
Bachelor Thesis

Proof Systems for Regular Expressions

Manuel Schweigler

12108342

Supervised by
Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

TU Wien
March 5, 2025

Abstract

We are interested in proving equations between regular expressions by applying
substitutions defined by a set of axioms. The key insight of this thesis is that there
exists no finite axiom system that can be used to prove all valid equations. To show
this, we assume there exists such a finite proof system. By generalizing this system
to a certain axiomatization, we can construct an equation that cannot be derived by
this system.

Furthermore, we introduce two alternative proof systems that implement a finite
axiomatization by introducing special transformations. Lastly, we analyze the com-
plexity of proving the equality of regular expressions.

2

Contents

1 Introduction 4

2 Identities of Regular Expressions 5
2.1 Classical Identities . 6
2.2 Aperiodic Identities . 7
2.3 Cyclic Identities . 7

3 Equational Axiomatization 8
3.1 Preliminaries . 8
3.2 Basis T . 10
3.3 Finite Axiomatizability . 16

4 Alternative Proof Systems 18
4.1 Axiom System F1 . 18
4.2 Kleene Algebra . 22

5 Proof Complexity 29

3

1 Introduction

In this thesis we analyze axiom systems which consist of equations between regular
expressions. These axioms can be combined to generate new equations. In the first
chapter, we derive some identities that are useful for describing valid equations [6], i.e.
equations where both sides correspond to the same language. This begs the question
whether there exists a system of finitely many axioms that can be used to derive
any valid equation. Chapter 2 answers this question negatively [8]. In Chapter 3, we
present two alternative proof systems [5, 7] that implement a finite axiomatization
by introducing special transformations. Lastly, Chapter 4 analyzes the complexity of
proving the equality of regular expressions [1, 4].

4

2 Identities of Regular Expressions

The proofs in this chapter are taken from [6].

Definition 2.1. Let A be an alphabet. A regular expression is a string of symbols
and letters in A. Each regular expression X corresponds to a regular language in A∗,
which we notate as |X|. The set of all regular expressions can be defined recursively:

1. Each letter a ∈ A is a regular expression and describes the singleton {a}.

2. The symbol 0 matches the empty set Ø and 1 corresponds to the set {ε}, where
ε is the empty word in A∗.

3. If X and Y are regular expressions, then so are X + Y and X · Y . We define
|X+Y | := |X|∪|Y | and |X ·Y | := {xy | x ∈ |X|, y ∈ |Y |}, i.e. the concatenation
of all words in |X| and |Y |. The dot in X · Y can be omitted.

4. If X is a regular expression, then so is X∗. The unary operation ∗ is called
the Kleene-star. Additionally, X∗ corresponds to the set {ε} ∪

⋃∞
n=1X

n, where
X1 := X and Xn := XXn−1.

An equation X = Y of regular expressions is valid if |X| = |Y |. Our key goal is to
construct a proof for a given valid equation X = Y . Hence, we first need to define a
set D of axioms, i.e. D consists of some valid equations that can be combined in order
to derive X = Y . Each step of the proof substitutes X for an equal expression by
applying an axiom from D, until we eventually reach an expression that is identical
to Y .

Example 2.2. We want to prove the equation

1 + (α+ β)α∗ = (1 + β)α∗

using the following axioms:

1. (α+ β)γ = αγ + βγ

2. 1 + αα∗ = α∗

3. α = 1 · α

The proof consists of transforming the left side until it matches the right side.

1 + (α+ β)α∗ =1.

1 + αα∗ + βα∗ =2.

α∗ + βα∗ =3.

1 · α∗ + βα∗ =1.

(1 + β)α∗

Different choices of D allow us to prove different sets of equations. This begs the
question whether there exists a finite set of axioms that can be used to prove any
valid equation. Chapter 3 addresses this question and proves that this is not the case.
In the remainder of this chapter, we derive various identities that appear in later
proofs.

5

2.1 Classical Identities

Regular expressions that do not contain the Kleene star operator satisfy all the
properties of a semiring:

α+ (β + γ) = (α+ β) + γ (A+)
α(βγ) = (αβ)γ (A·)
α+ β = β + α (C+)
α+ 0 = 0 + α = α (U1)
α · 1 = 1 · α = α (U2)
α · 0 = 0 · α = 0 (U3)

α(β + γ) = αβ + αγ (DL)
(α+ β)γ = αγ + βγ (DR)

Furthermore, the operator +, which corresponds to the union of regular sets, satisfies
the idempotent identity

α+ α = α. (I)

These axioms suffice to prove equations that only use unions and concatenations.
Note that such regular expressions always describe finite languages.

The following identities can be derived directly from Definition 2.1:

α∗ = 1 + αα∗

α∗ = 1 + α∗α

(α∗)∗ = α∗

0∗ = 1

In order to prove the remaining identities, we need to establish Arden’s Lemma, which
can be used to show that an equation is valid.

Lemma 2.3 (Arden). Let K and L be two sets of words over the alphabet A∗ such
that K does not contain the word ε. Then X = K∗L is the unique solution of the
equation

X = KX + L (1)

Proof. Firstly, we verify that K∗L is a valid solution by using the identities defined
so far:

K∗L = (1 +KK∗)L = (KK∗ + 1)L = K(K∗L) + L

In order to show uniqueness, let P be an arbitrary solution. From P = KP + L,
we infer both L ⊆ P and KP ⊆ P . By combining these two, we also see that
KL ⊆ P . This principle can be continued inductively to prove K∗L ⊆ P . For the
other direction, we verify P ⊆ K∗L by contradictorily assuming that P \K∗L is not
empty. Let w be a word in P \K∗L of minimal length. Since K∗L ⊆ L, w is not
contained in L and thus w ∈ KP . Hence, there exist k ∈ K and p ∈ P such that
w = kp. Furthermore, K does per definition not contain the empty word, so k ̸= ε.
Finally, p is strictly shorter than w and thus lies in K∗L, which implies that w is also
in K∗L.

6

2.2 Aperiodic Identities

Theorem 2.4. The following equations are valid:

(α+ β)∗ = α∗(βα∗)∗ (Sl)
(α+ β)∗ = (α∗β)∗α∗ (Sr)

(αβ)∗ = 1 + α(βα)∗β

Proof. According to Arden’s Lemma, the equation

X = (α+ β)X + 1

has the unique solution (α+β)∗. Thus, the identity (Sl) holds if and only if α∗(βα∗)∗

solves this equation:

(α+ β)(α∗(βα∗)∗) + 1 = αα∗(βα∗)∗ + βα∗(βα∗)∗ + 1

= αα∗(βα∗)∗ + (βα∗)∗ = (αα∗ + 1)(βα∗)∗ = α∗(βα∗)∗

Note that the proof for Sr is analogous. The third identity is the unique solution of
the equation

X = (αβ)X + 1

and can be proven in a similar manner.

2.3 Cyclic Identities

The cyclic identities are a collection of infinitely many equations. These identities
play an important part in Chapter 3, as axiom systems that contain the identities
(Zk) for all k ≥ 1 are consequently infinite in size.

Theorem 2.5. The equation
α∗ = (αk)∗α<k, (Zk)

where k ≥ 1 and α<k := (1 + α+ · · ·+ αk−1), is valid.

Proof. As in the proof for the aperiodic identities, we show that

X = αX + 1.

is solved by (αk)∗α<k for each k ≥ 1.

