
B A C H E L O R A R B E I T

Reversible Automata:
Characterizations and Construction

ausgeführt am

Institut für

Diskrete Mathematik und Geometrie

TU Wien

unter der Anleitung von

Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

durch

Fabian Wöhrer

Matrikelnummer: 11776792

Wien, am 8. April 2024

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Languages and automata . 2
2.2 Algebraic automata theory . 3

3 Characterization of reversible languages 6
3.1 Group-theoretic characterization . 8

3.1.1 The free group and rational subgroups 8
3.1.2 Reversible languages in the free group 10

3.2 Algebraic characterization . 13
3.2.1 The syntactic monoid of reversible languages 14
3.2.2 Green’s relations and regular elements 15
3.2.3 Proving reversibility . 20

3.3 Topological characterization . 23
3.3.1 The profinite topology . 23
3.3.2 Closed languages and their reversibility 25

4 Algorithms 27
4.1 The membership problem . 27
4.2 Construction of reversible automata . 30

Bibliography 37

i

1 Introduction

Reversibility is a desired property in the study of computational machines. It means that
every elementary computational step can be reverted without any loss of information. In
particular, a finite automaton is called reversible, if every letter induces a partial injective
map from the set of states into itself. The reversible languages, i.e., those languages
that can be accepted by a reversible automaton, form a proper subclass of the class of
regular languages. As it turns out, the minimal DFA of a reversible language is usually not
reversible. This fact eliminates a supposedly trivial way to characterize reversible languages,
which at the same time establishes them as an interesting class of languages. Indeed, their
study requires several advanced concepts from the algebraic theory of automata and formal
languages as well as a considerable amount of semigroup theory.

This work is roughly divided into two parts. After recapitulating some definitions and
well-known results of automata theory, Chapter 3 is devoted to characterizing the class
of reversible languages from a group-theoretic, algebraic and topological perspective. On
the other hand, Chapter 4 covers the algorithmic side. In Section 4.1 we derive a decision
algorithm, that determines whether a given regular language is reversible. Section 4.2
features a constructive algorithm, that assumes a reversible language L as input and builds
a (quasi-)reversible automaton accepting L. Chapter 3 and Section 4.1 are mainly based
on [10], whereas the construction in Section 4.2 is due to [5].

1

2 Preliminaries

We quickly recall the usual definitions and some well-known results about languages and
automata, as well as some important notions from algebraic automata theory. For all the
proofs, more detailed explanations and examples of the presented concepts – especially
regarding algebraic automata theory – we refer to [6] and [11].

2.1 Languages and automata

Definition 2.1. Let A = {a1, · · · , an} be an alphabet with letters a1, . . . , an. Then we
denote by A∗ the free monoid, i.e., the set of all finite words over A, including the empty
word ε as unit. The operation ∗ is known as Kleene star. A language over A∗ is any subset
L ⊆ A∗.

Definition 2.2. The regular (or rational) languages on A∗ are defined as the smallest set
of languages Rat(A∗) satisfying the following conditions:

(1) Rat(A∗) contains ∅ and every singleton {a} for each letter a ∈ A∗,

(2) Rat(A∗) is closed under finite union, concatenation and Kleene star.

Consequently, regular languages are exactly those that can be represented as regular ex-
pressions, for example (a+ bb)∗ + aa∗b.

Definition 2.3. A (nondeterministic) finite automaton is a quintuple A = (Q,A,E, I, F),
where Q is a finite set of states, A is an alphabet, E ⊆ Q×A×Q is the set of transitions,
I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states. If (q, a, p) ∈ E is a
transition, we also write q

a−→ p.

There is a natural extension of E to a subset of Q×A∗ ×Q, which we will also call E. It
is also common to interpret E as a function δ : Q×A∗ → 2Q. We will use both notations,
depending on what is more convenient in the situation.

Definition 2.4. We say that a word w ∈ A∗ is accepted (or recognized) by a finite automa-
ton A = (Q,A,E, I, F), if there are states qi ∈ I and qf ∈ F such that (qi, w, qf) ∈ E. The
language accepted by A is thus defined as

|A| = {w ∈ A∗ | A accepts w}.

Definition 2.5. A finite automaton is deterministic (short a DFA) if there is only one
initial state and the transition relation is actually a function · : Q×A→ Q. In particular,
every DFA is a NFA.

2

2 Preliminaries

Remark 2.6. According to this definition, DFAs are always complete – for each state and
symbol a transition into some state is defined. Sometimes the above definition of a DFA is
slightly altered, such that the transition relation is only required to be a partial function.
We will sometimes – especially when talking about the minimal DFA – implicitly use this
alternative notion. Such a DFA can then always be completed by adding a trap state,
where all missing transitions are collected.

Definition 2.7. A finite automaton is called trim, if every state q ∈ Q is visited in some
path from an initial to a final state, i.e., there are words u, v ∈ A∗ and states qi ∈ I, qf ∈ F
such that (qi, u, q) ∈ E and (q, v, qf) ∈ E.

The following theorem, named after Stephen Cole Kleene, one of the founders of theoretical
computer science, connects regular languages to finite automata.

Theorem 2.8 (Kleene’s theorem). Let L ⊆ A∗ be a language. The following statements
are equivalent:

(1) L is a regular language,

(2) L is accepted by a NFA,

(3) L is accepted by a DFA.

2.2 Algebraic automata theory

Every regular language L is accepted by (infinitely) many finite automata. However, espe-
cially from an algebraic perspective, it is often advantageous to consider a DFA accepting
L with a minimal number of states. Such a DFA always exists and is unique (up to iso-
morphism).

Definition 2.9. Let L ⊆ A∗ and u ∈ A∗. Then we call u−1L = {w ∈ A∗ | uw ∈ L} the
left quotient of L by the word u.

Definition 2.10. Let L ⊆ A∗ be a regular language. The minimal DFA of L is given by
DL = (Q,A, ·, {q0}, F), where

Q = {u−1L | u ∈ A∗},
q0 = ε−1L = L,

F = {u−1L | u ∈ L} = {u−1L | ε ∈ u−1L},

and u−1L · a = (ua)−1L for every a ∈ A.

Finite automata and regular languages are deeply connected to finite monoids. Recall that
a monoid is just a set together with an associative binary operation and a unit element.

3

2 Preliminaries

Definition 2.11. Let M be a monoid and φ : A∗ →M be a monoid homomorphism. We
say that a language L ⊆ A∗ is recognized by M (or by φ) if there is a subset P ⊆M such
that L = φ−1(P).

The following simple result will turn out to be very useful for the proof of the algebraic
characterization in Section 3.2.

Lemma 2.12. Let M be a monoid and φ : A∗ → M be a monoid homomorphism. A
language L ⊆ A∗ is recognized by φ if and only if φ−1(φ(L)) = L.

Definition 2.13. Let A = (Q,A, ·, {q0}, F) be a DFA. Every word w ∈ A∗ induces a map

τw : Q→ Q, q 7→ q · w.

We define the transition monoid M(A) of A as the set

M(A) = {τw ∈ QQ | w ∈ A∗},

with unit τε and the monoid operation τu · τv = τuv.

Lemma 2.14. Let A be a DFA recognizing a language L ⊆ A∗. Then M(A) recognizes L.

In particular, every regular language is recognized by a finite monoid. We even have the
converse, yielding another characterization of regular languages, in addition to Kleene’s
theorem.

Theorem 2.15. A language L ⊆ A∗ is regular if and only if it is recognized by a finite
monoid.

Although the transition monoid already provides a concrete example of a finite monoid rec-
ognizing a regular language, it has the disadvantage of being dependent on a corresponding
automaton. The solution to this issue is the so-called syntactic monoid, which plays a
crucial role in this entire work.

Definition 2.16. Let L ⊆ A∗. We define the syntactic congruence ≈L on A∗ by

w1 ≈L w2 ⇐⇒ (∀u, v ∈ A∗ : uw1v ∈ L ⇐⇒ uw2v ∈ L),

and call M(L) = A∗/≈L the syntactic monoid of L. Furthermore, the natural homomor-
phism η : A∗ →M(L), w 7→ [w]≈L is called the syntactic homomorphism.

A priori, the actual construction of the syntactic monoid of a language seems to be not as
obvious as the construction of the transition monoid of a DFA. However, we have:

Theorem 2.17. Let L ⊆ A∗ be a regular language. Then M(L) ≃M(DL).

4

2 Preliminaries

Remark 2.18. The above result states that we can obtain M(L) by first constructing DL

and then its transition monoid M(DL). Afterwards we just perform the identification
τw 7→ [w]≈L .

Corollary 2.19. Let L ⊆ A∗ be a regular language. Then M(L) recognizes L.

The syntactic monoid M(L) does not only recognize L, it is also – in a certain sense – the
“smallest” monoid with this property.

Definition 2.20. Let M,N be monoids. We say that N is a quotient of M if there is a
surjective homomorphism φ : M → N . If N is a quotient of a submonoid of M , then we
call N a divisor of M . We then also say that N divides M and write N ≼M .

Theorem 2.21. Let L ⊆ A∗ and M be a monoid. Then M recognizes L if and only if
M(L) ≼M .

5

3 Characterization of reversible languages

The current chapter is mostly based on the work by J.-É. Pin [10]. Before we proceed
with the actual characterizations of reversible languages, we first differentiate them from
another class of regular languages, which seems similar, but is much simpler to describe.

Definition 3.1. A finite automaton A = (Q,A,E, I, F) is reversible if every letter a ∈ A
induces a partial injective (one-to-one) map from Q into itself. A reversible language is a
regular language L ⊆ A∗ that is accepted by some reversible automaton.

This definition can also be phrased in terms of forbidden configurations. An automaton is
deterministic if and only if it has a unique initial state and does not contain any configura-
tion of type FC1. On the other hand, an automaton is codeterministic if and only if it has
a unique final state and does not contain any configuration of type FC2.

r

q

p

a

a

(a) FC1

q

p

r

a

a

(b) FC2

Figure 3.1: The two types of forbidden configurations

Proposition 3.2. A finite automaton is reversible if and only if no configurations of type
FC1 or FC2 occur.

