under consideration w.r.t. the exact complexity, it suffices to consider the
case for SREG; the results for X ∈ {SLIN,REG,LIN} then follow immediately. We define
the SREG-grammar G = (N,Σ, P ,S), where N = {A1,A2, . . . ,A`}, with S = A1 and

P = {Ai → aAi+1 | a ∈ Σ and 1 ≤ i ≤ ` − 1 } ∪ {A`→ a | a ∈ Σ }.

Obviously, L(G) = Σ` and |G| = |Σ| · `.

In order to generate Σ≤`, we can simply extend G to a strict regular grammar G′ as
follows: let G′ = (N,Σ, P ′ ,S), where

P ′ = P ∪ {Ai → ε | 1 ≤ i ≤ ` }.

Then we have L(G′) = Σ≤` and |G′ | = |G|+ ` = (|Σ|+ 1) · `, as desired. �

For the exact complexity w.r.t. context-free grammars, the bound of Lemma 4.1.44.1.4 can
be improved. This can be seen as follows: obviously the context-free grammar G =
({S,A},Σ, P ,S) whose production set P contains the rules

S→ A`

A→ a for each a ∈ Σ,

generates the language Σ`. Adding the rule A → ε results in a CFG generating Σ≤`.
This proves the upper bounds CFc(Σ`) and CFc(Σ≤`) of |Σ| + 1 and |Σ| + 2, respectively,
for ` ≥ 2. The upper bounds CFc(Σ) ≤ |Σ| and CFc(Σ≤1) ≤ |Σ|+1 follow from simply listing
all elements of Σ (and additionally the empty word ε in the case of Σ≤1) using just the
start symbol S. All these bounds are tight. Assume to the contrary that there is a minimal
context-free grammar G with L(G) = Σ≤` and |G| < |Σ|+2. Then we must have |G| ≥ |Σ|+1,
since G must generate the empty word ε as well as all words starting with any of the
terminals in Σ. Moreover, there can only be one production in G of the form A→ aα
with α ∈ (N ∪Σ)∗ for every letter a ∈ Σ. So, if α ∈ Σ∗, then G can produce at most one
word starting with the letter a. If α contains some nonterminal B , A (assuming that G is
acyclic, see Lemma 3.3.83.3.8), then we cannot produce all words consisting only of the letter a.
Hence, the grammar G cannot generate Σ≤`. This is a contradiction to our assumption.
Therefore, CFc(Σ≤`) ≥ |Σ|+ 2. An analogous argument shows that CFc(Σ`) ≥ |Σ|+ 1. The
above argument also goes through for the context-free cover complexity. We summarise
these results in the subsequent lemma.

47

4. BOUNDS ON PRODUCTION COMPLEXITY

Lemma 4.1.5. Let Σ be a finite alphabet. Then, for any integer ` ≥ 2,

CFc(Σ`) = CFcc(Σ`) = |Σ|+ 1 and CFc(Σ≤`) = CFcc(Σ≤`) = |Σ|+ 2.

If ` = 1, then we have CFc(Σ) = CFcc(Σ) = |Σ| and CFc(Σ≤1) = CFcc(Σ≤1) = |Σ|+ 1.

With the help of Lemmas 3.4.33.4.3, 4.1.44.1.4, and 4.1.54.1.5, we will now prove (upper) bounds on
the exact, cover and scattered complexity of arbitrary finite languages for the different
grammar types in ∆.

Theorem 4.1.6. Let L ⊆ Σ≤` be a finite language. Then, for X ∈ ∆, Y ∈ Γ , Z ∈ {REG,LIN},
and Zs ∈ Γs, we have that

1.

Yc(L) ≤

` + 1 if |Σ| = 1,
|Σ|`+1−1
|Σ|−1 otherwise,

SREGc(L) ≤ 1 +
∑̀
i=1

i · |Σ|i ,

SLINc(L) ≤ 1 +
∑̀
i=1

(i + 2)
2
· |Σ|i .

2.

CFcc(L) ≤ |Σ|+ 2,

Zcc(L) ≤

` + 1 if |Σ| = 1,

(|Σ|+ 1) · ` otherwise,

Zscc(L) ≤ (|Σ|+ 1) · `.

3.

Ysc(L) =

1 if L is non-empty,
0 otherwise,

Zssc(L) ≤ |Σ| · ` if L is non-empty,
Zssc(L) = 0 otherwise.

48

4.1. Basic Bounds on Production Complexity

PROOF. We argue as follows.

1. Every finite language L can be generated by a grammar of type Y ∈ Γ by simply
listing all words in L. Since there are at most

∑`
i=0 |Σ|i words of length at most `

in L, the upper bounds of

` + 1 and
∑̀
i=0

|Σ|i =
|Σ|`+1 − 1
|Σ| − 1

follow for the cases |Σ| = 1 and |Σ| ≥ 2, respectively.

The result for strict regular grammars follows from Lemma 3.4.33.4.3. Since for strict
linear grammars we cannot proceed as for Y-grammars, every trivial production

S→ ai,1ai,2 . . . ai,k for 1 ≤ k ≤ `,

that is responsible for deriving a word wi = ai,1ai,2 . . . ai,k of L has to be broken up
into the following strict linear productions:

S→ ai,1Ai,2ai,k
Ai,2→ ai,2Ai,3ai,k−1

...

Ai,
⌈
k
2

⌉
−1→ ai,

⌈
k
2

⌉
−1Ai,

⌈
k
2

⌉ai,k−⌈ k2 ⌉+2,

where, for each i ∈ {1,2, . . . , |L|}, the Ai,1,Ai,2, . . . ,Ai,
⌈
k
2

⌉ are fresh nonterminals. More-

over, we also add either the production

Ai,
⌈
k
2

⌉→ ai,
⌈
k
2

⌉ if k is odd,

or the fresh nonterminal Ai, k2 +1 together with the two productions

Ai, k2
→ ai, k2

Ai, k2 +1 and Ai, k2 +1→ ai, k2 +1 if k is even.

Consequently, since
⌈
k
2

⌉
≤ k

2 + 1 = (k+2)
2 , we get that we need at most

(k + 2)
2
· |Σ|k for 1 ≤ k ≤ `,

strict linear productions in order to generate all words of length k. Taking also the
empty word ε into account, this amounts to

SLINc(L) ≤ 1 +
∑̀
i=1

(i + 2)
2
· |Σ|i ,

for every finite language L.

49

4. BOUNDS ON PRODUCTION COMPLEXITY

2. Let ` be the length of a longest word in L. By assumption, L ⊆ Σ≤`. Thus, every
grammar generating Σ≤` automatically covers the language L. As a consequence,
by Lemma 4.1.54.1.5, the claim for context-free grammars follows. Moreover, the results
for regular and linear grammars where |Σ| ≥ 2 as well as the results for their strict
variants where |Σ| ≥ 1 follow from Lemma 4.1.44.1.4. Finally, the results for regular and
linear grammars where |Σ| = 1 follow from simply listing all ` + 1 words occurring
in Σ≤` using non-strict trivial productions.

3. Assume that Σ = {a1, a2, . . . , an} and consider the singleton language

{(a1a2 . . . an)`},

which is generated by

G = ({S},Σ, {S→ (a1a2 . . . an)`},S),

a regular grammar with a single production rule. Clearly, we have

L ≤ {(a1a2 . . . an)`},

for all non-empty languages L ⊆ Σ≤`. Thus, Ysc(L) ≤ 1. Since any grammar
with an empty production set can only generate the empty language, we also
have Ysc(L) ≥ 1. In the case that L = ∅, we obviously have Ysc(L) = 0. Since any
regular grammar is both linear and context-free, we immediately get the respective
results for the other two grammar types.

For the strict grammar types, we can use the fact that Σ` ≥ L, for any finite lan-
guage L over Σ whose longest word has length `. As a consequence, by Lemma 4.1.44.1.4,
we obtain Zsc(Σ`) ≤ |Σ| · `, and so Zssc(L) ≤ |Σ| · `.

�

For the uniform language Σ` with ` ≥ 1, we can even show that there is a corresponding
lower bound on the SREG-complexity. In order to arrive at this result, we need a
preliminary statement on context-free grammars generating uniform languages.

Lemma 4.1.7. Let X ∈ ∆ and G = (N,Σ, P ,S) be a minimal X-grammar generating a finite
uniform language. Then, for all A ∈N , all words occurring in the set LA(G) have the same
length.

PROOF. Let A ∈N be arbitrary. If N contains a nonterminal B that is not used to derive a
word in L(G), then

LB(G) = {w ∈ Σ∗ | B⇒∗G w } = ∅

and the claim is vacuously true. Now, assume towards contradiction that there are two
words w1 and w2 with |w1| , |w2| such that A⇒∗G w1 and A⇒∗G w2. Note that minimal
grammars do not contain useless productions, i.e., productions that are not used to

50

4.1. Basic Bounds on Production Complexity

derive a word in Σ∗. For otherwise the grammar would not be minimal. Thus, there are
derivations

S⇒∗G α1Aα2⇒∗G α1w1α2⇒∗G v1w1v2 and S⇒∗G α1Aα2⇒∗G α1w2α2⇒∗G v1w2v2,

for α1,α2 ∈ (N ∪Σ)∗ and v1,v2 ∈ Σ∗. Since |w1| , |w2|, it follows that |v1w1v2| , |v1w2v2|,
i.e., L(G) is not a uniform language. Contradiction! �

An easy consequence of the previous lemma is that minimal grammars generating a
uniform language—different from the language {ε}—do not contain any ε-productions.

Proposition 4.1.8. Let X ∈ ∆ and G = (N,Σ, P ,S) be a minimal X-grammar generating a
finite uniform language satisfying L(G) , {ε}. Then G is ε-free.

PROOF. The proof is by contradiction. Assume to the contrary that G is not ε-free, i.e.,
there is some production A→ ε ∈ P . Then, from Lemma 4.1.74.1.7 and since L(G) , {ε}, it
follows that A , S and LA(G) = {ε}. We define the following X-grammar G′ = (N,Σ, P ′ ,S),
where P ′ is obtained from P by replacing all occurrences of A by ε on the right-hand side
of each production and omitting the production A→ ε. Then, L(G′) = L(G) and |G′ | < |G|.
Contradiction to the minimality of G. �

Now, we are able to prove a lower bound on the strict regular complexity of the lan-
guage Σ` that matches the upper bound obtained in Lemma 4.1.44.1.4.

Lemma 4.1.9. Let Σ be a finite alphabet and ` ≥ 1 an integer. Then SREGc(Σ`) ≥ |Σ| · `.

PROOF. Let ` ≥ 1 be an integer and G = (N,Σ, P ,S) be a minimal SREG-grammar
with L(G) = Σ`. We proceed by induction on `:

• Base case. Let ` = 1. Then G = ({S},Σ, P ,S) with P = {S → a | a ∈ Σ } is clearly a
minimal SREG-grammar with L(G) = Σ. Thus, SREGc(Σ) ≥ |Σ| · 1.

• Induction step. Towards contradiction assume that G = (N,Σ, P ,S) is a mini-
mal SREG-grammar with L(G) = Σ`+1 and |G| < |Σ| · (` + 1). Since Σ`+1 is a uniform
language with Σ`+1 , {ε}, it follows from Proposition 4.1.84.1.8 that G does not con-
tain ε-productions. By definition of strict regular grammars, it is obvious that
productions that produce the last letter of a word in Σ`+1 are of the form A→ a,
for a ∈ Σ. Since Σ`+1 is a uniform language, it is not possible that any of these
productions is used to derive a letter which is not the last letter of a word in Σ`+1.
Moreover, since one can show that in any minimal SREG-grammar that generates a
finite language, any nonterminal derives at least two distinct words, it is impossible
that there is a nonterminal A ∈ N such that both A→ a and A→ bB, for a,b ∈ Σ
and B ∈N , are in P . For otherwise one could produce words over Σ that are longer
than ` + 1. Let PΣ = {A→ a ∈ P | a ∈ Σ } and NΣ = {A ∈N | A→ a ∈ PΣ }. Since every
letter in Σ is used to end a word in Σ`+1, the following grammar G′ = (N,Σ, P ′ ,S)

51

4. BOUNDS ON PRODUCTION COMPLEXITY

with

P ′ = P \ (PΣ ∪ {B→ aA ∈ P | A ∈NΣ,B , A, and a ∈ Σ })
∪ {B→ a | B→ aA ∈ P ,A ∈NΣ,B , A, and a ∈ Σ }

is a strict regular grammar generating Σ` with

|G′ | ≤ |G| − |Σ| < |Σ| · (` + 1)− |Σ| = |Σ| · `.

This, however, means that SREGc(Σ`) < |Σ|·`, contradicting the induction hypothesis.
Thus, SREGc(Σ`+1) ≥ |Σ| · (` + 1).

�

Open Problem 4.1.10. Is it possible to prove a lower bound on the strict linear complex-
ity of Σ` that matches the upper bound obtained in Lemma 4.1.44.1.4? 4

By combining Lemmas 4.1.44.1.4 and 4.1.94.1.9, we obtain the following result:

Proposition 4.1.11. Let Σ be a finite alphabet and ` ≥ 1 an integer. Then SREGc(Σ`) =
|Σ| · `.

In the strict grammar variants, as opposed to the non-strict ones, the number of produc-
tions depends on the length of a longest word in the language to be covered. Therefore,
we obtain the following lower bounds on the strict regular and the strict linear cover
complexity of arbitrary finite languages.

Lemma 4.1.12. Let L ∈ Pfin(Σ∗) be a finite language and ` = max{ |w| | w ∈ L }. Then

SREGcc(L) ≥ ` and SLINcc(L) ≥
⌊
`
2

+ 1
⌋
.

PROOF. Since the result for strict regular grammars can be shown using similar arguments,
we only give a proof of the result for strict linear grammars. We will first show that in
any minimal strict linear grammar G = (N,Σ, P ,S) the following statement holds:

for all A ∈N and all w ∈ Σ∗ : if A⇒k
G w, then k ≥

⌊
|w|
2

+ 1
⌋
.

To prove the above statement, we will proceed by induction on the length of a derivation
of w.

• Base case: Assume k = 1. If A⇒G w, then, by definition of strict linear grammars,
we must have that w ∈ Σ∪ {ε}, i.e., |w| ≤ 1. Thus, it clearly follows that

k = 1 ≥
⌊1

2
+ 1

⌋
=

⌊
|w|
2

+ 1
⌋
.

52

4.1. Basic Bounds on Production Complexity

• Induction step: Suppose k ≥ 2 and A⇒k
G w. We have to distinguish four cases

according to the form of the derivation of w:

1. Let
A⇒G aBb⇒k−1

G w = aw1b

with a,b ∈ Σ, B ∈N , and w1 ∈ Σ∗. Then, obviously,

B⇒k−1
G w1.

Thus, by induction hypothesis, it follows that

k − 1 ≥
⌊
|w1|

2
+ 1

⌋
.

This means that

k ≥
⌊
|w1|

2
+ 1

⌋
+ 1 =

⌊
|w1|

2
+ 1 + 1

⌋
=

⌊
|w1|

2
+

2
2

+ 1
⌋
=

⌊
|w1|+ 2

2
+ 1

⌋
=

⌊
|w|
2

+ 1
⌋
.

2. Next, consider
A⇒G aB⇒k−1

G w = aw1

with a ∈ Σ, B ∈N , and w1 ∈ Σ∗. The claim follows from similar arguments as
in the first case.

3. Moreover,
A⇒G Bb⇒k−1

G w = w1b

with b ∈ Σ, B ∈N , and w1 ∈ Σ∗. The claim follows from similar arguments as
in the first case.

4. Finally,
A⇒G B⇒k−1

G w

with B ∈N and w ∈ Σ∗. Obviously,

B⇒k−1
G w.

By induction hypothesis, we get

k − 1 ≥
⌊
|w|
2

+ 1
⌋
,

which clearly implies that

k ≥
⌊
|w|
2

+ 1
⌋
.

53

4. BOUNDS ON PRODUCTION COMPLEXITY

This concludes the induction.

Now, let L be a finite language over Σ with ` = max{ |w| | w ∈ L } and G = (N,Σ, P ,S) be a
minimal strict linear grammar with L(G) ⊇ L. Then there is a derivation δ of the form

S⇒k
G w

with w ∈ Σ` and k ≥ 1. By the above statement, we get that

k ≥
⌊
|w|
2

+ 1
⌋

=
⌊
`
2

+ 1
⌋
.

By Lemma 3.3.83.3.8, we can assume, without loss of generality, that G is acyclic. Since in
an acyclic strict linear grammar all right-hand sides of productions contain at most one
nonterminal, no production can occur twice in the derivation δ. As a consequence, the
derivation δ uses k distinct productions in order to derive w. Hence,

SLINcc(L) = |G| ≥ k ≥
⌊
`
2

+ 1
⌋
,

by minimality of G. �

Since every grammar that generates a language also covers that language, we immediately
get the following corollary from Lemma 4.1.124.1.12.

Corollary 4.1.13. Let L ∈ Pfin(Σ∗) be a finite language and ` = max{ |w| | w ∈ L }. Then

SREGc(L) ≥ ` and SLINc(L) ≥
⌊
`
2

+ 1
⌋
.

Every grammar that generates a finite language which is a scattered superlanguage of a
finite language L clearly contains at least one word which is at least as long as a longest
word in L. Therefore, from Lemma 4.1.124.1.12, we get the following corollary for the strict
regular and strict linear scattered complexity of finite languages.

Corollary 4.1.14. Let L ∈ Pfin(Σ∗) be a finite language and ` = max{ |w| | w ∈ L }. Then

SREGsc(L) ≥ ` and SLINsc(L) ≥
⌊
`
2

+ 1
⌋
.

PROOF. Let X ∈ Γs and w ∈ L with |w| = ` be arbitrary. Then, for every X-grammar G that
generates a finite language and satisfies L(G) ≥ L, we have that there is some w′ ∈ L(G)
such that w ≤ w′. But this means that |w′ | ≥ |w|, i.e., max{ |v| | v ∈ L(G) } ≥ `. Therefore,
by Corollary 4.1.134.1.13, it follows that |G| ≥ ` if X = SREG and |G| ≥

⌊
`
2 + 1

⌋
if X = SLIN. �

Remark. The exact complexity for unary languages has already been settled in [BMCIW81BMCIW81,
Theorem 5] in the sense that any finite unary language L can be generated by a context-
free grammar having a constant as well as by a regular or linear grammar having a
logarithmic (in the length of a longest word in L) number of productions.

54

4.2. Lower Bounds on Exact Production Complexity

4.2 Lower Bounds on Exact Production Complexity

In this section, we consider different finite languages and show that some of them are
incompressible w.r.t. certain grammar types, that is, every grammar generating such a
language needs at least as many productions as there are words in that language. Some
incompressible languages can already be found in the seminal papers [BMCIW81BMCIW81, Buc81Buc81]
on concise description of finite languages by different types of grammars. The proofs
of these results are based on the following lemma, which states some easy facts about
minimal context-free grammars generating finite languages.

Lemma 4.2.1 ([BMCIW81BMCIW81], Lemma 2.1). Let G = (N,Σ, P ,S) be a minimal context-free
grammar generating the finite language L. Then, for every nonterminal A ∈N \ {S},

• there are α1 and α2 with α1,α2 ∈ (N ∪Σ)∗ and α1 , α2 such that A→ α1 and A→ α2
are in P ,

• the set LA(G) contains at least two words, and

• there are words u1,u2,v1,v2 ∈ Σ∗ such that

u1Au2 , v1Av2

and both
S⇒∗G u1Au2 and S⇒∗G v1Av2

hold.

Moreover, for all A ∈N , there is no derivation of the form A⇒+
G αAβ with α,β ∈ (N ∪Σ)∗.

Remark. For strict regular and strict linear grammars it is fairly easy to construct fi-
nite languages with an arbitrarily high production complexity. In particular, for each
integer n ≥ 1, consider the languages L1 = {an} and L2 = {a2n−1}. Due to Lemma 4.1.124.1.12,
every SREG-grammar covering L1 as well as every SLIN-grammar covering L2 needs at
least n productions, i.e., SREGcc(L1) ≥ n and SLINcc(L2) ≥ n. Therefore, in this section,
the emphasis will be on the production complexity w.r.t. the non-strict grammar types.

One of the languages shown to be incompressible in [BMCIW81BMCIW81] is

Un = {akbkca`b`dambm | k + ` +m = n },

which contains
(n+2

2
)
, i.e., quadratically many, words and satisfies CFc(Un) = |Un|. Yet

another example is the language

Rn = {aibj | i + j = n }

with REGc(Rn) = |Rn| = n+ 1.

Further examples of incompressible languages can be found in [Buc81Buc81]—we only mention
the language

Ln = {aibici | 1 ≤ i ≤ n }

55

4. BOUNDS ON PRODUCTION COMPLEXITY

with
CFc(Ln) = |Ln| = n (4.2)

as well as the language
Vn = {aibajcai | 2i + j = n− 2 }

with
LINc(Vn) = |Vn|.

Note that the cardinality of Vn is linear in n.

A careful inspection of [BMCIW81BMCIW81, Buc81Buc81] reveals that the cardinalities of the incom-
pressible languages presented there are polynomial in the length of a longest word, but
what about incompressible finite languages with larger cardinalities?

While there are barely any results that show exponential lower bounds on the production
complexity of finite languages, it is, in fact, known that some finite languages only
admit context-free grammars with high size. Before we take a closer look at some of
these languages, we will define the symbolic X-complexity (or minimal X-size) of a finite
language. First, recall that, for a context-free grammar G = (N,Σ, P ,S), the size of G is
defined as |G|s =

∑
A→α∈P

(|α|+ 2).

Definition 4.2.2. Let L ∈ Pfin(Σ∗) and X ∈ ∆. Then the symbolic X-complexity of L is
defined as

Xsz(L) = min{ |G|s | G ∈ X and L(G) = G }.

Let X,Y ∈ ∆. Then we define

X ≤sz Y if and only if Xsz(L) ≤ Ysz(L), for all finite languages L.

In the case that X ≤sz Y, we say that X is more succinct than Y w.r.t. the measure type sz.
By definition, the following relations hold:

CF ≤sz LIN ≤sz REG ≤sz SREG and CF ≤sz LIN ≤sz SLIN ≤sz SREG. (4.3)

As a first example of a finite language with a high symbolic CF-complexity, consider the
so-called (bounded) copy language

Cn = {w$w | w ∈ {a,b}n },

where n ≥ 1 is an integer. Recently, in [Fil11Fil11], it was shown that any context-free grammar
for Cn has size at least Ω(2n/4/

√
2n). The technique presented in [Fil11Fil11] in order to prove

this result is quite involved and generalises a previously known result from [EKSW05EKSW05] on
an exponential lower bound on the size of context-free grammars generating the set of
all permutations over a finite alphabet.

56

4.2. Lower Bounds on Exact Production Complexity

We can summarise the technique of [Fil11Fil11] for finite uniform languages as follows11:

First, for a given finite uniform language L, define a reflexive and symmetric relation ∼
on a set VL such that u ∼ v if there are words w1 and w2 such that

w1uw2,w1vw2 ∈ L,

where
VL = {v | v is a subword of some w ∈ L, and n/2 ≤ |v| < n }

and n is the length of the words occurring in L. Moreover, we also need the notion of
a so-called clique, i.e., a subset C of VL such that u ∼ v holds for all u,v ∈ C. Then the
following result is proved:

Lemma 4.2.3 ([Fil11Fil11, Proposition 6]). Let L be a finite uniform language. Then every
context-free grammar G that generates L satisfies

|G|s = Ω

√
|L|
M

 ,
where M is the maximal number of words in L that have some subword in a clique C.

The proof of this result proceeds by transforming the given context-free grammar into
an equivalent context-free grammar G in Chomsky normal form and then showing that
it contains at least |L|M nonterminals. By the well-known subword lemma for grammars
in Chomsky normal form22, one can associate to each w ∈ L a subword v(w) ∈ VL that is
generated by some nonterminal N (w). It is then shown that the sets

N−1(A) = {w ∈ L |N (w) = A },

where A is a nonterminal, form a partition of L into parts of cardinality at most M.
Therefore, G must contain at least |L|M nonterminals and thus be of size at least |L|M . For
arbitrary context-free grammars, we therefore obtain a lower bound on the size of

Ω

√
|L|
M

 ,
since the transformation into Chomsky normal form may increase the size by a quadratic
factor [LL09LL09].

1Note that the result of [Fil11Fil11, Proposition 6] is more general than the one presented here, as it is stated
for arbitrary context-free languages. However, for ease of presentation and since the languages Cn and Tn
(see the next page for the definition) are both finite and uniform, we formulate it only for finite uniform
languages.

2The subword lemma states that if a word w with |w| ≥ 2 is generated by a context-free grammar G in
Chomsky normal form, then, for each positive ` ≤ |w|, there is a subword v of w of length `/2 ≤ |v| < ` that is
generated by a nonterminal of G [Sha08Sha08, Fil11Fil11].

57

4. BOUNDS ON PRODUCTION COMPLEXITY

Note that the above mentioned lower bound for the language Cn is not enough to prove
that this language is incompressible in our setting, because Cn contains 2n many words.
Even for more complicated languages such as

Tn = {w$w#w | w ∈ {a,b}n },

the language of all triples of length n ≥ 1, the technique of [Fil11Fil11] does not suffice for
proving incompressibility. Here, the lower bound induced by [Fil11Fil11] is Ω(2n/8/

√
3n).

In order to obtain the above mentioned lower bounds for the languages Cn and Tn, we
can apply Lemma 4.2.34.2.3 as follows33:

First, it is shown that any clique w.r.t. either of those languages consists just of a single
word. Then it is shown that at most 2n · 2

n
2 and 3n · 2

3n
4 many words in Cn and Tn,

respectively, contain any given word in VCn and VTn , respectively. Since |Cn| = |Tn| = 2n,
we have that

|Cn|
2n · 2n/2

=
2n/2

2n
and

|Tn|
3n · 23n/4

=
2n/4

3n
.

Finally, by Lemma 4.2.34.2.3, we get

Ω

(
2n/4
√

2n

)
and Ω

(
2n/8
√

3n

)
as lower bounds on the context-free size of the languages Cn and Tn, respectively.

Using the facts stated in Lemma 4.2.14.2.1, we can show that Tn is generated minimally by a
context-free grammar only by simply listing all words. This shows that Tn is incompress-
ible in our sense, and can be derived using the classic technique from [BMCIW81BMCIW81].

Theorem 4.2.4. Let X ∈ Γ and n ≥ 1 an integer. Then Xc(Tn) = |Tn| = 2n.

PROOF. Let G = (N,Σ, P ,S) be a minimal context-free grammar generating Tn. Moreover,
let A ∈N \ {S} be an arbitrary nonterminal. By Lemma 4.2.14.2.1, there are derivations

S⇒∗G u1Au2 and S⇒∗G w1Aw2

with u1,u2,w1,w2 ∈ Σ∗ and u1Au2 , w1Aw2 as well as

x,y ∈ Σ∗ with x , y, A⇒∗G x, and A⇒∗G y.

We will first show that it is impossible that x ∈ {a,b}∗ or y ∈ {a,b}∗, and then that both x
and y must contain the symbols $ and #. Note that |x| = |y|, for otherwise one could
derive words v1 and v2 such that |v1| , |v2|, but Tn only contains words that have the
same length.

Assume, without loss of generality, that x ∈ {a,b}∗ (the case that y ∈ {a,b}∗ is symmetric).
From x , y and |x| = |y| it follows that both x , ε and y , ε must hold. Now, let w ∈ {a,b}n;
we distinguish three cases:

3Note that the results in [Fil11Fil11] are proved for the variants of Cn and Tn without the separator symbols $
and #.

58

4.2. Lower Bounds on Exact Production Complexity

1. Suppose that u1x ∈ {a,b}∗ and u2 ∈ {a,b}∗{$}{w}{#}{w}. Then

u1xu2 = v1$w#w and u1yu2 = v2$w#w,

for v1,v2 ∈ {a,b}n and v1 , v2. Thus, either v1 , w or v2 , w, i.e., v1$w#w < Tn
or v2$w#w < Tn. This is a contradiction.

2. Suppose that u1 ∈ {w}{$}{a,b}∗ and u2 ∈ {a,b}∗{#}{w}. Then, since x , y, there are
two derivations

S⇒∗G u1Au2⇒∗G v = u1xu2 and S⇒∗G u1Au2⇒∗G v
′ = u1yu2

with v , v′. In particular,

v = w$u#w and v′ = w$u′#w

with u , w or u′ , w. But this means that v < Tn or v′ < Tn, which is a contradiction.

3. Suppose that u1 ∈ {w}{$}{w}{#}{a,b}∗ and xu2 ∈ {a,b}∗. Symmetric to case 1. Thus,
we obtain a contradiction again.

Similar arguments show that either w1xw2 < Tn or w1yw2 < Tn. Hence, we have both x <
{a,b}∗ and y < {a,b}∗.

Now, suppose that x or y does not contain both $ and #. Assume, without loss of generality,
that x contains # but does not contain $. Let w ∈ {a,b}n; we distinguish two cases:

1. Suppose that y contains $. Then we have

S⇒∗G u1Au2⇒∗G v = u1xu2 and S⇒∗G u1Au2⇒∗G v
′ = u1yu2,

where either v does not contain $ or v′ contains at least two occurrences of $. Thus,
either v < Tn or v′ < Tn.

2. Suppose that y contains # . Then we have

S⇒∗G u1Au2⇒∗G v = u1xu2 and S⇒∗G u1Au2⇒∗G v
′ = u1yu2.

Together with the fact that x , y and |x| = |y|, it follows that x and y occupy the
exact same positions within the words v and v′, respectively. As a consequence,
if v ∈ Tn, then v′ < Tn. If, on the other hand, v′ ∈ Tn, then we have that v < Tn.

In both of these cases, we obtain a contradiction. Thus, both words x and y must contain
both $ and #. This and |x| = |y| implies that x = y. This is a contradiction to our assumption
that x , y. Hence, N = {S} and therefore the only way to generate the language Tn is
to list all of its words as right-hand sides of productions having the sole nonterminal S
on the left-hand side. In light of Equation 3.13.1, the statement also holds for the other
grammar types in Γ . �

59

4. BOUNDS ON PRODUCTION COMPLEXITY

Since the strict grammar types are less succinct than their respective non-strict vari-
ants w.r.t. the exact complexity, we get the following result as a simple corollary from
Theorem 4.2.44.2.4.

Corollary 4.2.5. Let X ∈ Γs and n ≥ 1 an integer. Then Xc(Tn) ≥ |Tn| = 2n.

Another immediate consequence of the proof of Theorem 4.2.44.2.4 is the following exponen-
tial lower bound on the symbolic X-complexity of the triple language Tn. Note that our
result on the language Tn is more precise than the one obtained from using the lower
bound technique defined in [Fil11Fil11].

Corollary 4.2.6. Let X ∈ ∆ and n ≥ 1 an integer. Then Xsz(Tn) ≥ 2n · (3n+ 4).

PROOF. A close inspection of the proof of Theorem 4.2.44.2.4 reveals that every Y-grammar,
for Y ∈ Γ , solely consists of trivial productions. As a consequence, since, by Theorem 4.2.44.2.4,

Yc(Tn) = 2n,

and every such trivial production consists of (3n+ 4) symbols, we get that

Ysz(Tn) = 2n · (3n+ 4).

Since every strict regular and every strict linear grammar is a regular and a linear
grammar, respectively, it follows that

SREGsz(Tn) ≥ REGsz(Tn) = 2n · (3n+ 4) and SLINsz(Tn) ≥ LINsz(Tn) = 2n · (3n+ 4).

This concludes the proof. �

Remark. Note that, for any integer n ≥ 7, the language Tn is already X cover-compressible
for any type X ∈ ∆. Since all words in Tn have length 3n+ 2, by Lemma 4.1.44.1.4, there exists
already a strict regular grammar with 15n + 10 < 2n = |Tn| productions that covers Tn.
That is, for any integer n ≥ 7, we have that Xcc(Tn) < |Tn|.

Later, in Chapter 77, we will use the language Tn as one of our basic building blocks for the
language used in the proof of the inapproximability result of the exact complexity of finite
languages. It is worth mentioning that the question as to whether the copy language Cn
can only be generated minimally by a context-free grammar by simply listing all words is
still open.

Open Problem 4.2.7. Let X ∈ Γ and n ≥ 1 an integer. Is the copy language Cn X-
incompressible? 4

The following result, which has been shown in [BMCIW81BMCIW81, Lemma 2.2], is needed for
the proof of the subsequent Corollary 4.2.104.2.10.

Lemma 4.2.8 ([BMCIW81BMCIW81, Lemma 2.2]). Let X ∈ ∆ and let G = (N,Σ, P ,S) be an X-
grammar generating a finite language. Then there is an X-grammarGmax = (Nmax,Σ, Pmax,S)

60

4.2. Lower Bounds on Exact Production Complexity

such that
Nmax ⊆N , Pmax ⊆ P , and L(Gmax) = Lmax,

where Lmax is the subset of L(G) consisting of the words of maximal length.

Using similar arguments as in the proof of Theorem 4.2.44.2.4, one can show that any (strict)
regular grammar generating the language

Pn = {w$wR | w ∈ {a,b}≤n }

of all even length palindromes (with middle marker) needs at least an exponential
number of productions. This is done by first showing that the sublanguage

P ′n = {w$wR | w ∈ {a,b}n }

of Pn is regular incompressible and then applying Lemma 4.2.84.2.8.

Theorem 4.2.9. Let X ∈ {SREG,REG} and n ≥ 1 an integer. Then Xc(P ′n) = 2n.

PROOF. To this end, assume that Σ = {a,b,$} and that G = (N,Σ, P ,S) is a minimal regular
grammar generating P ′n which contains a nonterminal A ∈N \ {S}. By Lemma 4.2.14.2.1, there
are derivations

S⇒∗G u1A and S⇒∗G u2A

with u1,u2 ∈ Σ∗ and u1 , u2 as well as

v1,v2 ∈ Σ∗ with A⇒∗G v1, A⇒∗G v2, and v1 , v2.

Note that we must have both |u1| = |u2| and |v1| = |v2|, for otherwise we would be able to
derive words w1 and w2 with |w1| , |w2|, but P ′n only contains words of the same length.
Since v1 , v2 and |v1| = |v2|, it follows that both v1 , ε and v2 , ε. Let w ∈ {a,b}n be
arbitrary. We distinguish the following two cases:

1. Suppose u1 ∈ {w$}{a,b}∗. Then we must have

u1 = w1w2$wR2 ,

where w = w1w2 and v1,v2 ∈ {a,b}∗. Assume, without loss of generality, that v1 = wR1 .
Then, since v1 , v2, it follows that vR2 , w1. Thus, u1v2 < P

′
n. Contradiction.

2. Suppose u1 ∈ {a,b}∗. Then we must have v1,v2 ∈ {a,b}∗{$wR}. Assume that w = u1w2,
for some w2 ∈ {a,b}∗ and, without loss of generality, that

v1 = w2$wR2u
R
1 .

Since v1 , v2, it follows that v2 = w′2$wR2u
R
1 with w′2 , w2. Thus, u1v2 < P

′
n. Contra-

diction.

61

4. BOUNDS ON PRODUCTION COMPLEXITY

Consequently, we have N = {S} and so the only way to generate the language P ′n minimally
with a regular grammar is to list all of its words using S. The result for strict regular
grammars follows from Equation 3.13.1. �

In light of Lemma 4.2.84.2.8 and since P ′n ⊆ Pn, the results of Theorem 4.2.94.2.9 imply that

SREGc(Pn) ≥ 2n and REGc(Pn) ≥ 2n.

We thus get the following corollary.

Corollary 4.2.10. Let X ∈ {SREG,REG} and n ≥ 1 an integer. Then Xc(Pn) ≥ 2n.

For (strict) linear and context-free grammars, one observes that the exact complexi-
ties SLINc(Pn), LINc(Pn), and CFc(Pn) are at most linear, as witnessed by the strict linear
context-free grammar G = (N,Σ, P ,S0) with N = {S0,S1, . . .Sn}, Σ = {a,b,$}, start sym-
bol S0, and where P consists of the following productions

Si → aSi+1a | bSi+1b | Si+1 for 0 ≤ i ≤ n− 1,

Sn→ $.

Clearyl, G satisfies L(G) = Pn, for any integer n ≥ 1. Note that the upper bound on the
exact complexity of Pn immediately implies a corresponding upper bound on the cover
complexity w.r.t. these grammar types. Consequently, we get the following lemma.

Lemma 4.2.11. Let X ∈ {SLIN,LIN,CF}, τ ∈ {c,cc}, and n ≥ 1 an integer. Then Xτ(Pn) ≤
3n+ 1.

4.3 Lower Bounds on Cover Production Complexity

In this section, we are going to construct a regular cover-incompressible sequence of finite
languages that is similar to, yet more general than, the one defined in [EH15aEH15a, EH18EH18].
The need for a more general sequence is motivated by the fact that it allows us to show
that the bound on the regular cover complexity of union is tight w.r.t. a fixed alphabet
(see Section 6.26.2). Note that it is trivial to construct a cover-incompressible sequence of
languages of constant size, e.g., Ln = {a}, for some letter a. It is also trivial to construct a
sequence of cover-incompressible languages in an infinite alphabet, e.g.,

Ln = {a1, a2, . . . , an},

for letters a1, a2, . . . [EH18EH18]. Consequently, in this section, we will construct a regular
cover-incompressible sequence of languages of unbounded size over a finite alphabet.