α(αk)∗α<k + 1 = (αk)∗αα<(k−1) + (αk)∗αk + 1

= (αk)∗αα<(k−1) + (αk)∗

= (αk)∗α<k

7

3 Equational Axiomatization

In the previous chapter, we analyzed some valid identities of regular expressions. This
chapter proves that there exists no finite set of axioms that could be used to derive
all valid equations. We give a slightly more detailed version of the proof given by
Arto Salomaa in [8].

3.1 Preliminaries

We define regular expressions over the following alphabets:

Ir := {x1, . . . , xr}, for r ≥ 1

Aω := {α, β, γ, α1, β1, γ1, α2, . . . }

The alphabet Ir is of size r, whereas Aω has infinitely many elements. We interpret
the letters in Aω as placeholders for arbitrary regular expressions.

Furthermore, Vr denotes the set of all valid equations between regular expressions over
the alphabet Ir. The set Sr consists of all equations X = Y such that substituting
every variable a ∈ Aω with a regular expression R(a) over Ir results in an equation
Xr = Yr that is contained in Vr.

We define Sω as the intersection of all Sr with r ≥ 1. It is easy to see that the sets
Sr follow a chain of inclusions:

S1 ⊇ S2 ⊇ · · · ⊇ Sω

The equation αβ = βα belongs to S1, but not to S2. Thus, S1 ⊋ S2.

Theorem 3.1. S2 = S3 = · · · = Sω

Proof. It suffices to show that S2 ⊆ Sω. Let X = Y be an equation in S2 and assume
that X = Y /∈ Sω. Hence, there must exist r ≥ 3 such that X = Y /∈ Sr. Substituting
the variables in X = Y with certain regular expressions in Ir thus produces an
equation Xr = Yr which is not valid. Therefore, without loss of generality, there must
exist a word w such that w ∈ |Xr| and w /∈ |Yr|.

We introduce a function f : |I∗r | → |I∗2 |, which maps each letter in a word to a block
of r letters according to the following rules:

f(x1) = x1x
r−1
2

f(x2) = x2x1x
r−2
2

...

f(xr) = xr−1
2 x1

f(ε) = ε

f(pq) = f(p)f(q), for p, q ∈ |I∗r |

For a regular expression Z over Ir, we define Zf as the regular expression obtained
by replacing each letter xi by f(xi). Since f is injective, we conclude that for every

8

word u ∈ |I∗r | it holds that u ∈ |Z| if and only if f(u) ∈ |Zf |. Thus, we infer that
f(w) ∈ |(Xr)f | and f(w) /∈ |(Yr)f |. This, however, implies that (Xr)f = (Yr)f is
not a valid equation. Since this equation can be generated from X = Y using a
substitution with regular expressions over I2, X = Y is not S2, which contradicts our
initial assumption.

Definition 3.2. Let X and Y be regular expressions over the same alphabet. We
call X a well-formed part of Y if and only if one of the following conditions is met:

• Y = X or Y = X∗

• There exists a regular expression Z such that Y = (X + Z), Y = (Z + X),
Y = XZ or Y = ZX.

• There exists a regular expression Z such that X is a well-formed part of Z and
Z is a well-formed part of Y .

Definition 3.3. Let D be a set of equations and U be a well-formed part of a regular
expression X[U]. Replacing U in X with an expression V results in the new term
X[V]. If X[U] = Y ∈ D and U = V ∈ D, then X[V] = Y is called a replacement.
If D is defined over the alphabet Aω, each letter that appears in X = Y can be
substituted by some regular expressions. The resulting equation X ′ = Y ′ is called a
substitution.

Definition 3.4. Let D be a set of equations. An equation X = Y is generated by
D, written as ⊢D X = Y , if X = Y can be obtained from D by a finite number
of replacements and substitutions. An equation X = Y is transformable by D into
X ′ = Y ′ if D generates both X = X ′ and Y = Y ′. A subset B ⊆ D is a basis of D if
each equation in D can be generated by B.

Definition 3.5. Let r ≥ 1. For a word w over an alphabet A, we define the Parikh
vector p(w) as

p(w) : A→ N,
α 7→ |w|α

where |w|α is the number of occurrences of α in w. Furthermore, for a regular
expression X, we define

|X|c := {w ∈ A∗ | ∃v ∈ |X|: p(w) = p(v)}.

An equation X = Y is c-valid if |X|c = |Y |c.

Definition 3.6. For r ≥ 1, Cr denotes the set of all equations X = Y of regular
expressions over Aω that are c-valid when the letters appearing in the equation are
substituted by regular expressions over Ir. We define Cω as the intersection of Cr for
all r ≥ 1.

Similarly to the set Sr, these sets form a chain of inclusions:

C1 ⊇ C2 ⊇ · · · ⊇ Cω

Furthermore, it can be easily inferred that Sr ⊆ Cr for all r ≥ 1 and especially

Sω ⊆ Cω (2)

9

In order to prove that the set Vr cannot be finitely axiomatized, we use Sω ⊆ Cω to
show that each possible basis B of Vr would also be a basis of Cω. For that, we define
a basis T of Cω, which we will use to prove that B is not a basis of Vr.

3.2 Basis T

This subchapter proves that the set T , as defined below, is a basis of the set Cω.

Definition 3.7. The set T consists of the following equations:

α+ (β + γ) = (α+ β) + γ (A+)
α(βγ) = (αβ)γ (A·)
α+ β = β + α (C+)

α(β + γ) = αβ + αγ (DL)

α+ α = α (I)
α+ 0 = α (U1)
α · 1 = α (U2)
α · 0 = 0 (U3)

α∗ = (1 + α)∗ (3)

α∗ = (αk)∗(1 + α+ · · ·+ αk−1), for k ≥ 1 (Zk)

αβ = βα (C·)
(αβ∗)∗ = 1 + αα∗β∗ (4)

(α+ β)∗ = α∗β∗ (5)
(α+ β)∗ = (αβ)∗(α∗ + β∗) (6)

Lemma 3.8. Let n ≥ 2 and I = {1, . . . , n}. Then T generates the equation(∑
i∈I

αi

)∗

= (α1 · · ·αn)
∗
∑
j∈I

 ∑
i∈I\{j}

αi

∗

10

Proof. We use an induction over n. For n = 2, the assertion follows from (6). If
n ≥ 3, the equation can be generated as follows:(∑

i∈I
αi + αn+1

)∗

= (
∑
i∈I

αi)
∗α∗

n+1

= (α1 · · ·αn)
∗
∑
j∈I

 ∑
i∈I\{j}

αi

∗

α∗
n+1

= (α1 · · ·αn + αn+1)
∗
∑
j∈I

 ∑
i∈I\{j}

αi

∗

= (α1 · · ·αnαn+1)
∗ ((α1 · · ·αn)

∗ + α∗
n+1

)∑
j∈I

 ∑
i∈I\{j}

αi

∗

= (α1 · · ·αn+1)
∗

(∑
i∈I

αi

)∗

+
∑
j∈I

 ∑
i∈I\{j}

αi + αn+1

∗
= (α1 · · ·αn+1)

∗
∑

j∈I∪{n+1}

 ∑
i∈I∪{n+1}\{j}

αi

∗

Definition 3.9. Let n ≥ 0. Furthermore, let P1, . . . , Pn+1 be words over Aω. If
P1, . . . , Pn are not empty, then

(P1 + . . .+ Pn)
∗Pn+1

is called a normal product. For n = 0, this expression is reduced to P1. A normal
product is linearly independent if the Parikh vectors p(P1), . . . , p(Pn) are linearly
independent.