Proof. Clearly, FC1 corresponds to the transition relation being a partial function, and FC2

corresponds to injectivity.

Definition 3.3. A finite automaton is called bideterministic if it is both deterministic and
codeterministic.

By definition, every bideterministic automaton is also reversible. The converse is not true,
as reversible automata may have several initial and/or final states. It is surprisingly easy
to characterize the languages accepted by a bideterministic automaton.

Lemma 3.4. Every trim bideterministic automaton is already minimal.

6

3 Characterization of reversible languages

Proof. Let A = (Q,A, ·, {q0}, {qf}) be a trim bideterministic automaton and assume that
A is not minimal. Furthermore, let L = |A|. Then there are at least two distinct words
u, v ∈ A∗ satisfying u−1L = v−1L and q0 · u ̸= q0 · v. Let p = q0 · u and r = q0 · v. Since
A is trim, there is a word w ∈ A∗ with p · w = qf , which implies uw ∈ L and therefore
w ∈ u−1L = v−1L. This in turn implies vw ∈ L and thus

r · w = (q0 · v) · w = q0 · vw = qf = p · w.

Since p ̸= r, this is a contradiction to A being codeterministic.

Theorem 3.5. A regular language L ⊆ A∗ is accepted by a bideterministic automaton if
and only if its minimal DFA DL is reversible and has a unique final state.

Proof. We show both implications.

⇐ If DL is reversible and has a unique final state, then it is already bideterministic,
since the initial state of DL is always unique.

⇒ Conversely, let A be a bideterministic automaton accepting L. Clearly, every au-
tomaton can be trimmed by removing any redundant states, without changing the
language it accepts. Hence we can assume A to be trim. By Lemma 3.4, A is equal
(or at least isomorphic) to DL. Thus DL is bideterministic and therefore reversible
with a unique final state.

The characterization of the class C of reversible languages is far more challenging. This is
mainly due to the fact that the minimal DFA of a reversible language is not reversible in
general, as the following simple example demonstrates.

Example 3.6. Consider the language L = {a, ac, bc}. The non-empty left quotients are

1 := L, 2 := a−1L, 3 := b−1L, 4 := (ac)−1L = (bc)−1L.

Hence, DL is given by

1

2

3

4

a

b

c

c

Since DL contains a forbidden configuration of type FC2, it is not reversible. However, L
is a reversible language, as it is also accepted by the following reversible automaton:

1 2

3 4 5

a

a

b

c

7

3 Characterization of reversible languages

Despite this example, the minimal DFA will serve as a starting point for both deciding
the reversibility of a given language algorithmically as well as constructing a reversible
automaton that accepts a given reversible language, see Chapter 4.

3.1 Group-theoretic characterization

In order to motivate the first characterization of C, we briefly take a look at the relation
between reversible languages and the class of group languages. As the name suggests,
group languages are regular languages recognized by a finite group. They can also be
characterized as the languages that are recognized by a permutation automaton, i.e., an
automaton in which every letter induces a permutation on the set of states (see [12]) – as
opposed to reversible automata, where every letter only induces a partial one-to-one map.
Thus reversible languages can be viewed as a slight generalization of group languages, which
suggests some characterization involving groups.

3.1.1 The free group and rational subgroups

Definition 3.7. For a set A let A−1 = {a | a ∈ A}, where a is the (formal) inverse symbol
of a, and let Ã = A⊎A−1. We denote by ≈ the congruence on Ã∗ generated by the relation
{(aa, ε) | a ∈ A} ∪ {(aa, ε) | a ∈ A}. Then the quotient FG(A) = Ã∗/≈ is called the free
group and π : Ã∗ → FG(A) defined by w 7→ [w]≈ is the natural homomorphism.

Remark 3.8. Let A be a finite alphabet. Since the inverse of each letter is unique, every
class [w]≈ in FG(A) has a shortest representative w0 ∈ [w]≈, namely the completely pruned
word. We will always identify FG(A) with the set of its representatives and therefore also
consider FG(A) as a subset of Ã∗.

Remark 3.9. The inverse of a word w = a1 · · · ak ∈ FG(A) is obtained by traversing
backwards along the inverse letters, i.e., w = ak · · · a1.

There is a natural way to extend a given automaton A = (Q,A,E, I, F) to an automaton
on Ã, by adding for each edge a corresponding reverse edge labelled by the reverse letter.
To this end, set Ã = (Q, Ã, Ẽ, I, F), where

Ẽ = E ∪ {(q′, a, q) | (q, a, q′) ∈ E}.

The words accepted by Ã constitute a subset of Ã∗. However, we are only interested in the
induced representatives in FG(A).

Definition 3.10. Let A = (Q,A,E, I, F) be an automaton. The subset of the free group
accepted by A is defined as

∥A∥ = π(|Ã|).

Conversely, a subset S ⊆ FG(A) is said to be accepted by a (reversible) automaton, if
there exists a (reversible) automaton A on A, such that S = ∥A∥.

8

3 Characterization of reversible languages

Lemma 3.11. Let A = (Q,A,E, I, F) be an automaton. Then |A| = ∥A∥ ∩A∗.

Proof. The left-to-right inclusion follows directly from |A| = π(|A|) ⊆ π(|Ã|) = ∥A∥. On
the other hand, ∥A∥ ⊆ |Ã| and |Ã| ∩A∗ = |A|, therefore ∥A∥ ∩A∗ ⊆ |A|.

Due to Lemma 3.11 we can revert to describing ∥A∥ instead of |A|. The following simple
observation will prove to be quite useful later.

Lemma 3.12. The image of the natural morphism π : Ã∗ → FG(A) is compatible with
union, concatenation and Kleene star.

Proof. Like every function, π preserves arbitrary unions. Let U, V ∈ Ã∗. Since π is a
monoid homomorphism we have π(UV) = π(U)π(V) and also π(U0) = π({ε}) = {ε} =
π(U)0. Putting that all together, we finally obtain

π(U∗) = π

(⋃
n∈N

Un

)
=
⋃
n∈N

π(U)n = π(U)∗.

Definition 3.13. We define the rational subsets of FG(A) inductively as the smallest class
RA of subsets of FG(A) that satisfies the following conditions:

(1) S ∈ FG(A) and |S| <∞ =⇒ S ∈ RA,

(2) S, T ∈ RA =⇒ ST ∈ RA, S ∪ T ∈ RA, S
∗ ∈ RA.

Lemma 3.14. Let S ∈ RA and denote by ⟨S⟩ the subgroup of FG(A) generated by S.
Then ⟨S⟩ ∈ RA.

Proof. We can express ⟨S⟩ as the submonoid of FG(A) generated by S and S−1, i.e.,
⟨S⟩ = (S ∪ S−1)∗. Hence the result follows from condition (2), if we can show that S−1

is rational. Clearly, if S is finite then also S−1 is finite. Otherwise the result follows
inductively from the equations

(ST)−1 = S−1T−1, (S ∪ T)−1 = S−1 ∪ T−1, (S∗)−1 = (S−1)∗.

In particular, every finitely generated subgroup of FG(A) is rational. With some more
effort one can also show the converse:

Proposition 3.15. A subgroup of FG(A) is rational if and only if it is finitely generated.

For the rather technical proof we refer to [2].

9

3 Characterization of reversible languages

3.1.2 Reversible languages in the free group

We have now gathered all the requirements to prove the first characterization of C.

Theorem 3.16. A subset S ⊆ FG(A) is accepted by a reversible automaton if and only if
S is a finite union of left cosets of finitely generated subgroups of FG(A).

Proof. We show both implications:

⇒ Let A = (Q,A,E, I, F) be a reversible automaton with S = ∥A∥.
Recall that a reversible automaton can possess several initial and final states. To this
end, set Ap,q = (Q,A,E, {p}, {q}) for every p, q ∈ Q. By Lemma 3.12 we obtain

Ã =
⋃
p∈I,
q∈F

Ãp,q =⇒ |Ã| =
⋃
p∈I,
q∈F

|Ãp,q| =⇒ ∥A∥ =
⋃
p∈I,
q∈F

∥Ap,q∥,

where we can always assume ∥Ap,q∥ ≠ ∅.
Next, choose any g ∈ ∥Ap,q∥. We claim that ∥Ap,q∥ = g∥Aq,q∥. Lemma 3.12 implies
one inclusion:

g∥Aq,q∥ ⊆ ∥Ap,q∥∥Aq,q∥ = ∥Ap,q∥.

Conversely, let w ∈ ∥Ap,q∥. Since g ∈ ∥Aq,p∥ we conclude gw ∈ ∥Aq,q∥ and therefore

w = εw = ggw ∈ g∥Aq,q∥.

Finally, we need to show that ∥Aq,q∥ is a finitely generated subgroup of FG(A).
Since the initial and final state are equal, ∥Aq,q∥ is evidently a subgroup of FG(A).
It remains to show that ∥Aq,q∥ is finitely generated. If ∥Aq,q∥ is finite this is clear.
Otherwise recall that by Kleene’s theorem |Ãq,q| is rational and ∥Aq,q∥ is the image of
|Ãq,q| under π. Repeated application of Lemma 3.12 shows that ∥Aq,q∥ is built from
unions, concatenations and stars of finite subsets of FG(A). Consequently, ∥Aq,q∥ is
rational and thus finitely generated, as stated in Proposition 3.15.

Altogether, we obtained the desired decomposition,

∥A∥ =
⋃
p∈I,
q∈F

gp,q∥Aq,q∥,

where gp,q is some word in ∥Ap,q∥.
⇐ For the reverse implication we denote by S the class of all S ⊆ FG(A) accepted by

a reversible automaton. We need to show that S contains every finitely generated
subgroup of FG(A) and that S is closed under left cosets and finite union.

Let S1, S2 ∈ S, i.e., they are accepted by reversible automata A1,A2. Then the union
S1∪S2 is accepted by the reversible automaton A1⊎A2, see Lemma 3.12 again. Hence
S1 ∪ S2 ∈ S.