This new sequence consists of so-called segmented languages, i.e., languages in which all
words are repetitions of a separator symbol followed by a so-called building block. More
formally, based on [EH18EH18, Definition 9], this is defined as follows:

62

4.3. Lower Bounds on Cover Production Complexity

Definition 4.3.1 (Segmented Word/Language). Let Σ be an alphabet not containing
the letter s. Then we write Σs for Σ∪ {s}. A word w ∈ Σ∗s such that

w = (sv)k, for some integer k ≥ 1 and some v ∈ Σ+,

is called a segmented word. The word v and the letter s are called the building block and
the separator symbol, respectively, of w. Occurrences of v in w are called segments. A
segmented word (sv)k with |v| = ` is called a (k,`)-segmented word. A language that solely
consists of (k,`)-segmented words is called a (k,`)-segmented language.

Let Σ be an arbitrary alphabet not containing the letter s. For all integers n ≥ 1, let an ∈ N,
let `,k : N→ N, and let An ⊆ Σ∗ such that

`(n) ≤
⌈
log(an)

⌉
,

k(n) ≥
⌈

9 · an
`(n) + 1

⌉
, and

An ⊆ Σ`(n) with |An| = an.

Then, for each integer n ≥ 1, we write [`(n), k(n),An] for the language

{ (sw)k(n) | w ∈ An }.

Note that, for every integer n ≥ 1, we have |[`(n), k(n),An]| = |An| = an, and all words in
the language [`(n), k(n),An] have the same length k(n) · (`(n) + 1), i.e., [`(n), k(n),An] is
a (k(n), `(n))-segmented language for all integers n ≥ 1. The number of segments has
been chosen such that k(n) · (`(n) + 1) is 9 · an padded up to the next multiple of `(n) + 1.

Remark. The above cover-incompressible sequence was obtained from the one con-
structed in [EH15aEH15a, EH18EH18] by relaxing the constraints on `(n) and k(n) from “=” to “≤”
and “≥”, respectively, and allowing arbitrary words of length `(n) as building blocks for
the segmented languages in the sequence.

The subsequent example demonstrates how one has to choose the parameters in order to
obtain the regular cover-incompressible sequence constructed in [EH15aEH15a, EH18EH18] from
the above more general sequence.

Example 4.3.2. For an integer n ≥ 1 and k ∈ {0,1, . . . ,2n − 1}, we write

bn(k) ∈ {0,1}n

for the n-bit binary representation of k. Let, for all integers n ≥ 1,

an = n,

`(n) =
⌈
log(an)

⌉
,

k(n) =
⌈

9 · an
`(n) + 1

⌉
, and

An = {b`(n)(i) | 0 ≤ i ≤ n− 1 }.

63

4. BOUNDS ON PRODUCTION COMPLEXITY

Note that we have both |An| = an = n and An ⊆ {0,1}`(n). As a consequence,

[`(n), k(n),An] = { (sw)k(n) | w ∈ An } = { (sb`(n)(i))
k(n) | 0 ≤ i ≤ n− 1 },

which is equal to the language Ln constructed in [EH18EH18, Definition 14].

For instance, if an = n = 5, then we have `(5) = 3, k(5) = 12, A5 = {000,001,010,011,100},
and L5 = {(s000)12, (s001)12, (s010)12, (s011)12, (s100)12}.

In the following definition, we introduce a notation for the set of nonterminals that is
involved in a derivation of a specific segment of a given (k,`)-segmented word.

Definition 4.3.3 ([EH18EH18, Definition 10]). Let G = (N,Σ, P ,S) be a regular grammar and
let w ∈ L(G) be a (k,`)-segmented word with building block v, i.e., w = (sv)k. Moreover,
let i ∈ {1,2, . . . , k}, w0 = (sv)i−1, and w1 = (sv)k−i . Then w = w0svw1. Let δ be a derivation
of w in G. Then δ is of the form

S⇒∗G w
′
0A1⇒G w0sv

′A2⇒G · · · ⇒G w0sv
′′An⇒G w0svw

′
1An+1⇒∗G w,

for some A1,A2, . . . ,An+1 ∈N with v′ and v′′ being prefixes of v, w′0 being a prefix of w0,
and w′1 being a prefix of w1. Finally, we write nonterms(w,i,δ) for the set of nonterminals
which is involved in the derivation of the i-th segment of w in δ, i.e.,

nonterms(w,i,δ) = {Aj | 1 ≤ j ≤ n }.

Towards defining the notion of reduced grammar, recall that Gt denotes the grammar
that is induced by omitting all non-trivial productions from a given grammar G.

Definition 4.3.4 (Reduced Regular Grammar, [EH18EH18, Definition 7]). Let L be a finite
language and G be a regular grammar covering L. Then G is called reduced w.r.t. L if,
for every non-trivial production A→ wB or A→ w of G with w ∈ Σ∗, there are distinct
words u,v ∈ L \L(Gt) such that w is a subword of both u and v.

In order to express that a nonterminal is derivable from another one in a context-free
grammar, we introduce the following binary relation on the set of nonterminals.

Definition 4.3.5 ([EH18EH18, Definition 3]). Let G = (N,Σ, P ,S) be a context-free grammar.
The relation <1

G on the set of nonterminals N is defined as follows:

A <1
G B if and only if there is a production A→ α ∈ P such that B occurs in α.

The relation <G is defined as the transitive closure of <1
G.

In an acyclic regular grammar G, the ordering <G is, in general, not linear. For technical
purposes, it will be useful to fix a linearisation of <G and a corresponding linear order of
the productions of G. To this aim, we introduce the notion of ordered grammars [EH18EH18].
Recall that, for a grammar G = (N,Σ, P ,S) and A ∈ N , we write PA for the set of A-
productions, that is, PA = {A→ α | A→ α ∈ P }.

64

4.3. Lower Bounds on Cover Production Complexity

Definition 4.3.6 ([EH18EH18, Definition 11]). An ordered regular grammar is a quadru-
ple G = (N,Σ, P ,A1), where N is a finite sequence (A1,A2, . . . ,An) of nonterminals and P
is a finite sequence (p1,p2, . . . ,pm) of productions such that

1. G′ = ({A1,A2, . . . ,An},Σ, {p1,p2, . . . ,pm},A1) is a regular grammar,

2. if Ai <G′ Aj , then i < j, and

3. the productions p1,p2, . . . ,pm are grouped by their left-hand sides:

p1,p2, . . . ,pm = q1,1,q1,2 . . .q1,k1
,q2,1,q2,2 . . .q2,k2

. . . ,qn,1,qn,2 . . .qn,kn ,

where {qi,1,qi,2 . . . ,qi,ki } = PAi , for all i ∈ {1,2, . . . ,n}.

We say that an ordered regular grammar cover-compresses a finite language L, is reduced
w.r.t. L, etc. if the underlying regular grammar satisfies the respective property [EH18EH18].

Definition 4.3.7 ([EH18EH18, Definition 13]). Let G = (N,Σ, (p1,p2, . . . ,pm),A1) be an or-
dered regular grammar and let s < m. For A ∈N , define

pmin(A) = min{ j | pj ∈ PA } and pmax(A) = max{ j | pj ∈ PA }.

Furthermore, for j ∈ {1,2, . . . ,
⌈
m
s

⌉
− 1}, define

Nj = {A ∈N | (j − 1) · s ≤ pmin(A) and pmax(A) < (j + 1) · s }.

We say that (Nj)
dms e−1
j=1 is the s-covering of G.

Remark. Note that Nj and Nj+1 can overlap, but Nj and Nj+2 cannot. Furthermore, it
holds that

|PNj | ≤ 2s,

for all j ∈ {1,2, . . . ,
⌈
m
s

⌉
− 1} [EH18EH18].

The following results are key ingredients for the proof of the regular cover-incompressibility
result and their proofs can be found in [EH18EH18].

Lemma 4.3.8 ([EH18EH18, Lemma 5]). Let (Ln)n≥1 be a regular cover-compressible sequence
of finite languages such that Ln is (kn, `n)-segmented and (kn)n≥1 is unbounded. Then there
is a sequence of finite languages (L′n)n≥1 such that

1. L′n ⊆ Ln, for all integers n ≥ 1,

2. (L′n)n≥1 is cover-compressible by a reduced acyclic regular grammar without trivial
productions, and

3. (|L′n|)n≥1 is unbounded.

65

4. BOUNDS ON PRODUCTION COMPLEXITY

Lemma 4.3.9 ([EH18EH18, Lemma 6]). Let L be a finite (k,`)-segmented language that is
cover-compressed by a reduced acyclic regular grammar G = (N,Σ, P ,S) without trivial
productions. For each w ∈ L, fix a G-derivation δw of w. Let N0 ⊆N , let P0 = PN0

, and let

S0 = { (w,i) ∈ L× {1,2, . . . , k} | nonterms(w,i,δw) ⊆N0 }.

Then we have |S0| ≤ 2|P0| · |P0|.

Lemma 4.3.10 ([EH18EH18, Lemma 8]). Let L be a finite (k,`)-segmented language, let G =
(N,Σ, P ,S) be an ordered regular grammar without trivial productions that cover-compresses
the language L, and let |G| > s ≥ 4·|L|

k . Moreover, let N1,N2, . . . ,N⌈
|G|
s

⌉
−1 be the s-covering of G,

let w ∈ L, and let δ be a G-derivation of w. Then, for at least half of the i ∈ {1,2, . . . , k}, there
is a j ∈ {1,2, . . . ,

⌈ |G|
s

⌉
− 1} such that nonterms(w,i,δ) ⊆Nj .

The proof of the following Theorem 4.3.114.3.11 can be obtained by a slight modification of
the proof of [EH18EH18, Theorem 1], but, nevertheless, we include the full proof for the sake
of completeness. We can summarise the proof strategy as follows: both Lemmas 4.3.94.3.9
and 4.3.104.3.10 assume a segmented language that is cover-compressed by a reduced grammar
without trivial productions. While Lemma 4.3.94.3.9 states an upper bound on the number
of segments covered by a certain part of a reduced cover-compressing grammar without
trivial rules, Lemma 4.3.104.3.10 shows a lower bound on the number of segments covered by
the productions of a single Nj . The following proof will show that these two bounds are
contradictory and thus derive the cover-incompressibility of ([`(n), k(n),An])n≥1.

Theorem 4.3.11. Any sequence ([`(n), k(n),An])n≥1 is regular cover-incompressible.

PROOF. We fix a sequence ([`(n), k(n),An])n≥1 and abbreviate [`(n), k(n),An] by Ln in the
remainder of the proof. Suppose that (Ln)n≥1 is a regular cover-compressible sequence of
finite languages. Then, by Lemma 4.3.84.3.8, there is a sequence (L′n)n≥1 which satisfies L′n ⊆
Ln, for all integers n ≥ 1, and is regular cover-compressed by a sequence (Gn)n≥1 of
reduced acyclic regular grammars without trivial productions. We consider Gn as an
ordered regular grammar G′n by fixing an arbitrary linear order satisfying Definition 4.3.64.3.6.
Let us fix, for every integer n ≥ 1 and every w ∈ L′n, a derivation δn,w of w w.r.t. G′n.

First, note that, for all integers n ≥ 1, we have

k(n) ≥
⌈

9 · an
`(n) + 1

⌉
≥

⌈
9 · an⌈

log(an)
⌉

+ 1

⌉
=

⌈
9 · |An|⌈

log(|An|)
⌉

+ 1

⌉
≥ 9 · |An|

log(|An|) + 2
,

and since |An| = |Ln| ≥ |L′n|, we have

k(n) ≥ 9 · |L′n|
log(|L′n|) + 2

. (4.4)

Therefore, sn := 4
9 · (log(|L′n|) + 2) ≥ 4·|L′n|

k(n) . Let N1,N2, . . . ,N⌈
|G′n |
sn

⌉
−1

be the sn-covering of G′n

and define

Un := |{ (w,i) ∈ L′n × {1,2, . . . , k(n)} | there exists a j such that nonterms(w,i,δn,w) ⊆Nj }|.

66

4.3. Lower Bounds on Cover Production Complexity

Note that there is some integer n0 such that for all integers n ≥ n0,

|G′n| > sn,

which can be seen as follows: by Lemma 3.3.13.3.1, we have that

|L(G′n)| ≤ 2|G
′
n|−1 ≤ 2|G

′
n|

and thus
|L′n| ≤ |L(G′n)| ≤ 2|G

′
n|.

Consequently,
4 · log(|L′n|) ≤ 4 · |G′n|.

This implies that there is some integer n0 such that for all integers n ≥ n0, we have that

4 · log(|L′n|) + 8 < 9 · |G′n|,

which is equivalent to the existence of some integer n0 such that for all integers n ≥ n0,
we have that

sn =
4
9
· (log(|L′n|) + 2) < |G′n|.

By Lemma 4.3.104.3.10, we have Un ≥
|L′n|·k(n)

2 , which, together with (4.44.4), entails

Un ≥
9 · |L′n|2

2 · (log(|L′n|) + 2)
. (4.5)

On the other hand, applying Lemma 4.3.94.3.9 to all Nj , for j = 1,2, . . . ,
⌈ |G′n|
sn

⌉
−1, and summing

up yields

Un ≤

⌈
|G′n |
sn

⌉
−1∑

j=1

2|PNj | · |PNj | ≤
(⌈
|G′n|
sn

⌉
− 1

)
· 22sn · 2sn,

since |PNj | ≤ 2sn, for all j ∈ {1,2, . . . ,
⌈ |G′n|
sn

⌉
− 1}. We have that

22sn · 2sn ≤ C · |L′n|
8
9 · (log(|L′n|) + 2), for some C ∈ N

and ⌈
|G′n|
sn

⌉
− 1 ≤ |L

′
n|
sn

=
9 · |L′n|

4 · (log(|L′n|) + 2)

and therefore
Un ≤D · |L′n|

17
9 , for some D ∈ N. (4.6)

Putting (4.54.5) and (4.64.6) together, we obtain

9 · |L′n|2

2 · (log(|L′n|) + 2)
≤Un ≤D · |L′n|

17
9 .

67

4. BOUNDS ON PRODUCTION COMPLEXITY

Therefore,
|L′n|2 ≤ E · |L′n|

17
9 · (log(|L′n|) + 2), for some E ∈ N. (4.7)

But, by Lemma 4.3.84.3.8, the function n 7→ |L′n| is unbounded. Hence, there is an M ∈ N such
that for all n ≥M, the inequality (4.74.7) is not satisfied. Contradiction. Therefore, the
sequence (Ln)n≥1 is regular cover-incompressible. This finishes the proof. �

68

CHAPTER 5
Relating Finite and Infinite

Complexity Measures

W
E will consider several different production complexity measures for finite
languages w.r.t. different interpretations of approximation (i.e., equivalence,
cover, and scattered cover), where the underlying grammar either generates
a finite or an infinite language. In the case that the generated language is

infinite, the intersection with all words up to a certain length has to be considered in order
to obtain the finite language under consideration. These measures will then be related
according to a group of relations that are inspired by the taxonomy w.r.t. nonterminal
complexity which was introduced in [DP89DP89]. By the very nature of these relations, one
can distinguish two main categories:

1. the first category fixes a measure type τ and then compares the different grammar
types in ∆ with each other w.r.t. the measure type τ.

2. the second category swaps the roles of measure and grammar type, that is, some
grammar type X ∈ ∆ is fixed and then the different measure types under considera-
tion are compared with each other w.r.t. the grammar type X.

The above mentioned relative succinctness classification w.r.t. nonterminal complexity
measures, which was introduced in the book Regulated Rewriting in Formal Language
Theory by Dassow and Păun [DP89DP89], is based on the following four relations defined on a
set consisting of the classes11 of context-free grammars as well as of the classes of matrix,
programmed, and random context-free grammars:

Let X and Y be two distinct types of grammars, let L be the intersection of the classes of
languages generated by X- and Y-grammars, and let

XN (L) = min{ |N | | G = (N,Σ, P ,S) ∈ X and L(G) = L }.
1Note that here we do not mean class of context-free grammars in the sense of Definition 3.3.33.3.3.

69

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Then we write

• X ≤N Y if and only if there is a constant c such that

|XN (L)−YN (L) | ≤ c,

for all languages L ∈ L;

• X ≤1
N Y if and only if there is a constant c such that

XN (L) ≤ YN (L) + c,

for all languages L ∈ L, and there is a sequence (Li)i≥0 of languages in L such that

YN (Li)−XN (Li) ≥ i;

• X ≤2
N Y if and only if there is a constant c such that

XN (L) ≤ YN (L) + c,

for all languages L ∈ L, and there is a sequence (Li)i≥0 of languages in L such that

lim
i→∞

XN (Li)
YN (Li)

= 0;

• X ≤3
N Y if and only if there is a constant c such that

XN (L) ≤ YN (L) + c,

for all languages L ∈ L, and there is no function f : N→ N such that

YN (L) ≤ f (XN (L)),

for all languages L ∈ L.

Note that the subscript “N ” in XN refers to the fact that XN is a nonterminal complexity
measure.

It was then shown that both matrix and programmed grammars with context-free core
productions (with or without ε-productions) and with or without appearance checking
are more succinct than context-free grammars w.r.t. the relation ≤3

N . Moreover, random
context-free grammars with context-free core productions (with or without ε-productions)
with appearance checking are more succinct than context-free grammars w.r.t. the re-
lation ≤3

N , but if appearance checking is dropped, then they are only more succinct
w.r.t. the relation ≤2

N . Both matrix and programmed grammars with context-free core
productions are more succinct than random context-free grammars with context-free
core productions w.r.t. the relation ≤3

N . Another result is that matrix and programmed
grammars with context-free core productions are equally succinct, that is, the relation ≤N
holds in both directions. Finally, it was shown that random context-free grammars with
context-free core productions and appearance checking are more succinct than the variant
without ε-productions w.r.t. the relation ≤2

N .

Some of the results in this chapter have been published in [HW18bHW18b].

70

5.1. Infinite Complexity Measures

5.1 Infinite Complexity Measures

In this section, we will introduce the infinite versions of the exact, cover, and scattered
cover complexity measures Xc, Xcc, and Xsc, for X ∈ ∆, and prove some upper bounds
on these infinite production complexity measures.

One of the inspirations for the subsequent definitions of the infinite production complexity
measures is the way the accepted language of a finite cover automaton is defined.22 The
fact that finite languages can be represented by both ordinary (deterministic) finite
automata and cover finite automata, gives rise to two different complexity measures for
finite languages: given a finite language L ⊆ Σ≤` with ` = max{ |w| | w ∈ L }, one can define
the DFA- and the DFCA-state complexity of L as

DFAc(L) = min{ |A| | A is a DFA and L = L(A) }

and
DFAc∞(L) = min{ |A| | A is a DFA and L = L(A)∩Σ≤` },

respectively, where |A| denotes the number of states of the automaton A. Obviously, it
holds that

DFAc∞(L) ≤ DFAc(L), (5.1)

for every finite language L. It is worth mentioning that although the definitions of these
measures are pretty similar, their values can possibly differ tremendously when applied
to the same language. For instance, there is a finite language L, namely Σ≤n, over an
arbitrary alphabet Σ, which satisfies, for every integer n ≥ 1, that

DFAc∞(L) = 1 and DFAc(L) = n+ 1,

since
Σ≤n = Σ∗ ∩Σ≤n.

See Figures 5151 and 5252 for finite automata A1 and A2 satisfying

Σ≤n = L(A1)∩Σ≤n and L(A2) = Σ≤n,

respectively. Hence, the gap between these two measures can be arbitrarily large.

We will now adapt the definition of the DFCA-state complexity in order to introduce the
infinite exact complexity for grammars of type X ∈ ∆ and, in addition, introduce the
infinite X cover as well as the infinite X scattered complexity measures for grammars of
type X ∈ ∆.

Definition 5.1.1 (Infinite X-Complexity Measures). Let L ⊆ Σ≤` be a finite language
and X ∈ ∆. Then the infinite X-complexity of L is defined as

Xc∞(L) = min{ |G| | G ∈ X and L = L(G)∩Σ≤` }.
2Recall that a finite cover automaton for a finite language L whose longest word is of length ` is a finite

automaton A satisfying L = L(A)∩Σ≤` (see, e.g., [CSY01CSY01] or Definitions 2.2.42.2.4 and 2.2.52.2.5).

71

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

0

a1, a2, . . . , ak

Figure 51: DFCA A1 for the finite language {a1, a2, . . . , ak}≤n.

0 1 · · · n−1 n
a1, a2, . . . , ak a1, a2, . . . , ak a1, a2, . . . , ak a1, a2, . . . , ak

Figure 52: Minimal DFA A2 accepting the finite language {a1, a2, . . . , ak}≤n.

Similarly, the infinite X cover complexity and the infinite X scattered complexity of L are
defined as

Xcc∞(L) = min{ |G| | G ∈ X and L ⊆ L(G)∩Σ≤` }
and

Xsc∞(L) = min{ |G| | G ∈ X and L ≤ L(G)∩Σ≤` },
respectively.

Remark. Note that in the definitions of Xc∞, Xcc∞, and Xsc∞, the grammar G is allowed
to generate an infinite language. Therefore, they are called infinite complexity measures.

For X ∈ ∆ and G ∈ X, we say that G is a minimal X-grammar infinitely generating
a finite language L if L = L(G) ∩ Σ≤` and |G| = Xc∞(L). The notions of minimal X-
grammar infinitely covering or infinite scatteredly covering a finite language are defined
analogously.

It is worth mentioning that, for X ∈ ∆, the relation between the measures Xc and Xc∞ is
analogous to that between DFAc and DFAc∞ in the sense that, similarly to Equation 5.15.1,
it holds that

Xc∞(L) ≤ Xc(L), (5.2)

for all finite languages L. This can be shown as follows: for some ` ≥ 0, let L ⊆ Σ≤`

and assume that the X-grammar G is a witness for Xc(L), i.e., G generates the finite
language L and Xc(L) = |G|. But then we also have that

L = L∩Σ≤` = L(G)∩Σ≤`,

which implies Xc∞(L) ≤ Xc(L).

Moreover, the gap between Xc and Xc∞ can also be arbitrarily large, which can be seen
as follows: for X = CF, consider the languages

R2n = {akbam | 0 ≤ k +m ≤ 2n − 1 } and R = {akbam | k,m ≥ 0 }.

72

5.1. Infinite Complexity Measures

In the proof of [BMCIW81BMCIW81, Theorem 1], it was shown that

CFc(R2n) ≥ n+ 1.

Moreover, the infinite language R can be generated with the following context-free
grammar

GR = ({S}, {a,b}, {S→ aS,S→ bA,A→ aA,A→ ε},S).

Thus,
R2n = L(GR)∩ {a,b}≤2n ,

and so
CFc∞(R2n) ≤ 4.

For X ∈ ∆ \ {CF} and any integer n ≥ 1, consider the language

Kn = {a,b}≤n.

Also, in the proof of [BMCIW81BMCIW81, Theorem 1], it was shown that

Xc(Kn) ≥ n+ 1.

Moreover, the language Kn can be generated infinitely with the following strict regular
grammar

G = ({S}, {a,b}, {S→ aS,S→ bS,S→ ε},S),

since
Kn = {a,b}∗ ∩ {a,b}≤n.

As a consequence,
Xc∞(Kn) ≤ 3.

Hence, for each X ∈ ∆ and each n ≥ 1, there is a finite language Ln such that we have that

Xc(Ln) ≥ n+ 1 and Xc∞(Ln) ≤ 4, (5.3)

that is, there can be an arbitrarily large gap between Xc and Xc∞.

Next, we introduce the setsMfin andM∞ of finite and infinite measure types, respectively,
i.e.,

Mfin = {c,cc,sc} and M∞ = {c∞,cc∞,sc∞}.

Moreover, we writeM for the set of (all) measure types, that is,

M =Mfin ∪M∞.

Let τ ∈M and X,Y ∈ ∆. Then we define

X ≤τ Y if and only if Xτ(L) ≤ Yτ(L), for all finite languages L.

73

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

In the case that X ≤τ Y, we say that X is more succinct than Y w.r.t. the measure type τ. By
definition, the following relations hold for each τ ∈M:

CF ≤τ LIN ≤τ REG ≤τ SREG and CF ≤τ LIN ≤τ SLIN ≤τ SREG. (5.4)

Before we delve into comparing different complexity measures with each other, let us
first prove the following basic lemma which states some upper bounds on the newly
introduced infinite complexity measures. These results will be used frequently throughout
this chapter.

Lemma 5.1.2. Let L ⊆ Σ≤` be a finite language over Σ = {a1, a2, . . . , an} and X ∈ ∆. Then

1. Xc∞(Σ≤`) ≤ |Σ|+ 1,

2. Xcc∞(L) ≤ |Σ|+ 1, and

3. Xsc∞(L) ≤ |Σ|+ 1.

PROOF. We first show claim 11. Consider the strict regular grammar G = ({S},Σ, P ,S) with
the following set of productions P :

S→ a1S | a2S | . . . | anS | ε.

It is easy to see that G generates the universal language Σ∗, i.e., L(G) = Σ∗. Since we have

Σ∗ ∩Σ≤` = Σ≤`,

it follows that G infinitely generates Σ≤` with |Σ|+ 1 productions, i.e.,

SREGc∞(Σ≤`) ≤ |G| = |Σ|+ 1.

From Equation 5.45.4, it follows that

Yc∞(Σ≤`) ≤ |Σ|+ 1.

also holds for the remaining grammar types Y ∈ ∆ \ {SREG}. This finishes the proof of
claim 11.

Claims 22. and 33. immediately follow from 11., since, for every finite language L ⊆ Σ≤`, we
have that

Σ≤` = Σ∗ ∩Σ≤` � L,

for � ∈ {⊇,≥}. �

Remark. Let X ∈ ∆. Then, by Lemma 5.1.25.1.2, the finite complexity measure Xsc as well as
the infinite complexity measures Xcc∞ and Xsc∞ are bounded complexity measures in
the sense of Chapter 33. Nevertheless, for the sake of completeness, we will also include
these bounded measures in our relative succinctness classification.

74

5.2. Relating Grammar Types

5.2 Relating Grammar Types

This section is devoted to relating the grammar types in ∆ w.r.t. a fixed measure type
fromM based on four different relations that vary in strength. In this way, we can classify
the difference between different grammar types w.r.t. to a fixed complexity measure
type. As already mentioned in the previous section, these relations are similar to those
introduced in [DP89DP89] for nonterminal complexity measures. The main difference—apart
from replacing the number of nonterminals by the number of productions—is that we
consider measures for finite languages only. As a byproduct of this classification, we also
show that any regular grammar that infinitely generates the language

Pn = {w$wR | w ∈ {a,b}≤n }

requires Ω(2n) many productions.

We start by formally defining the above mentioned relations on grammar types in ∆.

Definition 5.2.1. Let X,Y ∈ ∆ and τ ∈M. Then we write

• X ≤τ Y if and only if
Xτ(L) ≤ Yτ(L),

for all finite languages L;

• X ≤1
τ Y if and only if there is a constant c such that

Xτ(L) ≤ Yτ(L) + c,

for all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that

Yτ(Li)−Xτ(Li) ≥ i;

• X ≤2
τ Y if and only if there is a constant c such that

Xτ(L) ≤ Yτ(L) + c,

for all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that

lim
i→∞

Xτ(Li)
Yτ(Li)

= 0;

• X ≤3
τ Y if and only if there is a constant c such that

Xτ(L) ≤ Yτ(L) + c,

for all finite languages L, and there is no function f : N→ N such that

Yτ(L) ≤ f (Xτ(L)),

for all finite languages L.

75

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

We write X =τ Y if both X ≤τ Y and Y ≤τ X hold. Moreover, for ease of presentation, we
sometimes denote the relation ≤τ by ≤0

τ . Let i ∈ {0,1,2,3} and τ ∈M, then the relation ≤iτ
is said to be of order i.

Let Π1,Π2 ⊆ ∆, N ⊆M, and i ∈ {0,1,2,3}. Then we write

Π1 ≤iN Π2

if, for all X ∈Π1, all Y ∈Π2, and all τ ∈ N , it holds that X ≤iτ Y. Similarly, we write

Π1 �iN Π2

if, for all X ∈Π1, all Y ∈Π2, and all τ ∈ N , it holds that X�iτ Y. In the case that Π1, Π2,
or N is a singleton, we omit braces, e.g., we write X ≤iτ Y instead of {X} ≤i{τ} {Y}.

Remark. Note that, for i ∈ {0,1,2,3},

Π1 �iN Π2

being satisfied does not coincide with the fact that

Π1 ≤iN Π2

does not hold. The latter does not hold as soon as we have that

X�iτ Y

for at least one X ∈Π1, at least one Y ∈Π2, or at least one τ ∈ N . On the other hand,

Π1 �iN Π2

is only satisfied if
X�iτ Y

holds for all X ∈Π1, all Y ∈Π2, and all τ ∈ N .

The following result from [BMCIW81BMCIW81] will be used frequently throughout this chapter.

Lemma 5.2.2 ([BMCIW81BMCIW81, Corollary 2.1]). Let G be a linear grammar with n ≥ 1
productions generating a finite language. Then n ≥ log(|L(G)|) + 1.

In order to demonstrate that—for distinct grammar types—the production complexity of
the same finite language w.r.t. the same measure type can vary quite immensely, consider,
for instance, the language

Ln = {a,b }≤n,

where n ≥ 1 is an integer. On the one hand, Theorem 4.1.54.1.5 shows that

CFc(Ln) ≤ 4, for each n ≥ 1,

76

5.2. Relating Grammar Types

but, on the other hand, from Lemma 5.2.25.2.2, it follows that

LINc(Ln) ≥ log(2n+1 − 1) + 1 ≥ n+ 1.

In conjunction with Equation 5.45.4, this clearly implies that we have a gap of highest order
(in the sense of Definition 5.2.15.2.1) between context-free and linear grammars w.r.t. the
exact complexity, i.e.,

CF ≤3
c LIN

holds.

If one takes a closer look at the definitions of the relations ≤τ and ≤N , one observes that
the definition of the former is a bit more restrictive than the latter, as we have dropped
the constant c. The reason for this is that the definition without the constant is compatible
with the notion of a grammar type being more succinct than another grammar type w.r.t.
a measure type (see Equation 5.45.4).

Remark. Clearly, X ≤3
τ Y implies X ≤2

τ Y, which, in turn, implies X ≤1
τ Y. Moreover,

the inequality X ≤3
τ Y holds if the first condition of its definition is satisfied and there

is a sequence of finite languages (Li)i≥0 such that Xτ(Li) ≤ k, for some constant k,
and Yτ(Li) ≥ i.

Let X,Y ∈ ∆ and τ ∈M. Then we say that X and Y are incomparable w.r.t. the relation ≤iτ ,
for i ∈ {0,1,2,3}, if we have both X�iτ Y and Y�iτ X. Moreover, we say that X and Y are
incomparable w.r.t. the complexity measure τ if we have both X �iτ Y and Y �iτ X, for
each i ∈ {0,1,2,3}.

Figure 5353 depicts which kinds of relations between the grammar types in ∆ hold w.r.t.
the measure types inM. Let X,Y ∈ ∆ and ic, icc, isc, ic∞ , icc∞ , isc∞ , jc, jcc, jsc, jc∞ , jcc∞ , jsc∞ ∈
{0,1,2,3}. Then a directed edge with label (ic/jc, icc/jcc, isc/jsc, ic∞/jc∞ , icc∞/jcc∞ , isc∞/jsc∞)
from X to Y, i.e.,

X
(ic/jc,icc/jcc,isc/jsc,ic∞ /jc∞ ,icc∞ /jcc∞ ,isc∞ /jsc∞)
−−→ Y

expresses that all of the relations

X ≤icc Y, X ≤icc
cc Y, X ≤isc

sc Y, X ≤ic∞c∞ Y, X ≤icc∞
cc∞ Y, X ≤isc∞

sc∞ Y

and
X�i

′
c

c Y, X�i
′
cc

cc Y, X�i
′
sc

sc Y, X�
i′c∞
c∞ Y, X�

i′cc∞
cc∞ Y, X�

i′sc∞
sc∞ Y

as well as

Y ≤jcc X, Y ≤jcc
cc X, Y ≤jsc

sc X, Y ≤jc∞c∞ X, Y ≤jcc∞
cc∞ X, and Y ≤jsc∞

sc∞ X

and
Y�j

′
c

c X, Y�j
′
cc

cc X, Y�j
′
sc

sc X, Y�
j ′c∞
c∞ X, Y�

j ′cc∞
cc∞ X, and Y�

j ′sc∞
sc∞ X,

for all i′τ ∈ {iτ + 1, iτ + 2, . . . ,3} and all j ′τ ∈ {jτ + 1, jτ + 2, . . . ,3} with τ ∈M, hold. Let τ ∈M.
Then the entry “−” at the position of iτ (or jτ) just expresses that the relation X ≤iτ Y

77

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

CF

LIN REG SLIN SREG

(3
/−
,3
/−
,0
/0
,3
/−
,0
/?
,0
/?

)

(3
/−
,3
/−
,0
/0
,0
/?
,0
/?
,0
/?

)

(3/−
,3/−

,3/−
,3/−

,3/−
,3/−

)

(3/−,3/−,3/−,3/−,3/−,3/−)

(2/−,0/?,0/0,3/−,0/?,0/?)

(3/−,3/−,3/−,3/−,3/−,3/−)

(3/−,3/−,3/−,3/−,3/−,3/−)

(3/−,3/−,3/−,3/−,3/−,3/−)

(−/−,?/−,3/−,−/−,?/−,?/−) (2/−,1/−,1/−,3/−,1/−,1/−)

Figure 53: Relations between the grammar types w.r.t. a fixed measure type.

78

5.2. Relating Grammar Types

(or Y ≤iτ X, respectively) does not hold for any i ∈ {0,1,2,3}, i.e., X �iτ Y (or Y �iτ X,
respectively), for all i ∈ {0,1,2,3}. Moreover, the entry “?” expresses that we do not
know whether or not any relation between the involved grammar types holds. If any
number iτ ∈ {0,1,2,3} (or jτ ∈ {0,1,2,3}), for τ ∈M is underlined, then this means that
the relation X ≤iττ Y (or Y ≤jττ X, respectively), holds, but we do not know whether or not
any of the stronger relations X ≤i

′
τ
τ Y (or Y ≤j

′
τ
τ X, respectively), for i′τ ∈ {iτ + 1, iτ + 2, . . . ,3}

and j ′τ ∈ {jτ + 1, jτ + 2, . . . ,3} holds. For instance,

LIN
(2/−,0/?,0/0,3/−,0/?,0/?)
−−−−−−−−−−−−−−−−−−−−→ REG

expresses that we have that LIN ≤ic REG and LIN�3
c REG as well as LIN ≤jc∞ REG, for all i ∈

{0,1,2} and all j ∈ {0,1,2,3}. Moreover, it also expresses that we have LIN ≤0
{cc,sc,cc∞,sc∞}

REG, but LIN�isc REG, for all i ∈ {1,2,3}. It also expresses that we do not know whether
or not LIN�iσ REG, for σ ∈ {cc,cc∞,sc∞} and i ∈ {1,2,3} holds. In the other direction, it
expresses that it holds that REG �i{c,c∞} LIN, for all i ∈ {0,1,2,3}, as well as REG ≤0

sc LIN

and REG �jsc LIN, for all j ∈ {1,2,3}. Furthermore, it expresses that we do not know
whether or not REG ≤iτ LIN holds for τ ∈ {cc,cc∞,sc∞} and i ∈ {0,1,2,3}.

Now, we are going to relate the different grammar types in ∆ w.r.t. the finite complexity
measure types under investigation. As already mentioned earlier, the relations

CF ≤M LIN ≤M REG ≤M SREG and CF ≤M LIN ≤M SLIN ≤M SREG (5.5)

hold by definition.

The following result was already shown in [BMCIW81BMCIW81]:

Theorem 5.2.3 ([BMCIW81BMCIW81, Theorem 1]). It holds that

CF ≤2
c LIN ≤2

c REG ≤2
c SREG and CF ≤2

c LIN ≤2
c SLIN.

At this point, one may wonder whether it also holds that SLIN ≤2
c SREG? With the help of

the language
Pn = {w$wR | w ∈ {a,b}≤n },

the answer to this question is revealed in the subsequent lemma.

Theorem 5.2.4. It holds that SLIN ≤2
c SREG.

PROOF. It is obvious that SLINc(L) ≤ SREGc(L), for all finite languages L, since every
strict regular grammar is also strict linear. Now, consider the sequence (Pn)n≥0. Then, by
Corollary 4.2.104.2.10 and Lemma 4.2.114.2.11, we have

SREGc(Pn) ≥ 2n and SLINc(Pn) ≤ 3n+ 1,

respectively. As a consequence,

lim
n→∞

SLINc(Pn)
SREGc(Pn)

= 0.

�

79

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Next, we show whether or not, and if so, how the grammar types in ∆ relate to each other
w.r.t. to the finite exact and cover complexity. The attentive reader may have noticed
that Equation 5.55.5 does not contain any information about the relation between strict
linear and regular grammars. In the following theorem, we investigate this relation
and, moreover, prove all results of Figure 5353 pertaining to the finite exact and cover
complexity.

Theorem 5.2.5. For each i ∈ {0,1,2,3} and each j ∈ {0,1}, it holds that

1. {SREG,REG}�ic {SLIN,LIN},

2. CF ≤i{c,cc} ∆ \ {CF}, but ∆ \ {CF}�i{c,cc} CF,

3. LIN�3
{c,cc} REG and REG�3

{c,cc} LIN,

4. SLIN ≤jcc SREG, but SREG�icc SLIN,

5. Γs �i{c,cc} Γ ,

6. LIN ≤i{c,cc} Γs and REG ≤i{c,cc} SREG.

PROOF. For showing claim 11., let X ∈ {SREG,REG} and n ≥ 5 an integer. Then, from
Corollary 4.2.104.2.10 and Lemma 4.2.114.2.11, we know that

Xc(Pn) ≥ 2n, LINc(Pn) ≤ 3n+ 1, and SLINc(Pn) ≤ 3n+ 1,

respectively. Thus, since, for n ≥ 5,

Xc(Pn)− LINc(Pn) ≥ 2n − 3n− 1 ≥ n and Xc(Pn)−SLINc(Pn) ≥ 2n − 3n− 1 ≥ n,

we have that {SREG,REG}�c {SLIN,LIN} and, moreover, that the first conditions of the re-
lations {SREG,REG} ≤ic {SLIN,LIN} are not satisfied for any i ∈ {1,2,3}, i.e., {SREG,REG}�ic
{SLIN,LIN}, for all i ∈ {1,2,3}. Therefore, it holds that

{SREG,REG}�ic {SLIN,LIN},

for each i ∈ {0,1,2,3}.