Lemma 3.10. Let P be a normal product. There exists a sum S of linearly
independent normal products such that P = S is generated by T .

Proof. Let P = (P1 + . . .+ Pn)
∗Pn+1. If P is linearly independent, we can choose

P = S. Otherwise, P is linearly dependent and we can infer without loss of generality
that

P i1
1 · · ·P

iv
v = P

iv+1

v+1 · · ·P
in
n (7)

holds for some v ≤ n, i1, . . . , iv > 0 and iv+1, . . . , in ≥ 0.

Combining Lemma 3.8 with (7) yields the following equation:

(P i1
1 + . . .+ P iv

v)∗ = (P
iv+1

v+1 · · ·P
in
n)∗

∑
j∈{1,...,v}

(
∑

k∈{1,...,v}\{j}

P ik
k)∗

Furthermore, T generates the following equation using identities (3) and (5):

(P
iv+1

v+1 · · ·P
in
n)∗(P

iv+1

v+1 + . . .+ P in
n)∗ = (P

iv+1

v+1 + . . .+ P in
n)∗

11

Finally, we can transform our normal product P . Using Wj = (P 0
j + . . .+P

ij−1
j) and

W = W1 · · ·WnPn+1, we can rewrite P as

(P1 + . . .+ Pn)
∗Pn+1 = P ∗

1 · · ·P ∗
nPn+1

=(Zk) (P i1
1)∗W1 · · · (P in

1)∗WnPn+1

= (P i1
1 + . . .+ P iv

v)∗(P
iv+1

v+1 + . . .+ P in
n)∗W

=
∑

j∈{1,...,v}

(
∑

k∈{1,...,v}\{j}

P ik
k)∗(P

iv+1

v+1 + . . .+ P in
n)∗W

=
∑

j∈{1,...,v}

(
∑

k∈{1,...,n}\{j}

P ik
k)∗W

The final term forms a sum of normal products. Each product has strictly less than
n summands. Since a normal product of the form P ∗

1P2 is linearly independent, we
can reapply this procedure until we are left with a linearly independent sum S.

We define:
α ≤ β ⇐⇒ α+ β = β

Lemma 3.11. Let P and Q be linearly independent normal products. If |P |c ⊆ |Q|c,
then the equation P ≤ Q is derivable in T .

Proof. Let P = (P1 + . . .+ Pn)
∗Pn+1 and Q = (Q1 + . . .+Qm)∗Qm+1. We derive

P ≤ Q by extending P to a normal product R such that |P |c ⊆ |R|c and show
that P ≤ R is derivable in T . Because the relation ≤ is transitive, we repeat this
procedure for R and Q until we eventually reach the equation Q ≤ Q.

Since |Pn+1|c ∈ |Q|c, we infer that

Pn+1 =
(
Qi1

1 · · ·Q
im
m

)
Qm+1

for some i1, . . . , im. Furthermore, for every k ≤ n we can define indices jk,1, . . . , jk,m
such that

Pk = Q
jk,1
1 · · ·Qjk,m

m .

Let
R := (P1 + . . .+ Pn +Q1 + . . .+Qm)∗Pn+1.

Then

P +R = P + (Q1 + . . .+Qm + P1 + . . .+ Pn)
∗Pn+1

= P + (Q1 + . . .+Qm)∗P = (1 + (Q1 + . . .+Qm)∗)P

= (Q1 + . . .+Qm)∗P = R

and thus P ≤ R.

Next, we remove the factors P1, . . . , Pn from R. Choose k ≤ n and l ≤ m such that
Pk ̸= ε and jk,l ̸= 0. Let

R′ := (P1 + . . .+ P ′
k + . . .+ Pn +Q1 + . . .+Qm)∗Pn+1

12

such that Pk = QlP
′
k. Then

R+R′ = (P ∗
k + (P ′

k)
∗) [(Q1 + . . .+Qm)∗(· · ·+ Pk−1 + Pk+1 + . . .)∗Pn+1]

= ((QlP
′
k)

∗ + (P ′
k)

∗)Q∗
l [. . .]

= ((QlP
′
k)

∗Q∗
l + (P ′

k)
∗Q∗

l) [. . .]

=
(
(QlP

′
k)

∗Q∗
l + (Ql + P ′

k)
∗) [. . .]

=(6)
(
(QlP

′
k)

∗Q∗
l + (QlP

′
k)

∗(Q∗
l + P ∗

k)
)
[. . .]

=
(
(QlP

′
k)

∗(Q∗
l + P ∗

k)
)
[. . .]

= (Ql + Pk)
∗ [. . .]

= (P ′
k)

∗Q∗
l [. . .]

= R′

We apply this procedure repeatedly until we get a product R′′ of the form

R′′ := (Q1 + . . .+Qm)∗Pn+1.

In order to correct the last factor, we rewrite it using the form Pn+1 =
(
Qi1

1 · · ·Qim
m

)
Qm+1.

Choose k ≤ n such that ik ̸= 0 and let

R′′′ := (Q1 + . . .+Qm)∗P ′′′
m+1,

where P ′′′
m+1Qk = Pn+1. Hence,

R′′ +R′′′ = (Q1 + . . .+Qm)∗(P ′′′
m+1Qk + P ′′′

m+1)

= (Q1 + . . .+Qm)∗(Qk + 1)P ′′′
m+1

= (Q1 + . . .+Qm)∗(Qk1)
∗(Qk + 1)P ′′′

m+1

=(6) (Q1 + . . .+Qm)∗(Qk + 1)∗P ′′′
m+1

= (Q1 + . . .+Qm)∗Q∗
kP

′′′
m+1

= R′′′.

After repeated application, we can show ⊢T R′′′ ≤ Q. Since ≤ is transitive, we have
thus proven that ⊢T P ≤ Q.

Definition 3.12. For linearly independent normal products P = (P1+ . . .+Pn)
∗Pn+1

and Q = (Q1 + . . .+Qm)∗Qm+1, we say that Q spans over P if for each j ≤ n, there
exists tj ≥ 1 such that

|(Pj)
tj |c ∈ |(Q1 + . . .+Qm)∗|c. (8)

Lemma 3.13. Let P and Q(1), . . . , Q(k) be linearly independent normal products. If
|P |c ⊆ |Q(1) + . . .+Q(k)|c, then the equation P ≤ Q(1) + . . .+Q(k) is derivable in T .

Proof. Let P = (P1 + . . . + Pn)
∗Pn+1 and Q := (Q(1), . . . , Q(k)). We prove this

statement inductively over n. For n = 0, P consists of a single word. Hence, there
exists i ≤ k such that |P |c ⊆ |Q(i)|c and by Lemma 3.11 T generates P ≤ Q(i) ≤
Q(1) + . . .+Q(k).

13

Next, let n ≥ 1. Let Q′ be the set of all products in Q that span over P . We claim
that there exists a string S ∈ |(P1 + . . .+ Pn)

∗| such that |PS|c ⊆ |
∑

Q∈Q′ Q|c. To
prove this, suppose there exist a set QS ⊆ Q and i ≤ k such that Q(i) does not span
over P , Q(i) ∈ QS , QS covers PS and QS \ Q(i) does not cover PS. Additionally,
choose j ≤ n such that (Pj)

tj /∈ |(Q(i)
1 + . . . + Q

(i)
m)∗|c for all tj ≥ 1. From this we

conclude |Q(i)|c ∩ |Q(i)Pj |c = Ø. Moreover, this implies |Q(i)|c ∩ |PSPj |c = Ø. Thus,
we can define S′ = SPj and QS′ = QS \ {Q(i)}, resulting in |PS′|c ⊆ |

∑
Q∈QS′ Q|c.