10

3 Characterization of reversible languages

Regarding left cosets, let S = ∥A∥, where A = (Q,A,E, I, F) is reversible, and let
g ∈ FG(A). Then Ig = {q ∈ Q | q · g ∈ I} is the set of states that reach some state
in I via g and we set Ag = (Q,A,E, Ig, F). It is easy to see that gS = ∥Ag∥ and
since reversibility does not depend on the set of initial states ∥Ag∥ is also reversible,
which implies gS ∈ S.
Finally, let H = ⟨h1, . . . , hn⟩ be a finitely generated subgroup of FG(A). We want to
construct a reversible automaton B that accepts H. For every i = 1, . . . , n, we choose
some ui ∈ Ã∗, such that π(ui) = hi,

1 and set U = {u1, . . . , un}. Due to Lemma 3.12
we have

π(|B̃|) = ∥B∥ !
= H = ⟨(π(U)⟩ = (π(U) ∪ π(U)−1)∗ = π((U ∪ U−1)∗), (3.1.1)

so the automaton B̃ should exactly accept all concatenations of words from U ∪U−1.
This is achieved by the associated “flower” automaton B = (Q,A,E, {1}, {1}), where

Q = {1} ∪ {(x, y) ∈ (Ã+)2 | xy ∈ U}

and E = E1 ∪ E2 ∪ E3 with

E1 = {(1, a, (a, y)) | a ∈ A, ay ∈ U} ∪ {((a, y), a, 1) | a ∈ A, ay ∈ U},
E2 = {((x, a), a, 1) | a ∈ A, xa ∈ U} ∪ {(1, a, (x, a)) | a ∈ A, xa ∈ U},
E3 = {(x, ay), a, (xa, y) | a ∈ A, xay ∈ U} ∪ {(xa, y), a, (x, ay) | a ∈ A, xay ∈ U}.

By adding the reverse edges we obtain B̃. Since each of the n “petals” of B̃ constitutes
a loop starting and ending in state 1 and accepting exactly one of the ui’s and its
inverse ui condition (3.1.1) is satisfied. In particular, B accepts H.

Unfortunately the automaton B is not reversible in general. However, it can be
transformed into a reversible automaton in a very straightforward way. Consider
a forbidden configuration as described earlier, which means that there are states
p1, p2, q ∈ Q and some letter a ∈ A, such that p1

a−→ q
a←− p2 or p1

a←− q
a−→ p2.

Now we obtain a new automaton B′ by just identifying p1 and p2. In general this
yields |B′| ≠ |B| but still preserves ∥B′∥ = ∥B∥, since B̃ contains a path aa or aa from
p1 to p2. This transformation decreases the number of states by 1, so after repeating
it at most |Q| times we obtain a reversible automaton accepting H.

Corollary 3.17. A regular language L ⊆ A∗ is reversible if and only if L = S ∩A∗, where
S is a finite union of left cosets of finitely generated subgroups of FG(A).

Example 3.18. To illustrate the second direction of the above proof, we will construct a
reversible automaton accepting a given subset of the free group. Consider the word g = ac
and H = ⟨abcba, cab, cab⟩. Then gH is a left coset of a finitely generated subgroup of

1One possible choice would be ui = hi, which also minimizes the number of states in the following
construction. However, every other word ui ∈ Ã∗ from the same equivalence class works as well.

11

3 Characterization of reversible languages

FG({a, b, c}). First, we construct the flower automaton accepting H, where we renamed
the states to

p1 = (a, bcba), p2 = (ab, cba), p3 = (abc, ba), p4 = (abcb, a),

q1 = (c, ab), q2 = (ca, b),

r1 = (c, ab), r2 = (ca, b),

for the sake of readability.

1

p1

p4

p2

p3

q1

q2

r1

r2

a

a

b

b

c

c

a

b

c

a

b

Obviously, this automaton is not reversible yet, as there are several forbidden configura-
tions. In a first step we identify the states p1 and p4 to a new state p′1, as well as the states
q2 and r2 to a new state q′2.

1p′1

p2

p3

q′2

q1

r1

a

b

b

c
b

c

c

a

a

After that we can perform two more transformations. We we identify the states p2 and p3
to a new state p′2, as well as the states q1 and r1 to a new state q′1.

1p′1p′2

q′1

q′2

ab

c
c

b

aa

12

3 Characterization of reversible languages

Now there are no forbidden configurations left, so the above automaton is reversible and
accepts H. In order for it to accept gH we only need to adjust the initial state from 1 to
q′2, since Ig = {1} · ca = {q′2}. This concludes the construction. The above example did
not deal with the union of left cosets, however the result is just the union of the respective
reversible automata and thus not really interesting.

To complete this section, recall that by Kleene’s theorem the languages accepted by finite
automata are exactly the regular languages, which are inductively defined as the closure
of the finite languages w.r.t. finite unions, concatenations and stars. We can rephrase
Theorem 3.16 as an analogous version of Kleene’s theorem for reversible languages:

Theorem 3.19. The subsets of FG(A) accepted by a reversible automaton form the small-
est class of subsets F such that

(1) ∅ ∈ F and {g} ∈ F for every g ∈ FG(A),
(2) S1, S2 ∈ F =⇒ S1 ∪ S2 ∈ F ,
(3) S ∈ F , g ∈ FG(A) =⇒ gS ∈ F ,
(4) S ∈ F =⇒ ⟨S⟩ ∈ F .

Proof. Again, as in the proof of Theorem 3.16, we denote by S the class of all S ∈ FG(A)
accepted by a reversible automaton. We need to prove F = S.
For the left-to-right inclusion we show that S satisfies the conditions (1)-(4). Clearly, S
contains the empty set and all the singletons. According to Theorem 3.16, S is closed
under finite unions and under the operation S → gS for every g ∈ FG(A). In order to
show that S satisfies (4), first recall that due to Proposition 3.15 a subgroup of FG(A) is
finitely generated if and only if it is rational. Now, let S ∈ S. Then S is a finite union of
left cosets of rational sets and thus rational. Lemma 3.14 shows that ⟨S⟩ is rational, and
therefore finitely generated, hence ⟨S⟩ ∈ S. It follows F ⊆ S.
Conversely, F satisfies (1) and (2) and thus contains the finite subsets of FG(A). By
applying (4), then (3) and finally (2) again, we obtain that F contains all finite unions of
left cosets of finitely generated subgroups of FG(A), and thus S ⊆ F .

3.2 Algebraic characterization

This section covers not just one but two characterizations of C, however they are quite
similar. We will apply them later on in Chapter 4.

In contrast to the previous section, groups do not play a major role anymore. Instead, we
will delve deeply into the realm of semigroup theory, with the central objects of interest
being the syntactic monoid of a language and its idempotent elements.

13

3 Characterization of reversible languages

3.2.1 The syntactic monoid of reversible languages

Definition 3.20. Let M be a monoid and x ∈M . We say that x is idempotent if x = x2.

Clearly, every idempotent x also satisfies x = xn for every integer n > 0.

Even though the letter e is mostly used for the unit element in the literature, it will from
now on be the convention in this work to use e (and f) for idempotents.

Lemma 3.21. The class of monoids with commuting idempotents is closed under division.

Proof. Let M be a monoid with commuting idempotents and P ≼ M . Then there is a
submonoid N of M and a surjective homomorphism β : N → P . Clearly, the idempotents
commute in every subset of M and therefore in N . Now let e, f ∈ P be idempotent. Then
there are x, y ∈ N , such that β(x) = e and β(y) = f , and we obtain

ef = β(x)β(y) = β(xy) = β(yx) = β(y)β(x) = fe.

Lemma 3.22. Let S be a finite semigroup. Then every element of S has an idempotent
power, i.e., for every a ∈ S there exists an integer n ≥ 1, such that an is idempotent.

Proof. By the pigeonhole principle, there are integers m, p ≥ 1 such that am = am+p, and
therefore am = am+kp for every k ≥ 0. Setting b = am yields bp+1 = am+mp = am = b. It
follows

(amp)2 = b2p = bp+1bp−1 = bbp−1 = bp = amp,

hence amp is idempotent.

Using the basic results above we can already prove two properties of C, which will later
turn out to even be a proper characterization.

Proposition 3.23. If L ⊆ A∗ is a reversible language, then

(a) the idempotents of M(L) commute,

(b) ∀x, u, y ∈ A∗ : (xu+y ⊆ L =⇒ xy ∈ L).

Proof. Let A = (Q,A,E, I, F) be a reversible automaton accepting L and let e be an
idempotent of the transition monoid M(A),2 i.e., τe ◦ τe = τe.

3 In other words, if q · e is
defined for a state q ∈ Q, then (q · e) · e = q · e. In that case, since A is reversible, there is
also a reverse transition that leads back to q, thus q ·e = q. Consequently, if two idempotent

2The transition monoid is technically only defined for DFAs. For reversible automata (where the transition
maps τw are only partial functions), we implicitly add a trap state, in order to make the definition still
work. A state being “undefined” then corresponds to being the trap state.

3As mentioned earlier, here we implicitly identify a word w ∈ A∗ with its induced class [τw] ∈ M(A).

14

3 Characterization of reversible languages

transitions are defined on a state, they act neutrally on it and therefore commute. Hence
the idempotents commute in M(A). Since M(L) divides M(A), Lemma 3.21 implies that
the idempotents also commute in M(L).

Let x, u, y ∈ A∗, such that xu+y ⊆ L. Since L is a regular language, M(A) is a finite
monoid. By Lemma 3.22, there is an integer n > 0 such that un is idempotent in M(A).
Since xuny ∈ L, there are states q0 ∈ I, qf ∈ F with q0 · xuny = qf . In particular, q0 · xun
is defined and consequently there is a state p ∈ Q with (q0 · x) · un = p = (q0 · xun) · un. As
in the proof of (a), the reversibility of A implies q0 · x = q0 · xun. It immediately follows
that q0 · xy = q0 · xuny = qf and thus xy ∈ L.

Condition (b) essentially states that “plus” is equivalent to the Kleene star. Keeping possi-
ble algorithmic applications in mind, this formulation seems to be potentially problematic.
A priori it is not clear whether it can even be verified in a finite amount of time. Even
though we will show that (b) can indeed be verified in polynomial time (see Chapter 4), it
would still be nice to have a purely algebraic version, which replaces the infinite monoid
A∗ by the finite monoid M(L). This gives rise to our second characterization.