In order to prove claim 22., consider, for each integer n ≥ 4, the language

Ln = {a,b}≤n.

From Lemmas 4.1.54.1.5 and 5.2.25.2.2, it follows that

CFc(Ln) ≤ 4 and LINc(Ln) ≥ log(2n+1 − 1) + 1 ≥ n+ 1.

Moreover, Lemma 5.2.25.2.2 also implies that

LINcc(Ln) ≥ n+ 1.

80

5.2. Relating Grammar Types

Furthermore, it holds that
CFcc(Ln) ≤ CFc(Ln) ≤ 4,

since every grammar generating Ln is also a grammar covering Ln. Note that, by Equa-
tion 5.45.4, we have that

CF ≤{c,cc} LIN ≤{c,cc} REG ≤{c,cc} SREG and CF ≤{c,cc} LIN ≤{c,cc} SLIN ≤{c,cc} SREG.

Therefore, for each τ ∈ {c,cc}, we have that

SREGτ(Ln) ≥ REGτ(Ln) ≥ LINτ(Ln) ≥ n+ 1 and SLINτ(Ln) ≥ LINτ(Ln) ≥ n+ 1.

Thus, we immediately get
CF ≤i{c,cc} ∆ \ {CF},

for each i ∈ {0,1,2,3}. Furthermore, from the fact that

Xτ(Ln)−CFτ(Ln) ≥ n− 3,

for X ∈ ∆ \ {CF}, it follows that ∆ \ {CF}�{c,cc} CF and, moreover, that the first condition of
the relation ∆ \ {CF} ≤i{c,cc} CF is not satisfied for any i ∈ {1,2,3}, i.e., ∆ \ {CF} �i{c,cc} CF,
for all i ∈ {1,2,3}. Therefore, it holds that

∆ \ {CF}�i{c,cc} CF,

for each i ∈ {0,1,2,3}.

Next, we show claim 33. To this end, let L be an arbitrary finite language and G be a
minimal linear grammar generating L, i.e., L(G) = L and |G| = LINc(L). Clearly,

REGc(L) ≤ |L| = |L(G)|.

From Lemma 3.3.13.3.1, it follows that |L(G)| ≤ 2LINc(L)−1. Thus,

REGc(L) ≤ |L(G)| ≤ 2LINc(L)−1.

The function f : N→ N with x 7→ 2x−1 is a witness for

REGc(L′) ≤ f (LINc(L′)),

for all finite languages L′, i.e., LIN�3
c REG. Since we have LINc(L′) ≤ REGc(L′), setting f =

idN yields REG �3
c LIN. The result for the cover complexity can be shown similarly by

observing that any minimal linear grammar G′ with L(G′) ⊇ L and |G′ | = LINcc(L) is a
linear grammar generating the finite language L(G′). Thus,

REGcc(L) ≤ |L| ≤ |L(G′)|.

Again, by Lemma 3.3.13.3.1, we have |L(G′)| ≤ 2LINcc(L)−1, and therefore,

REGcc(L) ≤ |L(G′)| ≤ 2LINcc(L)−1.

81

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

The claim then follows by proceeding as for the exact complexity.

We prove claims 44.–66. simultaneously. Let τ ∈ {c,cc} and, for each integer n ≥ 1, consider
the language

Ln = {a2n+1}.

On the one hand, for X ∈ Γ , we clearly have that

Xτ(Ln) = 1, (5.6)

but, on the other hand, by Lemma 4.1.124.1.12 and Corollary 4.1.134.1.13, we have that

SREGτ(Ln) ≥ 2n+ 1 and SLINτ(Ln) ≥ n+ 1. (5.7)

Moreover,
SLINcc(Ln) ≤ n+ 1,

as shown by the strict linear grammar G with the following set of productions

S→ aA2a

Ai → aAi+1a for 2 ≤ i ≤ n
An+1→ a.

Therefore, since
SREGτ(Ln)−SLINτ(Ln) ≥ 2n+ 1−n− 1 = n, (5.8)

we obtain that SREG �cc SLIN and, moreover, that the first condition of the rela-
tion SREG ≤icc SLIN is not satisfied, for any i ∈ {1,2,3}, i.e., SREG �icc SLIN, for all i ∈
{1,2,3}. As a consequence, it holds that

SREG�icc SLIN,

for each i ∈ {0,1,2,3}. From Equations 5.45.4 and 5.85.8, it also follows that

SLIN ≤jcc SREG,

for each j ∈ {0,1}.

Furthermore, since, for X ∈ Γ , we have that

SREGτ(Ln)−Xτ(Ln) ≥ 2n+ 1− 1 = 2n and SLINτ(Ln)−Xτ(Ln) ≥ n+ 1− 1 = n,

we obtain that Γs �{c,cc} Γ and, moreover, that the first condition of the relation Γs ≤i{c,cc} Γ

is not satisfied for any i ∈ {1,2,3}, i.e., Γs �i{c,cc} Γ , for all i ∈ {1,2,3}. As a consequence, it
holds that

Γs �i{c,cc} Γ ,

for each i ∈ {0,1,2,3}.

82

5.2. Relating Grammar Types

From Equations 5.45.4, 5.65.6, and 5.75.7, it follows that

REG ≤{c,cc} SREG and LIN ≤{c,cc} Γs

as well as that the first conditions of REG ≤i{c,cc} SREG and those of LIN ≤i{c,cc} Γs are
satisfied for each i ∈ {1,2,3}. Thus, we get that

REG ≤i{c,cc} SREG and LIN ≤i{c,cc} Γs,

for each i ∈ {0,1,2,3}.

This finishes the proof of the stated claims. �

For the scattered complexity, we have the following situation:

Theorem 5.2.6. Let X,Y ∈ Γ . Then

1. REG =sc LIN =sc CF, but X�isc Y, for each i ∈ {1,2,3} and X , Y,

2. Γ ≤isc Γs, but Γs �isc Γ , for each i ∈ {0,1,2,3}, and

3. SLIN ≤isc SREG, for each i ∈ {0,1}, but SREG�jsc SLIN, for each j ∈ {0,1,2,3}.

PROOF. In order to prove claim 11., observe that by Theorem 4.1.64.1.6, we have that

REGsc(L) = LINsc(L) = CFsc(L) =
{

1 if L , ∅,
0 if L = ∅,

i.e., X =sc Y, for all X,Y ∈ Γ with X , Y. An immediate consequence of this is that none
of the stronger relations X ≤isc Y, for i ∈ {1,2,3}, holds for any two distinct grammar
types X,Y ∈ Γ .

We prove claims 22. and 33. simultaneously. For any integer n ≥ 0, let

Ln = {a2n+1}.

Then, by Theorem 4.1.64.1.6, we clearly have that

REGsc(Ln) = LINsc(Ln) = CFsc(Ln) = 1. (5.9)

On the other hand, by Corollary 4.1.144.1.14, we have that

SREGsc(Ln) ≥ 2n+ 1 and SLINsc(Ln) ≥ n+ 1. (5.10)

From Equations 5.95.9 and 5.105.10, we clearly get that Γ ≤sc Γs as well as that the first condition
of Γ ≤isc Γs is satisfied for each i ∈ {1,2,3}. Thus, it follows that

Γ ≤isc Γs,

83

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

holds for all i ∈ {0,1,2,3}.

The strict linear grammar defined in the proof of Theorem 5.2.55.2.5 (44) shows that SLINsc(Ln) ≤
n+ 1. This implies that

SREGsc(Ln)−SLINsc(Ln) ≥ 2n+ 1−n− 1 = n.

Therefore, it follows that SREG�sc SLIN and, moreover, that the first condition of SREG ≤isc
SLIN, is not satisfied for any i ∈ {1,2,3}, i.e., SREG �isc SLIN, for each i ∈ {1,2,3}. As a
consequence, it holds that

SREG�isc SLIN,

for all i ∈ {0,1,2,3}. Furthermore, since every strict regular grammar is also strict linear,
we have that SLINsc(L) ≤ SREGsc(L), for every finite language L, i.e., SLIN ≤sc SREG
holds, and, moreover, that the first condition of SLIN ≤1

sc SREG is also satisfied. Putting
things together, we obtain that

SLIN ≤isc SREG,

for each i ∈ {0,1}.

From Equations 5.95.9 and 5.105.10, for X ∈ Γ , we get that

SREGsc(Ln)−Xsc(Ln) ≥ 2n+ 1− 1 = 2n and SLINsc(Ln)−Xsc(Ln) ≥ n+ 1− 1 = n.

As a consequence, we have that Γs �sc Γ , and, moreover, that the first the first condition
of Γs ≤isc Γ is not satisfied for any i ∈ {1,2,3}, i.e., Γs �isc Γ , for each i ∈ {1,2,3}. Therefore,

Γs �isc Γ ,

for all i ∈ {0,1,2,3}.

This finishes the proof of the claims. �

It remains to relate the different grammar types in ∆ w.r.t. the infinite complexity measure
types c∞, cc∞, and sc∞. As a prerequisite, we will show that every regular grammar that
infinitely generates the language

Pn = {w$wR | w ∈ {a,b}≤n }

needs at least a number of productions that is exponential in n. A first step towards
this goal is to prove that any regular grammar G with ε < L(G) can be transformed into
an equivalent ε-free strict regular grammar whose number of productions is at most
the number of productions of the given grammar times a factor of 2 · `, where ` is the
length of a longest production right-hand side in the given grammar. This is achieved by
combining the following two Lemmas 5.2.75.2.7 and 5.2.85.2.8.

Lemma 5.2.7. Let G = (N,Σ, P ,S) be a regular grammar generating a language L ⊆ Σ∗

with ` = max{ |α| | A → α ∈ P }. Then there is a strict regular grammar G′ such that
L(G′) = L(G) and |G′ | ≤ |G| · `.

84

5.2. Relating Grammar Types

PROOF. In order to construct the strict regular grammar G′ from G, we replace each G-
production of the form

pi : A→ a1a2 . . . ami
α

with i ∈ {1,2, . . . , |G|},mi ≤ `−1, A ∈N , a1, a2, . . . , ami
∈ Σ, and α ∈ Σ∪N by the productions

A→ a1A1

A1→ a2A2

... if α ∈N
Ami−1→ ami

α

or

A→ a1A1

A1→ a2A2

... if α ∈ Σ
Ami−1→ ami

Ami

Ami
→ α,

where the Aj , for j ∈ {1,2, . . . ,mi}, are fresh nonterminals not occurring in N . Since mi ≤
` − 1, for all i ∈ {1,2, . . . , |G|}, we clearly have that |G′ | ≤ |G| · `. Moreover, it is easy to see
that L(G′) = L(G). �

Lemma 5.2.8. Let G = (N,Σ, P ,S) be a regular grammar generating a language L ⊆
Σ∗ with ε < L. Then there is an equivalent ε-free regular grammar G′ = (N ′ ,Σ, P ′ ,S)
satisfying |G′ | ≤ 2 · |G|.

PROOF. If G does not contain ε-productions, then set G′ = G and we are done. So, assume
that there is some production A→ ε ∈ P . For each production of the form

B→ wA,

that is, in which A occurs on the right-hand side, we add the production

B→ w

to P . Next, we omit the production A→ ε from G. This procedure is repeated until G
contains no ε-productions anymore. We clearly end up with a regular grammar G′

without ε-productions that satisfies both L(G′) = L(G) and |G′ | ≤ 2 · |G|. �

Another prerequisite for the lower bound result on the infinite regular complexity of the
language Pn is a technique which we call the triple construction (for regular grammars).
The subsequent proof is a modified version of the one of [Woo87Woo87, Theorem 9.1.3] for
arbitrary context-free grammars. Given a regular grammar that generates a language

85

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

not containing the empty word, this version of the triple construction produces the
intersection of the language generated by the given grammar and the set of all words of
length at most n over the alphabet of the language generated by the given grammar. To
this end, we are going to construct a regular grammar that generates the above mentioned
intersection from the given regular grammar and an NFA that accepts the set of all words
of length at most n over the alphabet of the language generated by the given grammar.
The name triple construction stems from the fact that the nonterminals in the newly
constructed grammar are of the form [i,A, j], where A is a nonterminal occurring in the
given grammar and both i and j are states occurring in the NFA.

Theorem 5.2.9. Let X ∈ {SREG,REG}, n ≥ 1 be an integer, G = (N,Σ, P ,S) be an X-grammar
generating a language L ⊆ Σ∗ with ε < L, and ` = max{ |α| | A→ α ∈ P }. Then there is a
strict regular grammar G′ such that L(G′) = L∩Σ≤n and |G′ | ≤ |G| · 2 · ` · (n+ 1)3.

PROOF. First, since ε < L, we transform G into an equivalent ε-free strict regular gram-
mar G′ = (N ′ ,Σ, P ′ ,S ′). By Lemmas 5.2.75.2.7 and 5.2.85.2.8, this transformation might increase
the number of productions in G by at most a factor of 2 · `, i.e.,

|G′ | ≤ |G| · 2 · `.

Since G′ is strict regular and ε-free, all productions in P ′ are of the form

A→ a,

A→ aB,or

A→ B,

for a ∈ Σ and A,B ∈N ′.

Now, assume, without loss of generality, that Σ = {a1, a2, . . . , an} and consider the fi-
nite language Σ≤n. Clearly, the NFA A = (Q,Σ,δ,q0,F) depicted in Figure 5454 with Q =
{0,1, . . . ,n}, q0 = 0, F = {0,n}, δ(i,ε) = {i}, and δ(i,a) = {i + 1,n}, for 0 ≤ i < n and a ∈ Σ,
accepts the language Σ≤n, i.e.,

L(A) = Σ≤n.

We are now going to construct a strict regular grammar G′′ from G′ and A such that

L(G′′) = L(G′)∩L(A) = L∩Σ≤n.

To this end, let G′′ = (N ′′ ,Σ, P ′′ ,S ′′), where S ′′ <N ′ is a new nonterminal,

N ′′ = { [p,A,q] | p,q ∈Q and A ∈N ′ },

and

P ′′ = { [p,A,q]→ a | q ∈ δ(p,a), A→ a ∈ P ′, and a ∈ Σ }
∪ { [p,A,q]→ a[r,B,q] | r ∈ δ(p,a), q ∈Q, A→ aB ∈ P ′, and a ∈ Σ }
∪ { [p,A,q]→ [p,B,q] | p,q ∈Q and A→ B ∈ P ′ }
∪ {S ′′→ [0,S ′ ,0], S ′′→ [0,S ′ ,n] }.

86

5.2. Relating Grammar Types

0 1 · · · n−1 n
a1, a2, . . . , an

a1, a2, . . . , an

a1, a2, . . . , an a1, a2, . . . , an a1, a2, . . . , an

a1, a2, . . . , an

Figure 54: NFA A for the finite language Σ≤n.

Since A consists of n+ 1 states, i.e., |Q| = n+ 1, and the productions of the form

[p,A,q]→ a[r,B,q]

make up the greatest portion of P ′′, it follows that

|G′′ | ≤ |G′ | · (n+ 1)3 ≤ |G| · 2 · ` · (n+ 1)3.

The intention behind this so-called triple construction is that a nonterminal [p,A,q]
generates the words that are derivable from A in G′ which also cause the automaton A to
move from state p to state q. Thus, [0,S ′ , f], for f ∈ {0,n}, generates words in L(G′)∩L(A).
This can be proved formally by means of the following claim.

Claim. Let w ∈ Σ∗. Then, for all A ∈N ′ and all p,q ∈Q, we have that

[p,A,q]⇒∗G′′ w if and only if A⇒∗G′ w and pw A
∗
q.

Note that it is straightforward to prove, for all A,B ∈N ′ and all p,q ∈Q, that

[p,A,q]⇒∗G′′ [p,B,q] iff A⇒∗G′ B and p ∈ δ(p,ε). (5.11)

by induction on the length of the derivation.

In order to prove the claim, we proceed by induction on |w|, i.e., the length of w.
Since ε < L(G′) and both G′ and G′′ are ε-free, we can assume that |w| ≥ 1.

• Base case: Assume |w| = 1. By definition and since G′′ is ε-free, we have that

[p,A,q]⇒∗G′′ w iff [p,A,q]⇒G′′ w or [p,A,q]⇒∗G′′ [p,B,q]⇒G′′ w.

Thus, we distinguish the following two cases:

87

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

In the first case, we have that

[p,A,q]⇒∗G′′ w iff [p,A,q]⇒G′′ w

iff [p,A,q]→ w ∈ P ′′

iff A→ w ∈ P ′ and q ∈ δ(p,w)

iff A⇒G′ w and pw A q.

This concludes the first case.

In the second case, we have that

[p,A,q]⇒∗G′′ w iff [p,A,q]⇒∗G′′ [p,B,q]⇒G′′ w

iff A⇒∗G′ B, p ∈ δ(p,ε), and [p,B,q]→ w ∈ P ′′

iff A⇒∗G′ B, p ∈ δ(p,ε), , B→ w ∈ P ′, and q ∈ δ(p,w)

iff A⇒∗G′ w and pw A
∗
q.

This finishes the proof of the base case.

• Induction step: We prove both directions separately.

For the left-to-right direction, let w ∈ Σ∗ be a word with |w| ≥ 2, i.e.,

w = aw′ ,

for some a ∈ Σ and w′ ∈ Σ+. Assume that

[p,A,q]⇒∗G′′ w.

Consequently, we have to distinguish two cases:

In the first case, we have the derivation

[p,A,q]⇒G′′ a[r,B,q]⇒∗G′′ aw
′ ,

where r ∈ δ(p,a) and A→ aB ∈ P ′. Therefore, we have that

[r,B,q]⇒∗G′′ w
′ .

Thus, by induction hypothesis, we have that

B⇒∗G′ w
′ and rw′ A

∗
q.

Putting things together, we obtain that

A⇒∗G′ w and pw A
∗
q.

This concludes the first case.

88

5.2. Relating Grammar Types

In the second case, we have the derivation

[p,A,q]⇒G′′ [p,B,q]⇒∗G′′ aw
′ ,

where A→ B ∈ P ′. In particular, we must have that

[p,A,q]⇒G′′ [p,B,q]⇒∗G′′ [p,C,q]⇒G′′ a[r,D,q]⇒∗G′′ aw
′ ,

where r ∈ δ(p,a) and C→ aD ∈ P ′. Therefore, by Equation 5.115.11, it follows that

A⇒G′ B⇒∗G′ C and p ∈ δ(p,ε).

Furthermore, by induction hypothesis, we have that

D⇒∗G′ w
′ and rw′ A

∗
q.

Putting things together, we obtain that

A⇒∗G′ w and pw A
∗
q.

This finishes the proof of the left-to-right direction.

For the right-to-left direction, let w ∈ Σ∗ be a word with |w| ≥ 2, i.e.,

w = aw′ ,

for some a ∈ Σ and w′ ∈ Σ∗. Assume that

A⇒∗G′ w and pw A
∗
q.

Consequently, we have to distinguish two cases:

In the first case, we have that

A⇒G′ aB⇒∗G′ aw
′, pa A r, and rw′ A

∗
q.

By induction hypothesis and definition of G′′, we thus have that

[p,A,q]→ a[r,B,q] ∈ P ′′ and [r,B,q]⇒∗G′′ w
′ ,

since A→ aB ∈ P ′, p,q, r ∈ Q, a ∈ Σ, and r ∈ δ(p,a). Putting things together, we
obtain that

[p,A,q]⇒G′′ a[r,B,q]⇒∗G′′ aw
′ ,

i.e.,
[p,A,q]⇒∗G′′ w.

This concludes the first case.

In the second case, we have that

A⇒G′ B⇒∗G′ C⇒G′ aD⇒∗G′ aw
′, p ∈ δ(p,ε), pa A r, and rw′ A

∗
q.

89

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

By induction hypothesis, definition of G′′, and Equation 5.115.11, we thus have that

[p,A,q]→ [p,B,q] ∈ P ′′, [p,B,q]⇒∗G′′ [p,C,q], [p,C,q]→ a[r,D,q] ∈ P ′′

as well as
[r,D,q]⇒∗G′′ w

′ .

since A→ B ∈ P ′, B⇒∗G′ C, C → aD ∈ P ′, p,q, r ∈ Q, a ∈ Σ, p ∈ δ(p,ε), r ∈ δ(p,a),

and rw′ A
∗
q. Putting things together, we obtain that

[p,A,q]⇒G′′ [p,B,q]⇒∗G′′ [p,C,q]⇒G′′ a[r,D,q]⇒∗G′′ aw
′ ,

i.e.,
[p,A,q]⇒∗G′′ w.

This finishes the proof of the right-to-left direction and in further consequence also
the proof of the claim.

To complete the proof of the theorem, observe that by the above claim, for w ∈ Σ∗, it
holds that

w ∈ L(G′′) iff S ′′⇒∗G′′ w
iff [0,S ′ , f]⇒∗G′′ w, for some f ∈ {0,n}
iff w ∈ L(G′) and w ∈ L(A)

iff w ∈ L(G′)∩L(A) = L∩Σ≤n,

that is,
L(G′′) = L∩Σ≤n.

This finishes the proof of the theorem. �

With the help of the triple construction for regular grammars, we can now prove a lower
bound on the infinite SREG- and REG-complexity of the language

Pn = {w$wR | w ∈ {a,b}≤n }.

The proof idea is as follows: let X ∈ {SREG,REG} and G = (N,Σ, P ,S) be an X-grammar
that is a witness for Xc∞(Pn). Then we construct an X-grammar generating the finite set

L(G)∩Σ≤2n+1.

Since this language is equal to Pn, we can apply Corollary 4.2.104.2.10 in order to obtain a lower
bound on |G|. By Theorem 5.2.95.2.9, there is a strict regular grammar G′ = (N ′ ,Σ, P ′ ,S ′) that
generates the finite language L(G)∩Σ≤2n+1 and satisfies

|G′ | ≤ |G| · 2 · (2n+ 2) · (2n+ 2)3 = |G| · 2 · (2n+ 2)4.

90

5.2. Relating Grammar Types

Theorem 5.2.10. Let X ∈ {SREG,REG} and n ≥ 1 an integer. Then Xc∞(Pn) = Ω(2n).

PROOF. Assume to the contrary that there is an X-grammar G with

|G| = Xc∞(Pn) = o(2n),

that is,
Pn = L(G)∩ {a,b,$}≤2n+1.

We can safely assume that the right-hand side of every production in G is of length at
most 2n+ 2, because productions with a longer right-hand side can only generate words
that are longer than 2n+ 1 and then G would not be minimal. Moreover, since ε < Pn,
we can also, without loss of generality, assume that ε < L(G), because by following the
steps of the proof of Lemma 5.2.85.2.8, we can transform G into a regular grammar G∗

with L(G∗) = L(G) \ {ε} and |G∗| ≤ 2 · |G| = 2 · o (2n) = o (2n). Therefore, it also holds
that Pn = L(G∗)∩ {a,b,$}≤2n+1. Next, we apply Theorem 5.2.95.2.9, i.e., the triple construction
for regular grammars. Let G′ be the result of the triple construction, i.e.,

L(G′) = L(G)∩ {a,b,$}≤2n+1 = Pn.

Then
|G′ | = o(2n),

because
o(2n) · (2 · (2n+ 2)4) = o(2n).

Since the strict regular grammar G′ with |G′ | = o(2n) generates Pn, we get a contradiction
to the fact that

Xc(Pn) ≥ 2n

as shown in Corollary 4.2.104.2.10. Thus, we obtain

Xc∞(Pn) = Ω(2n).

This finishes the proof of the claim. �

The situation changes drastically when we consider strict linear, linear, and context-free
grammars. For these grammar types, we get an upper bound on the infinite complexity
of the language Pn that is constant in n.

Lemma 5.2.11. Let X ∈ {SLIN,LIN,CF} and n ≥ 1 an integer. Then Xc∞(Pn) ≤ 3.

PROOF. Let X ∈ {SLIN,LIN,CF} and consider the strict linear grammar G = (N, {a,b,$}, P ,S),
where P contains the following productions:

S→ aSa | bSb | $.

Clearly, G generates the language of all palindromes over the alphabet {a,b} with middle
marker $, i.e.,

L(G) = {w$wR | w ∈ {a,b}∗ }.

91

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Since
Pn = L(G)∩ {a,b,$}≤2n+1,

it follows that
Xc∞(Pn) ≤ 3.

This finishes the proof of the claim. �

The subsequent theorem states a taxonomy of the grammar types in ∆ w.r.t. the infinite
complexity measures.

Theorem 5.2.12. For all i ∈ {0,1,2,3}, all j ∈ {0,1}, and all k ∈ {2,3}, it holds that

1. CF ≤ic∞ REG, LIN ≤ic∞ REG, and SLIN ≤ic∞ SREG,

2. {SREG,REG}�ic∞ {SLIN,LIN,CF},

3. CF ≤iM∞ Γs, LIN ≤iM∞ Γs, REG ≤iM∞ SREG, and SLIN ≤j{cc∞,sc∞}
SREG,

4. SLIN�iM∞ Γ and SREG�iM∞ ∆ \ {SREG}, and

5. SLIN�k{cc∞,sc∞}
SREG.

PROOF. We prove claims 11. and 22. simultaneously. By Theorem 5.2.105.2.10, it holds that

SREGc∞(Pn) = Ω(2n) and REGc∞(Pn) = Ω(2n).

In contrast, from Lemma 5.2.115.2.11, it follows that

CFc∞(Pn) ≤ 3, LINc∞(Pn) ≤ 3, and SLINc∞(Pn) ≤ 3.

From Equation 5.45.4, we get that CF ≤c∞ REG, LIN ≤c∞ REG, and SLIN ≤c∞ SREG as well as
that the first conditions of the relations CF ≤ic∞ REG, LIN ≤ic∞ REG, and SLIN ≤ic∞ SREG are
satisfied for any i ∈ {1,2,3}. Putting things together, we get that

CF ≤ic∞ REG, LIN ≤ic∞ REG, and SLIN ≤ic∞ SREG

hold for each i ∈ {0,1,2,3}. Moreover, the above infinite complexity bounds on the lan-
guage Pn also demonstrate that neither REG ≤c∞ {SLIN,LIN,CF} and SREG ≤c∞ {SLIN,LIN,CF}
nor the first conditions of REG ≤ic∞ {SLIN,LIN,CF} and SREG ≤ic∞ {SLIN,LIN,CF} are satis-
fied for any i ∈ {1,2,3}. Therefore,

REG�ic∞ {SLIN,LIN,CF} and SREG�ic∞ {SLIN,LIN,CF},

for each i ∈ {0,1,2,3}.

In order to prove claims 33. and 44., consider, for each integer n ≥ 2, the language

Ln = {a1a2 · · ·a2n+1},

92

5.2. Relating Grammar Types

where the ai ∈ Σ, for 1 ≤ i ≤ 2n+ 1, are pairwise distinct. Moreover, let X ∈ Γ and τ ∈M∞.
It is easy to see that

Xτ(Ln) = 1, (5.12)

for each X ∈ Γ . However,

SREGτ(Ln) ≥ 2n+ 1 and SLINτ(Ln) ≥ n+ 1, (5.13)

because, by definition, any strict regular grammar G with

L(G)∩ {a1, a2, . . . , a2n+1}≤2n+1 � Ln,

for � ∈ {=,⊇,≥}, needs at least one production for each letter in the set {a1, a2, . . . , a2n+1}.
Similarly, any strict linear grammar G′ with

L(G′)∩ {a1, a2, . . . , a2n+1}≤2n+1 � Ln,

for � ∈ {=,⊇,≥}, needs at least n+ 1 distinct productions, since, by definition, each strict
linear production can contain at most two letters from {a1, a2, . . . , a2n+1}. Observe that the
strict linear grammar consisting of the productions

S→ a1A2a2n+1

A2→ a2A3a2n

...

An→ anAn+1an+2

An+1→ an+1

shows that SLINτ(Ln) ≤ n+ 1. Therefore, it follows that

SREGτ(Ln)−SLINτ(Ln) ≥ 2n+ 1−n− 1 = n. (5.14)

From Equation 5.45.4, we get that the relations CF ≤M∞ Γs, LIN ≤M∞ Γs, REG ≤M∞ SREG,
and SLIN ≤{cc∞,sc∞} SREG as well as the first conditions of the relations CF ≤iM∞ Γs,

LIN ≤iM∞ Γs, REG ≤iM∞ SREG, and SLIN ≤1
{cc∞,sc∞}

SREG are satisfied for any i ∈ {1,2,3}.
Putting things together, we get that

CF ≤iM∞ Γs, LIN ≤iM∞ Γs, REG ≤iM∞ SREG, and SLIN ≤j{cc∞,sc∞}
SREG

are true for all i ∈ {0,1,2,3} and j ∈ {0,1}. Moreover, Equations 5.125.12 and 5.135.13 show
that neither SREG ≤M∞ Γ and SLIN ≤M∞ Γ nor the first conditions of SREG ≤iM∞ Γ

and SLIN ≤iM∞ Γ are satisfied for any i ∈ {1,2,3}. As a consequence,

SREG�iM∞ Γ and SLIN�iM∞ Γ ,

93

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

for each i ∈ {0,1,2,3}. Finally, by Equation 5.145.14, it follows that neither SREG ≤M∞ SLIN
nor the first condition of SREG ≤iM∞ SLIN is satisfied for any i ∈ {1,2,3}. Hence,

SREG�iM∞ SLIN,

for each i ∈ {0,1,2,3}.

Finally, in order to prove claim 55., let L be a finite language over an alphabet Σ. First,
observe that we have both

SREGτ(L) ≤ |Σ|+ 1 and SLINτ(L) ≤ |Σ|+ 1,

for all τ ∈ {cc∞,sc∞}, as shown in Lemma 5.1.25.1.2. In the case of strict linear grammars, we
have that

SLINτ(L) ≥
⌊
|Σ|
2

+ 1
⌋
,

for τ ∈ {cc∞,sc∞}, since each strict linear production contains at most two distinct letters
from Σ. Consequently, for any sequence of finite languages (Ln)n≥0, we have that

lim
n→∞

SLINτ(Ln)
SREGτ(Ln)

≥ lim
n→∞

⌊ |Σ|
2 + 1

⌋
|Σ|+ 1

≥ 1
2
, 0,

which shows that SLIN�2
{cc∞,sc∞}

SREG. However, we also have that

SLIN�3
{cc∞,sc∞} SREG,

because SLIN ≤3
{cc∞,sc∞}

SREG would imply SLIN ≤2
{cc∞,sc∞}

SREG.

This finishes the prove of the theorem. �

Remark. Note that the relations introduced in Definition 5.2.15.2.1 are defined based on
(sequences of) finite languages w.r.t. arbitrary alphabets. This means that it is allowed to
construct sequences of finite languages with growing alphabets in order to show that one
of these relations holds.

If we amend Definition 5.2.15.2.1 in such a way that we require that all of the involved
(sequences of) finite languages are defined over a fixed finite alphabet Σ, then we get
four additional relations ≤Σ,τ , ≤1

Σ,τ , ≤
2
Σ,τ , and ≤3

Σ,τ for each measure type τ ∈ M. For
instance, let X,Y ∈ ∆ and τ ∈M. Then X ≤1

Σ,τ Y holds if and only if there is a constant c
such that

Xτ(L) ≤ Yτ(L) + c,

for all finite languages L ⊆ Σ∗, and there is a sequence of finite languages (Li)i≥0
where Li ⊆ Σ∗ for each i ≥ 0, such that

Yτ(Li)−Xτ(Li) ≥ i.

94

5.2. Relating Grammar Types

A close inspection of the proofs of Theorem 5.2.125.2.12 (11) and (22) reveals that we also have

CF ≤i{a,b,$},c∞ {SREG,REG}, LIN ≤i{a,b,$},c∞ {SREG,REG}, and SLIN ≤i{a,b,$},c∞ SREG

as well as
{SREG,REG}�i{a,b,$},c∞ {SLIN,LIN,CF},

for all i ∈ {0,1,2,3}. However, the proof of Theorem 5.2.125.2.12 (33) is not applicable in order
to show the respective results for the relations defined w.r.t. a fixed alphabet. Therefore,
we have to leave the following problems open:

Open Problem 5.2.13. Is there an alphabet Σ such that

CF ≤iΣ,c∞ SLIN, LIN ≤iΣ,c∞ SLIN, and REG ≤iΣ,M∞ SREG

and
CF ≤i

Σ,{cc∞,sc∞} Γs, LIN ≤i
Σ,{cc∞,sc∞} Γs, and SLIN ≤j

Σ,{cc∞,sc∞}
SREG,

for all i ∈ {0,1,2,3} and j ∈ {0,1}? 4

Furthermore, the proof of Theorem 5.2.125.2.12 (44) does not show that the respective results
also hold for the relations w.r.t. a fixed alphabet. Thus, we have a further open problem:

Open Problem 5.2.14. Let X ∈ Γ and Y ∈ ∆ \ {SREG}. Is there an alphabet Σ such that

SLIN�iΣ,M∞ X and SREG�i
Σ,{cc∞,sc∞} Y,

for each i ∈ {0,1,2,3}? 4

It has turned out that the stated proof of [HW18bHW18b, Theorem 13] is not sufficient to prove
the statement of [HW18bHW18b, Theorem 13]. More specifically, the arguments used in the
proof have turned out to be sufficient only for the more restricted relations that are
defined w.r.t. a fixed alphabet. This leads to the following result:

Theorem 5.2.15. Let Σ be a finite alphabet and X,Y ∈ ∆. Then we have that

X�i
Σ,{cc∞,sc∞} Y,

for all i ∈ {1,2,3}.

PROOF. Let L be an arbitrary finite language over the alphabet Σ. Then, from Lemma 5.1.25.1.2,
we know that

Xcc∞(L) ≤ |Σ|+ 1 and Xsc∞(L) ≤ |Σ|+ 1

holds for all grammar types in ∆. As a consequence, X ≤i
Σ,{cc∞,sc∞}

Y does not hold for
any i ∈ {1,2,3} and any X,Y ∈ ∆. �

We have now shown all results depicted in Figure 5353 and a quick glance at this figure
also reveals the problems that are still open w.r.t. the relations of Definition 5.2.15.2.1.

Open Problem 5.2.16. Fill out the unknown relations in Figure 5353. 4

95

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

5.3 Relating Measure Types

In this section, we are going to relate the measure types in M w.r.t. a fixed grammar
type from ∆ based on four different relations that vary in strength. These relations are
similar to those introduced in the previous section, however, now the roles of measure
and grammar types are swapped. With the help of these relations, we can classify the
difference between different measure types w.r.t. a fixed grammar type. As a byproduct
of this classification, we show that any X-grammar, for X ∈ ∆, that infinitely generates the
language

Tn = {w$w#w | w ∈ {a,b}n },

requires Ω(2n/4) many productions.

Now, let us formally define the above mentioned relations on measure types inM.

Definition 5.3.1. Let X ∈ ∆ and τ,σ ∈M. Then we write

• τ ≤X σ if and only if
Xτ(L) ≤ Xσ (L),

for all finite languages L;

• τ ≤1
X σ if and only if there is a constant c such that

Xτ(L) ≤ Xσ (L) + c,

for all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that

Xσ (Li)−Xτ(Li) ≥ i;

• τ ≤2
X σ if and only if there is a constant c such that

Xτ(L) ≤ Xσ (L) + c,

for all finite languages L, and there is a sequence of finite languages (Li)i≥0 such
that

lim
i→∞

Xτ(Li)
Xσ (Li)

= 0;

• τ ≤3
X σ if and only if there is a constant c such that

Xτ(L) ≤ Xσ (L) + c,

for all finite languages L, and there is no function f : N→ N such that

Xσ (L) ≤ f (Xτ(L)),

for all finite languages L.

96

5.3. Relating Measure Types

We write τ =X σ if both τ ≤X σ and σ ≤X τ hold. Moreover, for ease of presentation, we
sometimes denote the relation ≤X by ≤0

X. Let i ∈ {0,1,2,3} and X ∈ ∆, then the relation ≤iX
is said to be of order i.

LetM1,M2 ⊆M, Π ⊆ ∆, and i ∈ {0,1,2,3}. Then we write

M1 ≤iΠM2

if, for all τ1 ∈M1, all τ2 ∈M2, and all X ∈Π, it holds that τ1 ≤iX τ2. Similarly, we write

M1 �iΠM2

if, for all τ1 ∈ M1, all τ2 ∈ M2, and all X ∈ Π, it holds that τ1 �iX τ2. In the case
that M1, M2, or Π is a singleton, we omit braces, e.g., we write τ1 ≤iX τ2 instead
of {τ1} ≤i{X} {τ2}.

Remark. Note that, for i ∈ {0,1,2,3},

M1 �iΠM2

being satisfied does not coincide with the fact that

M1 ≤iΠM2

does not hold. The latter does not hold as soon as we have that

τ1 �iX τ2

for at least one τ1 ∈M1, at least one τ2 ∈M2, or at least one X ∈Π. On the other hand,

M1 �iΠM2

is only satisfied if
τ1 �iX τ2

holds for all τ1 ∈M1, all τ2 ∈M2, and all X ∈Π.

In order to demonstrate that—for distinct measure types—the production complexity of
the same finite language w.r.t. the same grammar type can vary quite immensely, consider,
for instance, the language

Ln = {aibici | 1 ≤ i ≤ n },

where n ≥ 1 is an integer. On the one hand, Theorem 4.1.64.1.6 shows that

CFcc(Ln) ≤ 5, for each n ≥ 1,

but, on the other hand, as we have seen in Chapter 44 (see Equation 4.24.2), we have that

CFc(Ln) = n.