For each i ≤ k that satisfies Q(i) ∈ Q′, we define the linearly independent normal
product

R(i) := (P
t
(i)
1

1 + . . .+ P t
(i)
n

n)∗Pn+1S(P
u
(i)
1

1 · · ·P u
(i)
n

n),

where t
(i)
j is obtained by applying Definition 3.12 to P and Q(i), and 0 ≤ u

(i)
j ≤ t

(i)
j .

This expression satisfies |R(i)|c = |Q(i)|c ∩ |PS|c. Furthermore, for each j ≤ n, define
τj as the least common multiple of {t(i)j | i ≤ k,Q(i) ∈ Q′}. Using the notation
X<n := 1 +X + . . .+Xn−1, we can rewrite R(i) as

R(i) =

n∏
j=1

(
P

t
(i)
j

j

)∗
P

u
(i)
j

j Pn+1S

=(Z)
n∏

j=1

(P t
(i)
j

j

)<

(
τj

t
(i)
j

)P
u
(i)
j

j

(
P

τj
j

)∗
Pn+1S

Thus, define

T (v1, . . . , vn) =
n∏

j=1

P
vj
j

(
P

τj
j

)∗
Pn+1S.

Each product R(i) can be transformed into a sum of terms T (. . .). For all v =
(v1, . . . , vn) such that 0 ≤ vj < τj andQ ∈ Q′, this definition satisfies |T (v1, . . . , vn)|c ⊆
|Q|c. By Lemma 3.11 follows ⊢T T (v1, . . . , vn) ≤ (Q(1) + . . .+Q(k)). Note that PS
is equal to the sum of all possible expressions T (. . .). Hence, we can split PS into
terms T (. . .) using the identity (Z), resulting in

⊢T PS =
∑
v≤τ

T (v1, . . . , vn) ≤ (Q(1) + . . .+Q(k)).

In order to generate the words in |P |c \ |PS|c, we use our induction hypothesis. For
S = PiSi, the set |PSi|c \ |PS|c can be described by the linearly independent normal
product

Ui =

 n∑
j=1,j ̸=i

Pj

∗

Pn+1Si,

14

which uses one less element than P . Thus, by induction Ui ≤ Q(1) + . . . + Q(k).
Furthermore, since Ui ≤ PSi, we get

PSi =

 n∑
j=1

Pj

∗

Pn+1Si

=

 n∑
j=1,j ̸=i

Pj

∗

Pn+1SiP
∗
i

=(4)

 n∑
j=1,j ̸=i

Pj

∗

Pn+1Si(1 + PiP
∗
i)

= PS + Ui.

Applying this method repeatedly produces

⊢T P ≤ PS + U ≤ Q(1) + . . .+Q(k),

where U is the sum of the products Ui that are used.

Definition 3.14. For a regular expression, its star height is a non-negative integer
that is defined recursively according to the following rules:

1. An expression that consists of a single letter or is the empty term ε has star
height 0.

2. If X and Y are regular expressions with star heights i and j respectively, the
terms X + Y and XY both have star height max(i, j).

3. If X has star height i, then X∗ has star height i+ 1.

Lemma 3.15. Let X = Y be an equation in Cω. Then there exist regular expressions
X1 and Y1 that consist of finite sums of normal products and satisfy

⊢T X = X1

⊢T Y = Y1.

Hence, X = Y can be transformed into the form X1 = Y1.

Proof. We want to transform both sides of this equation to a regular expression with
star height 1, which is always possible using the axioms in T . To prove this, it suffices
to show that any regular expression Z∗ of star height 2 can be transformed into an
equivalent form Z ′ with star height 1. By applying this method recursively, it can
be used on expressions of any star height, especially on X and Y . Note that an
expression of star height 1 can be easily converted using (DL) and (C·) into a finite
sum of normal products.

Let Z∗ be a regular expression of star height 2. By expanding Z, we can convert Z∗

to the form

Z∗ =

(
m∑
i=1

Zi,1 · · ·Zi,ni

)∗

=(5)
m∏
i=1

(Zi,1 · · ·Zi,ni)
∗.

15

Each element Zi,j is either a word or an expression of the form W ∗
i,j .

Now, we analyze this expression for each i ≤ m. If there exists no j ≤ ni such that
Xi,j forms an expression with a Kleene star, the expression (Zi,1 · · ·Zi,ni)

∗ already
has star height 1. Otherwise, Zi,j is of the form W ∗

i,j and we can apply the following
transformation:

(Zi,1 · · ·W ∗
i,j · · ·Zi,ni)

∗ = (Zi,1 · · ·Zi,j−1Zi,j+1 · · ·Zi,niW
∗
i,j)

∗

=(4) 1 + Zi,1 · · ·Zi,j−1Zi,j+1 · · ·Zi,ni(Zi,1 · · ·Zi,j−1Zi,j+1 · · ·Zi,ni)
∗W ∗

i,j

If there exists more than one possible index j, we can simply perform this method as
many times as required.

Definition 3.16. For a regular expression X, we define Λ̃(X) as the set of all linearly
independent normal products P such that |P |c ⊆ |X|c. Furthermore, define the
regular expression Λ(X) as

Λ(X) :=
∑
{P ∈ Λ̃(X) | ∄Q ∈ Λ̃(X): |P |c ⊊ |Q|c}.

Theorem 3.17. The set T is a basis of Cω.

Proof. Let X = Y be an equation in Cω. Using Lemma 3.15, this equation can be
converted into a form X1 = Y1, where both sides are sums of finitely many normal
products. Lemma 3.10 allows us to transform this equation further into a form
X2 = Y2 such that all normal products are linearly independent.

Let X2 = Q(1) + . . . + Q(k). For each product P in Λ(X2), |P |c is a subset of
|Q(1) + . . .+Q(k)|c. Hence, by Lemma 3.13 we can generate the equation

X2 = X2 + Λ(X2),

and, by symmetry,
Y2 = Y2 + Λ(Y2).

Additionally, Lemma 3.11 proves

⊢T X2 + Λ(X2) = Λ(X2),

⊢T Y2 + Λ(Y2) = Λ(Y2).

Lastly, note that the expressions Λ(X2) and Λ(Y2) are identical, since |X2|c =
|Y2|c.

3.3 Finite Axiomatizability

Definition 3.18. Let p ≥ 2. A regular expression X over the alphabet {α} has the
p-property if whenever Y ∗ is a well-formed part of X, then every word in |Y | is of
length divisible by p. We call an equation X = Y p-preserving if either both X and
Y or neither X nor Y satisfy the p-property.

For a prime p, the set Tp is constructed by removing the equation (Zk) from T for all
k ≥ p.

16

Lemma 3.19. The equation

α∗ = (αp)∗(1 + α+ . . .+ αp−1) (Zp)

is not generated by the set Tp.

Proof. We show that Tp only generates p-preserving equations. Firstly, this property
can be easily verified for each substitution instance of any identity in Tp. Additionally,
let X[U] = Y and U = V be p-preserving equations generated by Tp such that U is a
well-formed part of X. Then X[V] = Y is also p-preserving. Since the equation Zp is
not p-preserving, it thus cannot be generated by Tp.