Proposition 3.24. Let L ⊆ A∗ be a regular language. Then the following conditions are
equivalent:

(b) ∀x, u, y ∈ A∗ : (xu+y ⊆ L =⇒ xy ∈ L),
(c) ∀s, e, t ∈M(L), e idempotent : (set ∈ η(L) =⇒ st ∈ η(L)).

Proof. First, assume that (b) holds and let s, e, t ∈ M(L) such that e is idempotent and
set ∈ η(L). Since η is a surjective homomorphism, there are x, u, y ∈ A∗ with η(x) =
s, η(u) = e and η(y) = t, and it follows

η(xuny) = η(x)η(u)nη(y) = set ∈ η(L) =⇒ xuny ∈ η−1(η(L)),

for every integer n > 0. Since η(L) recognizes L, we have η−1(η(L)) = L and therefore
xu+y ⊆ L. Condition (b) now implies xy ∈ L and thus st = η(xy) ∈ η(L).
Conversely, let (c) be satisfied and let x, u, y ∈ A∗ such that xu+y ⊆ L. Due to Lemma
3.22 – as M(L) is finite – there is an integer n > 0 such that e = η(u)n is idempotent in
M(L). We set s = η(x), t = η(y), and obtain set = η(xuny) ∈ η(L). Condition (c) then
implies

η(xy) = st ∈ η(L) =⇒ xy ∈ η−1(η(L)) = L.

3.2.2 Green’s relations and regular elements

While it was rather straightforward to show that (a) and (b) – or (a) and (c) – are necessary
conditions for the reversibility of a regular language, their sufficiency is much more difficult
to prove. In particular, we need some terminology from semigroup theory.

15

3 Characterization of reversible languages

Definition 3.25. Let M be a monoid. An element x ∈ M is called regular if there is a
element y ∈M such that xyx = x and yxy = y.

We will now proceed to define ideals of semigroups and Green’s relations, which are im-
portant notions for the study of semigroups. Some of the definitions are rather natural
for monoids but need to be tweaked to be meaningful for semigroups by adjoining a unit.
To that end, let S be a semigroup. We denote by S1 the induced monoid S ∪ {1} with
1 · s = s = s · 1 for all s ∈ S. If S is already a monoid, then we set S1 = S.

Definition 3.26. Let S be a semigroup. A subset I ⊆ S is called right ideal (left ideal) of
S if IS ⊆ I (SI ⊆ I) or, equivalently, IS1 = I (S1I = I). An ideal of S is a subset I ⊆ S
which is both a right ideal and a left ideal or, equivalently, satisfies S1IS1 = I.

Let S be a semigroup. For a subset G ⊆ S the set S1GS1 clearly is an ideal containing
G. Let H ⊆ S be another ideal containing G. Then S1GS1 ⊆ S1HS1 = H, so S1GS1 is
indeed the smallest ideal containing G and thus called the ideal generated by G. Left and
right ideals generated by a subset are defined analogously.

Definition 3.27. Let S be a semigroup. A minimal element among the set of nonempty
ideals of S is called minimal ideal of S.

Proposition 3.28. A nonempty finite semigroup has exactly one minimal ideal.

Proof. Let S = {s1, . . . , sn} be a finite semigroup. There are only finitely many (at most
2n) ideals of S, but at least one, namely S itself. The intersection of two ideals I1, I2 of S
is an ideal:

S1(I1 ∩ I2)S1 ⊆ S1I1S
1 ∩ S1I2S

1 = I1 ∩ I2.

Let J be the intersection of all nonempty ideals of S. Then J ⊆ I for every ideal I of S.
Furthermore, p = s1 · · · sn ∈ S1IS1 = I for every nonempty ideal I. Hence, p ∈ J , so J is
nonempty and therefore indeed the minimal ideal of S.

Of particular interest are principal ideals, i.e., those generated by a single element. Their
induced equivalence relations are known as Green’s relations. For a more detailed study
we refer to [11] and [4].

Definition 3.29. Let S be a semigroup and s, t ∈ S. Green’s relations are defined by:

sR t ⇐⇒ sS1 = tS1,

sL t ⇐⇒ S1s = S1t,

sJ t ⇐⇒ S1sS1 = S1tS1,

sD t ⇐⇒ ∃u ∈ S : (sRu ∧ uL t) ⇐⇒ ∃u ∈ S : (sLu ∧ uR t),
sH t ⇐⇒ sR t ∧ sL t.

16

3 Characterization of reversible languages

It can be immediately checked that R and L can be equivalently defined by

sR t ⇐⇒ ∃u, v ∈ S : (s = tu ∧ t = sv),

sL t ⇐⇒ ∃u, v ∈ S : (s = ut ∧ t = vs).

This definition emphasizes the interpretation of Green’s relation as “a noncommutative
generalisation to semigroups of the standard notion of being a multiple among integers or
polynomials” ([11]).

Definition 3.30. Let G be any of Green’s relations. We call a G-class regular if it contains
a regular element.

From now on, we will denote the R-class of an element s by R(s), its L-class by L(s), and
so on.

Lemma 3.31. Let S be a semigroup and s ∈ S. Then the following statements are equiv-
alent:

(1) s is regular,

(2) R(s) is regular,

(3) R(s) contains an idempotent.

The same result holds for L(s).

Proof. First, we show the equivalence of (1) and (3). If s is regular, then there is some
t ∈ S such that s = sts. Clearly, st ∈ R(s). Moreover, st = (sts)t = (st)2 implies that st
is idempotent. Conversely, let e ∈ R(s) be idempotent. Then there are u, v ∈ S such that
s = eu and e = sv, and therefore ees = es = eeu = eu = s. We set s = vsv and obtain

sss = s(vsv)s = (sv)(sv)s = ees = s,

sss = (vsv)s(vsv) = v(sv)(sv)sv = v(ees)v = vsv = s,

thus s is regular.

The implication (1) =⇒ (2) is trivial. Conversely, let R(s) be regular. Then R(s) contains
a regular element t. By (3), R(s) = R(t) contains an idempotent, hence s is regular.

Lemma 3.32. The minimal ideal of a nonempty finite semigroup S contains an idempotent.

Proof. Let J ⊆ S be the minimal ideal of S. Like every ideal, J is a subsemigroup of S:

JJ = (S1JS1)(S1JS1) = S1J(S1S1JS1) ⊆ S1JS1 = J.

Due to Lemma 3.22, every a ∈ J has an idempotent power. Since J is nonempty, such an
idempotent indeed exists in J .

Definition 3.33. A semigroup S is called simple if it contains no proper ideals, i.e., ∅ and
S are the only ideals of S.

17

3 Characterization of reversible languages

Lemma 3.34. A simple semigroup S contains only one J -class.

Proof. Let a, b ∈ S. Since a and b generate the same ideal, we have S1aS1 = S1bS1. Hence,
by definition, aJ b.

Proposition 3.35 ([11]). In a finite semigroup, J and D are equal.

Proposition 3.36 ([11]). Let D be a D-class of a semigroup S. If D contains an idempo-
tent, it contains at least one idempotent in each R-class and in each L-class.

Proposition 3.37 ([11]). Let H be an H-class of a semigroup S. H contains an idempotent
e if and only if H is a group with unit e.

Lemma 3.38. Let S be a finite simple semigroup and let e ∈ S be idempotent. If e is the
only idempotent of S, then S is a group with unit e.

Proof. By Lemma 3.34, there is only one J -class, i.e., J(e) = S. Proposition 3.35 then
implies D(e) = S. Since e is the only idempotent in D(e), Proposition 3.36 shows that
D(e) contains only one R-class and only one L-class, hence R(e) = L(e) = D(e) = S. Since
H = R ∩ L, it finally follows that H(e) = S. By Proposition 3.37, S is a group with unit
e.

Proposition 3.39 ([4]). If a semigroup S contains a minimal ideal I, then I is a simple
subsemigroup of S.

The following result is a special case of the Location theorem, see [11] for a proof.

Proposition 3.40. Let D be a D-class of a finite semigroup S and let s, t ∈ D. Then,
st ∈ R(s) ∩ L(t) if and only if st ∈ D.

Lemma 3.41. Let S be a finite semigroup with commuting idempotents. Then the minimal
ideal of S is a group whose unit is idempotent.

Proof. Since S is finite, the minimal ideal I exists and, by Lemma 3.32, contains an idem-
potent e. By Proposition 3.39, I is a simple semigroup. Due to Lemma 3.38, it remains to
show that e is the only idempotent of I.

Let f ∈ I be another idempotent. Since I is a subgroup, ef ∈ I. Since all the idempotents
commute, (ef)2 = e2f2 = ef , thus ef is idempotent as well. By Lemma 3.34 and Proposi-
tion 3.35, I contains only one D-class, hence D(e) = D(f) = D(ef). Now Proposition 3.40
implies ef ∈ R(e) ∩ L(f), i.e., eR ef L f . This means that there are u, v ∈ S, such that
e = (ef)u and f = v(ef). It follows,

e = (ef)u = ef(efu) = efe = e2f = ef2 = fef = (vef)ef = v(ef) = f,

hence e is the unique idempotent in I.

18

3 Characterization of reversible languages

At this point it may seem that we deviated quite a bit from the original topic of reversible
automata. However, we need the last result for showing the following properties of R-
classes, which will later turn out to be crucial for proving the reversibility of a certain
automaton.

Proposition 3.42. Let M be a finite monoid with commuting idempotents and let R be a
regular R-class. Then

(1) R contains a unique idempotent e,

(2) ∀x ∈ R : ex = x,

(3) ∀u, v, s ∈M : ((uR vRus ∧ us = vs) =⇒ u = v).

Proof. Since R is regular, it contains an idempotent by Lemma 3.31. If x ∈ R, then eRx
and thus e = xy and x = ez for some x, y ∈ M . It follows that ex = eez = ez = x, hence
(2) holds.

Now let f be another idempotent of R. Then, by (2), e = fe = ef = f , hence (1) holds.