97

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Since every grammar that generates a language is also a grammar that covers this
language, we have that

CFcc(L) ≤ CFc(L),

for all finite languages L. Putting things together, we obtain that there is a gap of highest
order (in the sense of Definition 5.3.15.3.1) between the exact and the cover complexity w.r.t.
context-free grammars, i.e.,

cc ≤3
CF c

holds.

Remark. Similarly to the relations between grammar types, we have that τ ≤3
X σ im-

plies τ ≤2
X σ , which, in turn, implies τ ≤1

X σ . Moreover, the inequality τ ≤3
X σ holds if the

first condition of its definition is satisfied and there is a sequence of finite languages (Li)i≥0
such that Xτ(Li) ≤ k, for some constant k, and Xσ (Li) ≥ i.

Let τ,σ ∈M and X ∈ ∆. Then we say that τ and σ are incomparable w.r.t. the relation ≤iX,
for i ∈ {0,1,2,3}, if we have both τ �iX σ and σ �iX τ. Moreover, we say that τ and σ
are incomparable w.r.t. the grammar type X if we have both τ �iX σ and σ �iX τ, for
each i ∈ {0,1,2,3}.

Figure 5555 depicts which kinds of relations between the measure types inM hold w.r.t. the
grammar types in ∆. Let τ,σ ∈ M and iCF, iLIN, iREG, iSLIN, iSREG, jCF, jLIN, jREG, jSLIN, jSREG ∈
{0,1,2,3}. Then a directed edge with label (iCF/jCF, iLIN/jLIN, iREG/jREG, iSLIN/jSLIN, iSREG/jSREG)
from τ to σ , i.e.,

τ
(iCF/jCF,iLIN/jLIN,iREG/jREG,iSLIN/jSLIN,iSREG/jSREG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ σ,

expresses that all of the relations

τ ≤iCF
CF σ , τ ≤iLIN

LIN σ , τ ≤iREG
REG σ , τ ≤iSLIN

SLIN σ , τ ≤iSREG
SREG σ

and
τ �i

′
CF

CF σ , τ �i
′
LIN

LIN σ , τ �i
′
REG

REG σ , τ �i
′
SLIN

SLIN σ , τ �i
′
SREG

SREG σ

as well as
σ ≤jCF

CF τ, σ ≤jLIN
LIN τ, σ ≤jREG

REG τ, σ ≤jSLIN
SLIN τ, σ ≤jSREG

SREG τ

and
σ �j

′
CF

CF τ, σ �j
′
LIN

LIN τ, σ �j
′
REG

REG τ, σ �j
′
SLIN

SLIN τ, σ �j
′
SREG

SREG τ,

for all i′X ∈ {iX + 1, iX + 2, . . . ,3} and all j ′X ∈ {jX + 1, jX + 2, . . . ,3} with X ∈ ∆, hold. Let X ∈ ∆.
Then the entry “−” at the position of iX (or jX) just expresses that the relation τ ≤iX σ
(or σ ≤iX τ, respectively) does not hold for any i ∈ {0,1,2,3}, i.e., τ �iX σ (or σ �iX τ,
respectively), for all i ∈ {0,1,2,3}. Moreover, the entry “?” expresses that we do not know
whether or not any relation of order i ∈ {1,2,3} holds between the involved measure types.
If any number iX ∈ {0,1,2,3} (or jX ∈ {0,1,2,3}, respectively), for X ∈ ∆, is underlined,
then this means that the relation τ ≤iXX σ (or σ ≤jXX τ, respectively) holds, but we do not

98

5.3. Relating Measure Types

c c∞

cc

sc∞ cc∞

sc

(3/−
,3/−

,3/−
,2/−

,2/−) (3
/−
,3
/−
,3
/−
,−
/−
,−
/−

)

(3
/−
,3
/−
,3
/−
,0
/?
,0
/?

)

(3/−,3/−,3/−,−/?,−/?) (3
/−
,3
/−
,3
/−
,−
/?
,−
/?

)

(3/−
,3/−

,3/−
,3/−

,3/−)

(3
/−
,3
/−
,3
/−
,3
/−
,3
/−

)

(0/?,0/?,0/?,0/?,0/?)

(0
/?
,3
/−
,3
/−
,3
/−
,3
/−

)

(3/−,3/−,3/−,3/−,3/−)

(3
/−
,3
/−
,3
/−
,3
/−
,3
/−

)

(0/?,3/−,3/−,3/−,3/−)

(3/−,3/−,3/−,3/−,3/−)

(3/−,2/−,2/−,2/−,2/−) (?/
−,−
/−,
−/−
,−/
−,−
/−)

Figure 55: Relations between the measure types w.r.t. a fixed grammar type.

99

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

know whether or not any of the stronger relations τ ≤i
′
X

X σ (or σ ≤j
′
X

X τ, respectively),
for i′X ∈ {iX + 1, iX + 2, . . . ,3} and j ′X ∈ {jX + 1, jX + 2, . . . ,3} holds. For instance,

sc
(3/−,3/−,3/−,0/?,0/?)
−−−−−−−−−−−−−−−−−→ cc

expresses that, for each i ∈ {0,1,2,3}, both sc ≤i
Γ

cc and cc�i
Γ

sc are satisfied. Moreover,
it expresses that the relation sc ≤0

Γs
cc holds, but we do not know whether or not sc ≤i

Γs
cc

holds for any i ∈ {1,2,3}. Finally, it also expresses that cc �0
Γs

sc holds, but we do not

know whether or not cc ≤i
Γs

sc holds for any i ∈ {1,2,3}.

We start with comparing the finite with the infinite complexity measures. Except for the
scattered complexity, the infinite versions are more succinct than their finite counterparts
w.r.t. the grammar types in ∆.

Lemma 5.3.2. It holds that

1. c∞ ≤∆ c and

2. cc∞ ≤∆ cc, but we have

3. sc ≤Γ sc∞.

PROOF. The first claim follows from Equation 5.25.2. The second claim can be shown as
follows: let L ⊆ Σ≤` and assume that G is a witness for Xcc(L), i.e., G covers the finite
language L and Xcc(L) = |G|. But then also

L ⊆ L(G)∩Σ≤`,

which implies
Xcc∞(L) ≤ Xcc(L).

For the third relation, we argue as follows: in Theorem 4.1.64.1.6, it was shown that Ysc(L) = 1
if L is non-empty, and Ysc(L) = 0 if L = ∅. If L , ∅, we clearly have that Ysc∞(L) ≥ 1, and,
on the other hand, if L = ∅, we have that Ysc∞(L) = 0. Thus, we conclude that

Ysc(L) ≤ Ysc∞(L),

for every finite language L. �

It is worth mentioning that the argumentation used in the proof of the first two claims of
Lemma 5.3.25.3.2 does not apply to the third one. This can be seen as follows: consider the
finite uniform language

L = {a,b,c}.

Then the regular grammar

G = ({S}, {a,b,c}, {S→ abc},S)

100

5.3. Relating Measure Types

witnesses
Xsc(L) = 1,

for X ∈ Γ , because L is a scattered sublanguage of {abc}, i.e.,

L ≤ {abc} = L(G),

but
L(G)∩ {a,b,c}≤1 = ∅.

Thus, |G| = 1 cannot be used as an upper bound for Xsc∞(L). Moreover,

Xsc∞(L) ≥ 2,

since intersecting the language of any grammar consisting of a single production with the
set of all words of length at most one cannot yield a scattered superlanguage of {a,b,c}.
For the case of strict linear grammars, consider the grammar

G′ = ({S,A}, {a,b,c}, {S→ aAc,A→ b},S),

which serves as a witness for
SLINsc(L) = 2.

An analogous argument as above in conjunction with the type of restriction in strict linear
grammars then shows that

SLINsc∞(L) ≥ 3.

Hence,
sc∞ ≤Γ∪{SLIN} sc

does not hold in general. Thus, we conclude:

Lemma 5.3.3. It holds that sc∞ �Γ∪{SLIN} sc.

However, it is still open whether or not the result of Lemma 5.3.35.3.3 also holds for strict
regular grammars.

Open Problem 5.3.4. Which one of sc∞ ≤SREG sc and sc∞ �SREG sc does hold? 4

Next, we prove—among other results—that the result of Lemma 5.3.25.3.2 (33) does neither
hold for strict regular nor for strict linear grammars.

Lemma 5.3.5. It holds that sc�Γs
M∞.

PROOF. Let X ∈ Γs and, for every integer n ≥ 1, let

Ln = {a}≤2n+1.

Then, by Corollary 4.1.144.1.14 and Lemma 5.1.25.1.2, it follows that

Xsc(Ln) ≥ n+ 1, Xc∞(Ln) ≤ 2, Xcc∞(Ln) ≤ 2, and Xsc∞(Ln) ≤ 2.

101

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Therefore, for any integer n ≥ 2, we have that,

Xsc(Ln) > Xc∞(Ln), Xsc(Ln) > Xcc∞(Ln), and Xsc(Ln) > Xsc∞(Ln),

i.e.,
sc�Γs

M∞.

This proves the stated claim. �

Next, for X ∈ ∆, we compare the remaining X-complexities. Observe that, for finite
languages L1 and L2, L1 = L2 implies L1 ⊆ L2, which, in turn, implies L1 ≤ L2. As an easy
consequence, we deduce that the (infinite) X scattered complexity is more succinct than
the (infinite) X cover complexity, and it is also easy to see that the (infinite) X cover
complexity is more succinct than the (infinite) X-complexity. We summarise:

Lemma 5.3.6. It holds that

1. sc ≤∆ cc ≤∆ c and

2. sc∞ ≤∆ cc∞ ≤∆ c∞.

For the measures cc and c∞, we show incomparability w.r.t. the ≤∆-relation. Before we
can prove this result, we need two prerequisites. The first one is a lower bound on the
infinite exact complexity of the language

Tn = {w$w#w | w ∈ {a,b}n }.

The proof is similar to the one of Theorem 5.2.105.2.10 with the slight modification that we use
grammars in 2-Greibach normal form33 instead of strict regular grammars, since we cannot
apply the reasoning regarding the absence of ε-productions to context-free grammars in
the case of the c∞-measure. The switch to 2-Greibach normal form gives rise to another
variant of the triple construction that works for all grammar types in ∆.

Theorem 5.3.7. Let X ∈ ∆, n ≥ 1 be an integer, G be an X-grammar generating a
language L ⊆ Σ∗. Then there is an X-grammar G′ in 2-Greibach normal form such
that L(G′) = L∩Σn and |G′ | ≤ |G|4 · (n+ 1)4.

PROOF. We proceed similarly as in the proof of Theorem 5.2.95.2.9. Assume that the X-
grammar G = (N,Σ, P ,S) generates L. As a first step, we transform the grammar G
into an equivalent X-grammar G′ = (N ′ ,Σ, P ′ ,S ′) in 2-Greibach normal form. Accord-
ing to [BK99BK99], this transformation increases the number of productions by at most a
polynomial of fourth degree, that is,

|G′ | ≤ |G|4.
3A context-free grammar G = (N,Σ, P ,S) is in 2-Greibach normal form if all productions in P are of the

form A→ a, A→ aB, A→ aBC, or S→ ε, where A ∈N , a ∈ Σ, and B,C ∈N \ {S}.

102

5.3. Relating Measure Types

If ε ∈ L, then we can omit the production S→ ε from G′, since ε < L∩Σn = (L \ {ε})∩Σn.
Therefore, all productions in P ′ are of the form

A→ a,

A→ aB, or

A→ aBC,

where a ∈ Σ, A ∈N ′, and B,C ∈N \ {S ′}, i.e., G′ is ε-free.

Now, assume that Σ = {a1, a2, . . . , an} and consider the finite language Σn. Clearly,
the DFA A = (Q,Σ,δ,q0,F) depicted in Figure 5656 with Q = {0,1, . . .n}, initial state q0 = 0,
final state set F = {n}, and the transition function δ(i,a) = i + 1, for 0 ≤ i < n and a ∈ Σ,
accepts the language Σn, i.e.,

L(A) = Σn.

0 1 · · · n−1 n
a1, a2, . . . , an a1, a2, . . . , an a1, a2, . . . , an a1, a2, . . . , an

Figure 56: DFA A for the finite language Σn.

We are now going to construct a grammar G′′ in 2-Greibach normal form from G′ and A
such that

L(G′′) = L(G)∩L(A) = L∩Σn.

To this end, let G′′ = (N ′′ ,Σ, P ′′ ,S ′′), where S ′′ <N ′ is a new nonterminal,

N ′′ = { [p,A,q] | p,q ∈Q and A ∈N ′ },

and

P ′′ = { [p,A,q]→ a | q = δ(p,a), A→ a ∈ P ′, and a ∈ Σ }
∪ { [p,A,q]→ a[r,B,q] | r = δ(p,a), q ∈Q, A→ aB ∈ P ′, and a ∈ Σ }
∪ { [p,A,q]→ a[r,B, t][t,C,q] | r = δ(p,a), q, t ∈Q, A→ aBC ∈ P ′, and a ∈ Σ }
∪ {S ′′→ [0,S ′ ,n] }.

Since A consists of n+ 1 states, i.e., |Q| = n+ 1, and the productions of the form

[p,A,q]→ a[r,B, t][t,C,q]

make up the greatest portion of P ′′, it follows that

|G′′ | ≤ |G′ | · (n+ 1)4 ≤ |G|4 · (n+ 1)4.

103

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Note that [0,S ′ ,n] generates words in L(G′)∩ L(A). This can be proved formally in a
similar fashion as in the proof of Theorem 5.2.95.2.9 by taking also the productions of the
form

[p,A,q]→ a[r,B, t][t,C,q]

into account (see also the proof of [Woo87Woo87, Theorem 9.1.3]).

To complete the proof, observe that for w ∈ Σ∗, it holds that

w ∈ L(G′′) iff S ′′⇒∗G′′ w
iff [0,S ′ ,n]⇒∗G′′ w
iff w ∈ L(G′) and w ∈ L(A)

iff w ∈ L(G′)∩L(A) = L∩Σn,

that is,
L(G′′) = L∩Σn.

This finishes the proof of the theorem. �

The switch to 2-Greibach normal form in the above triple construction induces the fourth
root in the lower bound on the infinite exact complexity of the language Tn.

Theorem 5.3.8. Let X ∈ ∆ and n ≥ 1 an integer. Then Xc∞(Tn) = Ω(2n/4).

PROOF. We proceed as in the proof of Theorem 5.2.105.2.10. From the CF-grammar G =
(N,Σ, P ,S) that is a witness for CFc∞(Tn), i.e.,

Tn = L(G)∩Σ≤3n+2 and |G| = CFc∞(Tn),

we construct a context-free grammar for the language

L(G)∩Σ3n+2.

Now, assume to the contrary that

|G| = CFc∞(Tn) = o(2n/4),

for the CF-grammar G. Moreover, since L(G) ∩ Σ3n+2 is equal to Tn, we can apply
Theorem 4.2.44.2.4 in order to obtain a lower bound on |G|. By Theorem 5.3.75.3.7, there is a
context-free grammar G′ = (N ′ ,Σ, P ′ ,S ′) in 2-Greibach normal form satisfying

L(G′) = L(G)∩Σ3n+2 and |G′ | ≤ |G|4 · (3n+ 3)4.

Then the context-free grammar G′ generates Tn and satisfies

|G′ | = o(2n/4),

since
o(2n/4)4 · (3n+ 3)4 = o(2n).

104

5.3. Relating Measure Types

This, however, is a contradiction to Theorem 4.2.44.2.4, which shows that

CFc(Tn) = Ω(2n),

and thus implies
CFc∞(Tn) = Ω(2n/4).

Therefore,
Xc∞(Tn) = Ω(2n/4),

for X ∈ ∆, since context-free grammars are more succinct than all other considered
grammar types w.r.t. the infinite X-complexity. �

The second prerequisite consists of the finite context-free exact and cover complexity
bounds of |Σ|+ 2 for the language Σ≤` as stated in Lemma 4.1.54.1.5.

Now, we are ready for the incomparability results:

Lemma 5.3.9. It holds that

1. c�∆ {cc,sc,c∞,cc∞,sc∞},

2. c∞ �∆ {cc,sc,cc∞,sc∞},

3. cc�∆ {sc,c∞,cc∞,sc∞}, and

4. cc∞ �∆ {sc,sc∞}.

PROOF. Let X ∈ ∆. First, we show that both c�∆ {cc,sc,cc∞,sc∞} and c∞ �∆ {cc,sc,cc∞,sc∞}
hold. To this end, consider the language

Tn = {w$w#w | w ∈ {a,b}n },

where n ≥ 1 is an integer. Since Tn ⊆ {a,b,$,#}3n+2, it follows from Theorems 4.1.64.1.6, 4.2.44.2.4,
and 5.3.85.3.8, Corollary 4.2.54.2.5 as well as Lemmas 4.1.44.1.4, 4.1.54.1.5, and 5.1.25.1.2, that

Xc(Tn) ≥ 2n, Xsc(Tn) ≤ 12n+ 8, and Xc∞(Tn) = Ω(2n/4)

as well as
Xcc(Tn) ≤ 12n+ 8, Xcc∞(Tn) ≤ 5, and Xsc∞(Tn) ≤ 5.

As a consequence, for a sufficiently large integer n ≥ 1, we have that

Xc(Tn) > Xcc(Tn), Xc(Tn) > Xsc(Tn), Xc(Tn) > Xcc∞(Tn), and Xc(Tn) > Xsc∞(Tn)

hold. Moreover, we also have that

Xc∞(Tn) > Xcc(Tn) and Xc∞(Tn) > Xsc(Tn)

as well as
Xc∞(Tn) > Xcc∞(Tn) and Xc∞(Tn) > Xsc∞(Tn).

105

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

hold. Hence,
c�∆ cc, c�∆ sc, c�∆ cc∞, and c�∆ sc∞

as well as
c∞ �∆ cc, c∞ �∆ sc, c∞ �∆ cc∞, and c∞ �∆ sc∞.

In order to show c�∆ c∞ and cc�∆M∞, consider, for any integer n ≥ 2, the language

Ln = {a,b}≤n.

On the one hand, by Lemma 5.1.25.1.2, we have that

Xc∞(Ln) ≤ 3, Xcc∞(Ln) ≤ 3, and Xsc∞(Ln) ≤ 3,

but, on the other hand, by Lemma 5.2.25.2.2, we have that

Yc(Ln) ≥ n+ 1 and Ycc(Ln) ≥ n+ 1,

for Y ∈ {SREG,SLIN,REG,LIN}. As a consequence, for any sufficiently large integer n ≥ 2,

Yc∞(Ln) < Yc(Ln), Yc∞(Ln) < Ycc(Ln), Ycc∞(Ln) < Ycc(Ln), and Ysc∞(Ln) < Ycc(Ln).

From Lemma 4.1.54.1.5, it follows that

CFc(Ln) ≥ 4 and CFcc(Ln) ≥ 4,

i.e.,
CFc∞(Ln) < CFc(Ln) and CFc∞(Ln) < CFcc(Ln)

as well as
CFcc∞(Ln) < CFcc(Ln) and CFsc∞(Ln) < CFcc(Ln),

for each integer n ≥ 2. Putting things together, we have that

c�∆ c∞ and cc�∆M∞.

It remains to show cc�∆ sc and claim 44. To this end, consider the language

L = {ε,a}.

On the one hand, for X ∈ ∆, the X-grammar G with the single production

S→ a

clearly satisfies

L = {ε,a} ≤ {a} = L(G) and L = {ε,a} ≤ {a} = L(G)∩ {a}≤1

and thus we have that
Xsc(L) = 1 and Xsc∞(L) = 1.

106

5.3. Relating Measure Types

On the other hand, any X-grammar covering or infinitely covering L needs at least two
productions, since there is no production that can generate both the empty word and a
non-empty word without the help of another production. As a consequence,

Xcc(L) ≥ 2 and Xcc∞(L) ≥ 2.

Putting things together, we have that

cc�∆ sc, cc∞ �∆ sc, and cc∞ �∆ sc∞

hold.

This finishes the proof of the lemma. �

In the remainder of this section, we classify the relations between the measures inM
according to the taxonomy of Definition 5.3.15.3.1.

Theorem 5.3.10. We have that

cc ≤iCF c and cc ≤j
∆\{CF} c, but c�i∆ cc and cc�3

{REG,LIN} c,

for all i ∈ {0,1,2,3} and all j ∈ {0,1,2}.

PROOF. First of all, note that

cc ≤∆ c and c�∆ cc (5.15)

follow from Lemmas 5.3.65.3.6 and 5.3.95.3.9, respectively.

Consider, for each integer n ≥ 1, the language

Ln = {akbkck | 1 ≤ k ≤ n }.

From Equation 4.24.2, we know that

CFc(Ln) = n.

On the other hand, by Theorem 4.1.64.1.6, we have

CFcc(Ln) ≤ 5.

Furthermore, by Equation 5.155.15, the first condition of cc ≤iCF c is satisfied for each i ∈
{1,2,3}. Hence,

cc ≤iCF c,

for all i ∈ {1,2,3}. Note that, for n ≥ 5, it holds that

CFc(Ln)−CFcc(Ln) ≥ n− 5.

107

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Thus, the first condition of c ≤iCF cc is not satisfied for any i ∈ {1,2,3}, i.e.,

c�iCF cc,

for each i ∈ {1,2,3}.

Let Z ∈ ∆ \ {CF} and, for each integer n ≥ 1, consider the language

Tn = {w$w#w | w ∈ {a,b}n }.

On the one hand, by Theorem 4.2.44.2.4 and Corollary 4.2.54.2.5, we have that

Zc(Tn) ≥ 2n.

On the other hand, since {a,b,$,#}3n+2 ⊇ Tn, we have that

Zcc(Tn) ≤ 12n+ 8

by Lemma 4.1.44.1.4. Hence,

lim
n→∞

Zcc(Tn)
Zc(Tn)

= 0,

and thus, since by Equation 5.155.15, also the first condition of cc ≤j
∆\{CF} c is satisfied for

each j ∈ {1,2}, we have that
cc ≤j

∆\{CF} c,

for all j ∈ {1,2}.

Moreover, note that, for any integer n ≥ 8, it holds that

Zc(Tn)− Zcc(Tn) ≥ 2n − 12n− 8 ≥ n.

Therefore, the first condition of c ≤iZ cc is not satisfied for any i ∈ {1,2,3}, i.e.,

c�i
∆\{CF} cc,

for each i ∈ {1,2,3}.

Finally, let Y ∈ {REG,LIN}, let L be an arbitrary finite language, and let f : N→ N be a
function defined by x 7→ 2x−1. Moreover, let G be a minimal Y-grammar with L(G) ⊇ L.
By Lemma 3.3.13.3.1, we know that

|L| ≤ |L(G)| ≤ 2Ycc(L)−1.

Furthermore, by simply listing all words in L with a trivial Y-grammar, it holds that

Yc(L) ≤ |L|.

Thus,
Yc(L) ≤ |L| ≤ |L(G)| ≤ 2Ycc(L)−1 = f (Ycc(L)).

108

5.3. Relating Measure Types

This shows that there exists a function f : N→ N such that

Yc(L) ≤ f (Ycc(L)),

for all finite languages L. Hence,

cc�3
{REG,LIN} c.

This concludes the proof of the theorem. �

Theorem 5.3.11. We have that

sc ≤iΓ c and sc ≤j
Γs

c, but c�i∆ sc,

for all i ∈ {0,1,2,3} and all j ∈ {0,1,2}.

PROOF. First of all, note that

sc ≤∆ c and c�∆ sc (5.16)

follow from Lemmas 5.3.65.3.6 and 5.3.95.3.9, respectively.

Let X ∈ Γ , Zs ∈ Γs, and, for each integer n ≥ 1, consider the language

Tn = {w$w#w | w ∈ {a,b}n }.

On the one hand, by Theorem 4.2.44.2.4 and Corollary 4.2.54.2.5, we have that

Xc(Tn) = 2n and Zsc(Tn) ≥ 2n.

On the other hand, we have that

Xsc(Tn) = 1 and Zssc(Tn) ≤ 12n+ 8

by Theorem 4.1.64.1.6. Hence,

lim
n→∞

Zssc(Tn)
Zsc(Tn)

= 0,

and thus, since by Equation 5.165.16, also the first condition of sc ≤j
Γs

c is satisfied for
each j ∈ {1,2}, we have that

sc ≤j
Γs

c,

for all j ∈ {1,2}. The bounds

Xc(Tn) = 2n and Xsc(Tn) = 1

together with Equation 5.165.16 also show that

sc ≤iΓ c

109

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

holds for all i ∈ {1,2,3}.

Furthermore, note that for X∆ ∈ ∆ and any integer n ≥ 7, due to Theorems 4.1.64.1.6 and 4.2.44.2.4
and Corollary 4.2.54.2.5, it holds that

X∆c(Tn) ≥ 2n and X∆sc(Tn) ≤ 12n+ 8.

Thus,
X∆c(Tn)−X∆sc(Tn) ≥ 2n − 12n− 8 ≥ n.

Therefore, the first condition of c ≤i
∆

sc is not satisfied for any i ∈ {1,2,3}, i.e.,

c�i∆ sc,

for each i ∈ {1,2,3}. �

Theorem 5.3.12. We have that

sc ≤iΓ cc, but cc�iΓ sc,

for all i ∈ {0,1,2,3}.

PROOF. Note that, from Lemmas 5.3.65.3.6 and 5.3.95.3.9, it follows that

sc ≤Γ cc and cc�Γ sc, (5.17)

respectively.

Let Y ∈ {REG,LIN} and, for each integer n ≥ 1, consider the language

Kn = {a,b}≤n.

Then, since |Kn| = 2n+1 − 1, it follows that

Ycc(Kn) ≥ n+ 1

by Lemma 5.2.25.2.2. On the other hand,

Ysc(Kn) = 1

follows from Theorem 4.1.64.1.6. Since, by Equation 5.175.17, the first condition of sc ≤i{REG,LIN} cc
is satisfied for each i ∈ {1,2,3}, it follows that

sc ≤i{REG,LIN} cc,

for all i ∈ {1,2,3}. Moreover, note that, for any integer n ≥ 1, it holds that

Ycc(Kn)−Ysc(Kn) ≥ n.

110

5.3. Relating Measure Types

Therefore, the first condition of cc ≤i{REG,LIN} sc is not satisfied for any i ∈ {1,2,3}, i.e.,

cc�i{REG,LIN} sc,

for each i ∈ {1,2,3}.

For context-free grammars, consider, for each integer n ≥ 2, the language

K ′n = {a1, a2, . . . , an}≤n.

Then, from Lemma 4.1.54.1.5 and Theorem 4.1.64.1.6, we get that

CFcc(K ′n) = n+ 2 and CFsc(K ′n) = 1.

Thus, since, by Equation 5.175.17, the first condition of sc ≤iCF cc is satisfied for each i ∈
{1,2,3}, we have that

sc ≤iCF cc,

for all i ∈ {1,2,3}. Moreover, note that, for any integer n ≥ 2, it holds that

CFcc(K ′n)−CFsc(K ′n) ≥ n+ 1.

Therefore, the first condition of cc ≤iCF sc is not satisfied for any i ∈ {1,2,3}, i.e.,

cc�iCF sc,

for each i ∈ {1,2,3}. �

Theorem 5.3.13. We have that

M∞ ≤i∆ c, but c�i∆M∞,

for all i ∈ {0,1,2,3}.

PROOF. First, we prove that c∞ ≤i∆ c, but c �i
∆

c∞, for all i ∈ {0,1,2,3}. From Lem-
mas 5.3.25.3.2 and 5.3.95.3.9, it follows that

c∞ ≤∆ c and c�∆ c∞, (5.18)

respectively.

We show that, for X∆ ∈ ∆, there is a sequence of finite languages (Ln)n≥1 and a constant c
such that

X∆c∞(Ln) ≤ c and X∆c(Ln) ≥ n+ 1.

For any integer n ≥ 1, consider the languages

R2n = {akbam | 0 ≤ k +m ≤ 2n − 1 }, R = {akbam | k,m ≥ 0 }, and Kn = {a,b}≤n.

111

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

In the proof of Equation 5.35.3, it was shown that, for each X ∈ ∆ \ {CF} and each n ≥ 1,

CFc∞(R2n) ≤ 4 and CFc(R2n) ≥ n+ 1

and
Xc∞(Kn) ≤ 3 and Xc(Kn) ≥ n+ 1.

Moreover, note that, by Equation 5.185.18, it follows that the first conditions of c∞ ≤i∆ c are
satisfied for each i ∈ {1,2,3}. Putting things together, we get that

c∞ ≤i∆ c,

for all i ∈ {1,2,3}.

Furthermore, note that, for any integer n ≥ 3, it holds that

CFc(R2n)−CFc∞(R2n) ≥ n− 3

and
Xc(Kn)−Xc∞(Kn) ≥ n− 2.

Therefore, the first condition of c ≤i
∆

c∞ is not satisfied for any i ∈ {1,2,3}, i.e.,

c�i∆ c∞,

for each i ∈ {1,2,3}.

Next, we prove that {cc∞,sc∞} ≤i∆ c, but c �i
∆
{cc∞,sc∞}, for each i ∈ {0,1,2,3}. From

Lemmas 5.3.25.3.2, 5.3.65.3.6, and 5.3.95.3.9, it follows that

{cc∞,sc∞} ≤∆ c and c�∆ {cc∞,sc∞}. (5.19)

For each integer n ≥ 1, consider the language

Ln = {akbkck | 1 ≤ k ≤ n }.

From Equation 4.24.2, we know that

X∆c(Ln) ≥ n,

for X∆ ∈ ∆. Then, by Lemma 5.1.25.1.2,

X∆cc∞(Ln) ≤ 4 and X∆sc∞(Ln) ≤ 4.

Hence, since, by Equation 5.195.19, the first conditions of {cc∞,sc∞} ≤i∆ c are satisfied for
each i ∈ {1,2,3}, it follows that

{cc∞,sc∞} ≤i∆ c

holds for all i ∈ {1,2,3}.

112

5.3. Relating Measure Types

Moreover, note that, for τ ∈ {cc∞,sc∞} and any integer n ≥ 4, it holds that

X∆c(Ln)−X∆τ(Ln) ≥ n− 4.

Therefore, the first conditions of c ≤i
∆
{cc∞,sc∞} are not satisfied for any i ∈ {1,2,3}, i.e.,

c�i∆ {cc∞,sc∞},

for each i ∈ {1,2,3}. �

Theorem 5.3.14. We have that

cc∞ ≤i∆\{CF} cc, but cc�i
∆\{CF} cc∞,

for all i ∈ {0,1,2,3}.

PROOF. Note that, from Lemmas 5.3.25.3.2 and 5.3.95.3.9, it follows that

cc∞ ≤∆\{CF} cc and cc�∆\{CF} cc∞,

respectively.

Let Z ∈ ∆ \ {CF} and, for any integer n ≥ 1, consider the language

Kn = {a,b}≤n.

Since |Kn| = 2n+1 − 1, it follows that

Zcc(Kn) ≥ n+ 1,

by Lemma 5.2.25.2.2. Then, by Lemma 5.1.25.1.2, we get that

Zcc∞(Kn) ≤ 3.

A similar argument as in the proof of Theorem 5.3.135.3.13 then shows that

cc∞ ≤i∆\{CF} cc

and
cc�i

∆\{CF} cc∞,

for each i ∈ {1,2,3}. �

Theorem 5.3.15. We have that

sc�iΓs c∞ and c∞ �iΓs sc,

for all i ∈ {0,1,2,3}.

113

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

PROOF. Consider, for any integer n ≥ 1, the unary language

Dn = {a}≤2n+1

and let Zs ∈ Γs. From Lemma 5.1.25.1.2 and Corollary 4.1.144.1.14, it follows that

Zsc∞(Dn) ≤ 2 and Zssc(Dn) ≥ n+ 1.

Therefore,
Zssc(Dn)− Zsc∞(Dn) ≥ n− 1,

and so neither sc ≤Γs c∞ nor the first conditions of sc ≤i
Γs

c∞ are satisfied for any i ∈
{1,2,3}, i.e.,

sc�j
Γs

c∞,

for all j ∈ {0,1,2,3}. Next, for each integer n ≥ 1, consider the the language

Tn = {w$w#w | w ∈ {a,b}n }.

From Theorems 4.1.64.1.6 and 5.3.85.3.8, it follows that

Zssc(Tn) ≤ 12n+ 8 and Zsc∞(Tn) = Ω(2n/4).

Therefore, for a sufficiently large integer n ≥ 1, it holds that

Zsc∞(Tn) > Zssc(Tn),

i.e.,
c∞ �Γs

sc.

Moreover, since, for a sufficiently large integer n ≥ 1, we have that

Zsc∞(Tn)− Zssc(Tn) ≥ n,

it follows that there is no constant c such that

Zsc∞(Tn) ≤ Zssc(Tn) + c,

for each n ≥ 1. Hence,
c∞ �iΓs sc,

for all i ∈ {1,2,3}. Putting things together, we get that

c∞ �
j
Γs

sc,

for each j ∈ {0,1,2,3}. �

114

5.3. Relating Measure Types

Theorem 5.3.16. We have that

sc ≤iΓ c∞, but c∞ �iΓ sc

and
{cc∞,sc∞} ≤i∆ c∞, but c∞ �i∆ {cc∞,sc∞},

for all i ∈ {0,1,2,3}.

PROOF. Due to Lemmas 5.3.25.3.2 and 5.3.65.3.6, we have that

{cc∞,sc∞} ≤∆ c∞ and sc ≤Γ c∞,

and thus also that the first conditions of

{cc∞,sc∞} ≤i∆ c∞ and sc ≤iΓ c∞

are satisfied for all i ∈ {1,2,3}. Moreover, Theorem 5.3.85.3.8 tells us that, for X ∈ ∆, we have
that

Xc∞(Tn) = Ω(2n/4).

On the other hand, by Theorem 4.1.64.1.6 and Lemma 5.1.25.1.2, for Y ∈ Γ and all integers n ≥ 1,
it holds that

Ysc(Tn) = 1, Xcc∞(Tn) ≤ 5, and Xsc∞(Tn) ≤ 5.

This clearly shows that both

{cc∞,sc∞} ≤i∆ c∞ and sc ≤iΓ c∞

hold for each i ∈ {0,1,2,3}.

Moreover, note that, for τ ∈ {cc∞,sc∞} and any sufficiently large integer n ≥ 1, it holds
that

Xc∞(Tn)−Xτ(Ln) ≥ n

and
Yc∞(Tn)−Ysc(Tn) ≥ n.

Therefore, the first conditions of c∞ ≤i∆ {cc∞,sc∞} and c∞ ≤iΓ sc are not satisfied for
any i ∈ {1,2,3}. Furthermore, from Lemma 5.3.95.3.9, it follows that

c∞ �∆ {cc∞,sc∞} and c∞ �Γ sc.

Putting things together, we obtain that

c∞ �i∆ {cc∞,sc∞} and c∞ �iΓ sc,

for each i ∈ {0,1,2,3}. �

115

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

Theorem 5.3.17. We have that

sc∞ ≤i∆\{CF} cc, but cc�i
∆\{CF} sc∞,

for all i ∈ {0,1,2,3}.

PROOF. From Lemmas 5.3.25.3.2, 5.3.65.3.6, and 5.3.95.3.9, it follows that

sc∞ ≤∆\{CF} cc and cc�∆\{CF} sc∞.

Let Z ∈ ∆ \ {CF} and, for each integer n ≥ 0, consider the language

Kn = {a,b}≤n.

Then, on the one hand, since |Kn| = 2n+1 − 1, we have that

Zcc(Kn) ≥ n+ 1

by Lemma 5.2.25.2.2. On the other hand, by Lemma 5.1.25.1.2, we have that

Zsc∞(Kn) ≤ 3.

A similar argument as in the proof of Theorem 5.3.135.3.13 then shows that

sc∞ ≤i∆\{CF} cc

and
cc�i

∆\{CF} sc∞,

for each i ∈ {1,2,3}. �

Theorem 5.3.18. We have that

sc ≤iΓ {cc∞,sc∞}, but {cc∞,sc∞}�iΓ sc and sc�iΓs {cc∞,sc∞},

for all i ∈ {0,1,2,3}.

PROOF. From Lemmas 5.3.25.3.2, 5.3.35.3.3, 5.3.55.3.5, 5.3.65.3.6, and 5.3.95.3.9, it follows that

sc ≤Γ {cc∞,sc∞}, {cc∞,sc∞}�Γ sc, and sc�Γs
{cc∞,sc∞}. (5.20)

Let X ∈ Γ , Zs ∈ Γs, and, for each integer n ≥ 1, consider the language

En = {a1, a2, . . . , an}.

Then, on the one hand, by Theorem 4.1.64.1.6, we have that

Xsc(En) = 1.

On the other hand,
Xcc∞(En) ≥ n and Xsc∞(En) ≥ n,

116

5.3. Relating Measure Types

because every X-grammar with |G| = Xcc∞(En) or |G| = Xsc∞(En) has to satisfy

En ⊆ L(G)∩ {a1, a2, . . . , an}≤1 or En ≤ L(G)∩ {a1, a2, . . . , an}≤1,

respectively. Therefore, it must be the case that L(G) ⊇ {a1, a2, . . . , an}, for otherwise both

En * L(G)∩ {a1, a2, . . . , an}≤1 and En � L(G)∩ {a1, a2, . . . , an}≤1.

Hence,
Xcc∞(En) ≥ n and Xsc∞(En) ≥ n,

because any X-grammar covering the language {a1, a2, . . . , an} needs at least n productions.
As a consequence, since, by Equation 5.205.20, the first conditions of sc ≤i

Γ
{cc∞,sc∞} are

satisfied for each i ∈ {1,2,3}, it follows that

sc ≤iΓ {cc∞,sc∞}

holds for all i ∈ {1,2,3}.