Theorem 3.20. The set V2 is not finitely generated. Hence, none of the sets Vr for
r ≥ 2 are finitely generated.

Proof. Assume V2 has a finite basis B ⊆ S2. From S2 = Sω and Sω ⊆ Cω, we infer
B ⊆ Cω. By Theorem 3.17, the set T generates Cω. Since B is finite, there must exist
a finite subset T ′ ⊆ T that generates every equation in B. Thus, the set T ′ forms a
finite basis of V2.

Additionally, there exists a prime p such that T ′ ⊆ Tp. However, the axiom (Zp) lies
in V2 but cannot be generated by Tp ⊇ T ′, as proven in Lemma 3.19. Thus, there
exists no finite basis for V2.

Finally, the second part of the theorem follows from Theorem 3.1 and the fact that
V2 ⊆ Vr for all r ≥ 2.

Corollary 3.21. There exists no finite axiomatization for valid equations of regular
expressions.

17

4 Alternative Proof Systems

Theorem 3.20 proves that there exists no finite set of axioms such that every correct
equation of regular expressions can be proven using replacements and substitutions.
However, there are systems that achieve a finite axiomatization by introducing special
transformations. In this chapter, we introduce two such systems.

4.1 Axiom System F1

The system F1 was introduced by Arto Salomaa in [7]. It contains the following
axioms:

α+ (β + γ) = (α+ β) + γ (A+)
α(βγ) = (αβ)γ (A·)
α+ β = β + α (C+)

α(β + γ) = αβ + αγ (DL)
(α+ β)γ = αγ + βγ (DR)

α+ α = α (I)
α+ 0 = α (U1)
α · 1 = α (U2)
α · 0 = 0 (U3)

α∗ = (1 + α)∗ (9)
α∗ = 1 + α∗α (10)

We say that a regular expression X satisfies the empty word property, or e.w.p. for
short, if ε ∈ |X|. This property can also be defined recursively. A regular expression
α possesses e.w.p. if one of the following conditions is met:

• α = 1

• α = β∗ for some β

• α = β + γ, where β e.w.p. ∨ γ e.w.p.

• α = βγ, where β e.w.p. ∧ γ e.w.p.

The system F1 introduces a special transformation S, which yields the unique solution
of the equation α = αβ + γ as stated in Lemma 2.3.

¬(β e.w.p.) α = αβ + γ

α = γβ∗ (S)

Notably, this operation cannot be expressed using replacements and substitutions.

A proof in F1 is a finite list of equations, where each step is either an axiom in F1 or
the application of a replacement, a substitution or the transformation S on one of the
previous equations. An equation X = Y is derivable in F1, denoted by ⊢F1 X = Y ,
if there exists a proof that ends in X = Y . The axiom system F1 is sound if each
derivable equation is valid, and complete if each valid equation is derivable.

18

Theorem 4.1. The axiom system F1 is sound.

Proof. The axioms in F1 are valid, as they are already proven in Chapter 2. Moreover,
the validity of substitutions and replacements is obvious. Substituting α for γβ∗ in
α = αβ + γ produces the equation γ(β∗) = γ(β∗β + 1), which is valid because of
identity (10).

We write
⊢F1 (α, β) = (γ, δ)

to note that ⊢F1 α = γ and ⊢F1 β = δ.

Lemma 4.2. If

∀i ≤ n: ⊢F1 (αi, βi) =

n∑
j=1

(αj , βj)γij + (γi, γi)

and none of the regular expressions γij possesses the empty word property, then

∀i ≤ n: αi = βi.

Proof. We use an induction over n. For n = 1, the expression has the form

⊢F1 (α1, β1) = (α1, β1)γ11 + (γ1, γ1).

Applying the transformation (S) yields

⊢F1 (α1, β1) = (γ1(γ11)
∗, γ1(γ11)

∗)

and thus ⊢F1 α1 = β1.

For n ≥ 2, the equation for the case i = n can be transformed to

⊢F1 (αn, βn) = (αn, βn)γnn +

n−1∑
j=1

(αj , βj)γnj + (γn, γn)


=(S)

n−1∑
j=1

(αj , βj)γnj + (γn, γn)

 (γnn)
∗.

Substituting (αn, βn) in the original equation thus yields

∀i ≤ n− 1: ⊢F1 (αi, βi) =

n−1∑
j=1

(αj , βj) (γij + γnj(γnn)
∗γin) + (γ̃i, γ̃i),

where γ̃i := γi + γn(γnn)
∗γin. Since each coefficient does not possesses e.w.p., we can

apply the induction case for n− 1.

Definition 4.3. A regular expression α over the alphabet Ir is equationally charac-
terized if there exist regular expressions α1, . . . , αn such that α = α1 and

∀i ≤ n: ⊢F1 αi =

r∑
j=1

αijxj + δ(αi),

where δ(αi) ∈ {0, 1} and for each i and j, there exists k ≤ n such that αij = αk.

19

Lemma 4.4. Let α = β be a valid equation. If

⊢F1 (α, β) =

r∑
j=1

(αj , βj)xj + (δ(α), δ(β)) (11)

such that δ(α), δ(β) ∈ {0, 1}, then δ(α) = δ(β) and the equation αj = βj is valid for
all j ≤ r.

Proof. By Theorem 4.1, equation (11) must be valid. As the terms (αj , βj)xj for
j ≤ r do not satisfy the e.w.p., δ(α) = 1 if and only if α possesses the empty word
property. Additionally, since α = β is valid, δ(α) and δ(β) must have the same value.
Furthermore, the sets |αjxj | for j ≤ r are disjoint. Hence, the equations αj = βj
must be valid.

Lemma 4.5. Every regular expression is equationally characterized.

Proof. Firstly, each one-symbol expression is equationally characterized:

⊢F1 0 =
r∑

j=1

0xj + 0

⊢F1 1 =
r∑

j=1

0xj + 1

∀i ≤ r: ⊢F1 xi = 0x1 + . . .+ 1xi + . . .+ xr + 0

Let α, β be regular expressions that are equationally characterized. We want to show
that the terms α+ β, αβ and α∗ are also equationally characterized.

For u ≤ n and v ≤ m, we define ξ(u, v) := αu + βv. Since

⊢F1 0 + 0 = 0

⊢F1 0 + 1 = 1 + 0 = 1

⊢F1 1 + 1 = 1,

we can expand αu and βv in order to derive

⊢F1 ξ(u, v) =

r∑
j=1

(αuj + βvj)xj + δ(u, v),

where δ(u, v) ∈ {0, 1}. There exist k ≤ n and l ≤ m such that αuj = αk and βvj = βl.
Because αuj + βvj = αk + βl = ξ(k, l) and ξ(1, 1) = α + β, we know that α + β is
equationally characterized.

Next, we define
η(u, (v1, . . . , vh)) := αβu + αv1 + . . .+ αvh ,

20

where u ≤ m, h ≥ 0 and 1 ≤ v1 < v2 < · · · < vh ≤ n. This expression can be
transformed to

⊢F1 η(u, (v1, . . . , vh)) =

r∑
j=1

(αβuj + αv1j + . . .+ αvhj)xj + αδ(βu) + δ(u, (v1, . . . , vh))

=
r∑

j=1

(αβuj + α1jδ(βu) + αv1j + . . .+ αvhj)xj + δ(u, (v1, . . . , vh)),

where δ(u, (v1, . . . , vh)) ∈ {0, 1}. Since the coefficients in the last equation are outputs
of η and η(1, ()) = αβ, we have shown that αβ is equationally characterized.