It remains to show (3). The relation uR vRus implies u = ust and v = ua for some
t, a ∈ M . Now we define the subset S = {x ∈ M | ux = u} of M , which is clearly a finite
semigroup. By Lemma 3.41, the minimal ideal I of S is a group with an idempotent f as
unit. In particular, we have uf = u and it follows,

u(stf) = (ust)f = uf = u,

u(fastf) = (uf)astf = (ua)stf = (vs)tf = (us)tf = u.

This means stf, fastf ∈ S. Since f is an idempotent contained in I, we conclude

stf = (stf)ff ∈ S1IS1 = I,

fastf = (fastf)ff ∈ S1IS1 = I.

Since I is a group, also fa ∈ I ⊆ S, i.e., u(fa) = u. On the other hand, (uf)a = ua = v,
hence u = v, which completes the proof.

Remark 3.43. As mentioned before, the extensive preparation steps of this subsection solely
aim at proving property (3) of the previous proposition. In particular, they are supposed
to be a breakdown of the proof given in [10] – the paper this entire section is based on.
However, there is also a much more direct proof of (3), which does not require Lemma 3.41,
see [1].

We need one more result, which provides a decomposition of a word by maximizing the
sizes of its regular substrings w.r.t. some homomorphic image.

Proposition 3.44 ([1]). Let M be a finite monoid with commuting idempotents, and let
ψ : A∗ → M be a monoid homomorphism. Then there exists an integer N > 0 such that
every word w ∈ A∗ admits a factorization of the form w = u0v1u1 · · · vkuk with

19

3 Characterization of reversible languages

(1) u0, uk ∈ A∗, u1, . . . , uk−1 ∈ A+, v1, . . . , vk ∈ A+,

(2) ψ(v1), . . . , ψ(vk) are regular elements of M ,

(3) if ai (bi) denotes the first (last) letter of ui, then ψ(bi−1vi) and ψ(viai) are not regular,

(4) |u0 · · ·uk| ≤ N .

3.2.3 Proving reversibility

So far we have shown that the conditions (a) and (b) – respectively (a) and (c) – are
necessary for a regular language to be reversible. We will now prove that they are also
sufficient.

Proposition 3.45. Every regular language L ⊆ A∗ satisfying (a) and (c) is reversible.

Proof. Let r be the maximum size of an R-class of M(L). This number is well-defined
since M(L) is finite and therefore contains only finitely many R-classes. By condition (a),
the idempotents of M(L) commute, hence we can apply Proposition 3.44 to the syntactic
homomorphism η : A∗ →M(L) and obtain a corresponding integer N > 0. Now the set

F := {B = (Q,A,E, I, F) | B reversible, |Q| ≤ r(N + 1), |B| ⊆ L}

is finite, since there are only finitely many automata with a fixed number of states. Hence
the disjoint union A of the automata contained in F is a reversible automaton again and
satisfies |A| ⊆ L. It remains to show the other inclusion.

To that aim, let w ∈ L. In order to show w ∈ |A|, we need find a reversible automaton
B ∈ F with w ∈ |B|.
First we generalize condition (c) from a statement about η(L) to a statement about any
subset X ⊆M(L): We say that X satisfies (c), if

∀s, e, t ∈M(L), e idempotent : (set ∈ X =⇒ st ∈ X).

Now we set m = η(w) and define P (m) as the smallest subset of M(L) that contains m
and satisfies (c). Since η(L) contains m and satisfies (c) we obtain P (m) ⊆ η(L). It follows

L(m) := η−1(P (m)) ⊆ η−1(η(L)) = L,

resulting in the diagram below:

L(m) P (m)

L η(L)

η

η−1⊆ ⊆

η

η−1

20

3 Characterization of reversible languages

For the rest of the proof we consider two cases. To roughly outline the idea: If m is
a regular element of M(L), we can define an automaton B ∈ F accepting L(m). Since
w ∈ η−1(m) ⊆ η−1(P (m)) = L(m), this already implies w ∈ |B|. If m is not regular, we
can use the factorization of w given by Proposition 3.44 to reduce this case to the first one.

⇝ First, let m be regular. By Proposition 3.42, its R-class R = R(m) contains a unique
idempotent e. We define the automaton B = (R,A,E, {e}, {m}), where

E = {(x, a, x · η(a)) | x ∈ R, a ∈ A, x · η(a) ∈ R}.

We claim that |B| = L(m). To see that we define

S = {x ∈ S | ex = m}.

By definition, |B| = η−1(S), hence it suffices to show that S = P (m). Proposition
3.42 implies em = m and thereforem ∈ S. To show that S satisfies (c), let sft ∈ S for
some s, f, t ∈M(L) such that f is idempotent. Since eRm, there is some y ∈M(L)
with e = my. It follows

es = (my)s = m(ys) = e(sft)(ys) = (esf)tys,

and therefore esR esf R (es)f = (esf)f . Proposition 3.42 implies es = esf , and
thus est = esft = m, which means that st ∈ S. Thus S satisfies (c) and contains m,
but P (m) is the smallest subset of M(L) with these properties, hence P (m) ⊆ S. To
show the other inclusion, let x ∈ S. Then 1ex = ex = m ∈ P (m), where 1 = η(ε) is
the unit of M(L). By condition (c), it follows s = 1s ∈ P (m). Thus we have shown
S = P (m) and thereby |B| = L(m).

We still need to verify that B ∈ F . We first notice that B is deterministic by definition.
Now let a ∈ A and x, y ∈ R such that x · η(a) = y · η(a) ∈ R. Then Proposition 3.42
implies x = y, hence B is also codeterministic and therefore reversible. Furthermore,
|B| = L(m) ⊆ L, and B has |R| ≤ r ≤ r(N + 1) states. As a result, B is indeed
contained in F .

⇝ If m is not regular, then consider a factorization w = u0v1u1 · · · vkuk, as given by
Proposition 3.44. For every i = 1, . . . , k, we set mi = η(vi). Since mi is regular,
its R-class R(mi) contains a unique idempotent ei. According to the first case,
with Ei defined similar to E before, L(mi) is then accepted by the automaton Bi =
(R(mi), A,Ei, {ei}, {mi}) ∈ F .
We cannot do the same for the ui, as they are not regular. However, since the length of
the word u = u0u1 · · ·uk is bounded by N , it is sufficient to just consider the minimal
DFAs Di of {ui}, which are just “string” automata. For instance, the minimal DFA
of the word abbab is given by

ε a ab abb abba abbab
a b b a a

Clearly, every automaton Di is reversible. Now we joint all the automata Di and Bi
together in the order D0,B1,D1, . . . ,Bk,Dk. We do this by identifying the final state

21

3 Characterization of reversible languages

of Di with ei+1 (i = 0, . . . , k − 1) and by identifying the initial state of Di with mi

(i = 1, . . . , k). The resulting automaton B̃ then is of the following form:

D0 B1 D1

· · ·

· · ·
Bk Dkε e1 m1 e2 ek mk u

By construction, B̃ accepts the language

K = u0L(m1)u1 · · ·L(mk)uk,

in particular, w ∈ |B̃|.
It remains to show that B̃ is contained in F . Clearly, B̃ is reversible, as it is con-
structed as a “sequence” of reversible (even bideterministic) automata. Furthermore,
for every i = 1, . . . , k, the automaton Bi has |R(mi)| ≤ r states. In the worst case,
u0 = uk = ε and the other ui are all just single letters. Then N ≥ |u| = |u1 · · ·uk−1|
implies k ≤ N + 1 and the identification process eliminates all the states that would
be added from the Di, hence B̃ has at most r(N + 1) states.

To prove |B̃| ⊆ L, it suffices to show η(K) ⊆ P (m), since then

|B̃| = K ⊆ η−1(η(K)) ⊆ η−1(P (m)) = L(m) ⊆ L.

Set si = η(ui) for i = 0, . . . , k. Then we have η(K) = s0P (m1)s1 · · ·P (mk)sk and
m = s0m1s1 · · ·mksk. We define

T = {(t1, . . . , tk) ∈ P (m1)× · · · × P (mk) | s0t1s1 · · · tksk ∈ P (m)}.

Since m ∈ P (m), it follows that (m1, . . . ,mk) ∈ T . Next, let (t1, . . . , tk) ∈ T , where
ti = xifiyi with fi idempotent. Then

(s0t1 · · · si−1xi)fi(yisi · · · sktk) ∈ P (m)
(c)
=⇒ s0t1 · · · si−1xiyisi · · · sktk ∈ P (m)

=⇒ (t1, . . . , ti−1, xiyi, ti+1, . . . , tk) ∈ T.

Repeating this procedure for every i = 1, . . . , k yields (x1y1, . . . , xkyk) ∈ T . Hence,
T is actually equal to P (m1)× · · · × P (mk), which implies η(K) ⊆ P (m).

Theorem 3.46. Let L ⊆ A∗ be a regular language. Then the following statements are
equivalent:

(1) L is reversible,

(2) L satisfies (a) and (b),

(3) L satisfies (a) and (c).

Proof. If L is reversible, then (a) and (b) hold by Proposition 3.23. Due to Proposition
3.24 this is equivalent to (a) and (c). Finally, if (a) and (c) are satisfied, then Proposition
3.45 proves the reversibility of L.

22

3 Characterization of reversible languages

3.3 Topological characterization

3.3.1 The profinite topology

For our last characterization we consider a topology on A∗, the so-called profinite group
topology, introduced in [12]. Recall that the order of a finite group G, denoted by ord(G),
is the number of its elements.

Definition 3.47. Let u, v ∈ A∗ be two words. We say that u and v can be separated by a
finite group if there exists a finite group G and a monoid homomorphism φ : A∗ → G such
that φ(u) ̸= φ(v). We define

r(u, v) = min{ord(G) | G is a finite group separating u and v},
d(u, v) = e−r(u,v),

with the conventions min ∅ =∞, and e−∞ = 0.