Moreover, note that, for any integer n ≥ 1, it holds that

Xcc∞(En)−Xsc(En) ≥ n− 1 and Xsc∞(En)−Xsc(En) ≥ n− 1.

Therefore, the first conditions of {cc∞,sc∞} ≤iΓ sc are not satisfied for any i ∈ {1,2,3}, i.e.,

{cc∞,sc∞}�iΓ sc,

for each i ∈ {1,2,3}.

Finally, let Zs ∈ Γs and consider, for every integer n ≥ 1, the language

Bn = {a2n+1}.

From Corollary 4.1.144.1.14 and Lemma 5.1.25.1.2, it follows that

Zssc(Bn) ≥ n+ 1, Zscc∞(Bn) ≤ 2, and Zssc∞(Bn) ≤ 2.

Thus, for any integer n ≥ 1, it holds that

Zssc(Bn)− Zscc∞(Bn) ≥ n− 1 and Zssc(Bn)− Zssc∞(Bn) ≥ n− 1.

Therefore, the first conditions of sc ≤i
Γs
{cc∞,sc∞} are not satisfied for any i ∈ {1,2,3}, i.e.,

sc�iΓs {cc∞,sc∞}

for each i ∈ {1,2,3}. �

Theorem 5.3.19. We have that

c∞ �i∆ cc and cc�i
∆\{CF} c∞,

for all i ∈ {0,1,2,3}.

117

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

PROOF. From Lemma 5.3.95.3.9, it follows that

c∞ �∆ cc and cc�∆\{CF} c∞.

Let X∆ ∈ ∆, Z ∈ ∆ \ {CF}, and, for any integer n ≥ 3, consider the language

Kn = {a,b}≤n.

Then, on the one hand, since |Kn| = 2n+1 − 1, we have that

Zcc(Kn) ≥ n+ 1

by Lemma 5.2.25.2.2. On the other hand, by Lemma 5.1.25.1.2, we have that

Zc∞(Kn) ≤ 3.

A similar argument as in the proof of Theorem 5.3.135.3.13 then shows that

cc�i
∆\{CF} c∞,

for all i ∈ {1,2,3}.

Furthermore, recall the finite language

Tn = {w$w#w | w ∈ {a,b}n }

and observe that, since Tn ⊆ {a,b,$,#}3n+2, Lemmas 4.1.44.1.4 and 4.1.54.1.5 and Theorem 5.3.85.3.8
show that

CFcc(Tn) ≤ 5, Zcc(Tn) ≤ 12n+ 8, and X∆c∞(Tn) = Ω(2n/4).

Hence, since, for any sufficiently large integer n ≥ 1, we have that

X∆c∞(Tn)−X∆cc(Tn) ≥ n,

it follows that the first condition of c∞ ≤i∆ cc is not satisfied for any i ∈ {1,2,3}, i.e.,

c∞ �i∆ cc,

for all i ∈ {1,2,3}. �

Remark. Note that the relations introduced in Definition 5.3.15.3.1 are defined based on
(sequences of) finite languages w.r.t. arbitrary alphabets. This means that it is allowed to
construct sequences of finite languages with growing alphabets in order to show that one
of these relations holds.

If we amend Definition 5.3.15.3.1 in such a way that we require that all of the involved
(sequences of) finite languages are defined over a fixed finite alphabet Σ, then we get
four additional relations ≤Σ,X, ≤1

Σ,X, ≤2
Σ,X, and ≤3

Σ,X for each grammar type X ∈ ∆. For

118

5.3. Relating Measure Types

instance, let τ,σ ∈M and X ∈ ∆. Then τ ≤1
Σ,X σ holds if and only if there is a constant c

such that
Xτ(L) ≤ Xσ (L) + c,

for all finite languages L ⊆ Σ∗, and there is a sequence of finite languages (Li)i≥0,
where Li ⊆ Σ∗ for each i ≥ 0, such that

Xσ (Li)−Xτ(Li) ≥ i.

A close inspection of the proof of Theorem 5.3.125.3.12 reveals that we also have

sc ≤i{a,b},{REG,LIN} cc and cc�i{a,b},{REG,LIN} sc,

for each i ∈ {0,1,2,3}. However, the proof of the context-free case of Theorem 5.3.125.3.12 is
not applicable in order to show the respective results for the relations defined w.r.t. a
fixed alphabet. Therefore, we have—among others—the following additional results:

Theorem 5.3.20. Let Σ be a finite alphabet. Then, for all i ∈ {1,2,3}, we have that

1. cc�i
Σ,CF {sc,cc∞,sc∞} and {sc,cc∞,sc∞}�iΣ,CF cc,

2. cc∞ �iΣ,∆ sc∞ and sc∞ �iΣ,∆ cc∞, and

3. sc�i
Σ,Γ {cc∞,sc∞} and {cc∞,sc∞}�iΣ,Γ sc.

PROOF. We start with the proof of claim 11. From Theorem 4.1.64.1.6 and Lemma 5.1.25.1.2, we
get that

CFcc(L) ≤ |Σ|+ 2, CFsc(L) = 1, CFcc∞(L) ≤ |Σ|+ 1, and CFsc∞(L) ≤ |Σ|+ 1,

for all finite languages L over Σ. As a consequence,

τ �iΣ,CF σ,

for all τ,σ ∈ {cc,sc,cc∞,sc∞} and all i ∈ {1,2,3}. This finishes the proof of the first claim.

Next, we prove claim 22. To this end, let X ∈ ∆. Then, from Lemma 5.1.25.1.2, we know that

Xcc∞(L) ≤ |Σ|+ 1 and Xsc∞(L) ≤ |Σ|+ 1,

for all finite languages L over Σ. As a consequence, we get that τ ≤i
Σ,∆ σ does not hold

for all τ,σ ∈ {cc∞,sc∞} and all i ∈ {1,2,3}. This concludes the proof of the second claim.

Finally, we prove claim 33. From Theorem 4.1.64.1.6 and Lemma 5.1.25.1.2, we know that

Xsc(L) = 1, Xcc∞(L) ≤ |Σ|+ 1, and Xsc∞(L) ≤ |Σ|+ 1,

for all finite languages L over Σ and X ∈ Γ . Thus, we get that τ ≤i
Σ,Γ σ does not hold for

all τ,σ ∈ {sc,cc∞,sc∞} and all i ∈ {1,2,3}, i.e.,

τ �iΣ,Γ σ,

for each τ,σ ∈ {sc,cc∞,sc∞} and each i ∈ {1,2,3}.

This concludes the proof of the theorem. �

119

5. RELATING FINITE AND INFINITE COMPLEXITY MEASURES

To conclude this section, we give a list of the remaining open problems.

Open Problem 5.3.21. Let Σ be an alphabet and X ∈ Γs. Do we have that

sc∞ ≤iΣ,X sc or sc∞ �
j
Σ,X sc,

for i, j ∈ {1,2,3}? 4

Open Problem 5.3.22. Let Σ be an alphabet and X ∈ Γs. Do we have that

cc∞ ≤iΣ,X sc or cc∞ �
j
Σ,X sc,

for i, j ∈ {1,2,3}? 4

We have now shown all results depicted in Figure 5555. Similarly to the previous section,
the open problems w.r.t. the relations of Definition 5.3.15.3.1 can be extracted from Figure 5555.

Open Problem 5.3.23. Fill out the unknown relations in Figure 5555. 4

120

CHAPTER 6
Bounds on Language Operations

A
classic problem in formal language theory is concerned with the closure of
classes of languages under certain operations such as intersection, union,
concatenation, etc. [HU79HU79]. A natural way to gain a deeper understanding
of the descriptional complexity of different descriptional systems is to study

the behaviour of their complexities when different language operations are applied. A
number of such investigations has been carried out with respect to both the number of
states and the number of transitions needed by a deterministic and nondeterministic finite
automaton in order to accept a given language [Bir92Bir92, YZS94YZS94, CSY00CSY00, CCISY01CCISY01, Yu01Yu01,
HK03HK03, Ell04Ell04, GH05GH05, JJS05JJS05, Jir05Jir05, DS07DS07, HS07HS07, HK09HK09, GMRY16GMRY16]. It is worth mentioning
that the operational exact production complexity of strict regular grammars is related
to the operational transition complexity of NFAs. More precisely, every strict regular
grammar G with p productions can be converted into an NFA A with p transitions
such that L(A) = L(G) and vice versa.11 Within the realm of context-free grammars,
among others, investigations regarding the exact nonterminal and the exact production
complexity of different language operations for arbitrary languages have been carried
out in [Geo96Geo96, DS08DS08, DH12bDH12b, DH12aDH12a, Das17Das17]. Particularly, in [DH12bDH12b], the authors
discussed the range of applying, among others, the operations union and concatenation
to two (or a finite number of) possibly infinite languages. For an r-ary operation ⊕ under
which the family of context-free languages is closed and natural numbers n1,n2, . . . ,nr ,
the authors of [DH12bDH12b] defined the range

g⊕(n1,n2, . . . ,nr)

as the set of all natural numbers k such that there are context-free languages Li , for 1 ≤
i ≤ r, such that

Prod(Li) = ni and Prod(⊕(L1,L2, . . . ,Lr)) = k,

1See, e.g., the proofs of [HU69HU69, Theorems 3.4 and 3.5].

121

6. BOUNDS ON LANGUAGE OPERATIONS

where Prod(L) = min{ |G| | G ∈ CF and L(G) = L }.22 For unary operations, the ranges were
determined completely, whereas the problems for union and concatenation were almost
completely and partially solved, respectively. However, in the aforementioned paper, they
did not restrict themselves to finite languages, but showed, e.g., that, for X ∈ Γ and two
finite ε-free languages L1 and L2 defined over disjoint alphabets, the following statement
holds:

Xc(L1 ∪L2) = Xc(L1) + Xc(L2).

In this chapter, we will prove upper and lower bounds on the production complexity of
applying the classic language operations intersection, union, and concatenation to finite
languages. However, we will not restrict ourselves to pairs of finite languages which are
defined over disjoint alphabets. The results of this section are summarised in Figure 6161,
where bold font with gray background means that we have matching upper and lower
bounds w.r.t. a fixed alphabet, and non-bold font means that the bounds are matching
only w.r.t. a growing alphabet. In the cases in which we have not yet obtained any bounds
for arbitrary finite languages, the figure contains a question mark “?” as entry. Moreover,
the entry “-” reflects the fact that the context-free cover complexity is a bounded measure
(see Chapter 33) and thus it is of little interest to consider the bounds w.r.t. a fixed alphabet.
This stems from the fact that the context-free cover complexity is always constant in the
size of the alphabet of the covered language. What we mean by matching upper and
lower bounds (or, equivalently, that the upper bound is tight) w.r.t. a complexity measure
is that we can show the existence of a finite language whose complexity is at least as high
as the obtained upper bound. For the remainder of this section, let Λ = ∆ \ {CF}.

Some of the results in this chapter have been published in [GHW18GHW18, HW18aHW18a, HW19HW19].

CF LIN REG SLIN SREG

Xc(L1 ∩L2) ? ? ? ? ?

Xc(L1 ∪L2) c1 + c2 c1 + c2 c1 + c2 c1 + c2 c1 + c2

Xc(L1L2) c1 + c2 min{d1 + c2, c1 + d2 } c1 + c2 min{d1 + c2, c1 + d2 } c1 + c2

Xcc(L1 ∩L2) - min{cc,1,cc,2 } min{cc,1,cc,2 } min{cc,1,cc,2 } min{cc,1,cc,2 }

Xcc(L1 ∪L2) - cc,1 + cc,2 cc,1 + cc,2 cc,1 + cc,2 cc,1 + cc,2

Xcc(L1L2) - min{dc,1 + cc,2, cc,1 + dc,2 } cc,1 + cc,2 min{dc,1 + cc,2, cc,1 + dc,2 } cc,1 + cc,2

Figure 61: Summary of descriptional complexity results for language operations. For i ∈
{1,2}, let ci = Xc(Li), di = (S)REGc(Li), cc,i = Xcc(Li), and dc,i = (S)REGcc(Li).

2As opposed to the definition of CFc(L), the definition of Prod(L) does not require that the language L is
finite.

122

6.1. Intersection

6.1 Intersection

The bound on the cover complexity of intersecting two finite languages L1 and L2
corresponds to the minimum of the cover complexities of L1 and L2, and this bound is
tight as shown in Theorems 6.1.16.1.1 and 6.1.26.1.2. For the exact complexity of intersection,
the upper bound corresponds to the maximum of the exact complexities of L1 and L2,
provided that L1 is a subset of L2. However, at this point, we do not know whether this
bound is actually tight.

We start with the proof of the upper bound on the cover complexity of intersection.

Theorem 6.1.1. Let X ∈Λ and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

Xcc(L1 ∩L2) ≤min{Xcc(L1), Xcc(L2) }.

PROOF. For i ∈ {1,2} and X ∈Λ, let Gi be a minimal X-grammar with L(Gi) ⊇ Li , i.e.,

|Gi | = Xcc(Li).

Then, clearly,
L(Gi) ⊇ L1 ∩L2.

By choosing a grammar Gi out of G1 and G2 with

|Gi | = min{ |G1|, |G2| },

we get that
Xcc(L1 ∩L2) ≤min{Xcc(L1), Xcc(L2) }.

This concludes the proof of the theorem. �

In order to show that the bound of Theorem 6.1.16.1.1 is tight w.r.t. a fixed alphabet, we can use
the fact that Xcc, for X ∈Λ, is an unbounded complexity measure (see Corollary 3.3.23.3.2).

Theorem 6.1.2. Let X ∈Λ. Then there is an alphabet Σ such that for all integers n1,n2 ≥ 1,
there are finite languages L1,L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ n1 and Xcc(L2) ≥ n2 such that

Xcc(L1 ∩L2) ≥min{Xcc(L1), Xcc(L2) }.

PROOF. Let Σ be an arbitrary finite alphabet and let n1,n2 ≥ 1 be integers such that, with-
out loss of generality, n2 ≥ n1. From Corollary 3.3.23.3.2 and by definition of unboundedness,
it follows that there are languages L1,L2 ∈ Pfin(Σ∗) with

Xcc(L1) ≥ n1 and Xcc(L2) ≥ n2.

Next, we define the language
L′2 = L1 ∪L2.

123

6. BOUNDS ON LANGUAGE OPERATIONS

Then

Xcc(L′2) ≥ Xcc(L1) ≥ n1,

for otherwise, since L′2 ⊇ L1, there would be a grammar covering L1 with less than Xcc(L1)
productions. Thus, we clearly have that

Xcc(L1 ∩L′2) = Xcc(L1) = min{Xcc(L1), Xcc(L′2) }.

This proves the stated claim. �

For the exact complexity of the intersection of two finite languages we get a slightly
different upper bound. Note that this upper bound only applies to pairs of finite languages
where one language is contained in the other.

Theorem 6.1.3. Let X ∈ ∆ and L1,L2 ∈ Pfin(Σ∗) be finite languages with L1 ⊆ L2. Then

Xc(L1 ∩L2) ≤max{Xc(L1), Xc(L2) }.

PROOF. For i ∈ {1,2} and X ∈ ∆, let Gi be a minimal X-grammar with L(Gi) = Li , i.e.,

|Gi | = Xc(Li).

Then, since

L1 ⊆ L2,

we have that

L(G1) = L1 = L1 ∩L2.

As a consequence,

Xc(L1 ∩L2) = Xc(L1) ≤max{Xc(L1), Xc(L2) }.

This finishes the proof of the theorem. �

Since we do not know whether the bound obtained in the previous theorem is tight, we
have to leave open the following problem.

Open Problem 6.1.4. Is the upper bound of Theorem 6.1.36.1.3 tight? 4

It still remains to settle the exact complexity bounds of intersection if neither L1 is
contained in L2 nor L2 is contained in L1.

Open Problem 6.1.5. Let X ∈ ∆ and L1,L2 ∈ Pfin(Σ∗) be finite languages with L1 * L2
and L2 * L1. Is there a tight upper bound on Xc(L1 ∩L2) (w.r.t. a fixed alphabet)? 4

124

6.2. Union

6.2 Union

The bound on the (exact and cover) complexity of the union of two finite languages L1
and L2 corresponds to the sum of the respective complexities of L1 and L2. In the case of
the exact complexity, the bound is even tight w.r.t. a fixed alphabet for all grammar types
in ∆. This is shown in Theorems 6.2.56.2.5 and Corollaries 6.2.26.2.2 and 6.2.96.2.9. We get a slightly
different picture for the state of the tightness results in the case of cover complexity. Here,
we have that the bound is only tight w.r.t. a fixed alphabet for strict regular, regular, and
strict linear grammars, as shown in Theorems 6.2.16.2.1, 6.2.76.2.7, and 6.2.86.2.8.

We start with the proof of the upper bound on the cover complexity of union.

Theorem 6.2.1. Let X ∈Λ and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

Xcc(L1 ∪L2) ≤ Xcc(L1) + Xcc(L2).

PROOF. Let X ∈ Λ and, for i ∈ {1,2}, let Gi = (Ni ,Σi , Pi ,Si) be a minimal X-grammar
with L(Gi) ⊇ Li , i.e.,

|Gi | = Xcc(Li).

Furthermore, assume thatN1∩N2 = ∅. By minimality of Gi and since, by Lemma 3.3.83.3.8, we
can also assume that Gi is acyclic, Si does not occur on the right-hand side of a production
in Pi . Let S <N1 ∪N2 be a fresh nonterminal; we define G = (N1 ∪N2 ∪ S,Σ1 ∪Σ2, P ,S),
where

P = {S→ α | S1→ α ∈ P1 or S2→ α ∈ P2 }
∪ {A→ α ∈ P1 | A , S1 } ∪ {A→ α ∈ P2 | A , S2 }.

Clearly, we have

L(G) = L(G1)∪L(G2) ⊇ L1 ∪L2 and |G| = |G1|+ |G2| = Xcc(L1) + Xcc(L2),

that is,
Xcc(L1 ∪L2) ≤ Xcc(L1) + Xcc(L2).

Moreover, G1,G2 ∈ X implies G ∈ X. �

The construction defined in the proof of Theorem 6.2.16.2.1 can be used without any amend-
ment in order to obtain an analogous upper bound on the exact complexity of finite
languages that also holds for context-free grammars. We thus get:

Corollary 6.2.2. Let X ∈ ∆ and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

Xc(L1 ∪L2) ≤ Xc(L1) + Xc(L2).

In order to show that the upper bound obtained in Corollary 6.2.26.2.2 is tight for the
non-strict grammar types, we need to show the following Lemma 6.2.36.2.3—which states
that if we decompose a finite language that is incompressible w.r.t. a cover complexity
measure into a disjoint union of two languages, then these two disjoint languages must
be incompressible w.r.t. that cover complexity measure as well.

125

6. BOUNDS ON LANGUAGE OPERATIONS

Lemma 6.2.3. Let X ∈ {REG,LIN} and L ∈ Pfin(Σ∗) be a finite language with Xcc(L) = |L|.
Moreover, let L1,L2 ∈ Pfin(Σ∗) be disjoint finite languages such that L = L1 ∪ L2. Then we
have that

Xcc(L1) = |L1| and Xcc(L2) = |L2|.

PROOF. Towards contradiction, assume, without loss of generality, that

Xcc(L1) < |L1|.

Furthermore, since there is a trivial grammar covering L2 with |L2| productions, it clearly
holds that

Xcc(L2) ≤ |L2|.

Thus, from L1 ∪L2 = L and Theorem 6.2.16.2.1, it follows that

Xcc(L) = Xcc(L1 ∪L2) ≤ Xcc(L1) + Xcc(L2) < |L1|+ |L2| = |L|.

But this means that
Xcc(L) < |L|,

a contradiction. �

Since, for X ∈ Γ and all finite languages L, Xcc(L) = |L| implies Xc(L) = |L|, the result of
Lemma 6.2.36.2.3 also holds for the exact complexity measures w.r.t. the non-strict grammar
types.

Corollary 6.2.4. Let X ∈ Γ and L ∈ Pfin(Σ∗) be a finite language with Xc(L) = |L|. Moreover,
let L1,L2 ∈ Pfin(Σ∗) be disjoint finite languages such that L = L1 ∪L2. Then we have that

Xc(L1) = |L1| and Xc(L2) = |L2|.

Recall the finite language
Ln = {aibici | 1 ≤ i ≤ n }

with
Xc(Ln) = |Ln| = n,

for X ∈ Γ (see Equation 4.24.2). Since Ln can be defined in terms of the union of two disjoint
finite languages, we can use it in conjunction with Corollary 6.2.46.2.4 in order to show that
the upper bound of Corollary 6.2.26.2.2 is tight:

Theorem 6.2.5. Let X ∈ Γ . Then there is an alphabet Σ such that for all integers n1,n2 ≥ 1,
there exist finite languages L1,L2 ∈ Pfin(Σ∗) with Xc(L1) = n1 and Xc(L2) = n2 such that

Xc(L1 ∪L2) ≥ Xc(L1) + Xc(L2).

126

6.2. Union

PROOF. Let X ∈ Γ and Σ = {a,b,c}. For all integers n1,n2 ≥ 1, let

K = {aibici | 1 ≤ i ≤ n1 +n2 }.

Moreover, let
K1 = {aibici | 1 ≤ i ≤ n1 } and K2 = K \K1.

Clearly, the intersection satisfies both

K1 ∩K2 = ∅ and K1 ∪K2 = K.

Since, by Equation 4.24.2, both of the languages K and K1 are CF-incompressible, we have
that

Xc(K) = |K | = n1 +n2 and Xc(K1) = |K1| = n1.

Thus, by Corollary 6.2.46.2.4, it follows that

Xc(K2) = |K2| = n2 = |K | − |K1|.

Consequently,
Xc(K1 ∪K2) = Xc(K) = n1 +n2 = Xc(K1) + Xc(K2).

This finishes the proof of the stated claim. �

If we consider growing alphabets, then we can show that the above upper bound on the
cover complexity of union is tight for all grammar types in Λ.

Theorem 6.2.6. Let X ∈Λ. Then, for all integers n1,n2 ≥ 1, there exists a finite alphabet Σ
and finite languages L1,L2 ∈ Pfin(Σ∗) with Xcc(L1) = n1 and Xcc(L2) = n2 such that

Xcc(L1 ∪L2) ≥ Xcc(L1) + Xcc(L2).

PROOF. Let n1,n2 ≥ 1 be integers. Then, we define the alphabet

Σ = {a1, a2, . . . , an1
,b1,b2, . . . ,bn2

}

as well as the languages

L1 = {a1, a2, . . . , an1
} and L2 = {b1,b2, . . . , bn2

},

i.e.,
L1 ∪L2 = Σ.

Moreover, we clearly have that

Xcc(L1) = n1 and Xcc(L2) = n2,

and that the language
L1 ∪L2

can only be covered by a trivial grammar. Therefore,

Xcc(L1 ∪L2) = n1 +n2 = Xcc(L1) + Xcc(L2).

This proves the stated claim. �

127

6. BOUNDS ON LANGUAGE OPERATIONS

Now, we prove—w.r.t. a fixed alphabet—a lower bound on the strict linear cover com-
plexity of union that matches the upper bound of Theorem 6.2.16.2.1. To do so, we use the
fact that in the case of strict linear grammars, there is a connection between the number
of productions and the length of a longest word in the generated finite language (see
Lemma 4.1.124.1.12).

Theorem 6.2.7. There exists a finite alphabet Σ such that for all integers n1,n2 ≥ 1, there
are finite languages L1,L2 ∈ Pfin(Σ∗) with SLINcc(L1) = n1 and SLINcc(L2) = n2 such that

SLINcc(L1 ∪L2) ≥ SLINcc(L1) + SLINcc(L2).

PROOF. Let Σ = {a,b} and, for n1,n2 ≥ 1, we define the finite language

L = {a2n1−1,b2n2−1}.

Moreover, let
L1 = {a2n1−1} and L2 = {b2n2−1}.

Then we clearly have that
L = L1 ∪L2.

Furthermore, from Lemma 4.1.124.1.12, we get that

SLINcc(L1) ≥
⌊2n1 − 1

2
+ 1

⌋
= n1 and SLINcc(L2) ≥

⌊2n2 − 1
2

+ 1
⌋

= n2.

Next, consider the two strict linear grammars G1 = (N1, {a}, P1,S1) and G2 = (N2, {b}, P2,S2)
with the following sets of productions P1 and P2:

S1→ aA2a S2→ bB2b

A2→ aA3a B2→ bB3b

... and
...

An1−1→ aAn1
a Bn2−1→ bBn2

b

An1
→ a Bn2

→ b,

respectively. Clearly,
L(G1) = L1 and L(G2) = L2,

and therefore
SLINcc(L1) ≤ n1 and SLINcc(L2) ≤ n2.

Moreover, since the languages L1 and L2 do not share a common letter, there can be no
production that is used to derive words from both L1 and L2. Thus, we must have that

SLINcc(L) = SLINcc(L1 ∪L2) ≥ SLINcc(L1) + SLINcc(L2).

This proves the stated claim. �

128

6.2. Union

Finally, using segmented languages as defined in Section 4.34.3 and applying Theorem 4.3.114.3.11,
we can show a lower bound on the (strict) regular cover complexity of union w.r.t. a
fixed alphabet that matches the upper bound obtained in Theorem 6.2.16.2.1. At this point,
one may ask why the regular cover-incompressible sequence constructed in [EH18EH18] is
not suitable for the proof of the following lower bound. The simple answer is that the
union of two sequences of this kind does not necessarily result in a sequence of this kind
again. The more general cover-incompressible sequence of Section 4.34.3 allows, however,
to define a cover-incompressible sequence that corresponds to the union of two such
cover-incompressible sequences.

Theorem 6.2.8. Let X ∈ {SREG,REG}. Then there exists an alphabet Σ such that for
all integers n1,n2 ≥ 1, there are finite languages L1,L2 ∈ Pfin(Σ∗) with Xcc(L1) ≥ n1
and Xcc(L2) ≥ n2 such that

Xcc(L1 ∪L2) ≥ Xcc(L1) + Xcc(L2).

PROOF. Let Σ1 = {a,b}, Σ2 = {c,d}, and Σ = Σ1 ∪Σ2. Moreover, let, for each integer n ≥ 1,

an,1 = an,2 = 2dlog(n)e and an = an,1 + an,2.

We define two sequences of finite languages (L1,n)n≥1 and (L2,n)n≥1 with

L1,n = [`(n), k(n),Σ`(n)
1] and L2,n = [`(n), k(n),Σ`(n)

2],

for each integer n ≥ 1, based on:

`(n) :=
⌈
log(n)

⌉
=

⌈
log(an,1)

⌉
=

⌈
log(an,2)

⌉
and

k(n) :=
⌈

9 · an
`(n) + 1

⌉
≥

⌈
9 · an,1
`(n) + 1

⌉
=

⌈
9 · an,2
`(n) + 1

⌉
.

Recall that, for i ∈ {1,2},

Li,n = [`(n), k(n),Σ`(n)
i] = { (sw)k(n) | w ∈ Σ`(n)

i }.

Thus, clearly, Li,n is a (k(n), `(n))-segmented language, for i ∈ {1,2}. Now, let us consider
the sequence of finite languages (Ln)n≥1 with

Ln = [`(n), k(n),Σ`(n)
1 ∪Σ`(n)

2].

Clearly,
`(n) ≤

⌈
log(an)

⌉
,

and, moreover,

Ln = [`(n), k(n),Σ`(n)
1 ∪Σ`(n)

2] = { (sw)k(n) | w ∈ Σ`(n)
1 ∪Σ`(n)

2 }.

129

6. BOUNDS ON LANGUAGE OPERATIONS

Thus, clearly, Ln is a (k(n), `(n))-segmented language. By Theorem 4.3.114.3.11, the se-
quences (L1,n)n≥1, (L2,n)n≥1, and (Ln)n≥1 are regular cover-incompressible. Furthermore,
we have that

L1,n ∩L2,n = ∅ and Ln = L1,n ∪L2,n,

for all integers n ≥ 1.

By definition of regular cover-incompressibility, without loss of generality, there is an
integer M such that for all integers n ≥M, we have that

REGcc(L1,n) = |L1,n| ≥ n and REGcc(L2,n) = |L2,n| ≥ n

and
REGcc(Ln) = |Ln| = |L1,n|+ |L2,n| ≥ n+n.

Let n1,n2 ≥ 1 and m ≥M be integers such that m ≥ n1,n2. Then

REGcc(L1,m) ≥m ≥ n1 and REGcc(L2,m) ≥m ≥ n2.

Consequently,

REGcc(Lm) = REGcc(L1,m ∪L2,m) = |Lm| = |L1,m|+ |L2,m| = REGcc(L1,m) + REGcc(L2,m).

For the SREG-case, let Σ = {a,b} and, for all integers n1,n2 ≥ 1, we define the finite
languages

L1 = {an1} and L2 = {bn2}.

Moreover, let
L = L1 ∪L2.

Then, from Lemma 4.1.124.1.12, we get that

SREGcc(L1) ≥ n1 and SREGcc(L2) ≥ n2.

Since the words in L1 and L2 do not share a common letter, there can be no production
that is used to derive words from both L1 and L2. Thus, we must have that

SREGcc(L) = SREGcc(L1 ∪L2) ≥ SREGcc(L1) + SREGcc(L2).

This proves the stated claim. �

Since every grammar that generates a given language also covers that language, we
immediately get the following result from the proofs of Theorems 6.2.76.2.7 and 6.2.86.2.8.

Corollary 6.2.9. Let X ∈ Γs. Then there exists an alphabet Σ such that for all inte-
gers n1,n2 ≥ 1, there exist finite languages L1,L2 ∈ Pfin(Σ) with Xc(L1) ≥ n1 and Xc(L2) ≥ n2
such that

Xc(L1 ∪L2) ≥ Xc(L1) + Xc(L2).

130

6.3. Concatenation

6.3 Concatenation

In contrast to union, there is no uniform upper bound on the exact and cover complexity
of concatenating two finite languages for all grammar types under consideration. The
reason for this is that the method used to combine two given regular grammars into a
new regular grammar which generates (or covers) the concatenation of their generated
(or covered, respectively) languages does not necessarily give us a linear grammar again
if we are given two linear grammars.

As a prerequisite for the proof of the upper bounds on the (strict) linear exact and cover
complexity of the concatenation of two finite languages, we need to show that every
left-linear grammar can be transformed into an equivalent right-linear grammar (and
vice versa) without increasing the number of productions.

Proposition 6.3.1. Let G be a left-linear grammar generating a finite language. Then there
is a right-linear grammar G′ with L(G′) = L(G) and |G′ | ≤ |G|.

PROOF. Let G = (N,Σ, P ,S) be an arbitrary left-linear grammar generating a finite lan-
guage. Since G generates a finite language, we can assume, in light of Lemma 3.3.83.3.8,
that G is acyclic, i.e., S does not occur on the right-hand side of any production in G.

Now, we construct the grammar G′ = (N ′ ,Σ, P ′ ,S) from G as follows:

• if S→ w ∈ P , then S→ w ∈ P ′,

• if A→ w ∈ P , then S→ wA ∈ P ′,

• if B→ Aw ∈ P , then A→ wB ∈ P ′, and

• if S→ Aw ∈ P , then A→ w ∈ P ′,

where A,B ∈N and w ∈ Σ∗. Clearly, the grammar G′ is right-linear and satisfies

|G′ | ≤ |G|.

Moreover,
L(G′) = L(G)

follows from the proof of [Rév91Rév91, Theorem 3.7]. �

By inverting the steps of the procedure used in the proof of Proposition 6.3.16.3.1, it follows
that we can also transform each right-linear into an equivalent left-linear grammar
without increasing the number of productions:

Corollary 6.3.2. Let G be a right-linear grammar generating a finite language. Then there
is a left-linear grammar G′ with L(G′) = L(G) and |G′ | ≤ |G|.

Now, we are ready for the proof of the upper bounds on the exact and cover complexity
of concatenation.

131

6. BOUNDS ON LANGUAGE OPERATIONS

Theorem 6.3.3. Let X ∈ {SREG,REG} and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

1. Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),

2. LINcc(L1L2) ≤min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },

3. SLINcc(L1L2) ≤min{SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }.

PROOF. For i ∈ {1,2}, let Gi = (Ni ,Σi , Pi ,Si) be a minimal X-grammar with L(Gi) ⊇ Li , i.e.,

|Gi | = Xcc(Li),

and assume, without loss of generality, that N1 ∩N2 = ∅.

In order to show 11., let X ∈ {SREG,REG} and define the X-grammar GX = (N1 ∪N2,Σ1 ∪
Σ2, PX,S1), where

PX = {A→ wS2 | A→ w ∈ P1 and w ∈ Σ∗ } ∪ {A→ α ∈ P1 | α < Σ∗ } ∪ P2.

Note that in the strict regular case, the above construction of GSREG preserves strict
regularity because in a strict regular grammar the right-hand sides of productions without
nonterminals are of length at most 1, and thus appending a single nonterminal to the
right-hand side of such a production results again in a strict regular production. As a
consequence, the above construction also works for strict regular grammars. Thus,

L(GX) = L(G1)L(G2) ⊇ L1L2 and |GX| = |G1|+ |G2| = Xcc(L1) + Xcc(L2),

which shows that
Xcc(L1L2) ≤ Xcc(L1) + Xcc(L2),

for all L1,L2 ∈ Pfin(Σ∗).

In order to show 22. and 33., let G(S)REG,i = (N(S)REG,i ,Σi , P(S)REG,i ,S(S)REG,i) and G(S)LIN,i =
(N(S)LIN,i ,Σi , P(S)LIN,i ,S(S)LIN,i) be minimal (S)REG- and (S)LIN-grammars covering Li , re-
spectively, for i ∈ {1,2}. That is,

L(G(S)REG,i) ⊇ Li and L(G(S)LIN,i) ⊇ Li

as well as
|G(S)REG,i | = (S)REGcc(Li) and |G(S)LIN,i | = (S)LINcc(Li).

It remains to show that there are (strict) linear grammars G1 and G2 such that

L(G1) ⊇ L1L2 and L(G2) ⊇ L1L2,

and

|G1| ≤ (S)REGcc(L1) + (S)LINcc(L2) and |G2| ≤ (S)LINcc(L1) + (S)REGcc(L2).

132

6.3. Concatenation

To this end, assume, without loss of generality, that N(S)REG,i ∩N(S)LIN,j = ∅, for i , j.
Furthermore, we assume that G(S)REG,1 is a right-linear and G(S)REG,2 is a left-linear
grammar. This assumption is needed for the following definition of the grammars G1
and G2, but it constitutes no restriction since, by Proposition 6.3.16.3.1 and Corollary 6.3.26.3.2,
every right-linear grammar can be transformed into a left-linear one (and vice versa)
without increasing the number of productions. Next, we define two (strict) linear
grammars

G1 = (N(S)REG,1 ∪N(S)LIN,2,Σ1 ∪Σ2, P1,S(S)REG,1)

and
G2 = (N(S)LIN,1 ∪N(S)REG,2,Σ1 ∪Σ2, P2,S(S)REG,2),

where

P1 = {A→ wS(S)LIN,2 | A→ w ∈ P(S)REG,1 and w ∈ Σ∗ }
∪ {A→ α ∈ P(S)REG,1 | α < Σ∗ } ∪ P(S)LIN,2

and

P2 = {A→ S(S)LIN,1w | A→ w ∈ P(S)REG,2 and w ∈ Σ∗ }
∪ {A→ α ∈ P(S)REG,2 | α < Σ∗ } ∪ P(S)LIN,1.

Clearly,
|G1| ≤ |G(S)REG,1|+ |G(S)LIN,2| and |G2| ≤ |G(S)LIN,1|+ |G(S)REG,2|.

Let wi ∈ Li . Then, for i ∈ {1,2}, we have that

S(S)REG,i ⇒∗ wi and S(S)LIN,i ⇒∗ wi .

Thus, by definition of G1 and G2, we get

S(S)REG,1⇒∗G1
w1S(S)LIN,2⇒∗G1

w1w2

and
S(S)REG,2⇒∗G2

S(S)LIN,1w2⇒∗G2
w1w2,

that is,
w1w2 ∈ L(Gi),

for i ∈ {1,2}. Therefore,
L(Gi) ⊇ L1L2,

for i ∈ {1,2}. Thus, it follows that

|G1| ≤ (S)REGcc(L1) + (S)LINcc(L2) and |G2| ≤ (S)LINcc(L1) + (S)REGcc(L2).

Finally, since we have both

(S)LINcc(L1L2) ≤ |G1| and (S)LINcc(L1L2) ≤ |G2|,

133

6. BOUNDS ON LANGUAGE OPERATIONS

we choose the grammar with the fewest number of productions out of G1 and G2. This
shows that both

LINcc(L1L2) ≤min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) }

and

SLINcc(L1L2) ≤min{SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }

hold. �

The construction defined in the proof of Theorem 6.3.36.3.3 can be used without any amend-
ment in order to obtain an analogous upper bound on the exact complexity of finite
languages for the grammar types in Λ. Therefore, we only have to consider the case for
context-free grammars in the proof of the following result.

Theorem 6.3.4. Let X ∈ {SREG,REG,CF } and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

1. Xc(L1L2) ≤ Xc(L1) + Xc(L2),

2. LINc(L1L2) ≤min{REGc(L1) + LINc(L2), LINc(L1) + REGc(L2) },

3. SLINc(L1L2) ≤min{SREGc(L1) + SLINc(L2), SLINc(L1) + SREGc(L2) }.

PROOF. For i ∈ {1,2}, letGi = (Ni ,Σi , Pi ,Si) be a minimal context-free grammar with L(Gi) =
Li , i.e.,

|Gi | = CFc(Li).