Lastly, denote

ζ() := α∗,

ζ(v1, . . . , vn) := α∗(αv1 + . . .+ αvh).

for h ≥ 1 and 1 ≤ v1 < v2 < · · · < vh ≤ n. As ⊢F1 (α+ 1)∗ = α∗, we conclude

⊢F1 α =

r∑
j=1

α1jxj + δ(α1)

=⇒ ⊢F1 α∗ =

 r∑
j=1

α1jxj

∗

.

Applying α∗ = 1 + α∗α yields

⊢F1 ζ() = 1 +

 r∑
j=1

α1jxj

∗
r∑

j=1

α1jxj =
r∑

j=1

α∗α1jxj + 1.

Furthermore, we get

⊢F1 ζ(v1, . . . , vn) =
r∑

j=1

α∗(α1jδ(v1, . . . , vn) + av1j + . . .+ avhj)xj + δ(v1, . . . , vn)

Again, the coefficients in the last expression are possible values of ζ. Thus, α∗ is
equationally characterized.

Theorem 4.6 (Completeness). The axiom system F1 is complete.

Proof. Let α = β be a valid equation. By Lemma 4.5, α and β are equationally
characterized by α1, . . . , αn and β1, . . . , βm. Using Lemma 4.4, we obtain the equation

⊢F1 (α, β) = (α1, β1) =

r∑
j=1

(α1j , β1j)xj + (δ(α), δ(α))

and define the set M1 := {(α, β)} ∪ {(α1j , β1j) | j ≤ r}. We apply this equation on
each pair in M1, resulting in

∀(α′, β′) ∈M1: ⊢F1 (α′, β′) =
r∑

j=1

(α′
1j , β

′
1j)xj + (δ(α′), δ(α′)).

21

Next, we define M2 := M1 ∪ {(α′
1j , β

′
1j) | j ≤ r}. This procedure can be reapplied

until we have constructed a set that adds no additional pairs, which we call M ′. Note
that M ′ can have at most nm elements.

Finally, the equations

∀(α′, β′) ∈M ′: ⊢F1 (α′, β′) =
r∑

j=1

(α′
j , β

′
j)xj + (δ(α′), δ(α′))

can be rewritten as

∀(α′, β′) ∈M ′: ⊢F1 (α′, β′) =
∑

(α′′,β′′)∈M ′

(α′′, β′′)γ(α′′) + (δ(α′), δ(α′)),

where γ(α′′) is either 0 or xv1 + . . .+ xvh for h ≥ 1 and 1 ≤ v1 < · · · < vh ≤ r. Thus,
γ(α′′) never possesses empty word property. By Lemma 4.2, we infer

∀(α′, β′) ∈M ′: ⊢F1 α′ = β′

and especially ⊢F1 α = β.

4.2 Kleene Algebra

In this section we discuss Kleene algebras, whose properties were studied by Dexter
Kozen in [5].

For regular expressions α and β, we recall the notation α ≤ β as

α ≤ β ⇐⇒ α+ β = β.

Moreover, if α ≤ β is a valid equation, it is easy to see that |α| ⊆ |β|.

Definition 4.7. A Kleene algebra is an algebraic structure K = (K,+, ·,∗ , 0, 1) that
satisfies the following identities:

α+ (β + γ) = (α+ β) + γ (A+)
α(βγ) = (αβ)γ (A·)
α+ β = β + α (C+)

α(β + γ) = αβ + αγ (DL)
(α+ β)γ = αγ + βγ (DR)

α+ α = α (I)
α+ 0 = α (U1)
α · 1 = 1 · α = α (U2)
α · 0 = 0 · α = 0 (U3)

1 + αα∗ ≤ α∗ (12)
1 + α∗α ≤ α∗ (13)

22

In addition to the aforementioned axioms, the Kleene algebra satisfies the following
transformations:

αβ ≤ β

α∗β ≤ β (Kl)
βα ≤ β

βα∗ ≤ β (Kr)

Theorem 4.8. The theory of Kleene algebras is sound.

Proof. The axioms (A+) to (U3) are among the identities proven in chapter 2.
Equations (12) and (13) can be proven by combining the valid identities 1+αα∗ = α∗,
1 + α∗α = α∗ and α + α = α. In order to verify Kl, note that if αβ ≤ β is valid,
then |αβ| ⊆ |β|. Through induction, we can prove |α∗β| ⊆ |β| and thus Kl and, by
symmetry, Kr are valid.

Unlike the system F1, Kleene algebras are not limited to regular expressions. One
important type of Kleene algebras, and one which we need in order to prove the
completeness of Kleene algebras, is defined over matrices.

Theorem 4.9. Let K be a Kleene algebra andQ be a finite set of indices. Furthermore,
let ZQ be the zero matrix and IQ be the identity matrix in KQ×Q. Then the structure

(KQ×Q,+, ·,∗ , ZQ, IQ)

is a Kleene algebra.

Proof. See [5].

Definition 4.10. A finite automaton over K with states Q is a triple

U := (a, U, b),

where a, b ∈ {0, 1}Q and U ∈ KQ×Q. The vector a determines the start states, i.e.
q ∈ Q is a start state if and only if aq = 1. Likewise, b defines the final states.
Moreover, the Q×Q matrix U is called the transition matrix. The language accepted
by U is defined as

a⊤U∗b.

Definition 4.11. Let U := (a, U, b) be a finite automaton over a Kleene algebra K.
Then U is simple if there exist matrices J, Ui ∈ {0, 1}Q×Q for all i ∈ A such that

U = J +
∑
i∈A

i · Ui.

If J = 0, then U is called ε-free. Additionally, U is deterministic if it is simple, ε-free
and the vector a as well as each row in Ai have exactly one 1.

Lemma 4.12. Let X be a regular expression over the alphabet A. Then there exists
a simple automaton U := (a, U, b) such that

X = a⊤U∗b

23

Proof. Firstly, each one-symbol expression x ∈ A ∪ {0, 1} can be expressed as the
automaton

(

[
1
0

]
,

[
0 x
0 0

]
,

[
0
1

]
),

since [
1 0

]
·
[
0 x
0 0

]∗
·
[
0
1

]
=
[
1 0

]
·
[
1 x
0 1

]
·
[
0
1

]
= x

Let (a, U, b) and (c, V, d) be simple automata such that

α = a⊤U∗b

β = c⊤V ∗d.

The expression α+ β is accepted by the automaton([
a

c

]
,

[
U 0

0 V

]
,

[
b

d

])
,

as [
a⊤ c⊤

]
·
[
U 0

0 V

]∗
·
[

b

d

]
=
[
a c

]
·
[
U∗ 0

0 V ∗

]
·
[

b

d

]
= a⊤U∗b+ c⊤V ∗d

= α+ β.

Furthermore, αβ is accepted by([
a

0

]
,

[
U bc⊤

0 V

]
,

[
0

d

])
since [

a⊤ 0
]
·
[
U bc⊤

0 V

]∗
·
[
0

d

]
=
[
a⊤ 0

]
·
[
U∗ U∗bc⊤V ∗

0 V ∗

]
·
[
0

d

]
= a⊤U∗bc⊤V ∗d

= αβ.