The idea behind the definition of d is the following: Two words u, v ∈ A∗ shall be considered
very similar, if a group of high order is necessary to separate them. On the other hand, if it
is “easy” to separate them, i.e., it only takes a small group, then they shall be considered
far apart. In fact, the only case in which u and v cannot be separated at all, i.e., d(u, v) = 0,
is when u = v. To put it differently:

Lemma 3.48. Two distinct words u, v ∈ A∗ can always be separated by a finite group.

Proof. Let u, v ∈ A∗ such that u ̸= v. Then L = {u, v} is accepted by the following “fork”
automaton: Let p ∈ A∗ be the longest common prefix of u and v, i.e., there are words
u′, v′ ∈ A∗ with different first letters, such that u = pu′, v = pv′. Then we append both
the minimal DFA of {u′} and {v′} to the minimal DFA of {p}, like we did in the proof
of Proposition 3.45. In the resulting automaton A – which now resembles a two-pronged
fork – we inherit the initial state q0 from the minimal DFA of {p} and the two final states
qu ̸= qv from the minimal DFAs of {u′} and {v′}. Clearly, A accepts L, whereby q0 ·u = qu
and q0 · v = qv.

q0 1 2

3 qu

4 qv

a b

a

b

b

a

Figure 3.2: Fork automaton A for u = abab and v = abba with p = ab.

By construction, A = (Q,A,E, {q0}, {qu, qv}) is reversible, i.e., every letter induces a par-
tial injective map from Q to itself. In particular, A can be completed to a permutation

23

3 Characterization of reversible languages

automaton B, i.e., an automaton where every letter a ∈ A∗ induces a permutation πa ∈ SQ,
where SQ denotes the symmetric group over Q. Note that, in general, there are multiple
ways to complete A to a permutation automaton.

q0 1 2

3 qu

4 qv

a
b

a

b

b

aa

a

b

b

a
b

a

b

Figure 3.3: Possible completion of A to a permutation automaton B.

Now, let G = ⟨{πa | a ∈ A}⟩ be the subgroup of SQ generated by the induced permutations
of A. Since SQ has |Q|! elements, G is finite as well. Set τ ∗ σ := σ ◦ τ for permutations
τ, σ ∈ SQ. Let

π : A∗ → (G, ∗), w 7→ πw

be the induced monoid homomorphism of the map a 7→ πa, i.e., its natural extension from
A to A∗. Then we compute

πu(q0) = q0 · u = qu ̸= qv = q0 · v = πv(q0),

and therefore πu ̸= πv. Thus G separates u and v.

Proposition 3.49. The function d is an (ultra-)metric on A∗.

Proof. Lemma 3.48 implies that d(u, v) = 0 if and only if u = v. Moreover, d is obviously
symmetric. It remains to show the strong triangle equation,

d(u,w) ≤ max(d(u, v), d(v, w)).

Let G be a finite group with ord(G) = r(u,w) that separates u and w. Then there is a
monoid homomorphism φ : A∗ → G, such that φ(u) ̸= φ(w), and therefore φ(u) ̸= φ(v) or
φ(v) ̸= φ(w). Let w.l.o.g. φ(u) ̸= φ(v). Then G separates u and v, hence

r(u, v) ≤ ord(G) = r(u,w) =⇒ d(u,w) ≤ d(u, v) ≤ max(d(u, v), d(v, w)).

Thus, d is indeed an ultrametric.

Definition 3.50. The topology induced by d is called the profinite group topology on A∗.

Remark 3.51. There are several equivalent definitions of this topology. For instance, in [12]
it is characterized as the initial topology w.r.t. all monoid homomorphisms from A∗ into
any discrete finite group, i.e., the coarsest topology such that all these homomorphisms are
continuous.

24

3 Characterization of reversible languages

Lemma 3.52 ([9]). The concatenation on (A∗, d) is uniformly continuous.

Having a topology on A∗ allows us to consider sequences of words and their limits. The
following example of a converging sequence will later turn out to be quite useful.

Proposition 3.53. For every word w ∈ A∗, limn→∞wn! = ε.

Proof. Let φ : A∗ → G be a homomorphism into a finite group G of order k with unit 1. It
suffices to show that from some index on, φ(wn!) = φ(ε). If n ≥ k, then k divides n!. Thus
every element g ∈ G satisfies gn! = gk = 1, and it follows φ(wn!) = (φ(w))n! = 1 = φ(ε).

3.3.2 Closed languages and their reversibility

Proposition 3.54. Every reversible language is closed in the profinite group topology.

Proof. Let L ⊆ A∗ be accepted by a reversible automaton A = (Q,A,E, I, F). We will
show that Lc is open. To this end, let w ̸∈ L. We need to find an open set U with
w ∈ U ⊆ Lc.

Set w = uv, where u is the longest prefix of w that can be read by A, i.e., there are states
q0 ∈ I, q ∈ Q with q0 · u = q. Now we modify A similarly to the proof of Lemma 3.48:
We append the minimal DFA of {v} to A, by identifying its initial state with q. We do
not alter the initial and final states. By construction, the resulting automaton A′ is still
reversible and reads – but does not accept – the word w.

q0 q 2

134

b

a a, b

b

a

b

a

Figure 3.4: Constructing A′ from A for w = bababa = (baba)(ba) = uv.

Guided again by the proof of Lemma 3.48, we complete A′ to a permutation automaton B
and consider the homomorphism π : A∗ → G, w 7→ πw, mapping each word to its induced
permutation. By Remark 3.51, π is continuous. Since G is equipped with the discrete
topology, every singleton is open. Hence, U = π−1({πw}) is open and satisfies w ∈ U . For
every w′ ∈ U , we have

πw′ = π(w′) = π(w) = πw =⇒ I · w′ = I · w ⊆ Q \ F.

It follows w′ ∈ Lc and therefore U ⊆ Lc, which finishes the proof.

The converse of Proposition 3.54 is not true in general.

25

3 Characterization of reversible languages

Example 3.55. Let A = {a, b}. The regular language L = a∗b∗ is closed in A∗, but not
reversible. To see that L is indeed closed, we utilize a result proven in [9]: For open
languages L0, . . . , Lk ⊆ A∗ and letters a1, . . . , ak ∈ A, the language L0a1L1 · · · akLk is open
as well. Since A∗ itself is open, this implies that Lc = A∗bA∗aA∗ is open, hence L is closed.

We already know from Proposition 3.23 that – by condition (a) – the idempotents of the
syntactic monoid of a reversible language always commute. The minimal DFA DL of L is
given by

ε−1L a−1L (ab)−1L
a

a

b

b

Now, M(L) is isomorphic to M(DL) and we obtain

M(L) = {[ε], [a], [b], [ab], [ba]}.

Clearly, [a] and [b] are idempotent, but do not commute, since [a][b] = [ab] ̸= [ba] = [b][a].
Hence, L is not reversible.

After this example, one could conjecture that adding condition (a) is already sufficient for
a closed language to be reversible. This is indeed true.

Theorem 3.56. A regular language L ⊆ A∗ is reversible if and only if it is closed in the
profinite group topology and the idempotents of M(L) commute.

Proof. If L is reversible, then it is closed by Proposition 3.54 and the idempotents of M(L)
commute by Proposition 3.23.

Conversely, it suffices to show that every closed language L satisfies (b), since (a) and (b)
are equivalent to reversibility by Theorem 3.46. Let x, u, y ∈ A∗ such that xu+y ⊆ L.
Then, xun!y ∈ L for every integer n > 0. Since L is closed and the concatenation of words
is continuous, it follows by Proposition 3.53 that

xy = xεy = x
(

lim
n→∞

un!
)
y = lim

n→∞
xun!y ∈ L,

hence (b) holds.

As a side effect, this result immediately yields a characterization of closed regular languages.

Theorem 3.57. A regular language L ⊆ A∗ is closed in the profinite group topology if and
only if it satisfies condition (b) (or (c)).

26

4 Algorithms

4.1 The membership problem

It is an easy task to decide whether a regular language L is accepted by a bideterministic
automaton. According to Theorem 3.5 we just compute the minimal DFA DL and check
for forbidden configurations of type FC2 as well as the number of final states. There are
polynomial time algorithms to compute DL from any automaton accepting L in polynomial
time w.r.t. the number of states, see for instance Hopcroft’s minimization algorithm [7],
which even has a runtime of O(n log n). Clearly, the search for forbidden configurations
can be done in polynomial time as well.

However, since we demonstrated in Example 3.6 that the minimal DFA of a reversible
language does not need to be reversible, deciding whether a regular language is reversible
is not that straightforward, albeit possible. In fact, using the algebraic characterization
given in Section 3.2, Pin [10] derived an algorithm to solve this problem in polynomial time.

It roughly works by searching the minimal DFA for certain configurations. Those configu-
rations involve entire words as opposed to just letters, as seen in the definition of reversible
automata. Therefore it is necessary to give a more thorough definition.

Definition 4.1. A path in a finite automaton is a sequence of consecutive transitions.
Given a word w = a1 · · · an, and a path q0

a1−→ q1
a2−→ q2 · · · qn−1

an−→ qn, we also shortly
write q0

w qn.

Definition 4.2. Let A = (Q,A, ·) be a DFA.1 We define an infinite labelled graph G(A) =
(Q,E), with E = {(q, w, q · w) | q ∈ Q,w ∈ A+} being the infinite set of paths in A. A
configuration present in A is a labelled subgraph of G(A).

We will later use the following construction to efficiently search for configurations in a DFA.

Definition 4.3. Let A = (Q,A, ·) be a DFA. For every positive integer k we define the
direct product Ak = (Qk, A, ∗), where (q1, . . . , qk) ∗ a = (q1 · a, . . . , qk · a). Furthermore, we
denote by Gk(A) the transitive closure of the unlabelled directed graph defined by Ak.

By Theorem 3.46, a regular language L ⊆ A∗ is reversible if and only if

(a) the idempotents of M(L) commute,

(b) ∀x, u, y ∈ A∗ : (xu+y ⊆ L =⇒ xy ∈ L).
1We omit the initial and final states in the signature, whenever they are irrelevant in the current situation.

27

4 Algorithms

1

2

a,ba

b

(a) A

1, 1

2, 2

1, 2

2, 1

a,ba a a

b

b

b

(b) A2

1, 1

2, 2

1, 2

2, 1

(c) G2(A)

Figure 4.1: Example of the construction given in Definition 4.3.