Assume, without loss of generality, N1 ∩N2 = ∅, and define the grammar G = (N1 ∪
N2,Σ1 ∪Σ2, P ,S1), where

P = {S1→ αS2 | S1→ α ∈ P1 } ∪ {A→ α ∈ P1 | A , S1 } ∪ P2.

Clearly, G is a context-free grammar with

L(G) = L(G1)L(G2) = L1L2 and |G| = |G1|+ |G2| = CFc(L1) + CFc(L2).

The cases for the remaining grammar types are an immediate consequence of the proof
of Theorem 6.3.36.3.3. �

Now, we show that a grammar covering the concatenation of two disjoint alphabets
(each containing at least two letters) needs at least as many productions as there are
elements in their (disjoint) union. This lemma will play an important role in the proof of
Theorem 6.3.66.3.6.

Lemma 6.3.5. Let Σ1, Σ2, and Σ be finite alphabets with Σ = Σ1]Σ2 and |Σ1|, |Σ2| ≥ 2.
Then, for all context-free grammars G with L(G) ⊇ Σ1Σ2, we have that |G| ≥ |Σ1|+ |Σ2|.

134

6.3. Concatenation

PROOF. In light of Lemma 3.3.83.3.8, we can assume, without loss of generality, that all
grammars in this proof are acyclic. We proceed by induction on |Σ|.

• Base case: Let |Σ| = 4, i.e., |Σ1| = |Σ2| = 2, and assume, without loss of generality,
that

Σ = {a1, a2}] {b1,b2}.

Then
Σ1Σ2 = {a1b1, a1b2, a2b1, a2b2}.

Towards contradiction, assume that there is some context-free grammar G =
(N,Σ, P ,S) with

L(G) ⊇ Σ1Σ2 and |G| ≤ 3.

Clearly, G cannot be a trivial grammar, for otherwise G could not cover Σ1Σ2. Thus,
we can assume that G contains at least two distinct nonterminals S and A. By
Lemma 4.2.14.2.1, it follows that there are productions

A→ v1,A→ v2 ∈ P with v1,v2 ∈ (N ∪Σ)∗ and v1 , v2,

which means that |G| ≥ 3. Hence, P must be of the form

{S→ α, A→ v1, A→ v2 },

where α ∈ (N ∪Σ)∗ and v1,v2 ∈ Σ∗, as G is acyclic. We distinguish the following
cases:

If α = A, then |L(G)| = 2, i.e., G cannot cover Σ1Σ2.

If α = An, for n ≥ 2, then we further distinguish the following cases:

1. If v1 = av′1 and v2 = a′v′2, for a,a′ ∈ Σ1 and v′1,v
′
2 ∈ Σ∗. In this case, we cannot

derive words of length 2 ending with some b ∈ Σ2 (even if both v′1 and v′2 do
so).

2. If v1 = bv′1 and v2 = b′v′2, for b,b′ ∈ Σ2 and v′1,v
′
2 ∈ Σ∗. In this case, we can

only derive words starting with b or b′, but these kinds of words do not occur
in Σ1Σ2.

3. If v1 = av′1 and v2 = bv′2, for a ∈ Σ1, b ∈ Σ2, and v′1,v
′
2 ∈ Σ∗. In this case, we

can only derive words starting with a fixed a ∈ Σ1 or b ∈ Σ2. As a consequence,
we cannot derive words in Σ1Σ2 that start with some a′ ∈ Σ1 such that a , a′.

4. If v1 = bv′1 and v2 = av′2, for a ∈ Σ1, b ∈ Σ2, and v′1,v
′
2 ∈ Σ∗. Symmetric to the

previous case.

5. If v1 = ε and v2 = cv′2, for c ∈ Σ and v′2 ∈ Σ∗. In this case, we can only derive
words starting with a fixed c ∈ Σ. As a consequence, we cannot derive words
in Σ1Σ2 that start with some a ∈ Σ1 such that a , c.

6. If v1 = cv′1 and v2 = ε, for c ∈ Σ and v′1 ∈ Σ∗. Symmetric to the previous case.

135

6. BOUNDS ON LANGUAGE OPERATIONS

If α has w′ ∈ Σ+ as subword, then G cannot derive all words occurring in Σ1Σ2,
because there is no w′ ∈ Σ+ which is a subword of all w ∈ Σ1Σ2. Hence, we have
that |G| ≥ 4.

This concludes the base case.

• Induction step: Assume, without loss of generality, that Σ = Σ1]Σ2 with

Σ2 = Σ′2] {bn+1},

where
|Σ1| =m and |Σ2| = n+ 1.

Towards contradiction, assume that there is some CF-grammar G = (N,Σ, P ,S) with

L(G) ⊇ Σ1Σ2 and |G| < m+n+ 1.

Next, we define the language
L′ = Σ1Σ

′
2

and let
Σ(L′) = Σ1]Σ′2

denote the alphabet induced by the words in L′. Clearly,

|Σ(L′)| =m+n,

and we can apply the induction hypothesis to obtain that for any CF-grammar G′

with L(G′) ⊇ L′, we have that |G′ | ≥m+n.

Let G′′ = (N,Σ \ {bn+1}, P ′′ ,S) be a CF-grammar obtained from G by defining

P ′′ = P \ {A→ α1bn+1α2 ∈ P | α1,α2 ∈ (N ∪Σ)∗ }.

Then it follows that L(G′′) ⊇ L′, since bn+1 < Σ(L′), and any production in which bn+1
occurs on the right-hand side can only be used to derive words containing bn+1.

Note that any grammar covering Σ1Σ2 must contain at least one production whose
right-hand side contains the letter bn+1. Thus,

|G′′ | < m+n,

which contradicts the induction hypothesis. The case that Σ = Σ1]Σ2 with

Σ1 = Σ′1] {an+1},

where
|Σ1| =m+ 1 and Σ2 = n

can be shown using an analogous argument.

136

6.3. Concatenation

This finishes the proof of the Lemma. �

If we consider growing alphabets, then we are able to show that the bounds of Theo-
rem 6.3.36.3.3 are tight.

Theorem 6.3.6. Let X ∈ {SREG,REG }. Then, for all integers n1,n2 ≥ 2, there is a finite
alphabet Σ and finite languages L1,L2 ∈ Pfin(Σ∗) with Xcc(L1) = n1 and Xcc(L2) = n2 such
that

1. Xcc(L1L2) ≥ Xcc(L1) + Xcc(L2),

2. LINcc(L1L2) ≥min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) },

3. SLINcc(L1L2) ≥min{SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }.

PROOF. Let X ∈ {SREG,REG}, n1,n2 ≥ 2 be integers, and define the alphabet

Σ = {a1, a2, . . . , an1
,b1,b2, . . . , bn2

}

as well as the languages

L1 = {a1, a2, . . . , an1
} and L2 = {b1,b2, . . . , bn2

}.

Then, clearly, we have that

Xcc(L1) = LINcc(L1) = SLINcc(L1) = n1 and Xcc(L2) = LINcc(L2) = SLINcc(L2) = n2.

Thus, since every X-grammar is context-free, we have, by Lemma 6.3.56.3.5, that

Xcc(Σ) = Xcc(L1L2) ≥ n1 +n2 = Xcc(L1) + Xcc(L2)

as well as

LINcc(L1L2) ≥ n1 +n2 = min{REGcc(L1) + LINcc(L2), LINcc(L1) + REGcc(L2) }

and

SLINcc(L1L2) ≥ n1 +n2 = min{SREGcc(L1) + SLINcc(L2), SLINcc(L1) + SREGcc(L2) }.

This proves the stated claim. �

Since Lemma 6.3.56.3.5 can also be applied to the exact X-complexity, for all X ∈ ∆, we get
the following result by following the proof of Theorem 6.3.66.3.6.

Corollary 6.3.7. Let X ∈ {SREG,REG,CF }. Then, for all integers n1,n2 ≥ 2, there is a finite
alphabet Σ and finite languages L1,L2 ∈ Pfin(Σ∗) with Xc(L1) = n1 and Xc(L2) = n2 such
that

1. Xc(L1L2) ≥ Xc(L1) + Xc(L2),

137

6. BOUNDS ON LANGUAGE OPERATIONS

2. LINc(L1L2) ≥min{REGc(L1) + LINc(L2), LINc(L1) + REGc(L2) },

3. SLINc(L1L2) ≥min{SREGc(L1) + SLINc(L2), SLINc(L1) + SREGc(L2) }.

However, if we consider fixed alphabets, then, at this point, we are only able to show that
the bound of Theorem 6.3.36.3.3 is tight for strict regular grammars. Even though we are
able to prove a lower bound on the exact and cover complexity of concatenation for strict
linear grammars in the following theorem, this lower bound does not match the upper
bound obtained in Theorem 6.3.36.3.3.

Theorem 6.3.8. Let X ∈ Γs. Then there exists a finite alphabet Σ such that for all inte-
gers n1,n2 ≥ 1, there exist finite languages L1,L2 ∈ Pfin(Σ∗) with Xcc(L1) = n1 and Xcc(L2) =
n2 such that

Xcc(L1L2) ≥ Xcc(L1) + Xcc(L2).

PROOF. Let Σ = {a} and, for all integers n1,n2 ≥ 1, we define the finite languages

L = {an1+n2} and L′ = {a2n1+2n2−2}.

Moreover, let
L1 = {an1} and L2 = {an2}.

as well as
L′1 = {a2n1−1} and L′2 = {a2n2−1}.

Clearly,
L = L1L2 and L′ = L′1L

′
2.

From Lemma 4.1.124.1.12, we thus get that

SREGcc(L1) ≥ n1, SREGcc(L2) ≥ n2, SLINcc(L′1) ≥ n1, and SLINcc(L′2) ≥ n2.

It is easy to see that also (for the strict linear cases, see the grammars defined in
Theorem 6.2.76.2.7)

SREGcc(L1) ≤ n1, SREGcc(L2) ≤ n2, SLINcc(L′1) ≤ n1, and SLINcc(L′2) ≤ n2.

Again, by Lemma 4.1.124.1.12, it follows that

SREGcc(L) = SREGcc(L1L2) ≥ n1 +n2 = SREGcc(L1) + SREGcc(L2)

and
SLINcc(L′) = SLINcc(L′1L

′
2) ≥ n1 +n2 = SLINcc(L′1) + SLINcc(L′2).

This proves the stated claim. �

The arguments used in the proof of Theorem 6.3.86.3.8 in conjunction with Corollary 4.1.134.1.13
show that an analogous result also holds for the exact complexity.

138

6.3. Concatenation

Corollary 6.3.9. Let X ∈ Γs. Then there exists a finite alphabet Σ such that for all inte-
gers n1,n2 ≥ 1, there exist finite languages L1,L2 ∈ Pfin(Σ∗) with Xc(L1) = n1 and Xc(L2) =
n2 such that

Xc(L1L2) ≥ Xc(L1) + Xc(L2).

We will now prove the following lower bound on the exact complexity of the concatenation
of finite languages that applies to all grammar types in ∆.

Theorem 6.3.10. Let X ∈ ∆. Then there is an alphabet Σ such that for all integers n1,n2 ≥ 1,
there exist finite languages L1,L2 ∈ Pfin(Σ∗) with Xc(L1) = n1 and Xc(L2) = n2 such that

Xc(L1L2) ≥max{Xc(L1), Xc(L2) }.

As a first step, we show the following lower bound on the exact complexity of concatenat-
ing two finite languages with a fresh middle marker in between them.

Lemma 6.3.11. Let X ∈ ∆ and L1,L2 ∈ Pfin(Σ∗) be finite languages. Then

Xc(L1#L2) ≥max{Xc(L1), Xc(L2) },

where # does not occur in Σ.

PROOF. Let L1 and L2 be finite languages over Σ and G = (N,Σ ∪ {#}, P ,S) be an X-
grammar with

L(G) = L1#L2 and |G| = Xc(L1#L2).

We will first show that the right-hand side of every production in P contains at most
one nonterminal that derives a string containing the letter #. Grammars of some type
in Γs have this property by definition. So, for grammars of some type in Γ , assume to the
contrary that there is a production

A→ α1Bα2Cα3 with B⇒∗G β1,1#β1,2 and C⇒∗G β2,1#β2,2,

where, for i ∈ {1,2}, α1,α2,α3,βi,1,βi,2 ∈ (N∪Σ)∗. Then, sinceG is minimal, by Lemma 4.2.14.2.1,
every nonterminal is used to derive some word in L(G). Thus, there is some derivation

S⇒∗G γ1Aγ2⇒G γ1α1Bα2Cα3γ2⇒∗G γ1α1β1,1#β1,2α2β2,1#β2,2α3γ2⇒∗G w1#w2#w3,

for γ1,γ2 ∈ (N ∪Σ)∗ and w1,w2,w3 ∈ Σ∗. However, this implies that the language L(G) =
L1#L2 contains a word with two occurrences of #, which is impossible. Thus, the right-
hand side of each production in P contains at most one nonterminal that derives a string
containing the letter #.

Next, we will show that there is an X-grammar G′ = (N,Σ, P ′ ,S) satisfying

L(G′) = (L1#)−1L(G) = L2 and |G′ | ≤ |G|.

139

6. BOUNDS ON LANGUAGE OPERATIONS

First, we define the set of nonterminals that derive #:

N# = {A ∈N | A⇒∗G α1#α2 and α1,α2 ∈ (N ∪Σ)∗ }.

Now, we are in the position to define the production set of G′:

P ′ = {A→ Bα2 | A→ α1Bα2 ∈ P and B ∈N# } ∪ {A→ α2 | A→ α1#α2 ∈ P }
∪ {A→ α ∈ P | α 6⇒∗G α1#α2 and α1,α2 ∈ (N ∪Σ)∗ }.

Clearly, |G′ | ≤ |G|. It remains to show that

L(G′) = (L1#)−1L(G).

To this end, we will show the following equivalence by induction on the length of a
derivation in G:

for all A ∈N# : A⇒∗G α1#α2 iff A⇒∗G′ α2, (6.1)

where α1,α2 ∈ (N ∪Σ)∗. Let A ∈N# be arbitrary; then clearly A⇒∗G α1#α2.

• Base case: If
A⇒G α1#α2,

i.e.,
A→ α1#α2 ∈ P ,

then by definition of P ′, we have that

A→ α2 ∈ P ′ .

As a consequence,
A⇒G′ α2.

This concludes the base case.

• Induction step: Assume that

A⇒k+1
G α1#α2,

for k ≥ 1. Then, we clearly have that

A⇒k+1
G α1#α2 iff A⇒G β1Bβ2⇒k

G β1γ1#γ2β2,

where α1 = β1γ1, α2 = γ2β2, and βi ,γi ∈ (N ∪Σ)∗, for i ∈ {1,2}. This means, in
particular, that

B⇒k
G γ1#γ2,

and thus, by induction hypothesis, we get that

B⇒k
G γ1#γ2 iff B⇒∗G′ γ2.

140

6.3. Concatenation

Furthermore, since
A→ β1Bβ2 ∈ P

and by minimality of G, it follows that

B⇒∗G γ1#γ2⇒∗G w1#w2,

for w1,w2 ∈ Σ∗, that is, B ∈N#, we have that

A→ Bβ2 ∈ P ′ .

Putting things together, we get

A⇒∗G α1#α2 iff A⇒G′ Bβ2⇒∗G′ γ2β2 = α2.

Note that for all A ∈N \N#, it clearly holds that

A⇒∗G α iff A⇒∗G′ α,

for α ∈ (N ∪Σ∗). Since S ∈N#, for all w1 ∈ L1 and all w2 ∈ L2, it follows from Equation 6.16.1
that

S⇒∗G w1#w2 iff S⇒∗G′ w2,

i.e.,
L(G′) = (L1#)−1L(G) = L2.

Similarly, one can show that there is an X-grammar G′′ with

L(G′′) = L(G)(#L2)−1 and |G′′ | ≤ |G|.

By definition of Xc, it follows that

Xc(L1) ≤ |G′′ | ≤ |G| and Xc(L2) ≤ |G′ | ≤ |G|.

Putting things together, we get that

Xc(L1#L2) = |G| ≥max{Xc(L1), Xc(L2) }.

This proves the stated claim. �

Now, we will take a closer look at how the exact complexity of a finite language L changes
if we append (or prepend) a fresh symbol to all words in L.

Lemma 6.3.12. Let X ∈ Γ and L ∈ Pfin(Σ∗) be a finite language. Then

Xc(L ·#) = Xc(L),

where # is a letter that is not contained in Σ. The statement remains valid if one considers
the language # ·L instead of L ·#.

141

6. BOUNDS ON LANGUAGE OPERATIONS

PROOF. Let G = (N,Σ, P ,S) be a minimal X-grammar, for X ∈ {LIN,CF }, with L(G) = L,
i.e.,

|G| = Xc(L).

We define the X-grammar G′ = (N,Σ∪ {#},S) with

L(G′) = L(G) ·# = L ·#

using the following set of productions:

P ′ = {S→ α# | S→ α ∈ P } ∪ {A→ α ∈ P | A , S }.

For X = REG, we need a slightly different construction for P ′:

P ′ = {A→ w# | A→ w ∈ P and w ∈ Σ∗ } ∪ {A→ α ∈ P | α < Σ∗ }.

Clearly, both of these constructions yield

L(G′) = L(G) ·# and |G′ | ≤ |G|.

Thus,
Xc(L ·#) ≤ Xc(L).

But it also holds that
Xc(L) ≤ Xc(L ·#),

for otherwise we could erase the letter # from all productions of a minimal grammar
for L · # and obtain a grammar that generates L and has fewer productions than Xc(L).
When considering # ·L instead of L ·#, it suffices to define the production set as follows:

P ′ = {S→ #α | S→ α ∈ P } ∪ {A→ α ∈ P | A , S }.

This proves the stated claim. �

By the very nature of the restrictions in strict regular and strict linear grammars, it is not
really surprising that we need an additional production in order to be able to append (or
prepend) a fresh new symbol to all words in a language.

Lemma 6.3.13. Let X ∈ Γs and L ∈ Pfin(Σ∗) be a finite language. Then

Xc(L ·#) ≤ Xc(L) + 1 ≤ Xc(L ·#) + 1,

where # is a letter that is not contained in Σ. The statement remains valid if one considers
the language # ·L instead of L ·#.

PROOF. For X ∈ Γs and L ∈ Pfin(Σ∗), let G = (N,Σ, P ,S) be a minimal X-grammar generat-
ing L, i.e.,

|G| = Xc(L).

142

6.3. Concatenation

We define another X-grammar G′ = (N ∪ {C#},Σ∪ {#},S ′) with

L(G′) = L(G) ·# = L ·#,

where C# <N .

For X = SREG, let S ′ := S and define the set of productions P ′ as follows:

P ′ = {A→ aC# | A→ a ∈ P and a ∈ Σ∪ {ε} } ∪ {A→ α ∈ P | α < Σ∪ {ε} } ∪ {C#→ # }.

For X = SLIN, let S ′ := S# such that S# <N , and we construct P ′ as follows:

P ′ = P ∪ {S#→ S# }.

In both of these cases, we clearly have that

L(G′) = L(G) ·# = L ·# and |G′ | ≤ |G|+ 1.

But it also holds that
Xc(L) ≤ Xc(L ·#),

for otherwise we could erase the letter # from all productions of a minimal grammar
for L · # and obtain a grammar that generates L and has fewer productions than Xc(L).
Putting things together, we get

Xc(L ·#) ≤ Xc(L) + 1 ≤ Xc(L ·#) + 1.

To generate # ·L with an X-grammar, we set S ′ := S# and define

P ′ = P ∪ {S#→ #S }

as the set of productions. This finishes the proof of the stated claim. �

As already mentioned, thus far—except for strict regular grammars—we have not been
able to show that the upper bound on the exact complexity of concatenation is tight,
but with the help of the proof of Corollary 6.3.96.3.9 as well as the results of Lemmas 6.3.116.3.11
and 6.3.126.3.12, we are finally able to prove the lower bound expressed in Theorem 6.3.106.3.10.

PROOF (OF THEOREM 6.3.106.3.10). Let X ∈ Γ , and consider, for all integers n1,n2 ≥ 1, the
languages

K1 = {aibici | 1 ≤ i ≤ n1 } · {#} and K2 = {aibici | 1 ≤ i ≤ n2 }.

From Equation 4.24.2, it follows that

Xc(K1#−1) = n1 and Xc(K2) = n2.

Moreover, from Lemma 6.3.126.3.12, we get that

Xc(K1) = Xc(K1#−1) = n1. (6.2)

143

6. BOUNDS ON LANGUAGE OPERATIONS

Thus, we finally get that

Xc(K1K2) ≥max{Xc(K1#−1), Xc(K2) } = max{Xc(K1), Xc(K2) }

from Lemma 6.3.116.3.11 and Equation 6.26.2.

For X ∈ Γs, the claim follows from the proof of Corollary 6.3.96.3.9. �

The exact complexity bounds on the operations union and concatenation will play an
important role in the proof of the main result of the next chapter.

144

CHAPTER 7
Complexity of The Smallest

Grammar Problem for Finite
Languages

T
HUS far, we have focused our attention solely on questions regarding the
grammatical complexity of finite languages that fall under the umbrella of
descriptional complexity. However, in this chapter, we will shift the focus
towards problems that belong to the realm of computational complexity

theory.11 Nevertheless, many of the previously established results will come in handy
in order to show some of the results in this chapter. One of the main results is that,
for fixed alphabets of cardinality at least 5, given an arbitrary context-free grammar G
with p productions that generates a finite language L, the minimal number of productions
necessary to generate L with a context-free grammar cannot be approximated within a
factor of

o
(
p1/6

)
,

unless P = NP. Since the size of a context-free grammar depends on the number of
productions, the above result also implies that, given an arbitrary context-free grammar G
with size s that generates a finite language L, the minimal size of a context-free grammar
that generates L cannot be approximated within a factor of

o
(
s1/7

)
,

unless P = NP. This second result is related to the inapproximability of the smallest
grammar problem within a small constant factor, unless P = NP [CLL+05CLL+05]. This classic

1For a recent survey on modern aspects of computational complexity within formal language theory,
see [Fer19Fer19].

145

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

version of the smallest grammar problem asks for the smallest (in terms of grammar
size) context-free grammar that generates exactly a single given word. In order to obtain
the main result of this chapter, we will reduce from the coNP-complete propositional
tautology problem. The reduction features a gadget based on the language

Tn = {w$w#w | w ∈ {a,b}n },

where n ≥ 1 is an integer. For the correctness proof of the reduction, we will use estimates
on the grammatical complexity of certain finite languages as well as on the operations
union and concatenation of finite languages, which have been shown in Chapters 44 and 66.
Furthermore, inspired by the investigation of problems regarding finite automata under
the assumption of the so-called Exponential Time Hypothesis (ETH) in the paper [FK17FK17],
we will also consider the uniform-length universality problem under the assumption
of the ETH. Intuitively, the Exponential Time Hypothesis is a conjecture which states
that k-SAT, for k ≥ 3, cannot be decided in subexponential time (see, e.g., [CFK+15CFK+15])
and was introduced in [IP99IP99]. The aforementioned uniform-length universality problem
asks, for a given context-free grammar G = (N,Σ, P ,S) and an integer ` ≥ 0, whether L(G)
generates all words of length ` over Σ, i.e., whether L(G) = Σ`. In particular, assuming
the ETH, we will show that there is no algorithm that decides uniform-length universality
in time

O∗
(
2o(p

1/4)
)
,

where p is the number of productions of the given grammar G. In addition, we will
also show that assuming the ETH, there is no algorithm that decides the uniform-length
universality problem in time

O∗
(
2o(s

1/4)
)
,

where s is the size of the given grammar G.

Some of the results in this chapter have been published in [GHW18GHW18].

7.1 Inapproximability of the Minimal Number of Productions

In this section, we will show that the minimal number of context-free productions
necessary to generate the finite language that is generated by a given context-free
grammar with p productions cannot be approximated within a factor of

o(p1/6),

unless P = NP. The uniform language

Tn = {w$w#w | w ∈ {a,b}n },

as introduced in Section 4.24.2, will be a basic building block for this endeavour. Our proof
strategy is based on a gap-reduction from the coNP-complete tautology problem for 3-DNF
formulae:

146

7.1. Inapproximability of the Minimal Number of Productions

Given a propositional formula ϕ in 3-DNF, it is coNP-complete to determine
whether ϕ is a tautology—in other words, whether the negation ¬ϕ of ϕ is
unsatisfiable.

Then the core idea is to give a suitable representation of the satisfying assignments of ϕ
in the language {0,1}n for the n variables in the form of a grammar Gϕ such that

ϕ is a tautology if and only if L(Gϕ) = {0,1}n.

By construction, there is a one-to-one correspondence between assignments and words
from the set {0,1}n. In order to finish our reduction, we embed Gϕ into a grammar that
generates the finite and uniform language

Lϕ = L(Gϕ) · {&} · {a,b,$,#}3c·dlogne+2 ∪ {0,1}n · {&} · Tc·dlogne,

for some carefully chosen constant c. It is not hard to see that this reduction is polynomial
in n even if we force the grammar that generates Lϕ to be strict regular. Then, we
distinguish two cases:

1. On the one hand, if ϕ is a tautology, then we have that

Lϕ = {0,1}n · {&} · {a,b,$,#}3c·dlogne+2,

i.e., there is a context-free grammar with a constant number of productions that
generates Lϕ. Moreover, for the X-grammars with X ∈ {REG,LIN} ∪ Γs, a linear
number of productions suffices, i.e., the number is in O (n).

2. On the other hand, if ϕ is not a tautology, then there is an assignment under
which ϕ evaluates to false. Hence, there is a word w ∈ {0,1}n which corresponds
to that assignment and which is not a member of L(Gϕ). But then the left quotient
of Lϕ w.r.t. the word w&, that is, the language

(w&)−1Lϕ = {v ∈ {a,b,$,#}∗ | w&v ∈ Lϕ },

is equal to the language of triples Tc·dlogne. From this quotient construction, it will
then follow that

Xc(Tc·dlogne) = O
(
Xc(Lϕ) ·n4

)
.

Since we have already seen that

Xc(Tc·dlogne) = Ω (nc) ,

we can thus deduce that
Xc(Lϕ) = Ω

(
nc−4

)
.

This allows us to prove the main result of this section:

147

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

Theorem 7.1.1. Let X ∈ ∆. Given an X-grammar with p productions that generates a finite
language L, it is impossible to approximate Xc(L) within a factor of o

(
p1/6

)
, unless P = NP.

The remainder of this section is devoted to the proof of Theorem 7.1.17.1.1.

Now, we will construct a strict regular grammar that generates the satisfying truth
assignments of the given propositional formula ϕ in 3-DNF with |var(ϕ)| = n. In this way,
we will reduce the propositional tautology to the uniform-length universality problem:

UNIFORM-LENGTH UNIVERSALITY

INSTANCE: An X-grammar G = (N,Σ, P ,S), for X ∈ ∆, and an integer ` ≥ 0.
QUESTION: Does it hold that L(G) = Σ`?

Let ϕ be a propositional formula in 3-DNF with var(ϕ) = {x1,x2, . . . ,xn} consisting of the
conjunctive clauses C1,C2, . . . ,Cm, for m ≥ 1. We define a strict right-linear grammar Gϕ =
(N, {0,1}, P ,S) as follows:

the set of nonterminals is defined as

N = {S} ∪ {Ai,j | 1 ≤ i ≤m and 2 ≤ j ≤ n }

and the set P consists of the following productions

• Ai,j → 1Ai,j+1 if xj ∈ Ci and ¬xj < Ci , for 1 ≤ i ≤m and 1 ≤ j ≤ n− 1,

• Ai,j → 0Ai,j+1 if xj < Ci and ¬xj ∈ Ci , for 1 ≤ i ≤m and 1 ≤ j ≤ n− 1,

• Ai,j → 1Ai,j+1 if xj < Ci and ¬xj < Ci , for 1 ≤ i ≤m and 1 ≤ j ≤ n− 1,

• Ai,j → 0Ai,j+1 if xj < Ci and ¬xj < Ci , for 1 ≤ i ≤m and 1 ≤ j ≤ n− 1,

• Ai,n→ 1 if xn ∈ Ci and ¬xn < Ci , for 1 ≤ i ≤m,

• Ai,n→ 0 if xn < Ci and ¬xn ∈ Ci , for 1 ≤ i ≤m,

• Ai,n→ 1 if xn < Ci and ¬xn 66∈ Ci , for 1 ≤ i ≤m,

• Ai,n→ 0 if xn < Ci and ¬xn 66∈ Ci , for 1 ≤ i ≤m,

where, for all i ∈ {1,2, . . . ,m}, we set Ai,1 := S. Note that the above reduction from 3-DNF
formulae to context-free grammars is essentially the same as the reduction to regular
expressions presented in [Hun73Hun73].

Now, we illustrate—by means of a concrete example—how the reduction from the
propositional tautology to the uniform-length universality problem works:

148

7.1. Inapproximability of the Minimal Number of Productions

Example 7.1.2. Consider the propositional formula

ϕ = (x1 ∧ x3)︸ ︷︷ ︸
C1

∨ (x1 ∧¬x3)︸ ︷︷ ︸
C2

∨ (¬x1 ∧ x2)︸ ︷︷ ︸
C3

∨ (¬x1 ∧¬x2)︸ ︷︷ ︸
C4

.

Clearly, ϕ is a tautology in 3-DNF with var(ϕ) = {x1,x2,x3}. By the above reduction, the
strict regular grammar Gϕ consists of the following productions:

A1,1→ 1A1,2 A2,1→ 1A2,2

A1,2→ 0A1,3 | 1A1,3 A2,2→ 0A2,3 | 1A2,3

A1,3→ 1 A2,3→ 0

A3,1→ 0A3,2 A4,1→ 0A4,2

A3,2→ 1A3,3 A4,2→ 0A4,3

A3,3→ 0 | 1 A4,3→ 0 | 1.

Note that, for i ∈ {1,2,3,4}, the block with start symbol Ai,1 derives the satisfying truth
assignments of the conjunctive clause Ci . Consequently,

L(Gϕ) = {0,1}3,

since each start symbol Ai,1 derives two distinct satisfying truth assignments.

Now, we slightly modify clause C4 of ϕ and obtain another propositional formula ϕ′ of
the following form:

ϕ′ = (x1 ∧ x3)︸ ︷︷ ︸
C1

∨ (x1 ∧¬x3)︸ ︷︷ ︸
C2

∨ (¬x1 ∧ x2)︸ ︷︷ ︸
C3

∨ (¬x1 ∧¬x2 ∧¬x3)︸ ︷︷ ︸
C′4

.

Then, it is easy to see that ϕ′ is not a tautology, since

σ (x1,x2,x3) = 001 6|= ϕ′ .

Moreover, by the above reduction, the corresponding strict regular grammar Gϕ′ consists
of the following productions:

A1,1→ 1A1,2 A2,1→ 1A2,2

A1,2→ 0A1,3 | 1A1,3 A2,2→ 0A2,3 | 1A2,3

A1,3→ 1 A2,3→ 0

A3,1→ 0A3,2 A4,1→ 0A4,2

A3,2→ 1A3,3 A4,2→ 0A4,3

A3,3→ 0 | 1 A4,3→ 0.

149

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

A close inspection of the grammar Gϕ′ reveals that

L(Gϕ′) , {0,1}3,

since the word 001 is not Gϕ′ -derivable, i.e., 001 < L(Gϕ′).

Note that since the grammar Gϕ can be constructed in polynomial time, the above
reduction is polynomial-time computable. The following proposition expresses that the
number of productions as well as the size of the above constructed grammar Gϕ is
polynomial in the number of variables occurring in ϕ.

Proposition 7.1.3. Let ϕ be a formula in 3-DNF with n variables and m conjunctive clauses
and let Gϕ be the grammar constructed above. Then

|Gϕ | ≤ 32 ·n4 and |Gϕ |s ≤ 128 ·n4.

PROOF. Since the propositional formula ϕ consists of n variables, ϕ can—under the
assumption that no literal occurs more than once in a single conjunctive clause—contain
at most

m ≤ 16 ·n3

different conjunctive clauses. This follows because n distinct variables give rise to 2 ·n
distinct literals, and from these 2 ·n literals, one can obtain at most

3∑
i=0

(2 ·n)i =
(2 ·n)4 − 1
(2 ·n)− 1

≤ 2 · ((2 ·n)4 − 1)
2 ·n

≤ 2 · (2 ·n)3 = 16 ·n3

different conjunctive clauses consisting of at most 3 literals. By counting the productions
of the strict regular grammar Gϕ, we get that we have at most two productions for each
variable in a single clause. Thus,

|Gϕ | ≤ 2 · (n ·m) ≤ 2 · (n · 16 ·n3) = 32 ·n4.

Finally,
|Gϕ |s ≤ 128 ·n4

follows from the fact that each production in Gϕ consists of at most four symbols, i.e.,

|Gϕ |s ≤ 4 · |Gϕ | ≤ 4 · 32 ·n4 = 128 ·n4.

This concludes the proof of the proposition. �

The construction of Gϕ also satisfies the property that a word w ∈ {0,1}n is derivable
in Gϕ if and only if w—interpreted as a truth assignment—satisfies the formula ϕ, i.e.,

L(Gϕ) = {w ∈ {0,1}n | w |= ϕ }.

An immediate consequence of the subsequent proposition is that Gϕ generates all words
of length n over {0,1} if and only if ϕ is a tautology. In other words, the reduction from
the tautology to the uniform-length universality problem is correct.

150

7.1. Inapproximability of the Minimal Number of Productions

Proposition 7.1.4. Let ϕ be a propositional formula in 3-DNF with n variables. Then, for
all words w ∈ {0,1}n, it holds that w ∈ L(Gϕ) if and only if w |= ϕ.

PROOF. Assume, without loss of generality, that ϕ contains at least one non-empty clause,
for otherwise, on the one hand, ϕ would trivially be unsatisfiable and L(Gϕ) = ∅ if ϕ
contains no clause; on the other hand, if ϕ contains at least one clause, but all of these
clauses are empty, then ϕ is valid and we have that L(Gϕ) = {0,1}n.

For the left-to-right direction, assume that there is some word w ∈ L(Gϕ), i.e., there is
some derivation

S⇒∗Gϕ w.

Since, by definition, Gϕ is an SREG-grammar without unit productions and S = Ai,1, for
some i ∈ {1,2, . . . ,m}, the derivation of the word

w = ai,1ai,2 . . . ai,n

in Gϕ must have the following form:

Ai,1⇒Gϕ ai,1Ai,2⇒Gϕ . . .⇒
j
Gϕ
ai,1ai,2 . . . ai,jAi,j+1⇒

n−j
Gϕ

ai,1ai,2 . . . ai,n,

where ai,j ∈ {0,1}, for all j ∈ {1,2, . . . ,n}. By definition of Gϕ, the productions used in the
above derivation are constructed based on the structure of the clause Ci in ϕ. Thus,
assume, without loss of generality, that

Ci = `i,1 ∧ `i,2 ∧ `i,3,

where `i,k is a literal, for k ∈ {1,2,3}. By definition of Gϕ, the following cases for the value
of ai,j can be distinguished:

1. ai,j = 1 if there is some k ∈ {1,2,3} such that `i,k = xj ,

2. ai,j = 0 if there is some k ∈ {1,2,3} such that `i,k = ¬xj , or

3. ai,j ∈ {0,1} if xj < var(Ci).

Since Ci contains at least one literal, only the variables that actually occur in Ci are
relevant for determining the truth of Ci under a given assignment. Now, we define a
truth assignment σ for ϕ as follows:

σ (xj) = ai,j , for all xj ∈ var(ϕ).

The assignment σ clearly satisfies the following properties:

σ (xj) = 1 if `i,k = xj , for some, k ∈ {1,2,3}
and

σ (xj) = 0 if `i,k = ¬xj , for some k ∈ {1,2,3}.

151

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

Consequently, we have that

σ (x1,x2, . . . ,xn) = σ (x1)σ (x2) . . .σ (xn) = w

and
σ (`i,k) = 1,

for all k ∈ {1,2,3}. That is, by semantics of ∧,

w |= Ci .

Finally, by semantics of ∨, it follows that

w |= ϕ.

This finishes the proof of the left-to-right direction.

For the right-to-left direction, assume that ϕ is satisfiable, i.e., there is some truth
assignment σ with

σ (x1,x2, . . . ,xn) |= ϕ.

By semantics of ∨, there is some clause Ci , for i ∈ {1,2, . . . ,m}, such that

σ (x1,x2, . . . ,xn) |= Ci .

Assume, without loss of generality, that

Ci = `i,1 ∧ `i,2 ∧ `i,3,

where `i,k is a literal, for k ∈ {1,2,3}. Since σ satisfies Ci , by semantics of ∧, the following
must hold:

σ (`i,k) = 1,

for all k ∈ {1,2,3}. That is, for k ∈ {1,2,3}, we have that

σ (xj) = 1 if `i,k = xj ,

and

σ (xj) = 0 if `i,k = ¬xj .

Assume, without loss of generality, that

var(Ci) = {xj1 ,xj2 ,xj3},

for 1 ≤ j1, j2, j3 ≤ n. By definition of Gϕ, there is a derivation

Ai,1⇒n
Gϕ
ai,1ai,2 . . . ai,n

with ai,j ∈ {0,1}, for j ∈ {1,2, . . . ,m} such that for all s ∈ {1,2,3}, it holds that

ai,js = 1 = σ (xjs) if there is some k ∈ {1,2,3} such that `i,k = xjs , or xj < var(Ci)

152

7.1. Inapproximability of the Minimal Number of Productions

and

ai,js = 0 = σ (xjs) if there is some k ∈ {1,2,3} such that `i,k = ¬xjs , or xj < var(Ci).