In order to construct an automaton for α∗, note that the following equations can be
derived from the Kleene axioms, as proven in [5]:

α∗ = 1 + αα∗ (14)
(αβ)∗α = α(βα)∗ (15)

(α+ β)∗ = α∗(βα∗)∗ (Sl)

The automaton
(a, U + ba⊤, b)

accepts αα∗, since

a⊤(U + ba⊤)∗b =(Sl) a⊤U∗(ba⊤U∗)∗b

=(15) a⊤U∗b(a⊤U∗b)∗

= αα∗.

Finally, we can use the constructions for α + β and 1 to define an automaton for
1 + αα∗ = α∗.

24

Lemma 4.13. Let U := (a, U, b) be a simple automaton. Then there exists a
deterministic automaton V := (c, V, d) such that

a⊤U∗b = c⊤V ∗d.

Proof. First, we transform U into an ε-free automaton that accepts the same language.
According to Definition 4.11, the matrix U of a simple automaton can be written as
J + U ′, where U ′ =

∑
i∈A i · Ui. Then

a⊤U∗b = a⊤(J + U ′)∗b =(Sl) a⊤J∗(U ′J∗)∗b,

which allows us to define an ε-free variant U ′ of U as

U ′ :=
(
(a⊤J∗)⊤, U ′J∗, b

)
.

For the remaining proof, assume that U is ε-free.

Let Q be the set of states used in U . Using the notation P(Q) for the power set of Q,
we define the canonical vector es for s ∈ P (Q), i.e. es ∈ {0, 1}P(Q) such that es has
the term 1 in position s and 0 otherwise. Define the matrix Φ ∈ {0, 1}P(Q)×Q such
that

e⊤s Φ = s⊤

for each s ∈ P(Q). Furthermore, for each i ∈ A let Vi ∈ {0, 1}P(Q)×P(Q) such that

e⊤s Vi = e(s⊤Ui)

for each s ∈ P(Q). Then

c = ea

V =
∑
i∈A

a · Vi

d = Φb

The matrix Φ satisfies the equation

ΦU = V Φ,

as

e⊤s ΦU = s⊤U

=
∑
i∈A

i · s⊤Ui

=
∑
i∈A

i · es⊤Ui
Φ

=
∑
i∈A

i · e⊤s ViΦ

= e⊤s V Φ.

25

It can be shown that Kleene algebras satisfy the transformation

xα = βx

xα∗ = β∗x

and that this relation can be extended to matrices [5]. Thus, we conclude

ΦU∗ = V ∗Φ

and consequently

c⊤V ∗d = e⊤a V
∗Φb = e⊤a ΦU

∗b = a⊤U∗b.

Definition 4.14. Let U := (a, U, b) be a deterministic automaton with states Q. For
q ∈ Q, we define eq ∈ {0, 1}Q as the canonical vector of q, i.e. the vector with 1 in
position q and 0 otherwise. A state q ∈ Q is reachable if and only if

a⊤U∗eq ̸= 0.

Furthermore, assuming that each state in Q is reachable, we define the relation ∼
over Q such that p ∼ q implies the conditions

∀i ∈ A: δ(p, i) = δ(q, i)

e⊤p b = e⊤q b.

We also define

[p] := {q ∈ Q | q = p}

Q/∼ := {[p] | p ∈ Q}.

Lemma 4.15. Let U := (a, U, b) be a deterministic automaton with states Q. Then
there exists a deterministic automaton V := (c, V, d) with states Q/∼ such that every
state is reachable and

a⊤U∗b = c⊤V ∗d.

We call V a minimal deterministic automaton.

Proof. First, we want to remove all unreachable states from U . The matrix U can be
written as

U =
∑
i∈A

i · Ui.

Furthermore, for each q ∈ Q and i ∈ A, δ(q, i) denotes a state that satisfies

e⊤p Ui = e⊤δ(q,i).

The state δ(q, i) exists and is unique because U is deterministic. Define R ⊆ Q as the
set of all reachable states and S = Q \R. Using this partition, we split the elements
in (a, U, b) into subvectors and submatrices:

a =

[
aR
aS

]
, U =

[
URR URS

USR USS

]
, b =

[
bR
bS

]
26

The submatrix URS is 0, as unreachable states cannot be reached from states in R.
Likewise, aS = 0. Hence,

a⊤U∗b =
[
a⊤R 0

]
·
[
URR 0

USR USS

]∗
·
[
bR
bS

]
=
[
a⊤R 0

]
·
[

U∗
RR 0

U∗
SSUSRU

∗
RR U∗

SS

]
·
[
bR
bS

]
= a⊤RU

∗
RRbR.

Assume that each state in Q is reachable. We define the relation ∼ as in Definition
4.14 and e[p] as the canonical vector for [p] ∈ Q/∼. Let Ψ ∈ {0, 1}Q×Q/∼ such that

e⊤p Ψ = e⊤[p]

for each p ∈ Q. Furthermore, for each i ∈ A, define Vi ∈ {0, 1}Q/∼×Q/∼ and d ∈
{0, 1}Q/∼ such that

e⊤[p]Vi = e⊤[δ(p,i)]

e⊤[p]d = e⊤p b,

which implies
Ψd = b.

Lastly, let

c⊤ = a⊤Ψ

V =
∑
i∈A

i · Vi.

Similarly to the matrix Φ in Lemma 4.13, it can be shown that Ψ satisfies the equation

UΨ = ΨV

and subsequently
U∗Ψ = ΨV ∗.

Therefore,
c⊤V ∗d = a⊤ΨV ∗d = a⊤U∗Ψd = a⊤U∗b.

Theorem 4.16 (Completeness). Let α = β be a valid equation of regular expressions.
Then α = β is a theorem of the theory of Kleene algebras.

Proof. By Lemma 4.12, 4.13 and 4.15, there exist minimal deterministic automata
U := (a, U, b) and V := (c, V, d) such that

α = a⊤U∗b

β = c⊤V ∗d.

27

Since minimal automata that accept the same language are isomorphic, there exists
a permutation matrix P such that

U = P⊤V P

a = P⊤c

b = P⊤d.

Hence,

α = a⊤U∗b

= (P⊤c)⊤(P⊤V P)∗(P⊤d)

= c⊤P (P⊤V P)∗P⊤d

= c⊤PP⊤V ∗PP⊤d

= c⊤V ∗d

= β.

28

5 Proof Complexity

In the previous chapters, we construct axiom systems that generate proofs for
equations of regular expressions. However, the problem of proving that an equation is
valid can also be examined from a complexity perspective. An important idea in this
regard is Cook’s program, which links the equivalence of NP and coNP to polynomially
bounded propositional proof systems [2]. We will define a similar statement that
is based on regular expressions instead of propositional logic. Furthermore, we will
show a link between regular expressions and the equivalence of NP and PSPACE. In
this chapter, we follow the proofs given by Simon Beier and Markus Holzer in [1] as
well as the proof by Dexter Kozen in [4].

We define the problem EQUIV as

EQUIV := {(X,Y) | X and Y are regular expressions such that |X| = |Y |}.

Definition 5.1. The class NP consists of all languages that can be decided by a
nondeterministic Turing machine in polynomial time. Furthermore, PSPACE is the
set of all problems that can be decided by a deterministic Turing machine on a tape
of polynomial length. By Savitch’s Theorem [9], the definition of PSPACE can be
extended to nondeterministic Turing machines as well. Additionally, the class coNP
consists of the complements of all elements in NP.