We will now show that both these conditions are equivalent to the absence of certain
configurations in the minimal DFA of L.

Theorem 4.4. Let L ⊆ A∗ be a regular language. The idempotents of M(L) commute if
and only if DL = (Q,A, ·, {qi}, F) contains no configuration of the form

q4 q3 q0 q1 q2
u v u v

u v u v

with u, v ∈ A+ and q2 ̸= q4.

Proof. We start with the left-to-right implication. Assume that the idempotents of M(L)
commute and consider a configuration of the form above. By Lemma 3.22, since M(L) is
finite, there is an integer n > 0 such that η(un) and η(vn) are both idempotent. Hence,
they commute in M(L) ≃ M(DL), i.e., q · unvn = q · vnun for every q ∈ Q. In particular,
we obtain

q2 = q0 · unvn = q0 · vnun = q4.

Conversely, assume that the above configuration does not occur in DL. Let e, f ∈M(L) be
idempotent, where w.l.o.g. e, f ̸= [ε]. Then we can choose words u, v ∈ A+ with η(u) = e
and η(v) = f . Now let q0 ∈ Q. We need to show q0 · uv = q0 · vu. To this end, define

q1 = q0 · u, q2 = q1 · v, q3 = q0 · v, q4 = q3 · u.

Since τu and τv are idempotent in M(DL), it follows

q1 · u = q0 · u2 = q0 · u = q1,

q2 · v = q1 · v2 = q1 · v = q2,

q3 · v = q0 · v2 = q0 · v = q3,

q4 · u = q3 · u2 = q3 · u = q4.

28

4 Algorithms

Our assumption implies q2 = q4, otherwise we would have a forbidden configuration. Hence
q0 · uv = q2 = q4 = q0 · vu, which means that e and f commute in M(L).

Theorem 4.5. Let L ⊆ A∗ be a regular language. Then L satisfies condition (b) if and
only if DL = (Q,A, ·, {qi}, F) contains no configuration of the form

q3 q0 q1 q2
v u v

u

or q3 q2
u

u

with u, v ∈ A+, q2 ∈ F and q3 ̸∈ F .

Proof. First assume that (b) holds. If the left configuration exists in DL, then there is a
word w ∈ A∗ such that qi · w = q0, since every state of DL is accessible. It follows

qi · wunv = q0 · unv = q1 · v = q2 ∈ F,

and therefore wunv ∈ L for every integer n > 0. Condition (b) implies wv ∈ L, which in
turn yields q3 = q0 · v = qi · wv ∈ F . The proof for the right configuration is virtually the
same.

Conversely, assume that DL contains none of the configurations above. To show condition
(b), let x, u, y ∈ A∗ with xu+y ⊆ L. By Lemma 3.22, there is an integer n > 0 such that
η(un) is idempotent in M(L). Let w = un. We consider two cases.

• If y = ε, then we set q3 = qi ·x and q2 = q3 ·w. Since τw is idempotent in M(DL), we
obtain q2 = q3 ·w2 = q2 ·w. Moreover, xw = xunε ∈ L and therefore q2 = qi ·xw ∈ F .
Hence, qi ·x = q3 ∈ F , otherwise DL would contain the right configuration. It follows
xy = x ∈ L and (b) holds.

• The case y ̸= ε is similar: We set q0 = qi · x, q1 = q0 · w = q0 · w2 = q1 · w and
q2 = q1 · y. Then q2 = qi ·xwy ∈ F , since xwy ∈ L. Consequently, qi ·xy = q0 · y ∈ F ,
otherwise DL would contain the left configuration. It follows xy ∈ L and (b) holds
as well.

The two results above show that the reversibility of a regular language can be decided by
searching for the above configurations in the minimal DFA. We will now prove that this
procedure can be run in polynomial time.

Theorem 4.6. Let L ⊆ A∗ be a regular language and let A be a DFA accepting L. There
is a polynomial time algorithm (w.r.t. the size of A) that decides the reversibility of L.

Proof. The algorithm consists of multiple steps:

(1) First, we compute the minimal DFA DL. As already mentioned, this can be done in
polynomial time, for instance by running Hopcroft’s algorithm. We denote by n the
number of states of DL.

29

4 Algorithms

(2) Next, we construct G2(DL) and G4(DL). For any fixed positive integer k, the un-
labelled directed graph defined by the direct product Dk

L has nk vertices and can
clearly be computed in polynomial time. Now, there are several options for com-
puting its transitive closure Gk(DL), for instance the Floyd-Warshall algorithm with
unit weights or just repeated depth-first search from each vertex. They all run in
polynomial time.

(3) Now we test whether the idempotents of M(L) commute. By Theorem 4.4, we need
to search DL for configurations of the form

q4 q3 q0 q1 q2
u v u v

u v u v

with q2 ̸= q4. This can be done efficiently by searching G4(DL) for edges of the form
((q0, q1, q3, q4), (q1, q1, q4, q4)) and ((q0, q1, q2, q3), (q3, q2, q2, q3)) with q2 ̸= q4.

(4) Similarly, we test whether (b) holds. By Theorem 4.5, we need to search DL for
configurations of the form

q3 q0 q1 q2
v u v

u

or q3 q2
u

u

with q2 ∈ F and q3 ̸∈ F . The left configuration corresponds to edges of the form
((q0, q1), (q1, q1)) and ((q0, q1), (q3, q2)) in G2(DL) with q2 ∈ F and q3 ̸∈ F , whereas
the right configuration corresponds to an edge of the form ((q3, q2), (q2, q2)) with
q2 ∈ F and q3 ̸∈ F .

4.2 Construction of reversible automata

Unfortunately, the algorithm presented in the previous section only solves the membership
problem and provides no indication on how to construct a reversible automaton accepting a
given reversible language. Such a construction was first published by S. Lombardy [8]. The
idea is to compute a so-called quasi-reversible automaton from the minimal DFA, which can
then easily be transformed into a reversible automaton, which accepts the same language.

The resulting quasi-reversible automaton can have up to 2n states, where n is the number
of states of the minimal DFA. Moreover, the algorithm runs in exponential time.

Building on the same ideas, P. Garćıa, M. Vázquez de Parga and D. López [5] improved
this construction considerably. Not only does their algorithm return a quasi-reversible
automaton with at most n states, but it also runs in polynomial time. Before we describe
the procedure, we need to establish some new concepts.

Definition 4.7. Let L ⊆ A∗ be a regular language. The universal automaton of L is

30

4 Algorithms

defined as UL = (Q,A,E, I, F) = (Q,A, δ, I, F), where

Q = {u−1
1 L ∩ · · · ∩ u−1

k L | k ≥ 0, u1, . . . , uk ∈ A∗},
I = {q ∈ Q | q ⊆ L},
F = {q ∈ Q | ε ∈ q},
E = {(u−1L, a, q) | u ∈ A∗, a ∈ A, q ⊆ (ua)−1L}.

We will also write E as a function δ(u−1L, a) = {q ∈ Q | q ⊆ (ua)−1L}, which – as usual –
extends naturally from letters to words.

Definition 4.8. Let A = (Q,A, δ, I, F) be a finite automaton and q ∈ Q. We call

Rq = {w ∈ A∗ | δ(q, w) ∩ F ̸= ∅}

the right language of q.

Definition 4.9. Let L ⊆ A∗ be a regular language. A residual finite state automaton
(RFSA) for L is a finite automaton A with the property that every right language is equal
to some left quotient, i.e., for every q ∈ Q there is a word u ∈ A∗ such that Rq = u−1L.

Example 4.10. By definition, every trim DFA is a RFSA. Another special case is the
minimal DFA DL, since the states are exactly the left quotients, in particular, we have
Ru−1L = u−1L.

Definition 4.11. Let L ⊆ A∗ be a regular language. The saturated RFSA of DL is defined
as the subautomaton of UL induced by the set of states of DL. We will denote it by SL.

This naming is indeed justified:

Proposition 4.12. Let L ⊆ A∗ be a regular language. Then SL is an RFSA.

Proof. The states of SL are exactly the left quotients of L. Hence, we claim Ru−1L = u−1L
for every u ∈ A∗. Indeed:

w ∈ Ru−1L ⇐⇒ δ(u−1L,w) ∩ F ̸= ∅
⇐⇒ ∃v ∈ A∗ : v−1L ∈ F and v−1L ∈ δ(u−1L,w)

⇐⇒ ∃v ∈ A∗ : ε ∈ v−1L and v−1L ⊆ (uw)−1L

⇐⇒ ε ∈ (uw)−1L

⇐⇒ uw ∈ L
⇐⇒ w ∈ u−1L.

The saturated RFSA of the minimal DFA of a reversible language will play a crucial role in
the construction of a reversible automaton. It usually contains more transitions and initial
states than the minimal DFA, but still accepts the same language.

31

4 Algorithms

Proposition 4.13. Let L ⊆ A∗ be a regular language. Then |SL| = |DL|.

Proof. By definition, |DL| ⊆ |SL|. For other implication, let w ∈ |UL|. We need to show
that w ∈ L.
Let UL = (Q,A, δ, I, F). Then there are words u, v ∈ A∗ such that u−1L ∈ I, v−1L ∈ F
and v−1 ∈ δ(u−1L,w), and therefore v−1 ⊆ (uw)−1L. Now, the definitions of I and F
imply u−1L ⊆ L and ε ∈ v−1L. Putting that all together, we obtain

ε ∈ v−1L ⊆ (uw)−1L = w−1(u−1L) ⊆ w−1L,

and thus w ∈ L.

Definition 4.14. A strongly connected component (SCC) of a finite automaton is a max-
imal subautomaton containing at least one transition, where all states are strongly con-
nected, i.e., for all states q, p there is a path from p to q and a path from q to p.

Note that this definition deviates from the analogue notion for directed graphs. By our
definition, the SCCs of a finite automaton do not necessarily form a partition of the states.
If there are states that are not strongly connected to any other state, they belong to no
SCC.