Moreover, we have that
σ (xj) = ai,j ,

for all xj with j ∈ {1,2, . . . ,n} \ {j1, j2, j3}. Clearly, by definition of Gϕ, the nonterminal Ai,1
derives all words v ∈ {0,1}n of the form

v = b1b2 · · ·bn,

where bj1 = aj1 , bj2 = aj2 , and bj3 = aj3 . In particular, the nonterminal Ai,1 derives

σ (x1)σ (x2) . . .σ (xn) = σ (x1,x2, . . . ,xn),

that is,
Ai,1⇒n

Gϕ
ai,1ai,2 . . . ai,n = σ (x1)σ (x2) . . .σ (xn) = σ (x1,x2, . . . ,xn).

This finishes the proof of the proposition. �

A direct consequence of the above polynomial-time reduction is that the uniform-length
universality problem is coNP-hard for all grammar types under consideration.

Corollary 7.1.5. The uniform-length universality problem is coNP-hard for all grammar
types in ∆.

The next step in our proof strategy is the construction of a grammar which generates
the left quotient of a word with a finite uniform language different from {ε} and which
also has a polynomial number of productions. The word is given as the language of
a DFA and the finite language is given as the language of a context-free grammar. For
this endeavour, we need two lemmas as prerequisites. The first one states that any finite
language whose longest word is of length at least 3, can be generated by a grammar in
which the right-hand side of each production is not longer than the length of a longest
word in the language.

Lemma 7.1.6. Let X ∈ ∆, G be an X-grammar generating a finite language, and ` =
max{ |w| | w ∈ L(G) } ≥ 3. Then there is an X-grammar G′ in which all right-hand sides of
productions are of length at most ` such that L(G′) = L(G) and |G′ | ≤ |G|.

PROOF. Let X ∈ ∆ and G = (N,Σ, P ,S) be an X-grammar generating a finite language with

` := max{ |w| | w ∈ L(G) } ≥ 3.

Note that for strict regular and strict linear grammars the claim holds trivially, since in
these kinds of grammars, there is no production with a right-hand side that is longer

153

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

than 3. Thus, in the remainder of the proof, we assume that X ∈ Γ . Suppose that G
contains a production

A→ α with α ∈ (N ∪Σ)∗ and |α| > `.

In addition, we also assume that A is both reachable from S and useful, i.e., there
are α1,α2 ∈ (N ∪Σ)∗ and a v ∈ Σ∗ such that

S⇒∗G α1Aα2⇒∗G v.

This assumption can be made without loss of generality, since unreachable and useless
productions can be removed without changing the generated language and without
increasing the number of productions of the resulting grammar with respect to the
original one. In particular, we then have that

α = β1Bβ2,

for some β1,β2 ∈ (N ∪Σ)∗ and some B ∈N with

LB(G) = {w ∈ Σ∗ | B⇒∗G w } = {ε}.

For otherwise, we could derive a word of length longer than `. The nonterminal B will
then be removed from G and all occurrences of B will be replaced by ε. In this way, we
will obtain a new grammar G′ with L(G′) = L(G) and |G′ | ≤ |G|. This step is then repeated
for all productions until there is no production left that has a right-hand side of length
longer than `. Note that this construction terminates, since, in each step, we have that the
new set of nonterminals has fewer elements than the one of the previous grammar. �

In order to simplify the proofs of some of the subsequent results, we need the notion of
binary normal form for context-free grammars.

Definition 7.1.7 (Binary Normal Form). A context-free grammar G = (N,Σ, P ,S) is said
to be in binary normal form (2NF) if the right-hand side of all productions in P has length
at most two, i.e., for all A→ α ∈ P it holds that |α| ≤ 2.

The next lemma shows that assuming that a grammar is in 2NF does not constitute a
major restriction. Note that, by definition, strict regular grammars are already in 2NF.

Lemma 7.1.8. Let X ∈ ∆, G be an X-grammar generating a finite language, and ` :=
max{ |w| | w ∈ L(G) } ≥ 3. Then there is an X-grammar G′ in binary normal form such
that L(G′) = L(G) and |G′ | ≤ |G| · `.

PROOF. If G is a strict regular grammar, then G is already in binary normal form and we
are done. Therefore, let G = (N,Σ, P ,S) be an X-grammar, for X ∈ Γ ∪{SLIN}, generating a
finite language and let

` := max{ |w| | w ∈ L } ≥ 3.

154

7.1. Inapproximability of the Minimal Number of Productions

Due to Lemma 7.1.67.1.6, we can, without loss of generality, assume that the right-hand side
of each production in P has length at most `.

If G is an X-grammar, for X ∈ {REG,CF}, then we define the following X-grammar G′ =
(N ∪N ′ ,Σ, P ′ ,S), where P ′ contains all productions in P whose right-hand side has length
at most 2. Additionally, P ′ contains for each production in P of the form

A→ X1X2 . . .Xm

with 3 ≤m ≤ ` and Xi ∈N ∪Σ, for 1 ≤ i ≤m, the following productions:

A→ X1A2

A2→ X2A3

...

Am−1→ Xm−1Xm.

Note that the set N ′ is induced by the newly introduced nonterminals.

If G is a (strict) linear grammar, then we define the following strict linear grammar G′ =
(N ∪N ′ ,Σ, P ′ ,S), where P ′ contains all productions in P whose right-hand side has length
at most 2. Additionally, P ′ contains for each production in P of the form

A→ a1a2 . . . akBak+1ak+2 . . . am

with 2 ≤m ≤ `, B ∈N , and ai ∈ Σ, for 1 ≤ i ≤ k, the following productions:

A→ a1A2

A2→ a2A3

...

Ak→ akAk+1

Ak+1→ Ak+2am
Ak+2→ Ak+3am−1

...

Am−1→ Amak+2

Am→ Bak+1.

For productions in P of the form

A→ a1a2 . . . am

with 3 ≤m ≤ ` and ai ∈ Σ, for 1 ≤ i ≤ `, we proceed as in the CF-case. Note that we also
introduce at most m − 1 additional nonterminals for each production in P . Thus, the

155

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

set N ′ is induced by these newly introduced nonterminals. Clearly, for each production
in P , there are at most m ≤ ` productions in P ′ and thus

|G′ | ≤ |G| · `.

It remains to show that L(G) = L(G′). Let

w = w1w2 . . .wm

with w1,w2, . . . ,wm ∈ Σ∗, for an integer m ≥ 1, be an arbitrary word. For all A ∈ N , we
will show that

A⇒∗G w iff A⇒∗G′ w

by induction on the length of a derivation.

• Base case: Assume that we have the one step derivation A⇒G w. We distinguish
two cases:

1. |w| ≤ 2. Then A⇒G w iff A⇒G′ w by definition of G′.

2. |w| > 2. Then A⇒G w iff

A⇒G′ w1A2⇒G′ w1w2A3⇒G′ . . .

⇒G′ w1w2 . . .wm−2Am−1⇒G′ w1w2 . . .wm−1wm

by definition of G′.

This finishes the base case.

• Induction step: Assume that
A⇒n+1

G w,

i.e.,
A⇒G X1X2 . . .Xk⇒n

G w,

where Xi ∈N ∪Σ, for 1 ≤ i ≤ k. Clearly, we have that

Xi ⇒≤nG wi ,

for wi ∈ Σ∗, w = w1w2, . . . ,wk, and 1 ≤ i ≤ k.

If Xi ∈ Σ, then
Xi = wi and Xi ⇒∗G′ wi ,

for 1 ≤ i ≤ k.

If Xi ∈N , then we can apply the induction hypothesis and get that

Xi ⇒∗G wi iff Xi ⇒∗G′ wi .

Moreover, by definition of G′, we have that

{A→ X1A2, A2→ X2A3, . . . , Ak−1→ Xk−1Xk } ⊆ P ′ .

156

7.1. Inapproximability of the Minimal Number of Productions

Hence,
A⇒∗G′ X1X2 . . .Xk⇒∗G′ w1w2 . . .wk = w.

Note that a similar argument shows that the claim also holds for the SLIN- and LIN-
case.

This concludes the proof of the lemma. �

Now that we have collected all necessary ingredients, we can finally prove the result
regarding the left quotient of a word with a finite uniform language different from {ε}.
The proof uses Lemma 7.1.87.1.8 and a triple-like construction from [GS63GS63] that is similar to
the triple constructions that we have already seen in Chapter 55.

Theorem 7.1.9. Let X ∈ ∆ and G be an X-grammar generating a finite uniform language L
with L , {ε} whose words have length ` ≥ 3. Then, for every word w ∈ Σ∗, there is an X-
grammar G′ with L(G′) = w−1L(G) and |G′ | = O

(
|G| · |w|3 · `

)
.

PROOF. We utilise the quotient construction from the proof of [GS63GS63, Theorem 3.3] for
our purpose. Let G be an X-grammar generating a finite uniform language L , {ε} whose
words have length ` ≥ 3. Then there is an equivalent minimal X-grammar G′, i.e.,

L(G′) = L(G) = L , {ε} and |G′ | = Xc(L) ≤ |G|.

Since G′ is a minimal X-grammar generating a finite uniform language with L(G′) , {ε}, it
follows from Proposition 4.1.84.1.8 that G′ is ε-free, i.e., G′ does not contain any ε-productions.

For the given context-free grammar G′ = (N ′ ,Σ, P ′ ,S ′) without ε-productions and a given
non-returning deterministic finite automaton22

A = (Q,Σ,q0,δ, {f })

with a single final state, a grammar G′′ is constructed as follows:

the nonterminals are given by the set

N ′′ = { [q,X,q′] | X ∈ Σ∪N ′ and q,q′ ∈Q },

the start symbol is
[q0,S

′ , f],

and the productions are given by

1. [q0, a,q0]→ a, for each a ∈ Σ,

2. [q,a,q′]→ ε if a ∈ Σ and δ(q,a) = q′,

3. [q,A,q′] → [q,X1,q1][q1,X2,q2] . . . [qn−1,Xn,q
′] if A → X1X2 . . .Xn is a production

in G′ and q,q1,q2, . . . , qn−1,q
′ are states in Q.

2A finite automaton is non-returning if there are no transitions entering its start state.

157

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

In [GS63GS63], it was shown that the grammar G′′ constructed in this way accepts the
language

L(G′) · (L(A))−1 = L(G) · (L(A))−1.

The construction yields the right quotient with a regular language and not the left quotient.
We settle this by observing that the reversal operation LR applied to a language L does
not incur any increase in the number of productions necessary (see the proof of [DH12bDH12b,
Theorem 1]), and that for all pairs of languages L1 and L2 it holds that

(L1)−1L2 =
(
LR2 (LR1)−1

)R
.

The latter equality can be shown as follows:(
LR2 (LR1)−1

)R
= {wR ∈ Σ∗ | there is a vR ∈ LR1 such that wRvR ∈ LR2 }

R

= {wR ∈ Σ∗ | there is a v ∈ L1 such that vw ∈ L2 }R

= {w ∈ Σ∗ | there is a v ∈ L1 such that vw ∈ L2 }
= (L1)−1L2.

In the worst case, the bulk of the productions resulting from the grammar construction
in [GS63GS63] are of course those of the third type. It is essential that the grammar which
we feed into the above construction is in 2NF if we want to bound the incurred blowup
of the number of productions. Assuming that G′ is given in 2NF, the productions of the
third type are of the form

[q,A,q′]→ [q,X1,q1][q1,X2,q
′].

Thus, the number of productions in G′′ is in

O
(
|Q|3

)
· |G′ |.

Since, in our application, the language L(A) consists of a single word w, we obtain that

|G′′ | = O
(
|w|3

)
· |G′ |.

In general, we cannot assume that G′ is given in 2NF. By Lemma 7.1.87.1.8, the transformation
into 2NF blows up the number of productions by another factor of

` = max{ |w| | w ∈ L(G′) } ≥ 3,

so the overall number of productions is in

O
(
|w|3 · `

)
· |G′ |.

Since
L(G′) = L(G) and |G′ | ≤ |G|,

it follows that
|G′′ | = O

(
|G| · |w|3 · `

)
.

This finishes the proof of the theorem. �

158

7.1. Inapproximability of the Minimal Number of Productions

In the remainder of this section, we prove our main result regarding the inapproximability
of the minimal number of productions needed by a context-free grammar in order
to generate a finite language. The following result expresses, for X ∈ ∆, upper and
lower bounds on the X-complexity of the finite language Lϕ. In the case of context-
free grammars, if ϕ is a tautology, then a constant number of productions suffices to
generate Lϕ, however, when we turn to (strict) regular and (strict) linear grammars,
the upper bound jumps to a linear number (w.r.t. the number of propositional variables
occurring in ϕ). On the other hand, if ϕ is not a tautology, then we obtain, for X ∈ ∆, a
lower bound on the X-complexity of Lϕ which is polynomial in the number of variables
occurring in ϕ. The value c in the next lemma refers to the constant c used in the
construction of Lϕ.

Lemma 7.1.10. Let X ∈ ∆ and let ϕ be a propositional formula in 3-DNF over n variables.
Then

Xc(Lϕ) =

O (n) if ϕ is a tautology,
Ω

(
nc−4

)
otherwise.

PROOF. Assume first that ϕ is a propositional tautology in 3-DNF over n variables. Then,
by definition of the strict regular grammar Gϕ and Proposition 7.1.47.1.4, we have that

L(Gϕ) = {0,1}n.

This means that

Lϕ = (L(Gϕ) · {&} · {a,b,$,#}3c·dlogne+2)∪ ({0,1}n · {&} · Tc·dlogne)

= ({0,1}n · {&} · {a,b,$,#}3c·dlogne+2)∪ ({0,1}n · {&} · Tc·dlogne)

= {0,1}n · {&} · {a,b,$,#}3c·dlogne+2.

From Equation 5.45.4, we know that

LIN ≤c REG ≤c SREG

and
LIN ≤c SLIN ≤c SREG.

Together with the results of Lemma 4.1.44.1.4 and Theorem 6.3.46.3.4, it thus follows that,
for X ∈ {SREG,SLIN,REG,LIN}, we have that

Xc({0,1}n · {&} · {a,b,$,#}3c·dlogne+2) ≤ 2 ·n+ 1 + 4 · (3c ·
⌈
logn

⌉
+ 2)

= 2 ·n+ 12c ·
⌈
logn

⌉
+ 9.

We also note that the context-free grammar G = ({S,A}, {0,1, a,b,$,#,&}, P ,S) with

P = {S→ An&B3c·dlogne+2, A→ 0, A→ 1, B→ a, B→ b, B→ $, B→ # },

159

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

shows that CFc(Lϕ) ≤ 7.

Now, assume that ϕ is not a tautology, i.e., there is a truth assignment σ with

σ (x1,x2, . . . ,xn) = σ (x1)σ (x2) · · ·σ (xn) = w,

for w ∈ {0,1}n, such that
σ (x1,x2, . . . ,xn) = w 6|= ϕ.

It suffices to consider the case X = CF for the lower bound, since, by Equation 5.45.4, the
other grammar types are less succinct than CF. Let G be a CF-grammar with

L(G) = Lϕ and |G| = Xc(Lϕ).

By Proposition 7.1.47.1.4, we thus get that

w < L(Gϕ) = {v ∈ Σ∗ | v |= ϕ }.

This then implies that

(w&)−1L(G) = ∅∪ Tc·dlogne = Tc·dlogne.

From Theorem 4.2.44.2.4 and Corollary 4.2.54.2.5, we get that

Xc((w&)−1L(G)) = Xc(Tc·dlogne) = Ω
(
2c·logn

)
= Ω (nc) .

Since Lϕ is a finite uniform language with Lϕ , {ε} and max{ |w| | w ∈ Lϕ } ≥ 3, an
application of Theorem 7.1.97.1.9 yields that

Xc(Tc·dlogne) = O
(
Xc(Lϕ) ·n4

)
,

since
max{ |w| | w ∈ L(G) } = O (n) .

Therefore,
Xc(Lϕ) = Ω

(
nc−4

)
,

since
Xc(Tc·dlogne) = Ω (nc) .

This concludes the proof of the lemma. �

Now, we are ready to prove the main result of this section:

PROOF (OF THEOREM 7.1.17.1.1). We are finally in the position to fix the value of the
constant c by choosing c = 6. Recall the definition of Lϕ as

Lϕ = L(Gϕ) · {&} · {a,b,$,#}3c·dlogne+2 ∪ {0,1}n · {&} · Tc·dlogne.

160

7.2. The Smallest Grammar Problem for Finite Languages

From Proposition 7.1.37.1.3, we deduce that for the grammar Gϕ it holds that

|Gϕ | = O
(
n4

)
.

When we combine the above upper bound with the upper bounds from Lemma 4.1.44.1.4,
Theorem 4.2.44.2.4, and Corollary 4.2.54.2.5—using the bounds for union and concatenation
(Corollary 6.2.26.2.2 and Theorem 6.3.46.3.4), we obtain that Lϕ admits a strict regular grammar
with p productions such that

p = O
(
n4

)
+O (1) +O (logn) +O (n) +O (1) +O (nc) = O

(
n6

)
.

Let X ∈ ∆. Then, since, in Lemma 7.1.107.1.10, we have only obtained asymptotic bounds
on the X-complexity of the language Lϕ, we cannot literally apply Theorem 2.3.32.3.3 in
order to obtain the inapproximability result. However, we can still follow the approach
used in the proof of that theorem in order to arrive at our desired result: towards
contradiction, assume that there is a polynomial-time algorithm A that approximates the
minimal number of productions necessary to generate the finite language generated by a
given X-grammar consisting of p productions within a factor of

o
(
p1/6

)
.

Then A could be used to decide in polynomial time whether ϕ is a tautology as follows:
if ϕ is a tautology, then, again by Lemma 7.1.107.1.10,

Xc(Lϕ) = O (n) ,

for X ∈ ∆, and otherwise, that is, if ϕ is not a tautology, then, by Lemma 7.1.107.1.10, we
deduce that, for X ∈ ∆, it holds that

Xc(Lϕ) = Ω
(
nc−4

)
= Ω

(
n2

)
.

Consequently, the putative approximation algorithm A returns a number of productions
of at most

o
(
p1/6

)
· O (n) = o (n) · O (n) = o

(
n2

)
if and only if ϕ is a tautology. However, this solves the coNP-hard 3-DNF tautology
problem in deterministic polynomial time, which implies P = NP. This shows that the X-
complexity, for X ∈ ∆, of a given finite language cannot be approximated within a factor
of o

(
p1/6

)
, unless P = NP. �

7.2 The Smallest Grammar Problem for Finite Languages

The classic version of the smallest grammar problem asks for the smallest context-free
grammar that generates a single given word. Its roots lie in the field of data compression
and can be traced back to the papers [LZ76LZ76, ZL77ZL77, ZL78ZL78, SS82SS82]. However, the first

161

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

explicit articulation of the smallest grammar problem came only a few years later [NM96NM96,
NMW97NMW97, YK00YK00, KY00KY00, KYNC00KYNC00]. Its decision version has been shown to be NP-complete
for both unbounded [CLL+05CLL+05] and fixed alphabets of size at least 24 [CFG+16CFG+16], but,
recently, in [Fer19Fer19], it was stated that—in the journal version based on [CFG+16CFG+16]—the
latter result has already been improved to fixed alphabets of size at least 17. In [CLL+05CLL+05],
it was also shown that the smallest grammar problem (w.r.t. unbounded alphabets) has
an approximation ratio of at least

8569
8568

,

unless P = NP. We will consider—w.r.t. fixed alphabets of size at least 5—another
formulation of the smallest grammar problem that asks for the smallest grammar that
generates a given finite language instead of just a single word. This formulation is similar
to, yet different from the so-called Generalized Smallest Grammar Problem of [SG17SG17].
There, the authors ask for the smallest non-recursive33 grammar whose language contains
a specific given word (in other words, covers a specific given word). Moreover, their
notion of grammar size additionally incorporates the cost of uniquely specifying the
given word within the grammar. For this extended formulation of the smallest grammar
problem, they also provide efficient algorithms that achieve smaller grammars than the
state of the art on standard benchmarks.

The authors of [CLL+05CLL+05] defined the size of a context-free grammar G = (N,Σ, P ,S) as the
sum of the lengths of the right-hand sides of all productions. They slightly deviate from
the classic definition from [Har78Har78], which we have already introduced in Section 2.1.32.1.3
and which will also be used in this thesis:

|G|s =
∑

A→α∈P
(|α|+ 2).

Recall that, for X ∈ ∆, the minimal X-size of a finite language L is defined as

Xsz(L) = min{ |G|s | G is an X-grammar with L = L(G) }.

The exponential lower bound on the X-complexity of the uniform language

Tn = {w$w#w | w ∈ {a,b}n },

for an integer n ≥ 1 and X ∈ ∆, as shown in Theorem 4.2.44.2.4 and Corollary 4.2.54.2.5, immedi-
ately implies a lower bound of

Xsz(Tn) = Ω (2n)

on the size of a minimal X-grammar generating Tn, since, by Proposition 4.1.84.1.8, we can
assume that the grammar is ε-free. Along similar lines as in the proof of Lemma 7.1.107.1.10,
we get a linear upper bound on the minimal grammar size for Lϕ if ϕ is a tautology.

3A context-free grammar G = (N,Σ, P ,S) is called non-recursive if, for all A,B ∈N , it holds that if B occurs
in a derivation of A, then A does not occur in a derivation of B.

162

7.2. The Smallest Grammar Problem for Finite Languages

However, the lower bound for the minimal grammar size of Lϕ if ϕ is not a tautology
asymptotically coincides with the one obtained for the minimal number of productions.
Thus, Lemma 7.1.107.1.10, remains valid in the case that Xc is replaced by Xsz.

Lemma 7.2.1. Let X ∈ ∆ and let ϕ be a propositional formula in 3-DNF over n variables.
Then

Xsz(Lϕ) =

O (n) if ϕ is a tautology,
Ω

(
nc−4

)
otherwise.

PROOF. First, assume that ϕ is a tautology. Then from Lemma 7.1.107.1.10, we know that

SREGc(Lϕ) = O (n) .

Since, in the case that ϕ is a tautology, we have that

Lϕ = {0,1}n · {&} · {a,b,$,#}3c·dlogne+2,

the following strict regular grammar generates Lϕ:

S→ 0A2 | 1A2 B1→ aB2 | bB2 | $B2 | #B2

A2→ 0A3 | 1A3 B2→ aB3 | bB3 | $B3 | #B3

...
...

An→ 0An+1 | 1An+1 B3c·dlogne+2→ a | b | $ | #.

An+1→&B1

Thus, we get that
SREGsz(Lϕ) = O (n) .

Consequently, since strict regular grammars are less succinct than all other grammar
types under consideration, and by definition of grammar size, we also have that

Xsz(Lϕ) = O (n) ,

for X ∈ ∆ \ {SREG}. In the case that ϕ is not a tautology, we know that

Xc(Lϕ) = Ω
(
nc−4

)
,

from Lemma 7.1.107.1.10. Since Lϕ is a uniform language not containing ε, it follows from
Proposition 4.1.84.1.8 that every minimal grammar generating Lϕ is ε-free. Thus, the right-
hand side of each production in such a minimal grammar has length at least one. Then,
since every production in such a grammar consists of at least three symbols (that is,
by counting all symbols on both the left- and right-hand side as well as the arrow
symbol “→”), it follows that

Xsz(Lϕ) ≥ 3 ·Xc(Lϕ).

163

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

Thus, in particular,
Xsz(Lϕ) = Ω

(
nc−4

)
.

This concludes the proof of the lemma. �

With the help of Lemma 7.2.17.2.1, we get an inapproximability result w.r.t. grammar size that
is analogous to the result of Theorem 7.1.17.1.1 for the number of productions.

Theorem 7.2.2. Let X ∈ ∆. Given an X-grammar of size s generating a finite language L, it
is impossible to approximate Xsz(L) within a factor of o

(
s1/7

)
, unless P = NP.

PROOF. Recall from the proof of Theorem 7.1.17.1.1 that the language Lϕ admits a regular
grammar with p productions such that

p = O
(
n6

)
.

Since every word in the language Lϕ is of length ` ≥ 3 with ` = O (n), we can, by
Lemma 7.1.67.1.6 and without loss of generality, assume that the right-hand side of each
production in a minimal grammar that generates Lϕ is of length linear in n. Thus, we
obtain that the size of such a grammar is at most

s = O
(
n7

)
.

Let X ∈ ∆. Then, since, in Lemma 7.2.17.2.1, we have only obtained asymptotic bounds on the
symbolic X-complexity of the language Lϕ, we cannot literally apply Theorem 2.3.32.3.3 in
order to obtain the inapproximability result. However, we can still follow the approach
used in the proof of that theorem in order to arrive at our desired result: towards
contradiction, assume that there is some polynomial-time algorithm A that approximates
the minimal size of an X-grammar that generates the finite language generated by a
given X-grammar of size s within a factor of

o
(
s1/7

)
.

Then A could be used to decide in polynomial time whether ϕ is a tautology as follows:
Again, we set c = 6. Recall from Lemma 7.2.17.2.1 that

Xsz(Lϕ) = O (n)

if ϕ is a tautology, and
Xsz(Lϕ) = Ω

(
nc−4

)
= Ω

(
n2

)
,

otherwise. As a consequence, the putative approximation algorithm A returns a grammar
size of at most

o
(
s1/7

)
· O (n) = o (n) · O (n) = o

(
n2

)
if and only if ϕ is a tautology. However, this solves the coNP-hard 3-DNF tautology
problem in deterministic polynomial time, which implies P = NP. This shows that,
for X ∈ ∆, the X-size of a given finite language cannot be approximated within a factor
of o

(
s1/7

)
, unless P = NP. �

164

7.3. The Uniform-Length Universality Problem and the ETH

Observe that our reduction scheme is robust enough to yield the same inapproximability
result if we define the grammar size as in [CLL+05CLL+05], i.e., as the sum of the right-hand
sides of all productions. Thus, the result of Theorem 7.2.27.2.2 also holds for the alternative
definition of grammar size.

7.3 The Uniform-Length Universality Problem and the ETH

Recently, a number of decision problems (see, e.g., [BI15BI15, FHV15FHV15, Weh16Weh16, BGL17BGL17, FK17FK17,
FPSV17FPSV17, PS18PS18, dOOW20dOOW20], for problems in the realm of formal language theory) have
been investigated with respect to the so-called44

Exponential Time Hypothesis (ETH) [IP99IP99, LMS11LMS11]:
For k ≥ 0, let

sk = inf{δ | there exists an O∗
(
2δ·n

)
-time algorithm for solving k-SAT }.

Then, for k ≥ 3, it holds that sk > 0.

Intuitively, ETH states that, for k ≥ 3, k-SAT does not have a subexponential-time al-
gorithm. Recall that 3-SAT is the NP-complete problem of deciding whether a given
propositional formula in 3-CNF consisting of n variables and m clauses (each of which
contains at most three literals) is satisfiable. The Exponential Time Hypothesis is a
stronger complexity assumption than P , NP and is often used to obtain quantitative
lower bounds on the running time of algorithms for NP-hard decision problems [CFK+15CFK+15].
One of the seminal results related to the Exponential Time Hypothesis is the famous
Sparsification Lemma, which allows to assume that the number of clauses of a given k-SAT
formula is linear in the number of variables.

Theorem 7.3.1 (Sparsification Lemma, [IPZ01IPZ01, Corollary 1]). For all δ > 0 and all
positive integers k, there is a constant c such that any k-SAT formula ϕ with n variables can
be expressed as

ϕ =
t∨
i=1

ψi ,

where t ≤ 2δ·n and each ψi is a k-SAT formula with at most c · n clauses. Moreover, this
disjunction can be computed by an algorithm running in time O∗

(
2δ·n

)
.

As an immediate consequence of the Sparsification Lemma, we get the following theorem
which will be an important ingredient in the proofs of Theorem 7.3.47.3.4 and Corollary 7.3.57.3.5.

Theorem 7.3.2 ([CFK+15CFK+15, Theorem 14.4]). Unless ETH fails, there is no algorithm that
solves 3-SAT in time O∗

(
2o(n+m)

)
, where n and m are the number of variables and clauses,

respectively, in the given 3-SAT formula.
4For a survey on related strong hypotheses, we refer the reader to [VW18VW18].

165

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

The following observation, which we literally take from [CFK+15CFK+15], can be used to transfer
lower bounds between different problems.

Observation 7.3.3 ([CFK+15CFK+15, Observation 14.7]). Suppose that there is a polynomial-
time reduction from problem Π to problem Π′ that, given an instance I of Π, constructs
an equivalent instance of Π′ having size at most g(|I |), for some non-decreasing function g.
Then the existence of an O∗

(
2o(f (|I |))

)
-time algorithm for Π′, for some non-decreasing

function f , entails the existence of an O∗
(
2o(f (g(|I |)))

)
-time algorithm for Π. 4

Remark. Therefore, by Observation 7.3.37.3.3, in order to exclude an algorithm for a prob-
lem Π′ with running time O∗

(
2o(f (|I |))

)
, we need to provide a reduction from the 3-SAT

problem to Π′ that outputs instances of size O (g(n+m)), where g is the inverse of the
function f [CFK+15CFK+15].

In this section, we will—under the assumption of ETH—investigate the uniform-length
universality problem for the grammar types in ∆:

UNIFORM-LENGTH UNIVERSALITY

INSTANCE: An X-grammar G = (N,Σ, P ,S), for X ∈ ∆, and an integer ` ≥ 0.
QUESTION: Does it hold that L(G) = Σ`?

We will follow the strategy described in the above remark in order to show the two
subsequent main results of this section with the slight modification that we reduce
from the coNP-complete co3-SAT problem. In Theorem 7.3.47.3.4, it is shown that under the
assumption of ETH, there is no O∗

(
2o(p1/4)

)
-time algorithm that decides the uniform-length

universality problem.

Theorem 7.3.4. Unless ETH fails, there is no O∗
(
2o(p1/4)

)
-time algorithm that decides the

uniform-length universality problem. Here, p is the number of productions of the given
grammar.

PROOF. We proceed by reducing the co3-SAT (that is, the complement of the 3-SAT
problem) to the uniform-length universality problem. Let ϕ be an instance of co3-SAT,
i.e., ϕ is a propositional formula in 3-CNF consisting of n variables and m clauses. Now,
given the formula ϕ, we construct an instance (G,`) of uniform-length universality as
follows: the X-grammar G is constructed from the 3-DNF formula ¬ϕ according to the
polynomial-time reduction used in Section 7.17.1. That is,

G = G¬ϕ .

Moreover, we set
` = n.

Next, we show that the reduction is correct, i.e., we show that

ϕ is unsatisfiable if and only if L(G) = {0,1}n.

166

7.3. The Uniform-Length Universality Problem and the ETH

First, note that, by propositional logic,

ϕ is unsatisfiable if and only if ¬ϕ is a tautology.

Thus, by Proposition 7.1.47.1.4,

ϕ is unsatisfiable iff ¬ϕ is a tautology iff L(G) = L(G¬ϕ) = {0,1}n.

Moreover, by Proposition 7.1.37.1.3, we know that

p = O
(
n4

)
,

that is, the reduction can be computed in polynomial time.

Now that we have established the correctness of the reduction, assume that there is an
algorithm with running time

O∗
(
2o(p1/4)

)
that decides uniform-length universality. Since

p = O
(
n4

)
,

we could decide co3-SAT in time

O∗
(
2o((n4)1/4)

)
= O∗

(
2o(n)

)
,

which—under the assumption of ETH—is impossible by Theorem 7.3.27.3.2 and the fact
that all deterministic time (and space) complexity classes are closed under comple-
ment [Pap95Pap95]. This finishes the proof of the theorem. �

Using a similar line of reasoning as in the proof of the previous theorem, we can show
that under the assumption of ETH, there is no O∗

(
2o(s1/4)

)
-time algorithm that decides the

uniform-length universality problem.

Corollary 7.3.5. Unless ETH fails, there is no O∗
(
2o(s1/4)

)
-time algorithm that decides the

uniform-length universality problem. Here, s is the size of the given grammar.

PROOF. For the reduction from co3-SAT to uniform-length universality, we proceed
exactly as in the proof of Theorem 7.3.47.3.4. By Proposition 7.1.37.1.3, we know that

s = O
(
n4

)
.

Assume that there is an algorithm with running time

O∗
(
2o(s1/4)

)
167

7. COMPLEXITY OF THE SMALLEST GRAMMAR PROBLEM FOR FINITE LANGUAGES

that decides uniform-length universality. Since

s = O
(
n4

)
,

we could decide co3-SAT in time

O∗
(
2o((n4)1/4)

)
= O∗

(
2o(n)

)
,

which—under the assumption of ETH—is impossible by Theorem 7.3.27.3.2 and the fact
that all deterministic time (and space) complexity classes are closed under comple-
ment [Pap95Pap95]. This finishes the proof. �

168

CHAPTER 8
Conclusion

We have investigated several different questions regarding context-free grammars that
generate finite languages from the points of view of descriptional and computational
complexity.

In Chapter 33, we have studied cover complexity measures for finite languages on three
different levels of abstraction and shown that every complexity measure on finite lan-
guages naturally induces a corresponding cover complexity measure. Moreover, we have
characterised the situations in which arbitrary complexity measures obtained in this way
are unbounded. In particular, we have seen that all considered grammar types which are
strictly weaker than context-free grammars induce an unbounded complexity measure.
Based on these rather abstract results, we have shown that every class of context-free
grammars that allows only a bounded number of nonterminals on the right-hand side of
each production induces an unbounded production cover complexity measure. This, in
turn, entails that the production cover complexity of a finite language L can be obtained as
the minimum of the exact production complexities of a finite number of finite supersets L′

of L.

Next, in Chapter 44, we have obtained several upper and lower bounds on various different
complexity measures for both arbitrary and specific finite languages. In particular, we
have proved bounds on the exact, cover, and scattered complexity of finite languages.
By using the standard argument of [BMCIW81BMCIW81], we have shown that there are specific
finite languages that are incompressible with respect to the exact complexity of certain
grammar types. With the help of this standard technique, we were also able to obtain a
lower bound on the symbolic complexity of the language

Tn = {w$w#w | w ∈ {a,b}n },

which is more precise than the one obtained using the lower bound technique of [Fil11Fil11].
Moreover, we have also generalised the cover-incompressible sequence of finite languages
constructed in [EH15aEH15a, EH18EH18].

169

8. CONCLUSION

We have considered several different production complexity measures for finite languages
with respect to three interpretations of approximation of finite languages (namely, equiv-
alence, cover, and scattered cover as well as their infinite counterparts) in Chapter 55. In
the case of the infinite variants, the language of the grammar is allowed to be infinite
but its intersection with all words up to a certain length has to approximate the given
finite language in the correct manner. Based on a group of relations that are inspired
by the taxonomy with respect to the nonterminal complexity measures of [DP89DP89], we
have related these production complexity measures with each other and obtained relative
succinctness classifications of both grammar and measure types. In particular, we have
obtained two relative succinctness classifications in the following senses:

1. Fix a measure type τ and compare the different grammar types under consideration
with each other with respect to the measure type τ.

2. Fix a grammar type X and compare the different measure types under consideration
with each other with respect to the measure type X.

The relative succinctness classifications for grammar and measure types are summarised
in Figures 5353 and 5555, respectively. However, as can be seen in these figures, both
classifications are not complete yet, i.e., there are still a few unsettled problems left.
One result that was surprising is that the scattered complexity measure is more succinct
(with respect to all four relations) than the infinite scattered complexity for all non-strict
grammar types. For the exact and cover complexity measures this situation is reversed,
as in both cases the infinite variant is more succinct (with respect to all four relations)
than its finite counterpart. The only exception is that it is still open whether

cc∞ ≤iCF cc

holds for any i ∈ {1,2,3}. In many cases, it was enough to use bounds that have already
been obtained in Chapter 44 in order to prove or disprove relations between certain
measure or grammar types. However, for the infinite exact complexity, it was rather
tedious to show certain lower bounds. Particularly, for the languages

Pn = {w$wR | w ∈ {a,b}≤n } and Tn = {w$w#w | w ∈ {a,b}n },

we needed to utilise triple constructions in order to obtain an exponential lower bound on
the infinite (strict) regular complexity of Pn and, for X ∈ ∆, on the infinite X-complexity
of Tn based on the corresponding exponential lower bounds on the finite complexity. The
lower bound on Pn was needed in order to show that strict regular and regular grammars
are less succinct with respect to the infinite exact complexity than strict linear, linear, and
context-free grammars. Moreover, the lower bound on Tn was required in order to show
that, e.g., both the finite and infinite exact complexity are not more succinct than the
cover and the scattered complexity as well as the infinite cover and the infinite scattered
complexity with respect to the grammar types in ∆.

Chapter 66 was devoted to investigating both the exact and the cover complexity of
the language operations intersection, union, and concatenation with respect to finite

170

languages for several different types of context-free grammars (for the obtained bounds,
see Figure 6161). The proofs for showing these bounds work in many cases for both the
exact and the cover complexity without any amendment. While for the cover complexity
it is rather easy to obtain tight bounds for intersection, we still have not found a way to
obtain a (tight) upper bound on concatenation with respect to the exact complexity. As we
have seen, in contrast to union, there is no uniform upper bound on both the exact and the
cover complexity of concatenation. In particular, the upper bound on concatenation for
strict linear and linear grammars differs from the one for the other grammar types. This
is caused by the fact that if we use the construction that is used to combine two regular
grammars into a new regular grammar which generates (or covers) the concatenation of
their generated (or covered, respectively) languages, then this does not necessarily give
us a linear grammar again if we are given two linear grammars. Moreover, with the help
of the newly constructed regular cover-incompressible sequence of finite languages, we
were also able to show that the upper bound on the cover complexity of union is tight
for regular grammars. However, we have not yet been able to obtain tight bounds in all
cases, therefore, as depicted in Figure 6161, there are still a few problems left open.