Definition 5.2. Let A be an alphabet and L ⊆ A∗. A proof system for L is a
function f : A∗ → L that is surjective and computable in deterministic polynomial
time. For x, y ∈ L, we call x a proof of y if y = f(x). Furthermore, f is polynomially
bounded if there exists a polynomial function p such that each y has a proof x that
satisfies |x| ≤ p(|y|), where |.| denotes the length of a given word.

Lemma 5.3. Let L ⊆ A∗ and L ̸= Ø. Then L ∈ NP if and only if L has a
polynomially bounded proof system.

Proof. If L ∈ NP, there exists a nondeterministic Turing machine U that accepts L
in polynomial time. Hence, if x encodes a computation that accepts y we can simply
define f(x) = y. Otherwise, we set f(x) = y0 for some y0 ∈ L.

Conversely, if L has a polynomially bounded proof system, then y has a polynomially
bounded proof x. Thus, a nondeterministic algorithm can compute x in polynomial
time by simply guessing.

Theorem 5.4. EQUIV is PSPACE-complete.

Proof. First, we show that EQUIV is in PSPACE. Let X = Y be a valid equation of
regular expressions. As shown in Lemma 4.12, we can construct nondeterministic
finite automata U and V that accept the sets |X| and |Y | respectively. We construct
a nondeterministic Turing machine to check whether the sets accepted by U and V
are identical. To do this, the algorithm rejects if it finds a word w that is in |X|
but not in |Y | or vice versa. It follows from Savitch’s Theorem [9] that the classes
PSPACE and NPSPACE are identical, which allows the algorithm to choose a word
w nondeterministically. The procedure starts by marking each start state of U and V .
It then iterates through the word w symbol by symbol and moves the marks to all

29

states that are currently accessible by the string read so far. The algorithm rejects if
there is a marked accept state on one automaton but no marked accept state on the
other. This whole process can be achieved within polynomial space, so EQUIV is in
PSPACE.

In order to show that EQUIV is PSPACE-hard, we take a fixed arbitrary problem
in PSPACE. There exists a one-tape polynomial-space-bound deterministic Turing
machineM over the alphabet A := {0, 1, ␣,▷} that decides this problem. Furthermore,
let Q be the finite set of states used in M . For an input string x, let n := |x| and
c ≥ 1 be a constant such that nc is the space bound of M . We are interested in
the computation history of M , which we encode as a string containing a list of
configurations αi of length nc:

α0α1 · · ·αm

Each configuration αi := (q, u, v) is encoded as the string qu□v, where □ is an
additional symbol used to mark the position of the cursor. We construct a regular
expression Y that contains all strings which are not valid computation histories for
an input x. Let ∆ := A∪Q∪ {□}, which is the set of all symbols that can appear in
a computation history. If M accepts x, then there exists a valid computation and
|Y | ≠ ∆∗. Otherwise, all computations are invalid and Y describes the whole set ∆∗.
Thus, the construction of Y proves that EQUIV is PSPACE-hard.

A computation history is invalid if it satisfies at least one of the following properties:

1. There exists i ≤ m such that |αi| ≠ nc or the history contains no states at all.

2. A configuration contains more than one cursor or no cursor at all.

3. α0 is not the start configuration.

4. αm is not an accept configuration.

5. There exists i ≤ (m− 1) such that the transition from αi to α(i+1) is not valid.

The regular expression Y can be defined as Y := Y1 + Y2 + Y3 + Y4 + Y5, where each
Yi encodes one of the properties above that invalidate a given computation history.
Each term αi starts with a symbol in Q, so Y1 just has to check for occurrences of
q ∈ Q followed by more or less than nc non-state symbols. Y2 works in a similar
manner. As there are only finitely many possible configurations of length nc, the
expressions Y3 and Y4 check whether α0 or αm consist of a string that does not satisfy
the respective condition.

In order to encode the fifth rule, recall that the transition function δ of M can be
defined as

δ : Q×A→ Q×A× {←,→,−}.

Thus, we can divide Y5 into regular expressions Zqa for each state q ∈ Q and symbol
a ∈ A. Each term Zqa is satisfied if a configuration in the state q and a symbol a next
to a cursor is followed by an incorrect configuration. The term Y5 is then defined as
the sum of all Zqa for each q ∈ Q and a ∈ A.

Theorem 5.5. NP = PSPACE if and only if EQUIV admits a polynomially bounded
proof system.

30

Proof. If NP = PSPACE, then EQUIV ∈ NP. By Lemma 5.3, EQUIV must have
a polynomially bounded proof system. Conversely, EQUIV having a polynomially
bounded proof system implies EQUIV ∈ NP. Since EQUIV is PSPACE-complete, we
conclude that PSPACE ⊆ NP and thus NP = PSPACE.

The set EQUIVfin is a modification of EQUIV that contains pairs of regular expressions
that only use unions and concatenations. Regular expressions in EQUIVfin always
describe finite languages, which is why we use the subscript "fin" as in finite.

Theorem 5.6. NP = coNP if and only if EQUIVfin admits a polynomially bounded
proof system.

Proof. Observe that EQUIVfin is in coNP. In order to prove that an equation is not in
EQUIVfin, we can verify that a given assignment refutes the equality in deterministic
polynomial time. If NP = coNP, then EQUIVfin ∈ NP. By Lemma 5.3, EQUIVfin
thus has a polynomially bounded proof system.

Conversely, EQUIVfin having a polynomially bounded proof system implies EQUIVfin ∈
NP. It can be shown that EQUIVfin is coNP-complete [3], which means that each
problem in coNP can be reduced to EQUIVfin. Thus, we infer coNP ⊆ NP.

Furthermore, the complementary set EQUIVc
fin, i.e. the set of all equations of finitary

regular expressions that are not valid, is NP-complete. As EQUIVfin ∈ NP, it follows
that EQUIVc

fin ∈ coNP. Thus, each problem in NP can be reduced to EQUIVc
fin,

which implies NP ⊆ coNP.

31

References

[1] Simon Beier and Markus Holzer. On regular expression proof complexity of
Salomaa’s axiom system F1. In Stefan Kiefer, Jan Kretínský, and Antonín
Kucera, editors, Taming the Infinities of Concurrency - Essays Dedicated to
Javier Esparza on the Occasion of His 60th Birthday, volume 14660 of Lecture
Notes in Computer Science, pages 72–100. Springer, 2024.

[2] Samuel R. Buss. Towards np-p via proof complexity and search. Annals of Pure
and Applied Logic, 163(7):906–917, 2012.

[3] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the
equivalence, containment, and covering problems for the regular and context-free
languages. J. Comput. Syst. Sci., 12(2):222–268, 1976.

[4] Dexter Kozen. Introduction to Kleene algebra. Lecture notes, Spring term 2004,
Cornell University, available at www.cs.cornell.edu/courses/cs786/2004sp/.

[5] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. In Proceedings of the Sixth Annual Symposium on Logic in
Computer Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991,
pages 214–225. IEEE Computer Society, 1991.

[6] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[7] Arto Salomaa. Two complete axiom systems for the algebra of regular events. J.
ACM, 13(1):158–169, 1966.

[8] Arto Salomaa. Theory of Automata. Pergamon Press, 1969.

[9] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

32

	Introduction
	Identities of Regular Expressions
	Classical Identities
	Aperiodic Identities
	Cyclic Identities

	Equational Axiomatization
	Preliminaries
	Basis T
	Finite Axiomatizability

	Alternative Proof Systems
	Axiom System F1
	Kleene Algebra

	Proof Complexity