The final piece of preparation, before we move on to describing the algorithm, is the already
mentioned concept of quasi-reversible automata, as introduced in [8].

Definition 4.15. A finite automaton A is called quasi-reversible, if no transition occurring
in a forbidden configuration of type FC1 or FC2 belongs to a SCC. To put it differently, A
is quasi-reversible, if it satisfies the following two conditions:

(1) Given two transitions (r, a, p), (r, a, q) with p ̸= q, none of them belongs to a SCC.

(2) Given two transitions (p, a, r), (q, a, r) with p ̸= q, none of them belongs to a SCC.

Example 4.16. The following automaton is not reversible, as it contains one forbidden

configuration of type FC1, namely 3
b←− 2

b−→ 4. However, it is quasi-reversible since
neither (2, b, 3) nor (2, b, 4) belongs to any SCC (dashed ellipses).

1 2

3

4

a

b

b

aa

b

Proposition 4.17. Let A = (Q,A,E, I, F) be a quasi-reversible automaton. Then one can
construct a reversible automaton B with |A| = |B|.

32

4 Algorithms

Proof. We prove the statement by induction on the number of forbidden configurations in
A. If A contains no forbidden configurations, it is already reversible and we are done.

If there are n + 1 forbidden configurations, choose one of them, with e1, e2 ∈ E being its
two “critical” transitions. Since A is quasi-reversible, neither e1 nor e2 belongs to any
SCC. Thus, there exists no path containing both e1 and e2. As a result, |A| is a union
of two languages: those words that can be accepted without using e1 and those words
that can be accepted without using e2. Those two languages are respectively accepted by
A1 = (Q,A,E \ {e1}, I, F) and A2 = (Q,A,E \ {e2}, I, F), i.e., |A| = |A1| ∪ |A2|.
Now, A1 andA2 are quasi-reversible automata with n forbidden configurations each. By the
induction hypothesis, they can both be transformed into a reversible automaton accepting
the same language. Hence, the statement follows from the simple fact, that the finite union
of reversible automata is a reversible automaton again.

Next, we define two sets of “undesired” transitions.

Definition 4.18. Let A = (Q,A,E, I, F) be a finite automaton. We define two subsets
of E: We say that a transition (r, a, p) is in E1 if and only if there is another transition
(r, a, q) with p ̸= q that belongs to a SCC. Similarly, a transition (p, a, r) is in E2 if and
only if there is another transition (q, a, r) with p ̸= q that belongs to a SCC.

Deleting those transitions from a given automaton clearly transforms it into a quasi-
reversible automaton. However, the resulting automaton will usually accept a different
language. Using the algebraic characterization of reversible languages, one can show that
this is not the case for the saturated RFSA of DL for a reversible language L.

Theorem 4.19 ([5]). Let L ⊆ A∗ be a reversible language and let SL = (Q,A,E, I, F)
be the saturated RFSA of DL. Then QL = (Q,A,E \ (E1 ∪ E2), I, F) is a quasi-reversible
automaton and |QL| = |SL|.

This result already provides a way to compute a quasi-reversible automaton that accepts
a given reversible language. Verifying the claimed polynomial runtime requires an efficient
way to decide whether a regular language is contained in another regular language.

Lemma 4.20. Let L1, L2 ⊆ A∗ be two regular languages that are respectively accepted by
the DFAs A1 = (Q,A, ·1, {q1}, F1) and A2 = (Q,A, ·2, {q2}, F2). Then one can decide in
polynomial time w.r.t. |Q|, whether L1 is contained in L2.

Proof. First, note that L1 ⊆ L2 if and only if L1 ∩ Lc
2 = ∅. Clearly, Lc

2 is accepted by
the automaton Ac

2 = (Q,A, ·2, {q2}, Q \ F2). Furthermore, the intersection of two regular
languages is accepted by the direct product of their respective automata. In particular,
L1 ∩ Lc

2 is accepted by

A1 ×Ac
2 = (Q×Q,A, ∗, {(q1, q2)}, F1 × (Q \ F2)),

where (q, p) ∗ a = (q ·1 a, p ·2 a). Now one simply needs to check if this automaton accepts
any word, for instance by performing a depth-first search.

33

4 Algorithms

Theorem 4.21. Let L ⊆ A∗ be a reversible language and let n be the number of states of
DL. Then there is a polynomial time algorithm that transforms DL into a quasi-reversible
automaton accepting L with at most n states.

Proof. First, we compute SL. Recall that both DL and SL contain the same set of states
Q = {u−1L | u ∈ A∗}. In order to compute the transition relation E and the initial states
of SL, we need to know the subset relation on Q × Q. This can be achieved by applying
Lemma 4.20 to each of the n2 different pairs of left quotients, resulting in a polynomial
runtime. A rough upper bound is O(n4), see [5].

Next, we compute QL by deleting all the transitions occurring in E1 or E2. To obtain these
two subsets of E, we require the SCCs of SL, which can even be computed in O(n log n), see
[3]. Finding all forbidden configurations in SL is a procedure that will depend on the data
structure. However, even a naive implementation, which iterates for every state through
all incident edges, is clearly polynomial.

Hence, the algorithm as a whole is polynomial.

To conclude this work, we demonstrate the full construction of a reversible automaton that
accepts a given reversible language, by means of an example.

Example 4.22. Consider the language L = (a+ bb)∗b+ a∗ba∗ over A = {a, b}.
(1) The left quotients of L are given by L1 := L and

a−1L1 = L1, b−1L3 = ∅,
b−1L1 = b(a+ bb)∗b+ a∗ =: L2, a−1L4 = L4,

a−1L2 = a∗ =: L3, b−1L4 = b(a+ bb)∗b+ ε =: L5,

b−1L2 = (a+ bb)∗b =: L4, a−1L5 = ∅,
a−1L3 = L3, b−1L5 = L4.

We will shortly denote the states by 1 = L1, . . . , 5 = L5. The empty word is
contained in 2, 3 and 5, which therefore constitute the final states. Thus, DL =
(Q,A, ·, {1}, {2, 3, 5}) is given by the following automaton:

1 2

3

4 5

b

a

b
b

b

a a

a

(2) The simplicity of this example allows us to determine the subset relation on Q×Q by
just looking at the regular expressions: The states 1 and 2 are disjoint, 4 is contained
in 1, and 3 ⊎ 5 = 2. Consequently, to obtain SL, the state 4 must be added to

34

4 Algorithms

the set of initial states. The set E of transitions contains all the transitions of DL.
Additionally, we have

(1, a, 1) ∈ E and 4 ⊆ 1 =⇒ (1, a, 4) ∈ E,
(1, b, 2) ∈ E and 3 ⊆ 2 =⇒ (1, b, 3) ∈ E,
(1, b, 2) ∈ E and 5 ⊆ 2 =⇒ (1, b, 5) ∈ E,

thus SL is the automaton below:

1 2

3

4 5

b

a

b
b

b

b

a

b

a a

a

(3) Next, we draw the SCCs and then compute E1 and E2. For instance, (2, a, 3) ∈ E2,
since (3, a, 3) belongs to a SCC. In total we have

E1 = {(1, a, 4)},
E2 = {(1, a, 4), (1, b, 5), (2, a, 3), (2, b, 4)}.

These transitions will be deleted and are drawn dotted:

1 2

3

4 5

b

a

b
b

b

b

a

b

a a

a

(4) Deleting the states in E1 and E2 now yields the quasi-reversible automaton QL, as
depicted below. QL is clearly not reversible, as the transitions (1, b, 2) and (1, b, 3)
form a forbidden configuration of type FC1.

35

4 Algorithms

1

2

3

4 5

b

b
b

b

a a a

(5) Following the inductive proof of Proposition 4.17, we can finally transform QL into
a reversible automaton that accepts L. We just split QL into a union of two new
automata, one without (1, b, 2) and one without (1, b, 3) and technically obtain the
following reversible automaton:

1 2 4 5

1′ 3 4′ 5′

b

b

b

b

a

a

a

b

b

a a

Obviously, the splitting procedure generates a lot of redundancy, but in theory the
algorithm ends at this point. Nevertheless, the top two out of the four connected
components above can be deleted without altering the accepted language. Thus, L is
also accepted by the following reversible automaton, which is even smaller than DL:

1 2 3 4
b

b

b

a a a

36

Bibliography

[1] C. J. Ash and T. E. Hall. Finite semigroups with commuting idempotents. Journal
of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics,
43:81 – 90, 1987.

[2] J. Berstel. Transductions and Context-Free Languages. Vieweg & Teubner Verlag,
1979.

[3] R. Bloem, H. Gabow, and F. Somenzi. An algorithm for strongly connected component
analysis in n log n symbolic steps. volume 28, 09 2000.

[4] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups, Volume I. Num-
ber 7 in Mathematical Surveys. American Mathematical Society, Providence, Rhode
Island, 1961.

[5] P. Garćıa, M. Vázquez de Parga, and D. López. On the efficient construction of
quasi-reversible automata for reversible languages. Inf. Process. Lett., 107(1):13–17,
2008.

[6] S. Hetzl. Automata and Formal Languages. https://www.dmg.tuwien.ac.at/hetzl/
teaching/afl_2023.pdf, 2023. [accessed on 08.04.2023].

[7] J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 189–196.
Academic Press, 1971.

[8] S. Lombardy. On the construction of reversible automata for reversible languages. In
29th International Colloquium on Automata, Languages and Programming (ICALP
2002), volume 2380 of LNCS, pages 170–182, Malaga, Spain, July 2002. Springer.

[9] J.-É. Pin. Topologies for the free monoid. Journal of Algebra, 137:297–337, 1991.

[10] J.-É. Pin. On reversible automata. In I. Simon, editor, Proceedings of the first LATIN
conference, Lecture Notes in Computer Science 583, pages 401–416, Saõ-Paulo, Brazil,
1992. Springer.

[11] J.-É. Pin. Mathematical Foundations of Automata Theory. https://www.irif.fr/

~jep/PDF/MPRI/MPRI.pdf, 2022. [accessed on 08.04.2023].

[12] C. Reutenauer. Une topologie du monoide libre. Semigroup forum, 18:33–50, 1979.

37