Finally, in Chapter 77, we have studied the computational complexity of some grammar-
based problems. More precisely, we have shown that, for fixed alphabets of cardinality
at least 5, given an arbitrary context-free grammar G with p productions that generates
a finite language L, it is impossible to approximate the minimal number of productions
necessary to generate L within a factor of

o
(
p1/6

)
,

unless P = NP. In addition, we have also shown that, given an arbitrary context-free
grammar G with size s that generates a finite language L, the minimal size of a context-
free grammar that generates L cannot be approximated within a factor of

o
(
s1/7

)
,

unless P = NP. The latter result complements the result that any approximation algorithm
for the smallest grammar problem must have an approximation ratio of at least 8569

8568 ,
unless P = NP, as shown in [CLL+05CLL+05]. This classic variant of the smallest grammar
problem asks for the smallest (in terms of size) context-free grammar that generates
exactly a single given word. Furthermore, we have also studied the uniform-length
universality problem under the assumption of the Exponential Time Hypothesis. In
particular, we have shown that if the Exponential Time Hypothesis holds, then there is no
algorithm that decides uniform-length universality in time

O∗
(
2o(p

1/4)
)
,

where p is the number of productions of the given context-free grammar G. Similarly, we
have also shown that if the Exponential Time Hypothesis holds, then there is no algorithm

171

8. CONCLUSION

that decides uniform-length universality in time

O∗
(
2o(s

1/4)
)
,

where s is the size of the given context-free grammar G. For the proofs of the inapprox-
imability results, we have used several results that have already been obtained in previous
chapters. The gap-reduction from the coNP-complete tautology problem uses the fact
that the language Tn can only be generated by a grammar with an exponential number of
productions/size. In particular, given a propositional formula ϕ in 3-DNF, we have embed-
ded the language Tc·dlogne into a language Lϕ that needs a grammar with a linear number
of productions/size if ϕ is a tautology and a grammar with at least a quadratic number
of productions/size otherwise. An intermediate step in this gap-reduction featured a
polynomial-time reduction from the tautology problem to the uniform-length universality
problem. As a consequence, the uniform-length universality problem was shown to
be coNP-hard. While showing the bound if ϕ is a tautology was rather straightforward,
obtaining the bound if ϕ is not a tautology needed significantly more work. In particular,
it was necessary to apply some sort of triple construction from [GS63GS63] that constructs a
grammar generating the left quotient of a word with the language of a grammar. This was
necessary in order to use the lower bound on the language Tc·dlogne to get a lower bound
of a similar order on the language Lϕ. The aforementioned reduction from tautology
to uniform-length universality also came in handy in order to obtain our results under
the assumption of the Exponential Time Hypothesis. Basically, the upper bound on the
number of productions/size of the constructed grammar Gϕ together with the correctness
of the reduction already provided the necessary ingredients.

In [EEH18EEH18], it was shown that the minimal cover problem for acyclic regular grammars
with a fixed bound on the number of nonterminals is NP-complete. The minimal cover
problem is defined as follows: given a finite language L and a non-negative integer k,
is there an acyclic regular grammar G such that G has at most k productions and
satisfies L(G) ⊇ L? However, the computational complexity of this problem for an
arbitrary number of nonterminals is still open. In [EEH18EEH18], the authors proved that it is
in NP and conjectured that it is also NP-hard.

Due to the fact that all finite languages are regular, the existence of descriptional systems
that accept or generate a given finite language is rather trivial: just take, for instance,
finite automata or regular grammars. As a consequence, during investigations of finite
languages, the attention shifts towards questions dealing with quantitative measures for
finite languages based on the chosen descriptional system, such as the minimal number
of states in an automaton or the minimal size of a context-free grammar. However,
answering the question of how many productions a minimal grammar of a certain type
needs in order to generate certain finite languages can be a diffcult task.

This task becomes even harder for certain types of grammars if we move from the exact
to the cover complexity. Here, the difficulty lies, among others, in the fact that, in general,
those words which are generated by the grammar that are not members of the covered

172

finite language, can be of arbitrary shape and length. Moreover, the cover formulation
makes only sense if we restrict the covering grammar in such a way that it has to generate
a finite language. Otherwise, finding a grammar with a small number of productions
whose generated language covers any finite language becomes trivial—just take the strict
regular grammar that generates the universal language Σ∗.

The results of [EH15aEH15a, EH18EH18] can be seen as a first step in transferring descriptional
complexity results from the realm of formal language theory to the one of proof theory.
By constructing a regular cover-incompressible sequence of finite word languages, it was
first shown that this result extends to tree languages in a straightforward way and then
it was used to show that there is a sequence of formulae which can be compressed at
most quadratically with respect to the size of a smallest cut-free11 proof. Thus, at least
in the case of regular grammars, studying questions of descriptional complexity of finite
languages with respect to the cover formulation can have interesting ramifications in
the realm of proof complexity. In this sense, one can regard proof theory as being well
integrated into the study of descriptional complexity of finite languages.

In summary, we believe that the study of the complexity of problems based on finite
languages is a fruitful research area with strong ties to proof theory as well as to more
classic questions of descriptional and computational complexity.

1A cut is a special inference rule that, roughly speaking, formalises the use of a lemma in a mathematical
proof.

173

List of Figures

51 DFCA A1 for the finite language {a1, a2, . . . , ak}≤n.51 DFCA A1 for the finite language {a1, a2, . . . , ak}≤n. 72
52 Minimal DFA A2 accepting the finite language {a1, a2, . . . , ak}≤n.52 Minimal DFA A2 accepting the finite language {a1, a2, . . . , ak}≤n. 72
53 Relations between the grammar types w.r.t. a fixed measure type.53 Relations between the grammar types w.r.t. a fixed measure type. 78
54 NFA A for the finite language Σ≤n.54 NFA A for the finite language Σ≤n. 87
55 Relations between the measure types w.r.t. a fixed grammar type.55 Relations between the measure types w.r.t. a fixed grammar type. 99
56 DFA A for the finite language Σn.56 DFA A for the finite language Σn. 103

61 Summary of descriptional complexity results for language operations.61 Summary of descriptional complexity results for language operations. . . . 122

175

Index of Notation and Abbreviations

2NF Binary normal form. 154154

3-CNF 3-conjunctive normal form. See k-CNFk-CNF.

3-DNF 3-disjunctive normal form. See k-DNFk-DNF.

3-SAT The propositional 3-satisfiability problem. 165165, see also k-SATk-SAT & SATSAT.

c Exact complexity measure type. 2929, see also XcXc.

c∞ Infinite exact complexity measure type. 7373, see also Xc∞Xc∞.

cc Cover complexity measure type. 2929, see also XccXcc.

cc∞ Infinite cover complexity measure type. 7373, see also Xcc∞Xcc∞.

CF Context-free. 1515

CFc Exact complexity measure for context-free grammars. See XcXc.

CFc∞ Infinite exact complexity measure for context-free grammars. See Xc∞Xc∞.

CFcc Cover complexity measure for context-free grammars. See XccXcc.

CFcc∞ Infinite cover complexity measure for context-free grammars. See Xcc∞Xcc∞.

CFG Context-free grammar. 1515

CFsc Scattered complexity measure for context-free grammars. See XscXsc.

CFsc∞ Infinite scattered complexity measure for context-free grammars. See Xsc∞Xsc∞.

CFsz Symbolic complexity measure for context-free grammars. See XszXsz.

CNF Chomsky normal form. 3939

CNFcc Cover complexity measure for grammars in CNF. See CNFCNF & XccXcc.

co3-SAT The complement of the 3-SAT problem. 166166, see also 3-SAT3-SAT & coNPcoNP.

177

coNP The class of problems which are complements of problems in NP. 2121, see also NPNP.

DFA Deterministic finite automaton. 1818

DFCA Deterministic finite cover automaton. 2020, see also DFADFA.

ETH Exponential Time Hypothesis. 165165

k-CNF k-conjunctive normal form. 2222

k-DNF k-disjunctive normal form. 2222

k-SAT The propositional k-satisfiability problem. 2323, see also 3-SAT3-SAT & SATSAT.

LIN Linear (grammar). 1616

LINc Exact complexity measure for linear grammars. See XcXc.

LINc∞ Infinite exact complexity measure for linear grammars. See Xc∞Xc∞.

LINcc Cover complexity measure for linear grammars. See XccXcc.

LINcc∞ Infinite cover complexity measure for linear grammars. See Xcc∞Xcc∞.

LINsc Scattered complexity measure for linear grammars. See XscXsc.

LINsc∞ Infinite scattered complexity measure for linear grammars. See Xsc∞Xsc∞.

LINsz Symbolic complexity measure for linear grammars. See XszXsz.

M The set of all measure types. 7373, see alsoM∞M∞ &MfinMfin.

M∞ The set of infinite measure types. 7373, see alsoMM &MfinMfin.

Mfin The set of finite measure types. 7373, see alsoMM &M∞M∞.

NFA Nondeterministic finite automaton. 1919

NFCA Nondeterministic finite cover automaton. 2020, see also NFANFA.

NP The class of problems which are decidable in nondeterministic polynomial time. 2121

NPO NP-optimisation problem. 2424, see also NPNP.

P The class of problems which are decidable in deterministic polynomial time. 2121

PNF Pruned normal form. 3535

REG Regular (grammar). 1616

178

REGc Exact complexity measure for regular grammars. See XcXc.

REGc∞ Infinite exact complexity measure for regular grammars. See Xc∞Xc∞.

REGcc Cover complexity measure for regular grammars. See XccXcc.

REGcc∞ Infinite cover complexity measure for regular grammars. See Xcc∞Xcc∞.

REGsc Scattered complexity measure for regular grammars. See XscXsc.

REGsc∞ Infinite scattered complexity measure for regular grammars. See Xsc∞Xsc∞.

REGsz Symbolic complexity measure for regular grammars. See XszXsz.

SAT The propositional satisfiability problem. 2323, see also 3-SAT3-SAT & k-SATk-SAT.

sc Scattered complexity measure type. 4646, see also XscXsc.

sc∞ Infinite scattered complexity measure type. 7373, see also Xsc∞Xsc∞.

SLIN Strict linear (grammar). 1616

SLINc Exact complexity measure for strict linear grammars. See XcXc.

SLINc∞ Infinite exact complexity measure for strict linear grammars. See Xc∞Xc∞.

SLINcc Cover complexity measure for strict linear grammars. See XccXcc.

SLINcc∞ Infinite cover complexity measure for strict linear grammars. See Xcc∞Xcc∞.

SLINsc Scattered complexity measure for strict linear grammars. See XscXsc.

SLINsc∞ Infinite scattered complexity measure for strict linear grammars. See Xsc∞Xsc∞.

SLINsz Symbolic complexity measure for strict linear grammars. See XszXsz.

SREG Strict regular (grammar). 1616

SREGc Exact complexity measure for strict regular grammars. See XcXc.

SREGc∞ Infinite exact complexity measure for strict regular grammars. See Xc∞Xc∞.

SREGcc Cover complexity measure for strict regular grammars. See XccXcc.

SREGcc∞ Infinite cover complexity measure for strict regular grammars. See Xcc∞Xcc∞.

SREGsc Scattered complexity measure for strict regular grammars. See XscXsc.

SREGsc∞ Infinite scattered complexity measure for strict regular grammars. See Xsc∞Xsc∞.

SREGsz Symbolic complexity measure for strict regular grammars. See XszXsz.

179

sz Symbolic complexity measure type. 5656, see also XszXsz.

Xc Exact complexity measure for grammars of type X. 2828

Xc∞ Infinite exact complexity measure for grammars of type X. 7171

Xcc Cover complexity measure for grammars of type X. 2828

Xcc∞ Infinite cover complexity measure for grammars of type X. 7272

Xsc Scattered complexity measure for grammars of type X. 4646

Xsc∞ Infinite scattered complexity measure for grammars of type X. 7272

Xsz Symbolic complexity measure for grammars of type X. 5656

180

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

[AER83] Brian Alspach, Peter Eades, and Gordon Rose. A lower-bound for the number
of productions required for a certain class of languages. Discrete Applied
Mathematics, 6(2):109–115, 1983.

[BDG85] José L. Balcázar, Josep Díaz, and Joaquim Gabarró. Uniform character-
izations of non-uniform complexity measures. Information and Control,
67(1–3):53–69, 1985.

[BGL17] Karl Bringmann, Allan Grønlund, and Kasper G. Larsen. A Dichotomy for
Regular Expression Membership Testing. In Proceedings of the 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2017), pages
307–318, New Jersey, 2017. IEEE.

[BI15] Arturs Backurs and Piotr Indyk. Which Regular Expression Patterns are
Hard to Match? CoRR, abs/1511.07070, 2015.

[Bir92] Jean-Camille Birget. Intersection and union of regular languages and state
complexity. Information Processing Letters, 43(4):185–190, 1992.

[BK99] Norbert Blum and Robert Koch. Greibach Normal Form Transformation
Revisited. Information and Computation, 150(1):112–118, 1999.

[BMCI83] Walter Bucher, Hermann A. Maurer, and Karel Culik II. Context-free com-
plexity of finite languages. Theoretical Computer Science, 28(3):277–285,
1983.

[BMCIW81] Walter Bucher, Hermann A. Maurer, Karel Culik II, and Detlef Wotschke. Con-
cise description of finite languages. Theoretical Computer Science, 14(3):227–
246, 1981.

[Buc81] Walter Bucher. A note on a problem in the theory of grammatical complexity.
Theoretical Computer Science, 14(3):337–344, 1981.

181

[Câm14] Cezar Câmpeanu. Simplifying Nondeterministic Finite Cover Automata. In
Zoltán Ésik and Zoltán Fülöp, editors, Proceedings of the 14th International
Conference on Automata and Formal Languages (AFL 2014), volume 151,
pages 162–173, Waterloo, 2014. Open Publishing Association.

[Câm15] Cezar Câmpeanu. Non-Deterministic Finite Cover Automata. Scientific
Annals of Computer Science, 25(1):3–28, 2015.

[CCISY01] Cezar Câmpeanu, Karel Culik II, Kai Salomaa, and Sheng Yu. State Com-
plexity of Basic Operations on Finite Languages. In Oliver Boldt and Helmut
Jürgensen, editors, Proceedings of the 4th International Workshop on Imple-
menting Automata (WIA 1999), volume 2214 of Lecture Notes in Computer
Science, pages 60–70, Berlin, Heidelberg, 2001. Springer.

[CFG+16] Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and Markus L.
Schmid. On the Complexity of Grammar-Based Compression over Fixed
Alphabets. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, Proceedings of the 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP 2016), volume 55
of Leibniz International Proceedings in Informatics, pages 122:1–122:14,
Saarbrücken/Wadern, 2016. Dagstuhl Publishing.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[CGH05] Jean-Marc Champarnaud, Franck Guingne, and Georges Hansel. Simi-
larity relations and cover automata. RAIRO - Theoretical Informatics and
Applications, 39(1):115–123, 2005.

[CKP05] Cezar Câmpeanu, Lila Kari, and Andrei Păun. Results on Transforming NFA
into DFCA. Fundamenta Informaticae, 64(1–4):53–63, 2005.

[CLL+05] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran,
Amit Sahai, and Abhi Shelat. The Smallest Grammar Problem. IEEE Trans-
actions on Information Theory, 51(7):2554–2576, 2005.

[CMR11] Cezar Câmpeanu, Nelma Moreira, and Rogério Reis. Expected Compression
Ratio for DFCA: experimental average case analysis. Technical report,
Departamento de Ciência de Computadores, Universidade do Porto, 2011.

[CMR16] Cezar Câmpeanu, Nelma Moreira, and Rogério Reis. On the dissimilarity
operation on finite languages. In Henning Bordihn, Rudolf Freund, Benedek
Nagy, and György Vaszil, editors, Proceedings of the Eighth Workshop on Non-
Classical Models of Automata and Applications (NCMA 2016), volume 321
of books@ocg.at, pages 105–120, Wien, 2016. Österreichische Computer
Gesellschaft.

182

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Computing
(STOC 1971), pages 151–158, New York, 1971. ACM.

[CP03a] Cezar Câmpeanu and Andrei Păun. Counting the Number of Minimal
DFCA Obtained by Merging States. International Journal of Foundations of
Computer Science, 14(6):995–1006, 2003.

[CP03b] Cezar Câmpeanu and Andrei Păun. The Number of Similarity Relations and
the Number of Minimal Deterministic Finite Cover Automata. In Jean-Marc
Champarnaud and Denis Maurel, editors, Proceedings of the 7th International
Conference on Implementation and Application of Automata (CIAA 2002),
volume 2608 of Lecture Notes in Computer Science, pages 67–76, Berlin,
Heidelberg, 2003. Springer.

[CP05] Cezar Câmpeanu and Andrei Păun. Tight Bounds for NFA to DFCA Transfor-
mations for Binary Alphabets. In Michael Domaratzki, Alexander Okhotin,
Kai Salomaa, and Sheng Yu, editors, Proceedings of the 9th International
Conference on Implementation and Application of Automata (CIAA 2004),
volume 3317 of Lecture Notes in Computer Science, pages 306–307, Berlin,
Heidelberg, 2005. Springer.

[CPS06a] Cezar Câmpeanu, Andrei Păun, and Jason R. Smith. An Incremental Al-
gorithm for Constructing Minimal Deterministic Finite Cover Automata.
In Jacques Farré, Igor Litovsky, and Sylvain Schmitz, editors, Proceedings
of the 10th International Conference on Implementation and Application of
Automata (CIAA 2005), volume 3845 of Lecture Notes in Computer Science,
pages 90–103, Berlin, Heidelberg, 2006. Springer.

[CPS06b] Cezar Câmpeanu, Andrei Păun, and Jason R. Smith. Incremental construc-
tion of minimal deterministic finite cover automata. Theoretical Computer
Science, 363(2):135–148, 2006.

[CPY02] Cezar Câmpeanu, Andrei Păun, and Sheng Yu. An Efficient Algorithm for
Constructing Minimal Cover Automata for Finite Languages. International
Journal of Foundations of Computer Science, 13(1):83–97, 2002.

[Cre97] Pierluigi Crescenzi. A Short Guide to Approximation Preserving Reductions.
In Proceedings of the Twelfth Annual IEEE Conference on Computational
Complexity, pages 262–273, Los Alamitos, 1997. IEEE.

[CSY99] Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Minimal Cover-Automata
for Finite Languages. In Jean-Marc Champarnaud, Djelloul Ziadi, and Denis
Maurel, editors, Proceedings of the Third International Workshop on Imple-
menting Automata (WIA 1998), volume 1660 of Lecture Notes in Computer
Science, pages 43–56, Berlin, Heidelberg, 1999. Springer.

183

[CSY00] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. State Complexity of Reg-
ular Languages: Finite versus Infinite. In Cristian Calude and Gheorghe
Păun, editors, Finite Versus Infinite, Discrete Mathematics and Theoretical
Computer Science, pages 53–73. Springer, London, 2000.

[CSY01] Cezar Câmpeanu, Nicolae Sântean, and Sheng Yu. Minimal cover-automata
for finite languages. Theoretical Computer Science, 267(1–2):3–16, 2001.

[Das17] Jürgen Dassow. Descriptional Complexity and Operations—Two Non-
classical Cases. In Giovanni Pighizzini and Cezar Câmpeanu, editors, Pro-
ceedings of the 19th IFIP WG 1.02 International Conference on Descriptional
Complexity of Formal Systems (DCFS 2017), volume 10316 of Lecture Notes
in Computer Science, pages 33–44, Cham, 2017. Springer.

[DH12a] Jürgen Dassow and Ronny Harbich. Descriptional Complexity of Union
and Star on Context-Free Languages. Journal of Automata, Languages and
Combinatorics, 17(2–4):123–143, 2012.

[DH12b] Jürgen Dassow and Ronny Harbich. Production Complexity of Some Oper-
ations on Context-Free Languages. In Martin Kutrib, Nelma Moreira, and
Rogério Reis, editors, Proceedings of the 14th International Workshop on
Descriptional Complexity of Formal Systems (DCFS 2012), volume 7386 of
Lecture Notes in Computer Science, pages 141–154, Berlin, Heidelberg, 2012.
Springer.

[DKH11] Ding-Zhu Du, Ker-I Ko, and Xiaodong Hu. Design and Analysis of Approxi-
mation Algorithms. Springer, 2011.

[dOOW20] Mateus de Oliveira Oliveira and Michael Wehar. On the Fine Grained
Complexity of Finite Automata Non-Emptiness of Intersection. In Proceedings
of the 24th International Conference on Developments in Language Theory
(DLT 2020), Lecture Notes in Computer Science, Cham, 2020. Springer. To
appear.

[DP89] Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language
Theory, volume 18 of EATCS Monographs in Theoretical Computer Science.
Springer, 1989.

[DS90] Cynthia Dwork and Larry Stockmeyer. A Time Complexity Gap for Two-
Way Probabilistic Finite-State Automata. SIAM Journal on Computing,
19(6):1011–1023, 1990.

[DS07] Michael Domaratzki and Kai Salomaa. Transition complexity of language
operations. Theoretical Computer Science, 387(2):147–154, 2007.

[DS08] Jürgen Dassow and Ralf Stiebe. Nonterminal Complexity of Some Opera-
tions on Context-Free Languages. Fundamenta Informaticae, 83(1-2):35–49,
2008.

184

[EEH17] Sebastian Eberhard, Gabriel Ebner, and Stefan Hetzl. Algorithmic Compres-
sion of Finite Tree Languages by Rigid Acyclic Grammars. ACM Transactions
on Computational Logic, 18(4):26:1–26:20, 2017.

[EEH18] Sebastian Eberhard, Gabriel Ebner, and Stefan Hetzl. Complexity of Decision
Problems on Totally Rigid Acyclic Tree Grammars. In Mizuho Hoshi and
Shinnosuke Seki, editors, Proceedings of the 22nd International Conference
on Developments in Language Theory (DLT 2018), volume 11088 of Lecture
Notes in Computer Science, pages 291–303, Cham, 2018. Springer.

[EH15a] Sebastian Eberhard and Stefan Hetzl. Compressibility of Finite Languages
by Grammars. In Jeffrey O. Shallit and Alexander Okhotin, editors, 17th
International Workshop on Descriptional Complexity of Formal Systems (DCFS
2015), volume 9118 of Lecture Notes in Computer Science, pages 93–104,
Cham, 2015. Springer.

[EH15b] Sebastian Eberhard and Stefan Hetzl. Inductive theorem proving based on
tree grammars. Annals of Pure and Applied Logic, 166(6):665–700, 2015.

[EH18] Sebastian Eberhard and Stefan Hetzl. On the compressibility of finite
languages and formal proofs. Information and Computation, 259(2):191–
213, 2018.

[EHL+19] Gabriel Ebner, Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel
Weller. On the Generation of Quantified Lemmas. Journal of Automated
Reasoning, 63(1):95–126, 2019.

[EKSW05] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang. Regular Ex-
pressions: New Results and Open Problems. Journal of Automata, Languages
and Combinatorics, 10(4):407–437, 2005.

[Ell04] Keith Ellul. Descriptional Complexity Measures of Regular Languages.
Master’s thesis, University of Waterloo, 2004.

[Fer19] Henning Fernau. Modern Aspects of Complexity Within Formal Languages.
In Carlos Martín-Vide, Alexander Okhotin, and Dana Shapira, editors, Pro-
ceedings of the 13th International Conference on Language and Automata
Theory and Applications (LATA 2019), volume 11417 of Lecture Notes in
Computer Science, pages 3–30, Cham, 2019. Springer.

[FHV15] Henning Fernau, Pinar Heggernes, and Yngve Villanger. A multi-parameter
analysis of hard problems on deterministic finite automata. Journal of
Computer and System Sciences, 81(4):747–765, 2015.

[Fil11] Yuval Filmus. Lower bounds for context-free grammars. Information Pro-
cessing Letters, 111(18):895–898, 2011.

185

[FK17] Henning Fernau and Andreas Krebs. Problems on Finite Automata and the
Exponential Time Hypothesis. Algorithms, 10(1), 2017.

[FPSV17] Henning Fernau, Meenakshi Paramasivan, Markus L. Schmid, and Vojtěch
Vorel. Characterization and complexity results on jumping finite automata.
Theoretical Computer Science, 679:31–52, 2017.

[Geo96] Gianina Georgescu. The Orthogonality of Some Complexity Measures of
Context-Free Languages. In Jürgen Dassow, Grzegorz Rozenberg, and
Arto Salomaa, editors, Proceedings of the 2nd International Conference on
Developments in Language Theory (DLT 1995), pages 73–78, Singapore,
1996. World Scientific.

[GH05] Herman Gruber and Markus Holzer. A note on the number of transitions of
nondeterministic finite automata. In Henning Fernau, editor, Proceedings of
the 15. Theorietag der GI-Fachgruppe 0.1.5 Automaten und Formale Sprachen,
pages 24–25, Tübingen, 2005. Wilhelm-Schickard-Institut für Informatik.

[GHJ15] Hermann Gruber, Markus Holzer, and Sebastian Jakobi. More on Deter-
ministic and Nondeterministic Finite Cover Automata. In Frank Drewes,
editor, Proceedings of the 20th International Conference on Implementation
and Application of Automata (CIAA 2015), volume 9223 of Lecture Notes in
Computer Science, pages 114–126, Cham, 2015. Springer.

[GHJ17] Hermann Gruber, Markus Holzer, and Sebastian Jakobi. More on deter-
ministic and nondeterministic finite cover automata. Theoretical Computer
Science, 679:18–30, 2017.

[GHW18] Hermann Gruber, Markus Holzer, and Simon Wolfsteiner. On Minimal Gram-
mar Problems for Finite Languages. In Mizuho Hoshi and Shinnosuke Seki,
editors, Proceedings of the 22nd International Conference on Developments in
Language Theory (DLT 2018), volume 11088 of Lecture Notes in Computer
Science, pages 342–353, Cham, 2018. Springer.

[GMRY16] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A Survey on Opera-
tional State Complexity. Journal of Automata, Languages and Combinatorics,
21(4):251–310, 2016.

[Gru67] Jozef Gruska. On a Classification of Context-Free Languages. Kybernetika,
3(1):22–29, 1967.

[Gru69] Jozef Gruska. Some classifications of context-free languages. Information
and Control, 14(2):152–179, 1969.

[Gru71] Jozef Gruska. Complexity and unambiguity of context-free grammars and
languages. Information and Control, 18(5):502–519, 1971.

186

[Gru72] Jozef Gruska. On the Size of Context-free Grammars. Kybernetika, 8(3):213–
218, 1972.

[Gru76] Jozef Gruska. Descriptional complexity (of languages): a short survey. In
Antoni Mazurkiewicz, editor, Proceedings of the 5th International Symposium
on Mathematical Foundations of Computer Science (MFCS 1976), volume 45
of Lecture Notes in Computer Science, pages 65–80, Berlin, Heidelberg, 1976.
Springer.

[GS63] Seymour Ginsburg and Edwin H. Spanier. Quotients of Context-Free Lan-
guages. Journal of the ACM, 10(4):487–492, 1963.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison-
Wesley, 1978.

[Het12] Stefan Hetzl. Applying Tree Languages in Proof Theory. In Adrian-Horia
Dediu and Carlos Martín-Vide, editors, Proceedings of the 6th International
Conference on Language and Automata Theory and Applications (LATA 2012),
volume 7183 of Lecture Notes in Computer Science, pages 301–312, Berlin,
Heidelberg, 2012. Springer.

[HK03] Markus Holzer and Martin Kutrib. Nondeterministic Descriptional Complex-
ity of Regular Languages. International Journal of Foundations of Computer
Science, 14(6):1087–1102, 2003.

[HK09] Markus Holzer and Martin Kutrib. Nondeterministic Finite Automata—
Recent Results on the Descriptional and Computational Complexity. In-
ternational Journal of Foundations of Computer Science, 20(4):563–580,
2009.

[HK11] Markus Holzer and Martin Kutrib. Descriptional Complexity—An Introduc-
tory Survey. In Carlos Martín-Vide, editor, Scientific Applications of Language
Methods, pages 1–58. Imperial College Press, London, 2011.

[HLR+14] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel
Weller. Introducing Quantified Cuts in Logic with Equality. In Stéphane
Demri, Deepak Kapur, and Christoph Weidenbach, editors, Proceedings of
the 7th International Joint Conference on Automated Reasoning (IJCAR 2014),
volume 8562 of Lecture Notes in Computer Science, pages 240–254, Cham,
2014. Springer.

[HLRW14] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. Algorithmic
introduction of quantified cuts. Theoretical Computer Science, 549:1–16,
2014.

187

[HLW12] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards Algorithmic
Cut-Introduction. In Nikolaj Bjørner and Andrei Voronkov, editors, Proceed-
ings of the 18th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2012), volume 7180 of Lecture Notes in
Computer Science, pages 228–242, Berlin, Heidelberg, 2012. Springer.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-Wesley, second
edition, 2001.

[HS07] Yo-Sub Han and Kai Salomaa. State complexity of union and intersection
of finite languages. In Tero Harju, Juhani Karhumäki, and Arto Lepistö,
editors, Proceedings of the 11th International Conference on Developments
in Language Theory (DLT 2007), volume 4588 of Lecture Notes in Computer
Science, pages 217–228, Berlin, Heidelberg, 2007. Springer.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and their Relation
to Automata. Addison-Wesley, 1969.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[Hun73] Harry B. Hunt, III. On the Time and Tape Complexity of Languages. PhD
thesis, Cornell University, 1973.

[HW18a] Stefan Hetzl and Simon Wolfsteiner. Cover Complexity of Finite Languages.
In Stavros Konstantinidis and Giovanni Pighizzini, editors, Proceedings of
the 20th IFIP WG 1.02 International Conference on Descriptional Complexity
of Formal Systems (DCFS 2018), volume 10952 of Lecture Notes in Computer
Science, pages 139–150, Cham, 2018. Springer.

[HW18b] Markus Holzer and Simon Wolfsteiner. On the Grammatical Complexity
of Finite Languages. In Stavros Konstantinidis and Giovanni Pighizzini,
editors, Proceedings of the 20th IFIP WG 1.02 International Conference on
Descriptional Complexity of Formal Systems (DCFS 2018), volume 10952 of
Lecture Notes in Computer Science, pages 151–162, Cham, 2018. Springer.

[HW19] Stefan Hetzl and Simon Wolfsteiner. On the cover complexity of finite
languages. Theoretical Computer Science, 798:109–125, 2019.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In
Proceedings of the Fourteenth Annual IEEE Conference on Computational
Complexity (COCO 1999), pages 237–240, Washington, 1999. IEEE.

[Ipa12] Florentin Ipate. Learning finite cover automata from queries. Journal of
Computer and System Sciences, 78(1):221–244, 2012.

188

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems
Have Strongly Exponential Complexity? Journal of Computer and System
Sciences, 63(4):512–530, 2001.

[Jir05] Galina Jirásková. State complexity of some operations on binary regular
languages. Theoretical Computer Science, 330(2):287–298, 2005.

[JJS05] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. State Complexity of
Concatenation and Complementation. International Journal of Foundations
of Computer Science, 16(3):511–529, 2005.

[JM11] Artur Jeż and Andreas Maletti. Computing All `-Cover Automata Fast. In
Béatrice Bouchou-Markhoff, Pascal Caron, Jean-Marc Champarnaud, and
Denis Maurel, editors, Proceedings of the 16th International Conference on
Implementation and Application of Automata (CIAA 2011), volume 6807 of
Lecture Notes in Computer Science, pages 203–214, Berlin, Heidelberg, 2011.
Springer.

[Joh09] Neil F. Johnson. Simply Complexity: A Clear Guide to Complexity Theory.
Oneworld Publications, 2009.

[KF90] Jānis Kaneps and Rūsinš Freivalds. Minimal nontrivial space complexity of
probabilistic one-way turing machines. In Branislav Rovan, editor, Proceed-
ings of the 15th International Symposium on Mathematical Foundations of
Computer Science (MFCS 1990), volume 452 of Lecture Notes in Computer
Science, pages 355–361, Berlin, Heidelberg, 1990. Springer.

[Kör03a] Heiko Körner. A Time and Space Efficient Algorithm for Minimizing Cover
Automata for Finite Languages. International Journal of Foundations of
Computer Science, 14(6):1071–1086, 2003.

[Kör03b] Heiko Körner. On Minimizing Cover Automata for Finite Languages in
O(n logn) Time. In Jean-Marc Champarnaud and Denis Maurel, editors,
Proceedings of the 7th International Conference on Implementation and Appli-
cation of Automata (CIAA 2002), volume 2608 of Lecture Notes in Computer
Science, pages 117–127, Berlin, Heidelberg, 2003. Springer.

[KY00] John C. Kieffer and En-Hui Yang. Grammar-Based Codes: A New Class of
Universal Lossless Source Codes. IEEE Transactions on Information Theory,
46(3):737–754, 2000.

[KYNC00] John C. Kieffer, En-Hui Yang, Greg J. Nelson, and Pamela Cosman. Universal
Lossless Compression Via Multilevel Pattern Matching. IEEE Transactions on
Information Theory, 46(4):1227–1245, 2000.

[LL09] Martin Lange and Hans Leiß. To CNF or not to CNF? An Efficient Yet
Presentable Version of the CYK Algorithm. informatica didactica, 8, 2009.

189

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based
on the Exponential Time Hypothesis. Bulletin of the European Association
for Theoretical Computer Science, 105:41–71, 2011.

[LV08] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 2008.

[LZ76] Abraham Lempel and Jacob Ziv. On the Complexity of Finite Sequences.
IEEE Transactions on Information Theory, 22(1):75–81, 1976.

[NM96] Craig G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, Univer-
sity of Waikato, 1996.

[NMW97] Craig G. Nevill-Manning and Ian H. Witten. Identifying Hierarchical Struc-
ture in Sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research, 7:67–82, 1997.

[Pap95] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1995.

[PS18] Aaron Potechin and Jeffrey O. Shallit. Lengths of Words Accepted by
Nondeterministic Finite Automata. CoRR, abs/1802.04708, 2018.

[PSY01] Andrei Păun, Nicolae Sântean, and Sheng Yu. An O(n2) algorithm for
constructing minimal cover automata for finite languages. In Sheng Yu
and Andrei Păun, editors, Proceedings of the 5th International Conference on
Implementation and Application of Automata (CIAA 2000), volume 2088 of
Lecture Notes in Computer Science, pages 243–251, Berlin, Heidelberg, 2001.
Springer.

[Rév91] György E. Révész. Introduction to Formal Languages. Courier Corporation,
1991.

[SB96] Jeffrey O. Shallit and Yuri Breitbart. Automaticity I: Properties of a Measure
of Descriptional Complexity. Journal of Computer and System Sciences,
53(1):10–25, 1996.

[SG17] Payam Siyari and Matthias Gallé. The Generalized Smallest Grammar
Problem. In Sicco Verwer, Menno van Zaanen, and Rick Smetsers, editors,
Proceedings of the 13th International Conference on Grammatical Inference
(ICGI 2016), volume 57 of Proceedings of Machine Learning Research, pages
79–92. PMLR, 2017.

[Sha08] Jeffrey O. Shallit. A Second Course in Formal Languages and Automata
Theory. Cambridge University Press, 2008.

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,
2013.

190

[SS82] James A. Storer and Thomas G. Szymanski. Data Compression via Textual
Substitution. Journal of the ACM, 29(4):928–951, 1982.

[Tuz87] Zsolt Tuza. On the context-free production complexity of finite languages.
Discrete Applied Mathematics, 18(3):293–304, 1987.

[VW18] Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algo-
rithms and Complexity. In Boyan Sirakov, Paulo Ney de Souza, and Marcelo
Viana, editors, Proceedings of the International Congress of Mathematicians
(ICM 2018), pages 3447–3487, Singapore, 2018. World Scientific.

[Weh16] Michael Wehar. On the Complexity of Intersection Non-Emptiness Problems.
PhD thesis, University at Buffalo, 2016.

[Woe08] Gerhard J. Woeginger. Open problems around exact algorithms. Discrete
Applied Mathematics, 156(3):397–405, 2008.

[Woo87] Derick Wood. Theory of Computation. John Wiley & Sons, 1987.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[YK00] En-Hui Yang and John C. Kieffer. Efficient Universal Lossless Data Compres-
sion Algorithms Based on a Greedy Sequential Grammar Transform—Part
One: Without Context Models. IEEE Transactions on Information Theory,
46(3):755–777, 2000.

[Yu01] Sheng Yu. State Complexity of Regular Languages. Journal of Automata,
Languages and Combinatorics, 6(2):221–234, 2001.

[Yu07] Sheng Yu. Cover Automata For Finite Languages. Bulletin of the European
Association for Theoretical Computer Science, 92:65–74, 2007.

[YZS94] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of
some basic operations on regular languages. Theoretical Computer Science,
125(2):315–328, 1994.

[ZL77] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, 23(3):337–343,
1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of Individual Sequences via
Variable-Rate Coding. IEEE Transactions on Information Theory, 24(5):530–
536, 1978.

191

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Formal Language Theory
	Automata
	Computational Complexity

	Complexity Measures
	Exact and Cover Complexity
	Unboundedness of Cover Complexity Measures
	Unboundedness of Grammatical Cover Complexity
	Computing Cover Complexity from Exact Complexity

	Bounds on Production Complexity
	Basic Bounds on Production Complexity
	Lower Bounds on Exact Production Complexity
	Lower Bounds on Cover Production Complexity

	Relating Finite and Infinite Complexity Measures
	Infinite Complexity Measures
	Relating Grammar Types
	Relating Measure Types

	Bounds on Language Operations
	Intersection
	Union
	Concatenation

	Complexity of The Smallest Grammar Problem for Finite Languages
	Inapproximability of the Minimal Number of Productions
	The Smallest Grammar Problem for Finite Languages
	The Uniform-Length Universality Problem and the ETH

	Conclusion
	List of Figures
	Index of Notation and Abbreviations
	Bibliography

